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ABSTRACT

This paper introduces the Tubal Tensor Train (TTT) decomposition, a novel ten-
sor decomposition model that effectively mitigates the curse of dimensionality
inherent in the Tensor Singular Value Decomposition (T-SVD). The TTT decom-
position represents an N -order tensor as the Tubal product (T-product) of a series
of two third-order and (N − 3) fourth-order core tensors, contracted. Similar to
the Tensor-Train (TT) decomposition, our approach addresses the curse of dimen-
sionality problem. In order to decompose a given tensor into the TTT format, we
propose two high-performing algorithms. Numerical simulations are conducted
on diverse tasks to demonstrate the efficiency and accuracy of these algorithms
compared to the State-of-the-Art methods.

1 INTRODUCTION

Tensors are multi-dimensional arrays used to represent and manipulate complex data structures such
as images, videos, and scientific datasets Sidiropoulos et al. (2017); Kolda & Bader (2009); Papalex-
akis et al. (2016). They have become fundamental in machine learning, computer vision, scientific
computing, and engineering. Tensors are defined as a generalization of scalars, vectors, and matri-
ces to higher dimensions. Each element in a tensor is identified by a set of indices, with each index
corresponding to a specific dimension. Tensor decompositions, such as Canonical Polyadic De-
composition (CPD) Hitchcock (1927; 1928), Tucker decomposition Tucker (1963); De Lathauwer
et al. (2000), Block Term decomposition De Lathauwer (2008), Tensor Train (TT) decomposition
Oseledets (2011), and Tensor Chain/Ring decomposition Espig et al. (2012); Zhao et al. (2016), are
used to represent tensors in more compact forms.

The Tensor Singular Value Decomposition (T-SVD) is a popular decomposition for third order ten-
sors with applications in machine learning, signal processing, and computer vision Kilmer et al.
(2013); Kilmer & Martin (2011). However, its extension to higher order tensors suffers from the
curse of dimensionality Martin et al. (2013); Wang & Yang (2022). To address this issue, we propose
the Tubal Tensor Train (TTT) decomposition, which extends the T-SVD to higher order tensors by
breaking the curse of dimensionality Wang & Yang (2022). Unlike the Convolutional Tensor-Train
model proposed in Su et al. (2020), which replaces the contraction operator with the convolutional
operator LeCun et al. (1995), our approach relies on the use of the T-product Gu et al. (2018).

Contributions and Outline of the paper

• We introduce a novel tensor decomposition model called “Tubal Tensor Train” (TTT).
• We show that TTT model successfully mitigates the curse of dimensionality exhibited in the T-

SVD model.
• We propose two efficient algorithms to compute the TTT of a higher-order tensor.
• We conduct extensive simulations to show the efficiency of our approach on diverse tasks, includ-

ing tensor completion and compression of RGB images, videos, and hyperspectral images.

The paper is structured as follows. In Section 2, we introduce the necessary concepts and notations.
Next, in Section 3, we discuss the characteristics and properties of the TT and T-SVD models,
which are relevant for the remainder of the paper. Our proposed algorithms are described in Section
4, where we demonstrate how to overcome the curse of dimensionality that is inherent in the T-SVD
model. This enhances the applicability of the T-SVD for decomposing high-order data tensors. We
present the simulation results in Section 5, and finally, we provide a conclusion in Section 6.
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2 PRELIMINARIES

This section presents the main notations, which we use throughout the paper. A tensor, a matrix,
and a vector are denoted by a underlined capital letter, a bold capital letter and a bold lower case
letter. The analyses and experiments done in the paper are for real-valued tensors, but they can be
extended to complex tensors in a straightforward way.

We define a matrix A of size I × T as a hyper-vector,
˜
a, of length I , i.e., its elements,

˜
a(i), are

vectors (tubes) of length T . We also call this a hierarchical vector, because it has two levels of
structure: the vector level and the tube level.

Similarly, a hyper-tensor is a tensor whose elements are tubes of the same length, which we call the
tube length of the hyper-tensor. A tensor of size I × J × T is considered an I × J-dimensional
hyper-matrix with tube length T . An order-(N + 1) tensor is a hyper-tensor of order-N , where N
is the number of modes excluding the tube mode. For convenience, we denote the last mode of a
tensor as the tube mode on which we apply the circular convolution, and use T to denote the tube
length of a hyper-tensor throughout the paper.

Definition 1. (t-product Kilmer & Martin (2011)) The t-product of two hyper-matrices
˜
X ∈ RI×J

and
˜
Y ∈ RJ×K yields a hyper-matrix

˜
Z ∈ RI×K denoted by

˜
Z =

˜
X ∗

˜
Y whose elements are given

by

˜
Z(i, k) =

J∑
j=1

˜
X(i, j)⊛

˜
Y(j, k), (1)

where “⊛” denotes the modulo-T circular convolution of tubes1.

Definition 2. (Transpose) of a hyper-matrix
˜
X ∈ RI×J gives another hyper-matrix, denoted by

˜
XT ∈ RJ×I , where

˜
XT (j, i) = ifft(conj(fft(

˜
X(i, j))), i.e., reverse the order of the 2nd to the last

elements of the tube
˜
X(i, j).

Definition 3. (Identity hyper-matrix)
˜
I of size I × I is called identity if its off-diagonal elements

are zero-tubes and its diagonal elements are unit vectors of length T with the first entry equal to
1 and the rest equal to 0. This coincides with an order-3 tensor whose the first frontal slice is an
identity matrix and all other frontal slices are zero. It is easy to show that

˜
I ∗

˜
X =

˜
X and

˜
X ∗

˜
I =

˜
X

for all hyper-matrices of compatible sizes.

Definition 4. (Orthogonal hyper-matrix) A hyper-matrix
˜
X ∈ RI×I is orthogonal if

˜
XT ∗

˜
X =

˜
X ∗

˜
XT =

˜
I.

Note that there are not unique definitions for orthogonal and identity tensors and the above defini-
tions correspond to the t-product operation.

Definition 5. (tubal outer product) of N hyper-vectors,
˜
an = [

˜
an(1); . . . ;

˜
an(In)] of length In

and tube length T , yields a rank-1 hyper-tensor,
˜
Y of size I1× I2× · · ·× IN with tubes of length T

˜
Y =

˜
a1 ◦

˜
a2 ◦ · · · ◦

˜
aN , (2)

where the elements of
˜
Y are given by

˜
Y(i1, i2, . . . , iN ) =

˜
a1(i1)⊛

˜
a2(i2)⊛ · · ·⊛

˜
aN (iN ), (3)

The tubal outer product can also be seen as a generalization of the outer product of vectors.

3 TENSOR SINGULAR VALUE DECOMPOSITION (T-SVD) AND TENSOR
TRAIN DECOMPOSITION

In this section, we recall two tensor decomposition models, namely the Tensor Train (TT) decom-
position and Tensor SVD (T-SVD). These decompositions are crucial for the formulation of the pro-
posed TTT model, which will be introduced in Section 4.

1For the definition of the modulo-T circular convolution and a more efficient way to computate the t-product,
see Appendix A.1
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Figure 1: (Upper) The T-SVD of a third order tensor.
(Bottom) The truncated T-SVD of a third order tensor.

Figure 2: (Upper) The graph visualization of the pro-
posed tubal TT decomposition. The connection be-
tween the core tensors is the T-product. (Bottom) One
tube of the original tensor is computed through a se-
quence of T-products between sub-tensors of the core
tensors of the TTT model.

3.1 TENSOR TRAIN (TT) DECOMPOSITION

The Tensor-Train (TT) decomposition Oseledets (2011), also known as Matrix Product State (MPS)
Hübener et al. (2010), is a powerful tool for efficient representation and manipulation of higher
order tensors. It constructs a special tensor network that represents the original tensor as a train of
low order tensors. Figure 10 illustrates this tensor decomposition for a 4th order tensor. Suppose
X ∈ RI1×···×IN is the given tensor. The TT decomposition of X can be represented by the following
model:

X (i1, . . . , iN ) =
R1,...,RN−1∑
r1,...,rN−1=1

X̂1 (i1, r1) X̂2 (r1, i2, r2) · · · X̂N (rN−1, iN ) ,

where X̂n ∈ RRn−1×In×Rn for n = 2, . . . , N − 1 are third-order core tensors. The first
and last tensors, X̂1 and X̂N , are second-order tensors, i.e. matrices. Moreover, the multiplet
(R1, . . . , RN−1) is called TT rank. The number of parameters required to represent an N -th order
tensor X ∈ RI×I×···×I in the TT format is O(INR2). Therefore, it scales linearly with the tensor
order. Notably, the best low rank TT approximation always exists and stable algorithms have been
proposed to efficiently compute the TT decomposition.

3.2 TENSOR SVD (T-SVD)

The Tensor SVD (T-SVD) expresses a tensor as the T-product of three tensors Kilmer & Martin
(2011); Kilmer et al. (2013). Given a third order tensor of size I × J × T as a hyper-matrix

˜
X

of size I × J , the T-SVD of
˜
X is defined by

˜
X =

˜
U ∗

˜
S ∗

˜
VT where

˜
U and

˜
V are orthogonal

hyper-matrices of size I × I and J × J ,
˜
S is a diagonal hyper-matrix whose off-diagonal elements

are zero-tubes. The tubal rank is defined as the number of nonzero fibers in
˜
S, see Appendix A.1 for

more details.

4 PROPOSED TUBAL TENSOR-TRAIN DECOMPOSITION

In this section, we present the new tensor decomposition model called Tubal-TT (TTT). The main
intuition behind the TTT decomposition is to express a high-dimensional data tensor as a sequence
of convolution-like products of lower-dimensional core tensors. The core tensors are often of order
2, 3, or 4, and they capture the essential features and interactions of the data. The convolution-like
operator used in the TTT decomposition is the tubal product, which is a generalization of the circular
convolution to tensors.

The Tubal-TT decomposition represents a general hyper-tensor,
˜
X of size I1 × I2 × · · · × IN (with

tube length T ), as a sum of rank-1 tubal tensors constructed from core hyper-tensors,
˜
X(n), of size
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Rn−1 × In ×Rn, where R0 = RN = 1

˜
X =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1
˜
X(1)(1, :, r1) ◦

˜
X(2)(r1, :, r2) ◦ · · · ◦

˜
X(N)(rN−1, :, 1), (4)

where the elements of
˜
X are given by

˜
X(i1, i2, . . . , iN ) =

R1∑
r1=1

R2∑
r2=1

· · ·
RN−1∑

rN−1=1
˜
X(1)(1, i1, r1) ∗

˜
X(2)(r1, i2, r2) ∗ · · · ∗

˜
X(N)(rN−1, iN , 1),

(5)

or equivalently, as the tubal product of hyper-matrices
˜
X(n)(:, in, :)

˜
X(i1, i2, . . . , iN ) =

˜
X(1)(1, i1, :) ∗

˜
X(2)(:, i2, :) ∗ · · · ∗

˜
X(N)(:, iN , 1). (6)

In this sense, the TTT decomposition is interpreted as a Tubal-Matrix Product State, a tensor de-
composition that operates on the tubal product. The TTT decomposition can reduce the storage
and computational complexity of the data tensor as the TT model, while exploiting the convolution
properties in one dimension of the data, revealing its latent structure and patterns.

To facilitate the presentation and understanding of TTT model, we start by considering a 5th-order
tensor of size 100 × 150 × 200 × 250 × 10, or a order-4 hyper tensor with tube length 10. The
tensor has a TTT representation with the tubal-ranks-(1, 4, 3, 2, 1) as shown in Figure 2. We use the
notation X ≈≪ X(1),X(2),X(3),X(4) ≫ to represent the TTT decomposition of the tensor X,
where X(1) ∈ R250×4×10, X(2) ∈ R4×200×3×10, X(3) ∈ R3×150×2×10 and X(4) ∈ R2×100×10 are
the core tensors.

Therefore, we have two tensors of order three at the extremities of the decomposition and two core
tensors of order four. The edges connect the subsequent core tensors via the T-product. Moreover, in
the bottom part of Figure 2, we show how one tube of the resulting tensor can be computed: from the
first and last third-order core tensors, we extract a horizontal slice and a lateral slice, respectively,
while from the two fourth-order middle tensors, we take sub-tensors (third-order tensors) and per-
form the T-product between them as depicted in Figure 2. Due to the similar properties of the SVD
and the T-SVD, the TTT decomposition possesses the same properties as the TT decomposition in
the following two senses:

• It breaks the curse of dimensionality for higher order tensors as it decomposes a tensor into
core tensors of order 4 at most,

• The best TTT decomposition for a given TTT-rank is always available.

These desirable properties make the TTT decomposition of more practical interest compared to the
T-SVD model. For a given TTT rank, the TTT decomposition can be computed via the TTT-SVD
decomposition, which is summarized in Algorithm 1. The idea of this algorithm comes from the TT-
SVD Oseledets (2011) which was proposed to decompose a tensor into the TT format. It relies on
the truncated T-SVD algorithm to iteratively compute the core tensors. The key difference between
the TT-SVD and the TTT-SVD is the first works on unfolded matrices, while the latter deals with
reshaped form of the underlying tensors, which are of order three (see the appendix for the graphical
illustration on the TTT-SVD algorithm). So, the computational complexity of this algorithm is
dominated by the truncated T-SVD of third order tensors.

A fixed-precision version of the proposed algorithm can be developed by replacing the Lines 2 and 7
of Algorithm 1 by T - SVDδ . Moreover, one can use the randomized algorithms developed in Zhang
et al. (2018) to speed-up the computation process. An alternative way is exploiting the framework
of cross or CUR approximation by sampling horizontal and lateral slices Tarzanagh & Michailidis
(2018). However, our simulation results showed that similar to the TT-SVD algorithm Oseledets
(2011), the TTT-SVD algorithm does not guarantee to produce a tensor with a minimum total TTT-
rank or a minimum number of parameters and frequently produces models with severely unbalanced
ranks. This motivated us to develop more efficient algorithms to tackle this issue, where we adopt
the idea proposed Phan et al. (2020) for the TT decomposition.

Let us consider the following optimization problem
min
˜
Y
∥
˜
X−

˜
Y∥F (7)
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where
˜
Y =≪

˜
Y(1),

˜
Y(2), . . . ,

˜
Y(N) ≫ and has a TTT-rank r = (r1, . . . , rN−1). The minimiza-

tion problem (7) can be solved via the Alternating Least-Squares (ALS) framework, which is a kind
of block coordinate descent method. It keeps fixed all core tensors except one and it is updated by
solving some least-squares problems. More advanced method is the so-called density matrix renor-
malization group (DMRG) technique Holtz et al. (2012); White (1993); Khoromskij & Oseledets
(2010), which combines two core tensors, while keeping fixed all other core tensors. After updating
the combined tensors, it is broken into two core tensors. It has been shown that the DMRG method
can provide better results than the ALS approach especially we can find a tensor decomposition with
a lower tensor/matrix rank easier. The TT-SVD, DMRG can compute the TT-rank based on singular
values. Despite the fact that neither strategy is particularly intended for the decomposition with a
particular error bound, they both aim to minimize the approximation error. These techniques work
well in decompositions with known ranks or in situations where the error bound is small.

In this paper, we propose an alternative method that effectively fixes the aforementioned issues.
More specifically, we consider the approach in Phan et al. (2020) as it demonstrated to deliver a TT
decomposition with an optimal TT rank while tackling the problems with the TT-SVD and DMRG.
We show that the TTT decomposition can be achieved by exploiting the Alternating Two-Cores
Update algorithm with left-right orthogonalization (ATCU) algorithm Phan et al. (2020). The main
idea is to apply the Fourier transform along the tube mode, i.e., the last dimension, of the data ten-
sor, X. This gives a spectral tensor, X̂ = fft(X, [], N + 1) in the Fourier domain. Each subtensor
X(:, . . . , :, i), where i = 1, . . . , [T/2] now can be decomposed into a TT-tensor using the Alter-
nating Two-Cores Update with given approximation error bound. Then, the core tensors of the TT
decomposition of different subtensors are concatenated to compute a TT decomposition of the orig-
inal tensor, X. Finally, the core tensors are transformed back to the original space by applying the
inverse FFT (IFFT). The major benefit of this method is its utilization of the ATCU algorithm, which
offers improved mathematical tractability and scalability for handling large-scale data tensors. This
algorithm enables the updating of one or multiple core tensors at each iteration, resulting in well-
balanced TT-decompositions. Drawing inspiration from this advantageous characteristic, we have
integrated the ATCU’s approach for the cores update for the computation of the TTT decomposition,
thus simplify the derivation of the proposed TATCU Algorithm 2.

Algorithm 1: TTT-SVD algorithm
Input : A hyper-tensor

˜
X of size

I1 × I2 × · · · × IN with tube length T
and TTT-rank (r1, . . . , rN−1);

Output: Approximation of
˜
X

˜
X ≈

˜
Y =≪

˜
Y(1),

˜
Y(2), . . . ,

˜
Y(N) ≫

1
˜
C = reshape (

˜
X, [I1, I2I3 . . . IN , T ])

2 [
˜
U,

˜
S,

˜
V] = truncated TSVD (

˜
C, r1)

3
˜
Y(1) =

˜
U,

˜
C =

˜
S ∗

˜
VT

4 for n = 2, . . . , N − 1 do
5

˜
C =
reshape (

˜
C, [rn−1In, In+1 . . . IN , T ])

6 [
˜
U,

˜
S,

˜
V] = truncated TSVD (

˜
C, rn)

7
˜
Y(n) = reshape (

˜
U, [rn−1, In, rn, T ])

8
˜
C =

˜
S ∗

˜
VT

9 end
10

˜
Y(N) = reshape (

˜
C, [rN−1, IN , T ]);

Algorithm 2: TATCU algorithm
Input : A hyper-tensor

˜
X of size

I1 × I2 × · · · × IN with tube length T ,
and a prescribed approximation error
bound ϵ

Output: Approximation

˜
X ≈

˜
Y =≪

˜
Y(1),

˜
Y(2), . . . ,

˜
Y(N) ≫,

such that ∥
˜
X−

˜
Y∥F ≤ ε∥

˜
X∥F

1 FFT along tube-mode of
˜
X:

X̂ = fft(
˜
X, [], N + 1)

2 for k = 1, 2, . . . , T do
3 Decompose spectral tensor
4 ≪ C(k1),C(k2), · · · ,C(kN ) ≫=

ATCU(X̂(:, . . . , :, k), ϵ)
5 end
6 Glue spectral core-tensor in TT-tensors
7 for j = 1, 2, . . . , N do
8 Ŷ

(j)
= [[C(1j);C(2j); · · · ;C(INj)]]

9 Inverse FFT along tube mode

˜
Y(j) = ifft

(
Ŷ

(j)
, [], 4

)
10 end

Finally, we provide in Theorem 1 an upper bound on the error of the approximation computed by
the TTT-SVD or the TASCU Algorithms. We assume that the error bounds of the approximations
computed by the T-SVD within Algorithm 1 for the TTT-rank (r1, . . . , rN−1) satisfy

∥
˜
C−

˜
U ∗

˜
S ∗

˜
VT ∥2F ≤ δ2n, (8)
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where
˜
U,

˜
S,

˜
V are the T-SVD factors of the hyper-matrix C of tubal-rank rn. Note that the hyper-

matrix C is an order-3 tensor at iteration n of Algorithm 1.

Theorem 1. Let
˜
X ∈ RI1×I2×···×IN be a given hyper-tensor and the relation (8) holds. Then, the

approximated tensor
˜
Y computed by the TTT-SVD Algorithm with TTT-rank (r1, r2, . . . , rN−1)

satisfies ∥
˜
X−

˜
Y∥2F ≤

∑N−1
n=1 δ2n.

Proof. Since the SVD and T-SVD have similar properties, the proof of this theorem is similar to the
one proved in Oseledets (2011) for the TT-SVD Algorithm. So, using the mathematical induction,
the proof of this theorem is straightforward.

We note that for a given tensor, the best tensor approximation with TTT-rank bounded by rk always
exists since the space of all tensors of TTT-rank no higher than rk is closed. Now, using Theorem 1
and similarly to the proof of Corollary 2.4 in Oseledets (2011), it is easy to show that the following
identity holds

∥
˜
X−

˜
Y∥F ≤

√
N − 1∥

˜
X−

˜
Ybest∥F , (9)

where
˜
Ybest is a hyper-tensor with the best low TTT rank.

5 SIMULATIONS

This section presents numerical experiments to assess the proposed model compared to some base-
line algorithms. All algorithms were implemented in MATLAB on a laptop computer with a 2.60
GHz Intel(R) Core(TM) i7-5600U processor and 8GB memory. The codes are available from
https://github.com/TTTmodelICLR24/TTT_MatLab_ICLR24, and can be used to re-
produce all experiments described below.

Example 1. (Color images) In this experiment, we focus on color images as real-world data ten-
sors. The peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM) and Mean
Squared Error (MSE) are used to compare the quality of the algorithms. The PSNR is defined as
PSNR = 10 log10

(
2552/MSE

)
, MSE = ∥X−Y∥2F /num (X) , and “num” denotes the number

of parameters of X, and the SSIM is defined as SSIM =
(2µxµy+C1)(2σxy+C2)

(µ2
x+µ2

y+C1)(σ2
x+σ2

y+C2)
, where x, y are

spatial patches of original and reconstructed image, µx, µy are the mean intensity values of x and
y, σ2

x, σ2
y are standard deviations of x and y, C1, C2 are constants. The relative error is also defined

as ∥X−Y∥F

∥X∥F
. We consider eight color images of size 512× 512× 3 shown in Figure 3. We reshape

the images to 10-th order tensors of size 4× · · · × 4︸ ︷︷ ︸
9

×3. We use the same relative error bound of

0.15, for the TT-based model and the proposed TTT model and compute the corresponding tensors
decompositions. In Table 1, the PSNR, SSIM and MSE of the reconstructed images obtained by the
proposed tensor model and the TT-based approach are reported. Additionally, the reconstructed im-
ages yielded by the TT based and the proposed model are displayed in Figure 4. The proposed TTT
model demonstrates significant improvements in the quality of benchmark images, as evidenced
by higher PSNR and SSIM values, as well as lower MSE. It stands out by accurately preserving
the background and structure of the given images. Importantly, unlike the T-SVD model which re-
quires two tensors of the same order as the original model, our TTT model overcomes the curse of
dimensionality with core tensors of order at most 4.

Figure 3: Benchmark images used in our experiments.

Example 2. (Videos) In this example, we consider the video datasets “Akiyo”, “News”, “Tem-
pete”, “Waterfall”, “Foreman”, and “Stephan” from http://trace.eas.asu.edu/yuv/.
The proposed tensor model is compared with the TT decomposition and the T-SVD models in

6
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Table 1: The experimental results obtained by the proposed algorithm and the TT-based method for images
and error bound of 0.15.

TT-Based Proposed method
Images MSE PSNR (dB) SSIM MSE PSNR (dB) SSIM

Kodim03 251 24.12 0.6649 114.09 27.52 0.7806
Kodim23 251.40 24.13 0.7042 127.27 27.08 0.8096
Kodim04 239.25 24.34 0.5940 93.46 28.42 0.7117
Airplane 874.30 18.71 0.6081 351.47 22.67 0.6921
Kodim15 380.32 22.33 0.6178 159.13 26.11 0.7673
Kodim20 436.51 21.73 0.6777 300.99 23.35 0.7171
Barbara 299.44 23.37 0.5746 121.21 27.30 0.7367

Kodim02 141.48 26.62 0.6692 66.56 29.90 0.7784

Figure 4: The reconstructed images using the proposed TTT model and the TT-based model for an upper error
bound of 0.15.

terms of compression ratio and running times. The compression ratio of a tensor model is de-
fined as number of the paramters of the tensormodel

number of the original tensor , which is used in the evaluation of the algorithms.
The size of all videos is 176× 144× 300. We first reshaped the videos to 10-th order tensors of size
4 × 4 × 9 × 4 × 4 × 11 × 3 × 4 × 5 × 5. Our experiments are divided into two parts. In the first
part we use the first three videos (“Akiyo”, “News”, “Tempete”) and compare the efficiency of the
proposed TTT model and the TT based method. To this end, we applied the proposed TTT model
and the TT based decomposition with a relative approximation error bound fixed to 0.1 for the three
mentioned videos. The compression ratios and running times obtained by the proposed algorithm
and the TT-based are reported in Table 2. The results indicate lower running times for the proposed
approach for three videos, and the compression ratio achieved by the proposed algorithm for the
video “Akiyo qci” is significantly higher than the TT-based method, while it provides a bit lower
compression for the video “news qcif”. The PSNR and SSIM of all frames of the “Akiyo qci” and
“news qcif” videos using both algorithms are shown in Figures 5. The results clearly show that the
proposed TTT model can provide comparable and even better recovery results for the same relative
approximation error bound in less computing time. In second experiment, we examined three videos
(Waterfall”, Foreman”, and Stephan”) using the proposed TTT model and the T-SVD model with
a relative error bound of 0.1. The results are presented in Table 3. Comparing the two models,
the proposed TTT model demonstrated significantly higher compression ratios but at a greater cost.
These findings confirm the efficiency of the proposed tensor model for video compression task.
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Table 2: The experimental results obtained by the proposed algorithm and the TT-based method.

TT-based model Proposed method
Videos Relative error Running time Compression ratio Relative error Running time Compression ratio

News qcif 0.1 23.80 13.34 0.1 21.73 12.44
Akiyo qcif 0.1 27.49 7.68 0.1 22.30 64.64
Tempete cif 0.1 32.16 2.3283 0.1 30.33 2.3284

Table 3: The experimental results obtained by the proposed algorithm and the T-SVD model.

T-SVD Proposed method
Videos Relative error Running time Compression ratio Relative error Running time Compression ratio

Waterfall cif 0.1 10.34 5.04 0.1 20.73 20.10
Foreman qcif 0.1 9.34 4.42 0.1 24.56 11.44
Stephan qcif 0.1 11.28 2.50 0.1 24.90 2.53
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Figure 5: The PSNR and SSIM of the reconstructed frames by the proposed TTT model and TT decomposition
for the relative approximation error bound of 0.1 for the “Akiyo” video (left) and the “News” video datasets.

Example 3. (Application to tensor completion) This experiment is devoted to examining the po-
tential of the proposed model for the tensor completion task. In practice, many real-world datasets
contain missing values, either due to measurement errors or incomplete data collection. Tensor com-
pletion algorithms aim to fill in these missing values by exploiting the structure of the tensor and
the available observed data. The goal is to use the observed data to predict the missing values and
complete the tensor. We adopt the tensor completion method developed in Ahmadi-Asl et al. (2023),
where the following iterative procedure is used for the data reconstruction

X(n) ← L(C(n)), (10)

C(n+1) ← Ω⊛M+ (1−Ω)⊛X(n), (11)

where L is an operator to compute a low-rank tensor approximation of the data tensor C(n), 1 is
a tensor whose all components are equal to one, M is the original data tensor and the indicator set
Ω, stores the location of known (observed) elements. We utilize the operator L as an operator that
computes a low tubal rank approximation computed by the T-SVD and also the low TTT rank using
the proposed model. We reshaped an image to a 10-th order tensor of size 4× 4× 9× 4× 4× 11×
3× 4× 5× 5 and remove 70% of the pixels. The TTT rank [1, 2, 6, 14, 14, 14, 14, 14, 4, 1] was used
for the TTT model and different tubal ranks were used for the T-SVD model. The best recovery
results are reported for the T-SVD model. The reconstruction results for an image with 70% of pixel
removed randomly are reported in Figure 6. This experiment demonstrates that for the recovery of
images with missing pixels, the suggested model outperforms the T-SVD model.

Example 4. (Hyperspectral Images) This study presents a comprehensive benchmark that com-
pares the efficiency of the proposed TTT model and associated Algorithm 2 with TT decomposition
methods using hyperspectral images. The benchmark evaluates performance and decomposition
quality in two settings: same accuracy (”stage 1”) and same number of parameters (”stage 2”).
Widely used measurements such as PSNR, RMSE, ERGAS, SAM, and UIQI are utilized. A general
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Figure 6: Illustration of the original images, images with 70% of pixels missing randomly and the recon-
structed images using the proposed model and the T-SVD for Example 3. The entries represent (MSE, PSNR,
SSIM).

Table 4: Comparison of tensor decomposition models on the ROSIS Pavia Univ. data set. The table
reports the quantitative quality detailed in Section A.2.3.

Method Runtime (sec.) PSNR (dB) RMSE ERGAS SAM UIQI #Paras
Best value 0 ∞ 0 0 0 1 0

Data set - ROSIS Pavia Univ. - N = 14 - Relative error fixed and set to 0.08
TTT 61.26 35.89 130.02 10.77 3.01 0.97 12454744
TT 42.93 35.89 130.03 10.71 2.82 0.97 13600746
Data set - ROSIS Pavia Univ. - N = 14 - ”equal” number of parameters

TTT 52.78 36.33 123.52 10.26 2.84 0.97 13565592
TT 42.93 35.89 130.03 10.71 2.82 0.97 13600746

overview of the results is reported, while detailed information about the data sets, test procedure,
quality measurements, and extensive discussions of the numerical outputs can be found in Appen-
dices A.2.1, A.2.2, A.2.3, and A.2.4, respectively. Table 4 reports the performance of each algorithm
on one representative data set.

A consistent trend is observed, particularly in the specific data set being considered, but it is also
noticeable across the majority of the HSI data sets. At the same level of accuracy (stage 1), the TT
model consistently demonstrates faster computation time compared to the TTT model. However,
the TTT model has a lower number of parameters, and both models yield similar values for the
various quality measurements. As we move to stage 2, the TTT model consistently outperforms the
TT model in terms of general performance. Overall, the proposed decomposition and Algorithm 2
show competitive results with the state of the art TT approach.

6 CONCLUSION

This paper presents a novel tensor decomposition model, called TTT, that extends the T-SVD model
by effectively addressing the curse of dimensionality problem. The proposed model achieves an effi-
cient decomposition of an N -order tensor into two third-order and (N−3) core tensors of maximum
fourth-order using the T-product. We have proposed two high-performing algorithms to decompose
a given tensor into the TTT model. Extensive numerical simulations have been conducted on di-
verse tasks, demonstrating the efficiency of the proposed approach. In addition, our new model
has the potential to harmoniously integrate with other tensor decompositions, such as CPD and TC
decomposition. We are dedicating our efforts to investigating and refining these ideas as part of
our ongoing research. Future works will also focus on delving into randomized variations of the
proposed techniques to address the computational complexity and communication costs associated
with large-scale data applications and compressing deep neural networks.
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A APPENDIX

A.1 MORE PRELIMINARIES ON TENSORS

In this appendix, we provide more details about tensor concepts and definitions. Slices are subtesors
obtained by fixing all but two modes of a tensor. For a third-order tensor X, X(:, :, i), X(:, i, :) and
X(i, :, :) are called frontal, lateral, and horizontal slices, respective. Fibers are obtained by fixing
all but one mode. For a third-order tensor X, X(i, j, :) is called a tube. X can also be considered
a hyper-matrix. The notation “conj” denotes the complex conjugate of a complex number or the
component-wise complex conjugate of a matrix. The notation ⌈n⌉means the nearest integer number
greater than or equal to n.

Definition 6. (t-product) Let X ∈ RI1×I2×I3 and Y ∈ RI2×I4×I3 , the t-product X∗Y ∈ RI1×I4×I3

is defined as follows
C = X ∗Y = fold (circ (X) unfold (Y)) , (12)

where

circ (X) =


X(1) X(I3) · · · X(2)

X(2) X(1) · · · X(3)

...
...

. . .
...

X(I3) X(I3−1) · · · X(1)

 ,

and

unfold(Y) =


Y(1)

Y(2)

...
Y(I3)

 , Y = fold (unfold (Y)) .

Here, X(i) = X(:, :, i) and Y(i) = Y(:, :, i) for i = 1, 2, . . . , I3.

The t-product can be computed efficiently by using the Fourier transform along the third mode.
More precisely, let X̂, Ŷ, and Ẑ be the Fourier transforms of X, Y, and Z along the third mode,
respectively, then we have

Ẑ(:, :, t) = X̂(:, :, t) Ŷ(:, :, t) (13)

for t = 1, . . . , T . The inverse Fourier transform is then applied to obtain Z from Ẑ. The Fourier
transform of X along its third mode, which can be computed as X̂ = fft(X, [], 3). We refer to X̂
as the the transformation of the tensor X in the Fourier domain. It is known that the block circulant
matrix, circ(X) ∈ RI1I3×I2I3 , can be block diagonalized, i.e.,

(FI3 ⊗ II1) circ (X)(F−1
I3
⊗ II2) = X̂, (14)

where FI3 ∈ RI3×I3 is the discrete Fourier transform matrix and (FI3 ⊗ II1)/
√
I3 is a unitary

matrix. Here, the block diagonal matrix X̂ is

X̂ =


X̂(:, :, 1)

X̂(:, :, 2)
. . .

X̂(:, :, I3)

 , (15)

and we have the following important properties Lu et al. (2019)

X̂(:, :, 1) ∈ RI1×I2 , (16)

conj(X̂(:, :, i)) = X̂(:, :, I3 − i+ 2), (17)

for i = 2, . . . , ⌈ I3+1
2 ⌉ + 1. The t-product can be equivalently performed in the Fourier domain.

Indeed, let C = X ∗Y, then from the definition of the t-product and the fact that the block circulant
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matrix can be block diagonalized, we have

unfold(C) = circ(X) unfold(Y)

= (F−1
I3
⊗ II1)((FI3 ⊗ II1) circ (X)(F−1

I3
⊗ II2))

((F−1
I3
⊗ II2) unfold(Y)) (18)

= (FI3 ⊗ II1) X̂ unfold(Ŷ),

where Ŷ = fft(Y, [], 3). If we multiply both sides of equation 18 from the left-hand side with
(FI3 ⊗ II1), we get unfold(Ĉ) = X̂ unfold(Ŷ), where Ĉ = fft(C, [], 3). This means that
Ĉ (:, :, i) = X̂ (:, :, i) Ŷ (:, :, i). So, it suffices to transform two given tensors into the Fourier do-
main and multiply their frontal slices. Then, the resulting tensor in the Fourier domain returned
back to the original space via the inverse FFT. Note that due to the equations in equation 16-
equation 17, half of the computations are reduced. This procedure is summarized in Algorithm 3.
The tubal operations can be computed in the tensor toolbox https://github.com/canyilu/
Tensor-tensor-product-toolbox.

Let x[n] and y[n] be two finite sequences of length N . Then, the circular convolution of two vectors
x and y is denoted by z[i] = x[i]⊛ y[i] defined as follows

z[k] =

N−1∑
i=0

x[i]y[k − i], (19)

It is known that the circular convolution can be efficiently computed in the Fourier domain. That is,
for two vectors, x and y , the circular convolution is equal to the inverse discrete Fourier transform
(DFT) of the product of the vectors’ DFTs.

Consider the T-SVD of a third order tensor X as X = U ∗ S ∗ VT where U ∈ RI1×I1×I3 , S ∈
RI1×I2×I3 and V ∈ RI2×I2×I3 . For compression purposes, one can truncate the tensor factors as
U ∈ RI1×R×I3 , S ∈ RR×R×I3 and V ∈ RI2×R×I3 , this is called the truncated T-SVD. The result-
ing approximation computed by the T-SVD has a significantly smaller storage and computational
requirement than the original tensor, while still preserving most of the important information. Fig-
ure 1 shows an illustration of the T-SVD and truncated T-SVD. The T-SVD was initially proposed
for the third-order tensors, and was later extended for higher order tensors in Martin et al. (2013).
The T-SVD can be computed in the Fourier domain due to the special structure of the FFT matri-
ces, and this shown in Algorithm 4. A fixed-precision algorithm can also be used to decompose a
third order tensor in the T-SVD format. To be more specific, given an error approximation toler-
ance δ, the algorithm finds an optimal tubal rank R and the corresponding T-SVD approximation
Y ≈ U ∗ S ∗ VT such that ∥X − Y∥F ≤ δ, w.r.t. the Frobenius norm ∥.∥F . We denote this
operation as T - SVDδ . The T-SVD was extended to N -th order tensors in Martin et al. (2013),
where an N -th order tensor X ∈ RI1×I2×···×IN , can be represented as X ≈ U ∗ S ∗ VT where
U ∈ RI1×I1×I3×···×IN , S ∈ RI1×I2×I3×···×IN and V ∈ RI2×I2×I3×···×IN , and the truncated T-
SVD can be defined analogously. The core tensors in the T-SVD have the same order as the original
data tensor, so it suffers from the curse of dimensionality.

A.2 EXPERIMENTS ON HYPERSPECTRAL IMAGES

In this experiment, we consider hyperspectral images to evaluate the effectiveness of the proposed
TTT model in comparison to the TT decomposition method. All the algorithms are implemented
and tested on a laptop computer with Intel Core i7-11800H@2.30GHz CPU, and 16GB memory.

A.2.1 DATA SETS

A hyperspectral image (HSI) is an image that contains information over a wide spectrum of light
instead of just assigning primary colors (red, green, and blue) to each pixel as in RGB images. The
spectral range of typical airborne sensors is 380-12700 nm and 400-1400 nm for satellite sensors.
For instance, the AVIRIS airborne hyperspectral imaging sensor records spectral data over 224 con-
tinuous channels. The advantage of HSI is that they provide more information on what is imaged,
some of it blind to the human eye as many wavelengths belong to the invisible light spectrum. This
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Algorithm 3: Fast t-product of two tensors Kilmer & Martin (2011); Lu et al. (2019)

Input : Two data tensors X ∈ RI1×I2×I3 , Y ∈ RI2×I4×I3

Output: t-product C = X ∗Y ∈ RI1×I4×I3

1 X̂ = fft (X, [], 3)

2 Ŷ = fft (Y, [], 3)

3 for i = 1, 2, . . . , ⌈ I3+1
2 ⌉ do

4 Ĉ (:, :, i) = X̂ (:, :, i) Ŷ (:, :, i)
5 end
6 for i = ⌈ I3+1

2 ⌉+ 1, . . . , I3 do
7 Ĉ (:, :, i) = conj(Ĉ (:, :, I3 − i+ 2));
8 end
9 C = ifft

(
Ĉ, [], 3

)
;

Algorithm 4: The truncated t-SVD decomposition of the tensor X

Input : The data tensor X ∈ RI1×I2×I3 and a target tubal rank R
Output: The truncated t-SVD of the tensor X

1 X̂ = fft (X, [], 3)

2 for i = 1, 2, . . . , ⌈ I3+1
2 ⌉ do

3 [Û (:, :, i) , Ŝ(:, :, i), V̂(:, :, i)] = svds (X̂(:, :, i), R)
4 end
5 for i = ⌈ I3+1

2 ⌉+ 1, . . . , I3 do
6 Û (:, :, i) = conj(Û (:, :, I3 − i+ 2))

7 Ŝ (:, :, i) = Ŝ (:, :, I3 − i+ 2)

8 V̂ (:, :, i) = conj(V̂ (:, :, I3 − i+ 2));
9 end

10 UR = ifft
(
Û, [], 3

)
; SR = ifft

(
Ŝ, [], 3

)
; VR = ifft

(
V̂, [], 3

)

additional information allows one to identify and characterize the constitutive materials present in a
scenery. We consider the following real HSI:

• HYDICE Urban: The Urban data set2 consists of 307×307 pixels and 162 spectral re-
flectance bands in the wavelength range 400nm to 2500nm.

• ROSIS Pavia University: The Pavia University data set2 was acquired by the ROSIS sensor
during a flight campaign over Pavia, nothern Italy, and consists of 610×340 pixels and 109
spectral reflectance bands.

• AVIRIS Moffett Field: this data sethas been acquired with over Moffett Field (CA, USA) in
1997 by the JPL spectro-imager AVIRIS 3 and consists of 512×614 pixels and 224 spectral
reflectance bands in the wavelength range 400nm to 2500nm. Due to the water vapor and
atmospheric effects, we remove the noisy spectral bands. After this process, there remains
159 bands.

• AVIRIS Kennedy Space Center: this data set4 has been acquired with NASA AVIRIS in-
strument over the Kennedy Space Center (KSC), Florida, on March 23, 1996. AVIRIS ac-
quires data in 224 bands of 10nm width with center wavelengths from 400nm to 2500nm.
After removing water absorption and low SNR bands, 176 bands are used for the analysis.
We finally extract a 250×250 subimage from this dataset for our numerical experiments.

2http://lesun.weebly.com/hyperspectral-data-set.html
3https://aviris.jpl.nasa.gov/data/image_cube.html
4http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_

Sensing_Scenes
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A.2.2 TEST PROCEDURE

We conduct a comprehensive benchmark of our proposed TTT model against the TT-based decom-
position model for each dataset outlined in A.2.1. Note that the data sets are first folded into a
N -order tensor before computing the tensor decompositions. The testing procedure consists of two
successive and complementary stages:

1. In the first stage, we impose the same approximation error bound for both models and
evaluate the performance of the approximations, as well as the number of parameters for
each model. It is important to note that, for this setup, we utilize Algorithm 1 to compute
the TTT decomposition.

2. In the second stage, we adapt the approximation error bound such that each model has an
equal number of parameters. We then assess the quality of both decompositions under this
constraint.

The overall objective is to provide a fair and comprehensive comparison of the two models.

A.2.3 PERFORMANCE EVALUATION

In order to evaluate the quality of the tensor decompositions, we consider five widely used and
complementary quality measurements:

• Peak Signal-to-Noise Ratio (PSNR): PSNR assesses the spatial reconstruction quality of
each band. It measures the ratio between the maximum power of a signal and the power of
residual errors. A higher PSNR value indicates better spatial reconstruction quality.

• Root Mean Square Error (RMSE): RMSE is a similarity measure between the input ten-
sor/image X and the approximated tensor/image X̂. A smaller RMSE value indicates better
fusion quality.

• Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS): ERGAS provides a
macroscopic statistical measure of the quality of the fused data. It calculates the amount of
spectral distortion in the image Wald (2000). The best value for ERGAS is 0.

• Spectral Angle Mapper (SAM): SAM quantifies the preservation of spectral information
at each pixel. It computes the angle between two vectors of the estimated and reference
spectra, resulting in a spectral distance measure. The overall SAM is obtained by averaging
the SAMs computed for all image pixels. A smaller absolute value of SAM indicates better
quality for the approximated tensor X̂.

• Universal Image Quality Index (UIQI): UIQI evaluates the similarity between two single-
band images. It considers correlation, luminance distortion, and contrast distortion of the
estimated image with respect to the reference image Wang & Bovik (2002). The UIQI
indicator ranges from -1 to 1. For multiband images, the overall UIQI is computed by
averaging the UIQI values computed band by band. The best value for UIQI is 1.

For more details about these quality measurements, we refer the reader to Loncan et al. (2015) and
Wei et al. (2016).

A.2.4 EXPERIMENTAL RESULTS

The performance of each algorithm is presented in Table 4 and Tables 5 to 7. It is important to note
that, for the K.S.C. dataset, despite our best efforts, we were unable to achieve an equal number of
parameters for both models. The TT model consistently maintained a stable number of parameters
around 3e6, which was significantly lower than the number of parameters obtained for the TTT
model, even at higher levels of accuracy. As a result, we modified the test procedure for this dataset
by using a lower level of accuracy in stage 2. In order to give more insights on the performance
comparison between models, Figures 7 to 9 display the SAM maps obtained for three first HSI data
sets detailed in Section A.2 for both stages of the test procedure.

For the first three datasets, we observe a consistent trend: at the same level of accuracy (stage 1),
the TT model demonstrate faster computation time compared to the TTT model. However, the TTT
model exhibits a lower number of parameters, and both models yield similar values for the various
quality measurements. Moving to stage 2, the TTT model consistently outperforms the TT model
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overall. Analyzing the SAM maps in Figures 7 to 9, we observe that the TTT model achieves
higher accuracy in areas with higher gradients. On the other hand, the TT model shows slightly
better accuracy in less variable areas such as those corresponding to trees and grass (see right side
of sam maps for Urban data set for instance). Notably, in Figure 9, during stage 2, the TTT model
significantly outperforms the TT model in accurately reconstructing the water (northern part of the
image).

In the case of the last dataset, we observe that the TTT model requires a significantly higher number
of parameters to achieve both levels of accuracies. However, it is worth noting that despite this
difference, the TTT model demonstrates faster computation time and yields better values for the
various quality measurements.

Table 5: Comparison of tensor decomposition models on the HYDICE Urban data set. The table
reports the quantitative quality detailed in Section A.2.3.

Method Runtime (sec.) PSNR (dB) RMSE ERGAS SAM UIQI #Paras
Best value 0 ∞ 0 0 0 1 0

Data set - HYDICE Urban - N = 13 - Relative error fixed and set to 0.08
TTT 39.12 33.67 16.41 10.31 3.18 0.97 9010360
TT 22.04 33.80 16.42 10.08 3.02 0.98 10670310

Data set - HYDICE Urban - N = 13 - ”equal” number of parameters
TTT 23.81 35.92 12.71 7.95 2.60 0.98 10559780
TT 22.04 33.80 16.42 10.08 3.02 0.98 10670310

Table 6: Comparison of tensor decomposition models on the AVIRIS Moffett data set. The table
reports the quantitative quality detailed in Section A.2.3.

Method Runtime (sec.) PSNR (dB) RMSE ERGAS SAM UIQI #Paras
Best value 0 ∞ 0 0 0 1 0

Data set - Moffett - N = 10 - Relative error fixed and set to 0.02
TTT 0.68 39.72 0.01 4.90 6.22 1.00 362150
TT 0.28 40.61 0.01 3.10 5.78 1.00 418905

Data set - Moffett - N = 10 - ”equal” number of parameters
TTT 0.66 44.15 0.00 2.93 4.06 1.00 407975
TT 0.28 40.61 0.01 3.10 5.78 1.00 418905

Table 7: Comparison of tensor decomposition models on the AVIRIS Kennedy Space Center data
set. The table reports the quantitative quality detailed in Section A.2.3.

Method Runtime (sec.) PSNR (dB) RMSE ERGAS SAM UIQI #Paras
Best value 0 ∞ 0 0 0 1 0

Data set - K.S.C. - N = 14 - Relative error fixed and set to 0.05
TTT 19.39 39.99 130.13 86.88 25.16 0.49 8534545
TT 26.90 38.28 130.35 119.49 37.73 0.32 3484834

Data set - K.S.C. - N = 14 - Relative error fixed and set to 0.02
TTT 19.28 45.83 51.52 47.42 16.73 0.58 9188870
TT 25.52 44.14 52.14 55.26 25.72 0.42 3976714

A.3 COMPARISON WITH THE TENSOR CHAIN MODEL

In this section, we further compare the performance of the proposed TTT model with the Tensor
Chain (TC) model Espig et al. (2012); Zhao et al. (2016), which is a general form of the TT de-
composition and represents a higher order data tensor as a chain of third order tensors. This is done
by introducing an extra auxiliary index, which can be considered as a linear combination of the TT
decomposition terms. It is known to provide more competitive results than the TT decomposition.
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Figure 7: SAM maps for HYDICE Urban data set for both stages of the test procedure detailed in
Section A.2.2, the values for sam quality measurement are limited to the interval [0;20].
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Figure 8: SAM maps for ROSIS Pavia University data set for both stages of the test procedure
detailed in Section A.2.2, the values for sam quality measurement are limited to the interval [0;20].

We also note that our model can be extended to the tubal TC. To compute the TC decomposi-
tion, the codes released at the GitHub repository https://github.com/oscarmickelin/
tensor-ring-decomposition was used. We considered the benchmark images described in
Example 1 and for a given approximation error bound 0.15, we computed the TTT, TT and TC mod-
els. The PSNR achieved by the TTT, TT and TC models for the given tolerance 0.15 are reported in
Table 8. We see that the TC model is relatively provides better results than the TT model but it is
still not competitive with our proposed TTT model.

Table 8: The PSNR achieved by the TTT, TT and TC models for the given tolerance 0.15.

Images
Method Airplane Barbara Kodim02 Kodim03 Kodim04 Kodim15 Kodim20

TTT 22.67 27.30 29.90 27.52 28.42 27.30 23.35
TT 18.71 23.37 26.62 24.12 24.34 22.33 21.73
TC 20.85 26.01 27.78 26.34 26.75 25.04 21.17

A.4 MORE DESCRIPTION OF THE TT DECOMPOSITION AND THE TTT-SVD ALGORITHM

In this section, we provide graphical illustrations of the TT decomposition and the TTT-SVD al-
gorithm discussed in the paper. The graphical description of the TT model is presented in Figure
10, which shows that the TT model decomposes a tensor as a contract of a sequence of low order
tensors. That is, an N th order tensor is decomposed as contraction of two matrices and (N−2) third
order tensors. The T-SVD was studied in Section 3.2, where the visualization was provided for a
third order tensor in Figure 10. An alternative representation for the T-SVD as a sum of tubal tank-1
tensors is represented in Figure 11, while the Figure 12 shows the illustrations for third and fourth
order tensors. This helps to better understand the T-SVD model for higher order tensors. To better
describe the procedure of decomposing a tensor into the TTT model using the TTT-SVD algorithm,
we have visualized Figure 13, which illustrates the details of this computation.
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Figure 9: SAM maps for AVIRIS Moffett data set for both stages of the test procedure detailed in
Section A.2.2, the values for sam quality measurement are limited to the interval [0;20].

Figure 10: Structure of the TT decomposition for an N -th order tensor.

Figure 11: The truncated T-SVD of a tensor X as a sum of tubal rank-1 terms.

A.5 OTHER GENERALIZED TUBAL TENSOR MODELS

The T-SVD can be straightforwardly combined with other types of tensor decompositions such as the
Tensor Ring/Tensor Chain (TR/TC) decomposition, CPD , the tensor wheel decomposition Wu et al.
(2022) or an arbitrary tensor network structure. For instance, see Figure 14 a graphical illustration
on the combination of the TR/TC decomposition with the T-SVD. The tubal TC/TR (TTC/TTR)
model represents a higher order tensor as a collection of N fourth order core tensors, see Figure
14 (Upper). A tube-wise representation of the TTC/TTR model is also demonstrated in Figure 14
(Bottom). So, a tube of the original data tensor can be approximated via the trace of the T-product of
a series of tensors where trace of a third order tensor X is defined as Trace(X) =

∑I1
i=1 X(i, i, :).

Here, the TTC/TTR rank is defined as (r0, r1, . . . , rN−2) with the condition r0 = rN−2, which for
the case of r0 = rN−2 = 1 is reduced to the TTT model. For the tubal HOSVD, see Wang & Yang
(2022). Studying all these models is out of scope of this paper and will be the focus of our future
research. Moreover, the proposed algorithms in this paper can be accelerated using the framework
of randomization, which will also be investigated.
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Figure 12: The truncated T-SVD of a third-order and a fourth-order tensor.

Figure 13: The procedure of the TTT-SVD for decomposing a tensor into the TTT format.

A.6 RELATED WORKS

In this section we review recent works on the generalization of the T-SVD. The authors in Su et al.
(2020) proposed to replace the contraction operator, which is used in the the TT model with convo-
lutional operator LeCun et al. (1995); Gu et al. (2018) and they call this new model Convolutional
Tensor-Train. They use this model to build a Long short-term memory (LSTM) network for the task
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Figure 14: (Upper) The visualization of the structure of the proposed tubal TC/TR decomposition. The
connection between the core tensors is the T-product. (Bottom) Computing one tubes of the original tensor is
computed through a sequence of T-product of sub-tensors of the core tensors of the TTC/TTR model.

of Spatio-Temporal Learning. Our work differs from this approach as we use the t-product instead
of the convolution operation. It was proposed in Wang & Yang (2022) to generalize the T-SVD to
higher order tensors by introducing a new definition of the tensor transpose. Since the decompo-
sition may be understood as a tensor-tensor product variant of the Higher Order SVD (HOSVD)
De Lathauwer et al. (2000), the authors call it Hot-SVD. The existence of the Hot-SVD is proven
and it is shown it is boils down to the classical T-SVD for third order tensors. The truncated and
sequentially truncated versions of the Hot-SVD were also developed. The sequentially truncated
version of the Hot-SVD was motivated by the Sequentially truncated HOSVD Vannieuwenhoven
et al. (2012) and it was shown to be much faster. A connection between the T-SVD and HOSVD
is established in Zeng & Ng (2020) by defining novel concepts such as slice rank, tensor-tensor
product. These decomposition are compared by transforming the T-SVD form into the sum of outer
product terms. In particular, with the use of slice rank, the sparsity of the core tensors for these
two decompositions is compared. Then, inspired by the connection between the T-SVD and the
HOSVD, a new decomposition called Orientation SVD (O-SVD) was proposed and the necessary
theoretical and numerical analyses of the O-SVD were presented. The randomized variant of the
O-SVD model was later developed in Ding et al. (2023).
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