
MTL-KD: Multi-Task Learning Via Knowledge
Distillation for Generalizable Neural Vehicle Routing

Solver

Yuepeng Zheng1∗ , Fu Luo2,3∗, Zhenkun Wang2,3, Yaoxin Wu4, Yu Zhou1†
1 College of Computer Science and Software Engineering,

Shenzhen University, Shenzhen, China
2 School of Automation and Intelligent Manufacturing,

Southern University of Science and Technology, Shenzhen, China
3 Guangdong Provincial Key Laboratory of Fully Actuated System Control Theory and Technology,

Southern University of Science and Technology, Shenzhen, China
4 Department of Industrial Engineering and Innovation Sciences,

Eindhoven University of Technology, Eindhoven, The Netherlands
2019271024@email.szu.edu.cn,luof2023@mail.sustech.edu.cn
wangzhenkun90@gmail.com,y.wu2@tue.nl, zhouyu_1022@126.com

Abstract

Multi-Task Learning (MTL) in Neural Combinatorial Optimization (NCO) is a
promising approach for training a unified model capable of solving multiple Vehi-
cle Routing Problem (VRP) variants. However, existing Reinforcement Learning
(RL)-based multi-task methods can only train light decoder models on small-scale
problems, exhibiting limited generalization ability when solving large-scale prob-
lems. To overcome this limitation, this work introduces a novel multi-task learning
method driven by knowledge distillation (MTL-KD), which enables efficient train-
ing of heavy decoder models with strong generalization ability. The proposed
MTL-KD method transfers policy knowledge from multiple distinct RL-based
single-task models to a single heavy decoder model, facilitating label-free training
and effectively improving the model’s generalization ability across diverse tasks.
In addition, we introduce a flexible inference strategy termed Random Reordering
Re-Construction (R3C), which is specifically adapted for diverse VRP tasks and
further boosts the performance of the multi-task model. Experimental results on 6
seen and 10 unseen VRP variants with up to 1,000 nodes indicate that our proposed
method consistently achieves superior performance on both uniform and real-world
benchmarks, demonstrating robust generalization abilities. The code is available at
https://github.com/CIAM-Group/MTLKD.

1 Introduction

The Vehicle Routing Problem (VRP) is a classical combinatorial optimization problem (COP) with
widespread application across numerous real-world scenarios, including logistics distribution, traffic
scheduling, and emergency response [1–5]. Obtaining exact VRP solutions is computationally difficult
due to its NP-hard nature [6]. Traditional heuristic algorithms [7–9] exhibit superior performance on
many classic VRP tasks. However, they typically necessitate substantial domain-specific knowledge
for design. In recent years, neural combinatorial optimization (NCO) [10–20] has emerged as a

∗Equal contributors
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/CIAM-Group/MTLKD

promising approach for tackling VRPs. This approach can automatically learn problem-solving
strategies using neural networks and has the potential to minimize reliance on specialized domain
knowledge. This field has developed rapidly, with some NCO algorithms approaching or even
surpassing the performance of classical heuristic algorithms on some COPs [21, 22]. However,
when solving different tasks, many NCO methods require modifying the model components for each
individual task and then retraining the model, which significantly restricts their versatility in handling
diverse VRP variants.

Recently, considerable research efforts have been devoted to developing unified models capable of
solving multiple VRP variants using Multi-Task Learning (MTL) [23–25]. The majority of unified
models for VRP variants adopt a heavy encoder-light decoder (HELD) architecture. These models
have relatively low computational costs and can be directly trained using RL, demonstrating excellent
performance on small-scale problems. However, their generalization ability significantly deteriorates
when solving with large-scale instances, primarily because the light decoder struggles to extract
sufficient information from the high-density and complex node embeddings [26].

On the other hand, the light encoder-heavy decoder [27–29] architecture demonstrates excellent
generalization capabilities on large-scale problems. Its heavy decoder contributes to its strong scale
generalization performance, which re-evaluates the relationships between the remaining nodes and
first and last nodes during the iterative decoding process. Leveraging the heavy decoder architecture
has the potential to achieve good scale generalization using a multi-task unified model. However,
the substantial memory and computational demands inherent in heavy decoders render the model
training using Reinforcement Learning (RL) impractical. Employing Supervised Learning (SL) is
also difficult due to the absence of labeled data for multiple VRP variants. While SIT [29] employs
a self-improved Training method using operations like local reconstruction [27] to refine model-
generated solutions as training labels, it suffers from the generation of numerous low-quality labels
during early and mid-training, leading to a protracted process and an increased training burden. We
provide a comprehensive literature review on multi-task neural solvers for VRPs in Appendix A.

To address the limitation associated with the training for the heavy decoder-based model on multiple
VRP variants, we introduce a novel multi-task learning method driven by knowledge distillation
(MTL-KD). The proposed MTL-KD method transfers policy knowledge from multiple distinct
RL-based single-task models to a single heavy decoder model, facilitating label-free training and
effectively improving the model’s generalization ability across diverse tasks. Furthermore, during
inference, we propose a general Random Reordering Reconstruction strategy for various variants
of the VRP. By randomly reordering the external order of subtours, R3C significantly enhances
solution sampling diversity, mitigates the risk of getting trapped in local optima, and further improves
performance. Our contributions are summarized as follows: 1) We achieve efficient label-free training
of heavy decoder models for multi-task VRPs through the proposed MTL-KD method. 2) We propose
a novel R3C strategy to further enhance the performance of the multi-task model. 3) The MTL-KD
model demonstrates excellent performance on 6 seen training tasks and 10 unseen tasks with up to
1,000 nodes, and real-world datasets, exhibiting good scale generalization ability and significantly
outperforming existing multi-task VRP models.

2 Preliminaries

Capacitated Vehicle Routing Problem and Its Variants The Capacitated Vehicle Routing Problem
(CVRP) is typically defined as follows: Given a central depot v0 and N customer nodes v1 to vn, all
interconnected with distances eij . Each customer i has a demand di, and all vehicles depart from the
depot, serve customers, and return to the depot. Each vehicle has a capacity C, satisfying C > di.
All customers must be visited exactly once, and the total load of the vehicle during its route must not
exceed its capacity. The objective of CVRP is to minimize the total travel distance of all vehicles.

By introducing additional constraints, CVRP can be extended into various variants. The four types of
additional constraints studied in this paper include: (1) Open Route (O): Vehicles are not required
to return to the depot after completing their service. (2) Time Windows (TW): Each node i has a
service time window [si, li], within which vehicles must arrive at the customer (early arrivals require
waiting until the earliest service start time). (3) Backhaul (B): Customer demands can be positive
(linehauls) or negative (backhauls), and there is no restriction on the sequence of visiting linehauls
and backhauls customers. (4) Duration Limit (L): The total travel distance of each vehicle must not

2

exceed a predefined threshold L. Combining these constraints with CVRP can form 16 different VRP
variants, with specific details provided in Appendix B.

Solution Construction Process by Neural Solver Constructive neural solvers [10, 11, 27] typically
employ an encoder-decoder architecture and construct solutions in an autoregressive manner. For
a given VRP instance G = (V,E), where V denotes the set of nodes, including node features such
as demand, and E represents the set of edges, often formed by a distance matrix. The encoder is
used to extract node information and generate embedding vectors for each node, while the decoder
constructs the next node based on the current partial solution state st−1. The decoder is subject to
node constraints during the construction process to avoid generating infeasible solutions. The entire
solving process can be represented as:

πθ(τ |G) =
ℓ∏

t=1

πθ(at|st,G),

where τ is the complete solution, at is the action (node) selected at time step t, and ℓ is the total
number of actions. The decoder continuously constructs nodes until all nodes have been visited,
forming a complete solution. Through training, the model learns how to effectively select the next
node based on the current partial solution, thereby optimizing the quality of the entire solution.

Knowledge distillation Knowledge Distillation [30] is a model compression and knowledge trans-
fer technique aimed at transferring the knowledge learned by a high-performing, pre-trained teacher
model to a smaller student model. The core idea is to achieve this transfer by minimizing the
discrepancy between the outputs of the teacher and student models. The student model’s training loss
typically includes a distillation loss (LKD) that measures the difference between the student’s predic-
tions and the teacher’s soft targets, generally the KL divergence LKD = KL(πT ||πS). Additionally,
depending on the specific task requirements, an original task loss (LTask) can optionally be included,
and the total loss (L) for the student model can be expressed as:

L = αLKD + (1− α)LTask,

where (α) is a weight parameter. In the field of NCO, knowledge distillation has been used to achieve
model lightweighting and can improve the generalization ability of models on unseen problems to a
certain extent [31–34].

3 Multi-Task Learning Via Knowledge Distillation

In this section, we propose a multi-task learning framework via knowledge distillation to address the
challenge of applying heavy decoder models in the multi-task domain due to their reliance on large
amounts of labeled data. The proposed framework effectively enhances the model’s generalization
capabilities across different tasks and scales.

3.1 Framework Overview

Our proposed multi-task training framework via knowledge distillation aims to enhance the model’s
generalization capabilities across different tasks and scales. As depicted in Figure 1, the frame-
work first categorizes VRP variants into seen and unseen tasks for model training. Given N seen
tasks, we first pre-train N individual teacher models employing a Light Encoder-Heavy Decoder
architecture [27]. Subsequently, we construct a multi-task heavy decoder student model and train it
using knowledge distillation, leveraging the output distributions of the teacher models as supervision
signals.

3.2 Teacher Model Training

For each seen VRP variant task, we first generate the corresponding instance data. Then, we
independently train a teacher model for each task, which adopts the POMO [11] structure and
serves as a policy network. We optimize the parameters of the teacher models using the policy
gradient method in RL, with the objective of maximizing the reward (negative tour length). The loss
function [35] can be expressed as:

L(θT) = −Eτ∼πθT (·|G)[(r(τ)− bT (G)) log πθT (τ |G)],

3

Sample

Update

......
CVRP

VRPTW

...

θt
vrptw

θt
cvrp

θs

KD Loss

Step

Teacher
Model

Student
Model

θt
vrptw

θt
cvrp
...

CVRP

VRPTW

...

CVRP
OVRP
VRPB
VRPL

VRPTW
OVRPTW

OVRPB OVRPL
 VRPBL VRPBTW
VRPLTW OVRPBL

OVRPBTW
OVRPLTW
VRPBLTW

OVRPBLTWE

Seen Task Unseen Task

Teacher Training Student Training

CVRP

VRPTW

... ...
CVRP

VRPTW

CVRP

VRPTW

Figure 1: Framework for Multi-Task Training via Knowledge Distillation. Top-left: seen and unseen
tasks. Bottom-left: Independent training of teacher models. Right: Student model distillation via
teacher output distributions.

where bT (G) is the baseline (average reward of multi-start trajectories for the instance), πθT is the
teacher model’s policy distribution, θT represents the parameters, and r is the reward.

3.3 Student Model Training

During the training phase of the student model, we employ a multi-task heavy decoder architecture
that processes instances from all N seen problem types simultaneously. For each training batch, we
generate instances from all N seen problem types and process them together. At each decoding step
t, the student model outputs a probability distribution πθS (at|st,G) over the next node to be selected.

For knowledge distillation, we feed each problem instance to its corresponding pre-trained teacher
model to obtain the teacher’s output distribution πθTn(at|st,G) at the same decoding step, ensuring
that each problem instance is supervised by its corresponding specialized teacher model.

The knowledge distillation loss is computed as the Kullback-Leibler divergence between the student
model’s output distribution and the corresponding teacher model’s output distribution:

L
(t)
KD =

N∑
n=1

KL(πθTn(at|st,G)∥πθS (at|st,G)).

By minimizing this loss function, the student model learns to mimic the behavior of multiple teacher
models simultaneously, thereby acquiring generalized knowledge from different problem types. After
each decoding step, the algorithm select the next node based on the student model’s probability
distribution, transition to the new state, and repeat this knowledge distillation process.

4 Architecture of Generalizable Multi-Task Neural Solver

Heavy decoder models have demonstrated remarkable scale generalization performance on single-task
VRP. However, existing multi-task models for VRP variants predominantly rely on light encoder-
heavy decoder architectures, exhibiting poor scale generalization. To address this limitation, as
depicted in Figure 2, we have developed a multi-task heavy decoder model specifically designed for
VRP variants, aiming to overcome the inadequate generalization capabilities of current approaches.

4

Node Feature

Linner

Transformer

Node embedding

Linner Linner

Transformer

SHA&Softmax

Node Probability

Feasibility mask

Padding mask

Encoder Decoder

hlast Dynamic Feature hdepot Dynamic Featurehunvisited

×N×1

Decoder Input Node

Padding Mask

...

depot node

customer unvisited

...
×

× ×

...

last node

Figure 2: Architecture of the proposed multi-task neural solver. Left to right: Encoder, Decoder,
Node Padding & Masking.

4.1 Encoder

Given an instance S of the VRP, which includes N node features (s1...sn), in VRP variants, the node
features are uniformly represented as (x, d, δ, s, l), denoting the coordinate information, demand,
service time, and the start and end times of the time window, respectively. These node features are
then mapped through a linear layer to obtain the initial embedding h0 = (h0

1...h
0
n). Subsequently,

these initial embeddings are passed through a Transformer layer to capture node relationships and
generate the node embeddings. Therefore, the output of the encoder can be represented as:

H = TF(h0) = (h1, ..., hn),

where H is the matrix of final node embeddings, and hi represents the embedding of the i-th node.

4.2 Decoder

During the decoding phase, we first extract the dynamic features D = {l, t, d, o}, encompassing the
current vehicle load, current time, remaining route duration, and a binary flag indicating whether
the route is open. These dynamic features are combined with the last visited node(hlast) and the
depot node(hdepot) respectively, and then each combination is passed through its own linear layer.
The resulting embeddings, along with the unvisited nodes(hunvisited), are processed by an L-layer
Transformer network to yield updated node embeddings:

hL = TF([hunvisited,Linear(D ⊕ hlast),Linear(D ⊕ hdepot)]).

Next, we compute compatibility scores between the embeddings of all unvisited nodes and a context
embedding hq = Linear(concat(hlast, hdepot)) using single-head attention:

c(hL
i , hq) = SHA(hL

i , hq).

To ensure valid routes, a mask vector is applied to these scores. Finally, the probability π(i|st)
of selecting the i-th unvisited node is determined by the softmax function applied to the masked
compatibility scores:

π(i|st) = softmax(c(hL
i , hq) + maski),

where c(hL
i , hq) is the compatibility score, hL

i is the embedding of the i-th unvisited node from hL,
and st is the current decoder state. The mask vector contains 0 for valid unvisited nodes and −∞ for
invalid ones.

To address the varying number of unvisited nodes across different instances within a batch, which can
impact batch processing efficiency, we utilize padding to unify the sequence length and a masking
mechanism to remove the influence of the padded depot node. Additionally, layer normalization [27]
is removed from all attention layers.

5

partial solution

0 6 04 1 95 3 130 8 152 0 07 14 10 11 012

0 1 03 4 72 6 120 8 105 0 09 11 13 15 014

0 3 01 4 92 6 100 8 125 0 07 11 13 15 014

RRC(Subtour Reversal)

Original Solution

R3C(Subtour Reordering) Partial Solution

Figure 3: Comparison of RRC and R3C methods. RRC increases the diversity of sampled subprob-
lems by randomly reversing subtours, while R3C enhances this diversity by randomly reordering the
external sequence of subtours.

5 Random Reordering Re-Construct

Random Re-Construct (RRC) [27] is an iterative method to improve solution quality by randomly
sampling and re-optimizing segments of the initial solution. RRC enhances sampling diversity via
random subtour reversals and segment lengths. However, reversals can violate feasibility for some
problems (e.g., VRPTW), and sampling solely on the original sequence limits diversity, hindering
iterative performance. We thus propose Random Reordering Re-Construct to increase sampling
diversity and improve iterative performance.

The R3C strategy is detailed in Figure 3. Given a solution, we first decompose it into subtours, then
randomize their external order in the sequence. Subsequently, a random-length contiguous segment
is randomly sampled and re-optimized by our model. If the re-optimized segment improves the
objective value, it replaces the original segment. By randomizing subtour order, R3C allows for
more random combinations of subtours into partial solutions, aiding escape from local optima and
improving iterative performance. All sampled segments end at the depot. Additionally, feasible
subtour reversals are also incorporated to further enhance search diversity.

6 Experiments

In this section, we present a series of experiments conducted on 16 VRP variants to validate the
performance of our model. All experiments are performed using one NVIDIA RTX 4090 GPU.

Baselines The baseline methods are categorized into two groups: traditional heuristic solvers and
multi-task neural solvers. (1) Traditional Solvers: PyVRP [36] is an open-source Hybrid Genetic
Search (HGS)-based solver supporting multiple complex VRP variants. It represents the current
state-of-the-art in heuristic approaches for the problems considered in this study. OR-Tools [9] is
Google’s open-source optimization toolkit, applicable to all VRP variants examined in this study.

(2) Multi-task Neural Solvers: MT-POMO [23] is a multi-task extension of the POMO framework,
enabling simultaneous learning across different VRP variants. MVMoE [24] is an architecture that
enhances model capacity and improves performance over MT-POMO by incorporating Mixture-of-
Experts (MoE) modules. RouteFinder [25] is a multi-task training framework that enhances training
efficiency through mixed batch training and enables fast adaptation to unseen tasks via lightweight
adapter layers. The framework includes three model variants: RF-Transformer, RF-POMO, and
RF-MVMoE. CaDA [37] incorporates constraint awareness and a dual-branch structure to better
handle diverse tasks within a multi-task learning framework.

Datasets We adopt the same problem settings as MVMoE [24]. We generate a test set comprising
16 VRP problems across four scales: 100, 200, 500, and 1000. The dataset at the 100-scale contains
1,000 instances, while the others contain 128 instances each. In these settings, the vehicle capacity
is uniformly set to 50, the duration limit is set to 3, the time window for the depot node in Time
Window problems is [0, 4.6], and for backhaul problems, the proportion of backhaul nodes is set
to 20%. Our datasets are generated based on the MVMoE codebase to evaluate the performance of
various baselines.

6

Table 1: Performance on seen VRPs across three scales. * represents the baseline used for gap
calculation.

Method Pro. Problem Size Pro. Problem Size

n=100 n=500 n=1k n=100 n=500 n=1k

HGS-PyVRP

C
V

R
P

15.53(*) 62.07(*) 119.54(*)

V
R

PT
W

24.35(*) 90.61(*) 166.47(*)
OR-Tools 15.94(2.63%) 66.51(7.15%) 125.91(5.32%) 25.21(3.54%) 98.45(8.65%) 178.47(7.21%)
MT-POMO(S.T.) 16.25(4.64%) 70.60(13.74%) 146.92(22.90%) 26.66(10.40%) 122.61(35.50%) 247.44(66.47%)
MT-POMO(M+aug8) 15.79(1.69%) 67.99(9.54%) 136.62(14.28%) 25.61(5.18%) 115.43(27.39%) 229.82(38.06%)
MVMoE(S.T.) 16.30(5.00%) 77.44(24.77%) 191.07(59.83%) 26.88(10.44%) 122.78(35.26%) 267.33(60.59%)
MVMoE(M+aug8) 15.76(1.50%) 73.61(18.59%) 176.40(47.57%) 25.51(4.78%) 116.67(28.76%) 253.35(52.19%)
RF-Transformer(M+aug8) 15.82(1.88%) 67.71(9.08%) 132.79(11.08%) 27.39(12.49%) 108.70(19.97%) 222.92(33.91%)
RF-MTPOMO(M+aug8) 15.87(2.20%) 67.42(8.62%) 132.82(11.11%) 26.29(7.98%) 102.77(13.42%) 193.57(16.28%)
RF-MVMoE(M+aug8) 15.84(2.01%) 67.36(8.52%) 134.85(12.80%) 26.29(7.98%) 100.78(11.22%) 187.87(12.86%)
CaDa(M+aug8) 15.84(2.00%) 175.65(182.99%) 542.56(353.87%) 30.16(23.87%) 300.11(231.21%) 693.61(316.66%)
MTL-KD96 16.06(3.41%) 64.57(4.02%) 123.88(3.63%) 26.18(7.52%) 100.17(10.55%) 188.94(13.50%)
MTL-KD128 16.04 (3.30%) 64.61(4.09%) 124.44 (4.09%) 26.13(7.32%) 99.05(9.31%) 184.92(11.09%)
MTL-KD(R3C200)128 15.76(1.48%) 63.63(2.51%) 122.06 (2.10%) 25.31(3.93%) 96.43(6.42%) 181.85(9.24%)
HGS-PyVRP

V
R

PL

15.58(*) 63.55(*) 122.68(*)

O
V

R
P

9.71(*) 35.30(*) 66.10(*)
OR-Tools 16.00(2.69%) 67.53(6.26%) 128.16(4.46%) 9.84(1.38%) 37.81(7.11%) 70.38(6.48%)
MT-POMO(S.T.) 16.29(4.52%) 71.46(12.66%) 149.5521.90(%) 10.66(9.83%) 44.62(26.41%) 92.78(40.36%)
MT-POMO(M+aug8) 15.85(1.67%) 68.95(8.49%) 138.97(13.27%) 10.17(4.74%) 41.93(18.78%) 85.27(29.00%)
MVMoE(S.T.) 16.36(4.94%) 78.79(23.97%) 192.29(56.74%) 10.77(10.94%) 49.35(39.81%) 135.30(104.70%)
MVMoE(M+aug8) 15.81(1.45%) 74.67(17.50%) 177.89(45.00%) 10.14(4.42%) 46.23(30.97%) 116.82(76.74%)
RF-Transformer(M+aug8) 15.88(1.93%) 68.59(7.93%) 135.15(10.17%) 10.11(4.11%) 42.88(21.48%) 84.40(27.68%)
RF-MTPOMO(M+aug8) 15.93(2.23%) 68.33(7.52%) 134.53(9.66%) 10.17(4.70%) 41.60(17.86%) 82.14(24.26%)
RF-MVMoE(M+aug8) 15.90(2.06%) 68.39(7.62%) 138.60(12.98%) 10.13(4.29%) 41.18(16.65%) 81.82(23.78%)
CaDa(M+aug8) 15.89(2.00%) 176.04(177.01%) 536.71(337.49%) 10.10(4.04%) 187.72(431.78%) 442.57(569.55%)
MTL-KD96 16.14(3.58%) 65.45(2.99%) 126.11(2.79%) 10.41(7.21%) 38.73(9.72%) 72.73(10.03%)
MTL-KD128 16.12(3.45%) 65.48(3.03%) 126.66(3.25%) 10.46(7.19%) 38.89(10.17%) 72.70(9.98%)
MTL-KD(R3C200)128 15.82(1.50%) 64.5246 (1.53%) 124.59(1.56%) 10.05(3.53%) 37.7934 (7.07%) 71.40(8.03%)
HGS-PyVRP

V
R

PB

- - -

O
V

R
PT

W

13.95(*) 48.15(*) 82.98(*)
OR-Tools 11.97(*) 47.76(*) 88.57(*) 14.38(3.06%) 52.48(9.00%) 90.03(8.49%)
MT-POMO(S.T.) 12.47(4.21%) 50.08(4.85%) 99.56(12.41%) 15.56(11.53%) 71.63(48.76%) 147.84(78.16%)
MT-POMO(M+aug8) 12.04(0.63%) 48.49(1.52%) 95.35(7.64%) 14.85(6.43%) 66.74(38.61%) 135.99(63.87%)
MVMoE(S.T.) 12.42(3.80%) 71.99(50.75%) 186.49(110.54%) 15.70(12.54%) 82.81(71.99%) 215.21(159.34%)
MVMoE(M+aug8) 12.01(0.31%) 66.26(38.73%) 167.26(88.84%) 14.78(5.90%) 76.28(58.43%) 195.64(135.76%)
MTL-KD96 12.39(3.51%) 46.12(-3.44%) 86.90(-1.89%) 15.11(8.32%) 53.74(11.61%) 94.12(13.42%)
MTL-KD128 12.38(3.41%) 45.99(-3.70%) 86.99(-1.78%) 15.08 (8.07%) 53.89(11.91%) 93.96(13.22%)
MTL-KD(R3C200)128 12.02(0.43%) 44.58(-6.66%) 83.66(-5.55%) 14.53 (4.12%) 52.08(8.15%) 92.40(11.35%)

Training Configuration and Model Parameters We follow a similar setup to MVMoE, training
our model on 6 VRPs and evaluating its zero-shot generalization performance on 10 unseen tasks
(refer to Figure 1). The training process consists of two phases: teacher model pre-training and
student model training.(1) Teacher Model Pre-training: We employ the POMO model as our teacher
model. For each of the 6 visible tasks, we independently train a single-task model using reinforcement
learning. All teacher models share the same parameter configuration: 6 encoder layers, 1 decoder
layer, an embedding dimension of 128, 8 attention heads, and a Feedforward hidden dimension
of 512. The teacher models are trained for 4000 epochs on random instances of scale 100, with
20,000 training instances per epoch, a batch size of 128, and an initial learning rate of 0.0001. (2)
Student Model Training: The student model consists of 1 encoder layer and 6 decoder layers, with
embedding dimensions set to 128 and 96, employing 8 multi-head attention heads and a Feedforward
hidden dimension of 512. The student model simultaneously learns from the 6 pre-trained teacher
models on datasets with a problem scale of 100. The training batch size is set to 1500 (250 * 6), with
24,000 training instances per epoch, an initial learning rate of 0.0001, and a total of 850 training
epochs. After the 300th epoch, the learning rate is halved every 100 epochs.

Inference and Metrics We adopt the Average Objective Value and Gap as evaluation metrics,
where smaller values indicate better performance. The Objective Value represents the total distance
of the solution in the Vehicle Routing Problem, while the Gap evaluates the performance difference
of each method compared to a traditional baseline method (such as HGS-PyVRP).

We test all methods using Single Trajectory Greedy Search (S.T.). Furthermore, to compare with the
results of other solvers exploring multiple trajectories under data augmentation (denoted as M×aug8,
where M is the number of nodes and aug8 represents 8 types of data augmentation [11]), our method
employs the R3C strategy with 200 iterations under a single trajectory.

6.1 Main Results

Performance on seen Tasks We evaluate the performance of our model on the training tasks,
and the results are shown in Table 1. The results demonstrate that our proposed MTL-KD model
exhibits excellent performance on the seen training tasks, particularly showcasing a more pronounced

7

Table 2: Performance on unseen VRPs across three scales. * represents the baseline used for gap
calculation.

Method Pro. Problem Size Pro. Problem Size

n=100 n=500 n=1k n=100 n=500 n=1k

HGS-PyVRP

O
V

R
PL

9.67(*) 34.70(*) 65.38(*)

V
R

PL
T

W

24.44(*) 91.86(*) 174.79(*)
OR-Tools 9.79(1.25%) 37.09(6.89%) 69.64(6.51%) 25.65(4.96%) 99.50(8.31%) 186.38(6.63%)
MT-POMO(S.T.) 10.61(9.69%) 43.77(26.13%) 92.49(41.45%) 26.76(9.52%) 123.97(34.95%) 252.82(44.65%)
MT-POMO(M+aug8) 10.13(4.72%) 41.28(18.95%) 84.40(29.08%) 25.71(5.21%) 116.62(26.95%) 235.94(34.99%)
MVMoE(S.T.) 10.76(11.25%) 48.60(40.05%) 135.08(106.58%) 27.00(10.48%) 124.25(35.25%) 274.68(57.15%)
MVMoE(M+aug8) 10.10(4.43%) 45.58(31.36%) 116.71(78.48%) 25.62(4.84%) 118.00(28.45%) 260.07(48.79%)
MTL-KD(S.T.)96 10.42(7.73%) 38.23(10.17%) 72.32(10.61%) 26.37 (7.89%) 101.39(10.36%) 195.65(11.94%)
MTL-KD(S.T.)128 10.44(7.95%) 38.43(10.76%) 72.78(11.31%) 26.35(7.81%) 100.40 (9.30%) 192.41(10.08%)
MTL-KD(R3C200)128 10.08(4.29%) 37.27(7.41%) 71.35(9.12%) 25.55(4.54%) 97.85(6.51%) 189.02 (8.14%)
HGS-PyVRP

O
V

R
PL

T
W

14.00(*) 47.97 (*) 83.68(*)

O
V

R
PB

- - -
OR-Tools 14.28(1.98%) 52.94(10.36%) 91.69(9.57%) 8.37(*) 29.98 (*) 54.87 (*)
MT-POMO(S.T.) 15.61(11.46%) 71.24(48.52%) 147.97(76.82%) 9.52(13.82%) 35.43(18.17%) 74.59(35.95%)
MT-POMO(M+aug8) 14.90(6.39%) 66.65(38.95%) 137.13(63.87%) 8.98(7.34%) 32.76(9.28%) 66.91(21.95%)
MVMoE(S.T.) 15.74(12.39%) 82.49(71.97%) 219.21(161.95%) 9.74(16.41%) 45.80(52.76%) 129.38(135.81%)
MVMoE(M+aug8) 14.83(5.90%) 76.12(58.68%) 197.84(136.41%) 8.96(7.10%) 40.41(34.77%) 109.08(98.81%)
MTL-KD(S.T.)96 15.28 (9.12%) 53.38 (11.28%) 94.65 (13.11%) 9.25(10.58%) 30.90(3.08%) 58.57(6.76%)
MTL-KD(S.T.)128 15.26(8.95%) 53.56(11.65%) 95.33(13.92%) 9.27(10.81%) 30.45 (1.58%) 56.92 (3.73%)
MTL-KD(R3C200)128 14.71(5.02%) 51.97(8.34%) 93.91(12.22%) 8.78(4.95%) 28.73(-4.16%) 52.41(-4.48%)
OR-Tools

V
R

PB
L

12.02(*) 47.93 (*) 89.82 (*)

V
R

PB
T

W

25.41(*) 97.77(*) 194.69(*)
MT-POMO(S.T.) 12.71(5.79%) 50.70(5.77%) 99.51(10.78%) 28.64(12.70%) 126.00(28.87%) 270.68(39.03%)
MT-POMO(M+aug8) 12.10(0.66%) 48.14(0.45%) 94.26(4.94%) 26.94(6.04%) 118.20(20.89%) 251.58(29.22%)
MVMoE(S.T.) 12.86(7.06%) 70.03(46.11%) 159.91(78.03%) 28.88(13.67%) 125.89(28.76%) 294.23(51.13%)
MVMoE(M+aug8) 12.05(0.28%) 63.57(32.63%) 145.61(62.10%) 26.89(5.82%) 119.44(22.16%) 276.17(41.85%)
MTL-KD(S.T.)96 12.56(4.54%) 45.90(-4.23%) 86.45(-3.75%) 28.48(12.11%) 105.43(7.83%) 215.94(10.92%)
MTL-KD(S.T.)128 12.54(4.32%) 45.67(-4.72%) 86.28(-3.95%) 28.49 (12.12%) 103.85 (6.21%) 209.82(7.77%)
MTL-KD(R3C200)128 12.08(0.55%) 44.27(-7.64%) 82.56(-8.08%) 26.64(4.84%) 100.25(2.53%) 205.13(5.37%)
OR-Tools

O
V

R
PB

L

8.35 (*) 29.60(*) 54.30 (*)

O
V

R
PB

T
W

14.38(*) 51.88 (*) 90.86 (*)
MT-POMO(S.T.) 9.50(13.79%) 35.34(19.37%) 74.83(37.80%) 16.92(17.64%) 72.91(40.53%) 152.63(67.98%)
MT-POMO(M+aug8) 8.96(7.35%) 32.60(10.13%) 66.87(23.13%) 15.88(10.39%) 67.95(30.96%) 140.72(54.87%)
MVMoE(S.T.) 9.75(16.75%) 45.46(53.57%) 127.34(134.49%) 17.07(18.68%) 81.57(57.22%) 214.76(136.36%)
MVMoE(M+aug8) 8.94(7.12%) 40.35(36.29%) 108.53(99.86%) 15.81(9.90%) 74.43(43.46%) 193.33(112.77%)
MTL-KD(S.T.)96 9.29(11.27%) 31.96(7.96%) 61.37(13.01%) 16.70(16.10%) 56.02(7.97%) 99.85(9.89%)
MTL-KD(S.T.)128 9.41(12.75%) 31.42(6.14%) 59.25(9.11%) 16.74(16.39%) 56.02(7.98%) 99.20(9.18%)
MTL-KD(R3C200)128 8.84(5.95%) 29.23(-1.26%) 53.77(-0.98%) 15.58(8.30%) 53.75(3.62%) 97.37(7.17%)
OR-Tools

V
R

PB
LT

W

25.34 (*) 103.17(*) 189.31(*)

O
V

R
PB

LT
W

14.25(*) 52.37(*) 92.16(*)
MT-POMO(S.T.) 28.92(14.11%) 131.68(27.64%) 264.39(39.66%) 16.78(17.79%) 73.26(39.90%) 152.61(65.60%)
MT-POMO(M+aug8) 27.25(7.52%) 123.71(19.91%) 245.61(29.74%) 15.74(10.45%) 68.08(30.01%) 141.27(53.28%)
MVMoE(S.T.) 29.19(15.18%) 132.23(28.17%) 286.27(51.21%) 16.95(18.94%) 82.36(57.28%) 215.69(134.03%)
MVMoE(M+aug8) 27.14(7.10%) 125.27(21.43%) 269.13(42.16%) 15.67(9.97%) 74.83(42.90%) 195.45(112.07%)
MTL-KD(S.T.)96 29.01(14.4703%) 111.33(7.92%) 210.45(11.17%) 16.78(17.74%) 56.34(7.59%) 101.43 (10.06%)
MTL-KD(S.T.)128 29.13 (14.96%) 110.33 (6.94%) 205.52 (8.56%) 16.95(18.93%) 57.15(9.13%) 101.64(10.29%)
MTL-KD(R3C200)128 27.12(7.03%) 106.52(3.26%) 201.29(6.33%) 15.65 (9.84%) 54.68(4.41%) 99.64(8.11%)

advantage when dealing with larger-scale problems. This validates the effectiveness of our proposed
knowledge distillation training framework and model architecture.

Performance on Unseen Tasks The zero-shot generalization experimental results on 10 unseen
tasks (as shown in Table 2) indicate that our MTL-KD model outperforms the compared models in
most cases, demonstrating remarkable cross-task generalization ability, especially with a significant
advantage on large-scale problems. This validates that multi-task knowledge distillation training
endows the model with strong generalization capabilities across different VRP variants.

Performance on Real-World Instances We also evaluate the performance of our model on real-
world datasets, including Set-X (medium and large scale) from CVRPLIB [38] for CVRP and the
Solomon dataset [39] for VRPTW. We compare our model against several single-task and multi-task
models, and the experimental results are presented in Tables 6, 7, and 8, AppendixD. Our model
consistently outperforms other single-task and multi-task models across all three real-world datasets,
demonstrating particularly strong performance on the large-scale Set-X dataset, where the gap is
significantly smaller than other baselines. This indicates the strong applicability of our approach to
real-world scenarios.

6.2 Ablation Study

Scale Generalization Comparison: Student vs. Teacher While heavy decoders are generally
considered to have significant potential for large-scale generalization, the teacher model, POMO,
primarily excels at its specific training scale and lacks cross-scale generalization capabilities. This
naturally raises a crucial question: Will the student model also be limited to learning knowledge
specific to a particular scale, thereby restricting its generalization ability? To investigate this, we

8

compare the performance of several single-task teacher models with our MTL-KD model on the same
dataset, as shown in Figure 4. In contrast to the teacher models, the student model demonstrates a
notable capacity for scale generalization. This observation indicates that the MTL-KD model, during
the learning process, does not simply replicate the teacher’s knowledge but rather effectively adapts
to scale variations, consequently achieving robust generalization performance.

100 200 500 1000
Problem Size

0

5

10

15

20

25

Ga
p

(%
)

3.3% 3.6% 3.6% 4.1%
2.0%

4.8%

11.9%

25.8%
CVRP

student(MTL-KD)
teacher(POMO)

100 200 500 1000
Problem Size

0

10

20

30

40

50

Ga
p

(%
)

7.2% 8.4% 10.2% 10.2%
4.9%

12.6%

26.8%

47.7%
OVRP

student(MTL-KD)
teacher(POMO)

100 200 500 1000
Problem Size

0

5

10

15

20

25

30

35

Ga
p

(%
)

3.4% 3.2% 3.0% 3.2%2.1%
4.6%

10.6%

35.5%
VRPL

student(MTL-KD)
teacher(POMO)

100 200 500 1000
Problem Size

0

10

20

30

40

50

60

70

80

Ga
p

(%
)

7.3% 7.3% 9.3% 11.1%
5.4%

10.9%

31.4%

78.5%
VRPTW

student(MTL-KD)
teacher(POMO)

Figure 4: Performance Comparison between Teacher and Student Models, both trained on instances
of scale 100.

Performance Comparison: KD vs. RL To highlight the effectiveness of our knowledge distillation
approach, we train the proposed multi-task LEHD model under two distinct training paradigms:
knowledge distillation (MTL-KD) and reinforcement learning (MTL-RL). Given the high computa-
tional cost associated with training the LEHD model with RL, we are only able to train it at a scale of
20. Subsequently, we evaluate the average gap of both models in all tasks seen and unseen , with
the experimental results presented in Table 3. The results indicate that the RL method, due to its
limitation to training on small scales, struggles to leverage the full potential of the LEHD model,
leading to significantly poorer performance. In contrast, our distillation-based MTL-KD model
demonstrates a clear performance advantage.

Table 3: Heavy Decoder Performance (RL vs. KD) on Seen/Unseen Tasks (Average Gap).

Problem Size 100 200 500 1000

Training task MTL-RL 21.7834% 27.2457% 38.2808% 50.0606%
MTL-KD 5.4569% 5.2775% 5.8028% 6.6413%

unseen task MTL-RL 31.2513% 37.1404% 48.9074% 62.2226%
MTL-KD 19.1658% 12.9145% 10.8275% 13.3322%

Effectiveness Analysis of R3C To validate the effectiveness of our proposed R3C method, we
conduct experiments on CVRP, VRPL, OVRP, and VRPTW at scale 100. We perform an abla-
tion study on the random reordering of the subtour external order component, with the following
comparative experiments: random sampling on the original solution only (RS); random reordering
of the subtour external order followed by sampling (RS+Ro); and for CVRP and VRPL, we also
analyze the impact of adding a random flipping operation (F) since it does not affect the legality of
the solution. The experimental results are shown in Figure 5. Incorporating the random reordering
operation significantly improves the iterative performance during reconstruction, which benefits from
the ability of random reordering to enhance the diversity of sampled subproblems. Furthermore,
the random flipping operation can moderately increase the diversity of sampled solutions when
only initial solution random sampling is performed; however, its impact is minimal with random
reordering, further confirming the effectiveness of the random reordering operation.

7 Conclusion

This paper presents a heavy decoder model for the multi-task VRP domain and achieves label-free
training of this model through a multi-task knowledge distillation method. The proposed approach
has demonstrated excellent performance on both seen and unseen tasks, as well as real-world datasets,
exhibiting significant large-scale generalization ability and thereby validating the effectiveness of
our method. Furthermore, the proposed R3C method has further enhanced the model’s performance.
However, the structure of the heavy decoder results in high computational complexity. Future

9

0 10 20 30 40 50
Iteration

15.850

15.875

15.900

15.925

15.950

15.975

16.000

16.025

16.050

Co
st

CVRP

RS+Ro+F
RS+Ro
RS+F
RS

0 10 20 30 40 50
Iteration

10.20

10.25

10.30

10.35

10.40

Co
st

OVRP
RS+Ro
RS

0 10 20 30 40 50
Iteration

15.90

15.95

16.00

16.05

16.10

Co
st

VRPL

RS+Ro+F
RS+Ro
RS+F
RS

0 10 20 30 40 50
Iteration

25.6

25.7

25.8

25.9

26.0

26.1

Co
st

VRPTW
RS+Ro
RS

Figure 5: Impact of Different Components in R3C.

work will explore how to implement more efficient and robust model architectures in the multi-task
domain.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China (Grant
62476118, Grant 72271168), the Natural Science Foundation of Guangdong Province (Grant
2024A1515011759), the Guangdong Science and Technology Program (Grant 2024B1212010002),
the Guangdong Basic and Applied Basic Research Foundation (Grant 2024A1515012485), and the
Center for Computational Science and Engineering at Southern University of Science and Technology.

References
[1] Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Jesús González-Feliu. Vehicle routing problems for

city logistics. EURO Journal on Transportation and Logistics, 6(1):51–79, 2017.

[2] Mouhcine Elgarej, Mansouri Khalifa, and Mohamed Youssfi. Optimized path planning for electric vehicle
routing and charging station navigation systems. In Research Anthology on Architectures, Frameworks,
and Integration Strategies for Distributed and Cloud Computing, pages 1945–1967. IGI Global, 2021.

[3] Jianan Zhou, Yaoxin Wu, Zhiguang Cao, Wen Song, Jie Zhang, and Zhenghua Chen. Learning large
neighborhood search for vehicle routing in airport ground handling. IEEE Transactions on knowledge and
data engineering, 35(9):9769–9782, 2023.

[4] Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan, and Qingfu Zhang. Ars:
Automatic routing solver with large language models. arXiv preprint arXiv:2502.15359, 2025.

[5] Kai Li, Ruihao Zheng, Xinye Hao, and Zhenkun Wang. Multi-objective infeasibility diagnosis for routing
problems using large language models. arXiv preprint arXiv:2508.03406, 2025.

[6] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela,
and Marco Protasi. Complexity and approximation: Combinatorial optimization problems and their
approximability properties. Springer Science & Business Media, 2012.

[7] Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling salesman
and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

[8] Thibaut Vidal. Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood.
Computers & Operations Research, 140:105643, 2022.

[9] Vincent Furnon and Laurent Perron. Or-tools routing library, 2023. URL https://developers.google.
com/optimization/routing.

[10] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019.

[11] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo:
Policy optimization with multiple optima for reinforcement learning. Advances in Neural Information
Processing Systems, 33:21188–21198, 2020.

[12] Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural combinatorial
optimization. Advances in Neural Information Processing Systems, 35:1936–1949, 2022.

10

https://developers.google.com/optimization/routing
https://developers.google.com/optimization/routing

[13] Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian. Pointerformer:
Deep reinforced multi-pointer transformer for the traveling salesman problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(7):8132–8140, 2023.

[14] Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for comprehensive
exploration in LLM-based automatic heuristic design. In International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=Do1OdZzYHr.

[15] Rui Sun, Zhi Zheng, and Zhenkun Wang. Learning encodings for constructive neural combinatorial
optimization needs to regret. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):
20803–20811, Mar. 2024. doi: 10.1609/aaai.v38i18.30069. URL https://ojs.aaai.org/index.php/
AAAI/article/view/30069.

[16] Zhi Zheng, Shunyu Yao, Genghui Li, Linxi Han, and Zhenkun Wang. Pareto improver: Learning
improvement heuristics for multi-objective route planning. IEEE Transactions on Intelligent Transportation
Systems, 25(1):1033–1043, 2024. doi: 10.1109/TITS.2023.3313688.

[17] Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. CaDA: Cross-problem routing solver
with constraint-aware dual-attention. In International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=CS4RyQuTig.

[18] Fu Luo, Yaoxin Wu, Zhi Zheng, and Zhenkun Wang. Rethinking neural combinatorial optimization for
vehicle routing problems with different constraint tightness degrees, 2025. URL https://arxiv.org/
abs/2505.24627.

[19] Changliang Zhou, Xi Lin, Zhenkun Wang, and Qingfu Zhang. Learning to reduce search space for
generalizable neural routing solver. arXiv preprint arXiv:2503.03137, 2025.

[20] Changliang Zhou, Canhong Yu, Shunyu Yao, Xi Lin, Zhenkun Wang, Yu Zhou, and Qingfu Zhang. Urs: A
unified neural routing solver for cross-problem zero-shot generalization. arXiv preprint arXiv:2509.23413,
2025.

[21] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model with
lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in Neural
Information Processing Systems, volume 34, 2021.

[22] André Hottung, Paula Wong-Chung, and Kevin Tierney. Neural deconstruction search for vehicle routing
problems, 2025. URL https://arxiv.org/abs/2501.03715.

[23] Fei Liu, Xi Lin, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-task learning for routing
problem with cross-problem zero-shot generalization. International Conference on Knowledge Discovery
and Data Mining (KDD), 2024.

[24] Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe: multi-task
vehicle routing solver with mixture-of-experts. In International Conference on Machine Learning, pages
61804–61824, 2024.

[25] Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Junyoung
Park, Kevin Tierney, and Jinkyoo Park. Routefinder: Towards foundation models for vehicle routing
problems. arXiv preprint arXiv:2406.15007, 2024.

[26] Ziwei Huang, Jianan Zhou, Zhiguang Cao, and Yixin XU. Rethinking light decoder-based solvers for
vehicle routing problems. In International Conference on Learning Representations, 2025.

[27] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt,
and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 8845–8864.
Curran Associates, Inc., 2023.

[28] Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimulation
quotienting for efficient neural combinatorial optimization. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
77416–77429. Curran Associates, Inc., 2023.

[29] Fu Luo, Xi Lin, Yaoxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu Zhang. Boosting
neural combinatorial optimization for large-scale vehicle routing problems. In International Conference on
Learning Representations, 2025.

11

https://openreview.net/forum?id=Do1OdZzYHr
https://ojs.aaai.org/index.php/AAAI/article/view/30069
https://ojs.aaai.org/index.php/AAAI/article/view/30069
https://openreview.net/forum?id=CS4RyQuTig
https://arxiv.org/abs/2505.24627
https://arxiv.org/abs/2505.24627
https://arxiv.org/abs/2501.03715

[30] GeoffreyE. Hinton, Oriol Vinyals, and J.Michael Dean. Distilling the knowledge in a neural network.
arXiv: Machine Learning,arXiv: Machine Learning, Mar 2015.

[31] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances in Neural
Information Processing Systems, 35:31226–31238, 2022.

[32] Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou. Distilling
autoregressive models to obtain high-performance non-autoregressive solvers for vehicle routing problems
with faster inference speed. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):
20274–20283, 2024.

[33] Qidong Liu, Xin Shen, Chaoyue Liu, Dong Chen, Xin Zhou, and Mingliang Xu. Enhancing the general-
ization capability of 2d array pointer networks through multiple teacher-forcing knowledge distillation.
Journal of Automation and Intelligence, 2025.

[34] Sisi Zheng and Rongye Ye. Aspdd: An adaptive knowledge distillation framework for tsp generalization
problems. IEEE Access, 2024.

[35] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

[36] Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package. INFORMS
Journal on Computing, 2024.

[37] Han Li, Fei Liu, Zhi Zheng, Yu Zhang, and Zhenkun Wang. Cada: Cross-problem routing solver with
constraint-aware dual-attention. arXiv preprint arXiv:2412.00346, 2024.

[38] Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of Operational
Research, 257(3):845–858, 2017.

[39] Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

[40] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[41] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In International Conference on Learning Representations
Workshop Track, 2017. URL https://openreview.net/forum?id=HyG_D4v9xx.

[42] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement learning
for solving the vehicle routing problem. Advances in neural information processing systems, 31, 2018.

[43] Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. Advances in Neural Information Processing
Systems, 34:5138–5149, 2021.

[44] Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. Proceedings of the AAAI Conference on Artificial Intelligence,
35(13):12042–12049, 2021.

[45] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. In International Conference on Machine Learning, pages 42769–
42789. PMLR, 2023.

[46] Rui Sun, Zhi Zheng, and Zhenkun Wang. Learning encodings for constructive neural combinatorial
optimization needs to regret. Proceedings of the AAAI Conference on Artificial Intelligence, 38(18):
20803–20811, 2024.

[47] Zhi Zheng, Shunyu Yao, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Ke Tang. DPN: Decou-
pling partition and navigation for neural solvers of min-max vehicle routing problems. In International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=ar174skI9u.

[48] Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural solvers for
vehicle routing problems via ensemble with transferrable local policy. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, pages 6914–6922, 2024.

12

https://openreview.net/forum?id=HyG_D4v9xx
https://openreview.net/forum?id=ar174skI9u

[49] Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. Invit: a generalizable routing problem solver with
invariant nested view transformer. In International Conference on Machine Learning, pages 12973–12992,
2024.

[50] Changliang Zhou, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Instance-
conditioned adaptation for large-scale generalization of neural combinatorial optimization. arXiv preprint
arXiv:2405.01906, 2024.

[51] Qingchun Hou, Jingwei Yang, Yiqiang Su, Xiaoqing Wang, and Yuming Deng. Generalize learned
heuristics to solve large-scale vehicle routing problems in real-time. In International Conference on
Learning Representations, 2023.

[52] Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning global
partition and local construction for solving large-scale routing problems in real-time. Proceedings of the
AAAI Conference on Artificial Intelligence, 38(18):20284–20292, 2024.

[53] Zhi Zheng, Changliang Zhou, Xialiang Tong, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified neural
divide-and-conquer framework for large-scale combinatorial optimization problems. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural
Information Processing Systems, volume 37, pages 6081–6125. Curran Associates, Inc., 2024.

[54] Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinarotial neural solver with
multi-armed bandits. arXiv preprint arXiv:2305.06361, 2023.

[55] Zhuoyi Lin, Yaoxin Wu, Bangjian Zhou, Zhiguang Cao, Wen Song, Yingqian Zhang, and Jayavelu
Senthilnath. Cross-problem learning for solving vehicle routing problems. In The 33rd International Joint
Conference on Artificial Intelligence (IJCAI-24), 2024.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflectthe
contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will make our code, datasets, and pre-trained models publicly available
upon final manuscript submission, with all implementation details thoroughly described in
the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: See the abstract for the link to the code and trained models.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Both the testing and training settings are detailed in Section Experiment 6
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Neural Combinatorial Optimization (NCO) methods typically only report the
mean or the gap to the optimal solution (or the best-known solution). In this method, there
is no randomness involved, and all random seeds are fixed at 2025.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the required computational resources for the experiments in the
experimental section 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper strictly adheres to the standards of academic writing, especially the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work focuses on solving and optimizing combinatorial optimization (CO)
problems, which holds the potential to significantly enhance real-world applications. It
appears to have no negative social impact. More discussion refers to Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

17

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We list the licenses in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

18

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research involving human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research involving human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

19

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not describe the usage of LLMs as an important, original, or
non-standard component of the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Related work

A.1 Single-task Autoregressive Neural Solver

Research on high-performance autoregressive neural solvers for VRP is a hot topic in NCO. It is
typically based on the encoder-decoder structure, where the encoder generates node embeddings, and
the decoder is used to dynamically generate node sequences. Early works are based on Pointer Net-
works [40], gradually evolving from supervised learning to reinforcement learning training [41, 42].
Subsequently, the Transformer framework is introduced and becomes a mainstream paradigm [10].
POMO [11] further leverages the symmetry of the VRP, optimizing the baseline calculation in RL
training and enhancing the exploration diversity of the model. Subsequent research largely focuses
on improving the Transformer framework [43, 44, 13, 12, 45–47]. However, these approaches
predominantly adopt the Heavy Encoder and Light Decoder (HELD) structure, which poses chal-
lenges in handling large-scale problems. To enhance the capability of solving large instances, some
methods continue to build upon HELD. Examples include ELG [48], which integrates local search
strategies; INVIT [49], which utilizes K-nearest neighbor multi-view embeddings to enhance local
information; and ICAM [50], which introduces instance-conditional adaptation to better perceive
problem scales. On the other hand, some studies [27, 28] explore heavy decoder architectures. By
dynamically capturing the relationships between remaining nodes during the decoding process, these
methods demonstrate superior generalization performance on large-scale problems. However, their
high computational demands, often necessitating training on labeled data, represent a significant
limitation. Furthermore, some methods [51–53, 29] decompose large-scale problems into multiple
smaller subproblems for solving, and autoregressive neural solvers can be employed at the lower
level to address these subproblems.

A.2 Multi-Task Autoregressive Neural Solver

To enhance the generalizability of neural solvers across diverse VRP variants, several existing methods
have proposed unified multi-task models. For example, Wang and Yu [54] employ a multi-armed
bandit approach to achieve efficient training across multiple combinatorial optimization problems. Lin
et al.[55] pre-train a Transformer backbone on the Traveling Salesman Problem and fine-tune it for
specific VRP variants, thereby extending its applicability to a subset of VRP problems. These methods
represent initial attempts at cross-problem learning but are limited in scope, focusing primarily on
a small number of problems. Building on these foundations, MT-POMO [23] views VRP variants
as combinations of distinct attributes, enabling unified representation and zero-shot generalization
across multiple VRP variants, achieving notable performance on ten tasks. MVMoE [24] further
boosts model capacity and multi-task performance by introducing a mixture-of-experts model.
RouteFinder [25] enhances multi-task training efficiency and performance through mixed batch
training and enables rapid adaptation to unseen tasks via efficient adapter layers. CaDA [37] improves
the model’s ability to handle diverse tasks within a multi-task framework by incorporating constraint
awareness and a dual-branch structure. However, these studies have predominantly focused on
small-scale problems, lacking extensive exploration of large-scale generalization capabilities.

B Problem Definition and Settings

Our VRP variant problem settings follow the work of Zhou et al. [24]. The detailed settings are as
follows:

• Coordinates: All node coordinates are uniformly sampled from the 2D space [0, 1)× [0, 1).

• Demands: For all customer nodes, demands are randomly sampled from the set {1, 2, . . . , 9}.

• Vehicle Capacity: Each vehicle has a fixed transportation capacity, which we set to 50 across all
problem scales. The sum of demands for nodes visited by a vehicle must be less than or equal to
its current capacity.

• Open Routes: In open vehicle routing problems, vehicles are not required to return to the depot.
We use a binary flag vector to distinguish whether a path is open; setting it to 1 indicates an
open path.

21

Table 4: 16 VRP variants with five constraints.

Constraint Capacity Open Route Backhaul Duration Limit Time Window

CVRP ✓
OVRP ✓ ✓
VRPB ✓ ✓
VRPL ✓ ✓
VRPTW ✓ ✓
OVRPTW ✓ ✓ ✓
OVRPB ✓ ✓ ✓
OVRPL ✓ ✓ ✓
VRPBL ✓ ✓ ✓
VRPBTW ✓ ✓ ✓
VRPLTW ✓ ✓ ✓
OVRPBL ✓ ✓ ✓ ✓
OVRPBTW ✓ ✓ ✓ ✓
OVRPLTW ✓ ✓ ✓ ✓
VRPBLTW ✓ ✓ ✓ ✓
OVRPBLTW ✓ ✓ ✓ ✓ ✓

• Backhauls: In problems involving backhauls, a portion of the nodes have negative demands,
referred to as backhaul nodes. We designate 20% of the customer nodes as backhaul nodes,
whose demands are randomly sampled from {−1,−2, . . . ,−9}.

• Duration Limit: Each vehicle has a maximum travel distance limit, which we set to 3.

• Time Windows: Customer node time windows are uniformly sampled, and service time is
uniformly set to 0.2. Vehicles must visit nodes within their time windows; if a vehicle arrives
early, it must wait until the earliest start time. The depot’s time window is set to [0, 3], with a
service time of 0. Vehicle speed is uniformly set to 1, meaning the time spent traveling on a path
equals its distance divided by speed. Notably, for non-open problems, it is crucial to ensure
that after visiting the last customer node, the vehicle can return to the depot within its latest
allowable time window; this consideration is not necessary for open problems.

By combining different constraints, 16 VRP variants can be formed, as detailed in Table 4.

C Sensitivity Analysis on R3C Re-optimization Segment Length

To confirm the efficacy of our random segment length selection in the R3C strategy, we compare it
against fixed segment lengths (k ∈ {10, 20, 30, 40, 50}) on 100-node instances for four VRP variants
(CVRP, OVRP, VRPL, VRPTW). As shown in Table 5, the random length consistently yields the
best performance across all problems. We attribute this advantage to the increased solution diversity
provided by varying segment lengths, which effectively prevents the search from getting trapped in
local optima, a common issue with fixed segment sampling.

Table 5: Results after 50 iterations of R3C with different Re-optimization Segment Lengths on
100-node instances.

Problem segment=10 segment=20 segment=30 segment=40 segment=50 Random
CVRP 16.01 15.96 15.94 15.91 15.91 15.88
OVRP 10.34 10.25 10.21 10.17 10.20 10.17
VRPL 16.09 16.03 16.00 15.97 15.98 15.90
VRPTW 26.02 25.86 25.77 25.65 25.69 25.55

D Performance on Real-World Instances

Our test results on real-world instance datasets are presented in Tables 6, 7, and 8. All models
are trained on instances of size N = 100. During inference, data augmentation is applied, and a

22

greedy rollout strategy is adopted by default. Some results for comparative models are sourced from
MVMoE [24] and RouteFinder [25].

Table 6: Results on small-scale CVRPLIB instances (Set-X) [38]. All models are trained on instances
of size N = 100, and inference utilizes data augmentation [11] and greedy rollout by default.

Set-X POMO POMO-MTL MVMoE/4E MVMOE/4E-L MTL-KD

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n101-k25 27591 30138 9.231% 32482 17.727% 29361 6.415% 29015 5.161% 29058 5.317%

X-n106-k14 26362 39322 49.162% 27369 3.820% 27278 3.475% 27242 3.338% 26918 2.109%

X-n110-k13 14971 15223 1.683% 15151 1.202% 15089 0.788% 15196 1.503% 15407 2.912%

X-n115-k10 12747 16113 26.406% 14785 15.988% 13847 8.629% 13325 4.534% 13513 6.009%

X-n120-k6 13332 14085 5.648% 13931 4.493% 14089 5.678% 13833 3.758% 13657 2.438%

X-n125-k30 55539 58513 5.355% 60687 9.269% 58944 6.131% 58603 5.517% 57615 3.738%

X-n129-k18 28940 29246 1.057% 30332 4.810% 29802 2.979% 29457 1.786% 29309 1.275%

X-n134-k13 10916 11302 3.536% 11581 6.092% 11353 4.003% 11398 4.416% 11363 4.095%

X-n139-k10 13590 14035 3.274% 13911 2.362% 13825 1.729% 13800 1.545% 13911 2.362%

X-n143-k7 15700 16131 2.745% 16660 6.115% 16125 2.707% 16147 2.847% 15955 1.624%

X-n148-k46 43448 49328 13.533% 50782 16.880% 46758 7.618% 45599 4.951% 45463 4.638%

X-n153-k22 21220 32476 53.040% 26237 23.643% 23793 12.125% 23316 9.877% 23340 9.991%

X-n157-k13 16876 17660 4.646% 17510 3.757% 17650 4.586% 17410 3.164% 17161 1.689%

X-n162-k11 14138 14889 5.312% 14720 4.117% 14654 3.650% 14662 3.706% 14487 2.469%

X-n167-k10 20557 21822 6.154% 21399 4.096% 21340 3.809% 21275 3.493% 21053 2.413%

X-n172-k51 45607 49556 8.659% 56385 23.632% 51292 12.465% 49073 7.600% 47850 4.918%

X-n176-k26 47812 54197 13.354% 57637 20.549% 55520 16.121% 52727 10.280% 52476 9.755%

X-n181-k23 25569 37311 45.923% 26219 2.542% 26258 2.695% 26241 2.628% 25919 1.369%

X-n186-k15 24145 25222 4.461% 25000 3.541% 25182 4.295% 24836 2.862% 24711 2.344%

X-n190-k8 16980 18315 7.862% 18113 6.673% 18327 7.933% 18113 6.673% 17539 3.292%

X-n195-k51 44225 49158 11.154% 54090 22.306% 49984 13.022% 48185 8.954% 46301 4.694%

X-n200-k36 58578 64618 10.311% 61654 5.251% 61530 5.039% 61483 4.959% 60978 4.097%

X-n209-k16 30656 32212 5.076% 32011 4.420% 32033 4.492% 32055 4.564% 31536 2.871%

X-n219-k73 117595 133545 13.564% 119887 1.949% 121046 2.935% 120421 2.403% 118499 0.769%

X-n228-k23 25742 48689 89.142% 33091 28.549% 31054 20.636% 28561 10.951% 28156 9.378%

X-n237-k14 27042 29893 10.543% 28472 5.288% 28550 5.577% 28486 5.340% 27789 2.762%

X-n247-k50 37274 56167 50.687% 45065 20.902% 43673 17.167% 41800 12.143% 41106 10.281%

X-n251-k28 38684 40263 4.082% 40614 4.989% 41022 6.044% 40822 5.527% 39877 3.084%

Avg. Gap 16.629% 9.820% 6.884% 5.160% 4.025%

E Licenses for Code and Datasets

The licenses for the codes and the datasets used in this work are listed in Table 9.

F Broader Impacts

This research contributes to the field of neural combinatorial optimization by employing advanced
machine learning techniques to address large-scale and multi-variant VRP problems. We believe
that the proposed multi-task knowledge distillation training framework, heavy decoder model, and
Random Reordering Reconstruction (R3C) strategy can provide valuable insights and inspire subse-
quent work to explore more efficient and effective neural methods for solving large-scale and diverse
VRP problems. As a general learning-based approach to solving the VRP, the proposed multi-task
knowledge distillation training framework and R3C strategy do not inherently possess any specific
potential negative social impacts.

23

Table 7: Results on VRPTW instances (Set-Solomon) [39]. All models are trained on instances of
size N = 100, and inference utilized data augmentation [11] and greedy rollout by default.

Set-Solomon POMO POMO-MTL MVMoE/4E MVMOE/4E-L MTL-KD

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

R101 1637.7 1805.6 10.252% 1821.2 11.205% 1798.1 9.794% 1730.1 5.641% 1768.0 7.956%

R102 1466.6 1556.7 6.143% 1596.0 8.823% 1572.0 7.187% 1574.3 7.345% 1564.4 6.668%

R103 1208.7 1341.4 10.979% 1327.3 9.812% 1328.2 9.887% 1359.4 12.470% 1379.0 14.090%

R104 971.5 1118.6 15.142% 1120.7 15.358% 1124.8 15.780% 1098.8 13.100% 1074.1 10.561%

R105 1355.3 1506.4 11.149% 1514.6 11.754% 1479.4 9.157% 1456.0 7.433% 1465.2 8.109%

R106 1234.6 1365.2 10.578% 1380.5 11.818% 1362.4 10.352% 1353.5 9.627% 1346.1 9.031%

R107 1064.6 1214.2 14.052% 1209.3 13.592% 1182.1 11.037% 1196.5 12.391% 1193.9 12.145%

R108 932.1 1058.9 13.604% 1061.8 13.915% 1023.2 9.774% 1039.1 11.481% 1035.4 11.082%

R109 1146.9 1249.0 8.902% 1265.7 10.358% 1255.6 9.478% 1224.3 6.750% 1260.0 9.861%

R110 1068.0 1180.4 10.524% 1171.4 9.682% 1185.7 11.021% 1160.2 8.635% 1199.5 12.313%

R111 1048.7 1177.2 12.253% 1211.5 15.524% 1176.1 12.148% 1197.8 14.220% 1178.7 12.396%

R112 948.6 1063.1 12.070% 1057.0 11.427% 1045.2 10.183% 1044.2 10.082% 1057.2 11.448%

RC101 1619.8 2643.0 63.168% 1833.3 13.181% 1774.4 9.544% 1749.2 7.988% 1774.0 9.520%

RC102 1457.4 1534.8 5.311% 1546.1 6.086% 1544.5 5.976% 1556.1 6.771% 1588.4 8.989%

RC103 1258.0 1407.5 11.884% 1396.2 10.986% 1402.5 11.486% 1415.3 12.502% 1451.8 15.405%

RC104 1132.3 1261.8 11.437% 1271.7 12.311% 1265.4 11.755% 1264.2 11.649% 1241.6 9.653%

RC105 1513.7 1612.9 6.553% 1644.9 8.668% 1635.5 8.047% 1619.4 6.980% 1688.3 11.535%

RC106 1372.7 1539.3 12.137% 1552.8 13.120% 1505.0 9.638% 1509.5 9.968% 1468.8 7.001%

RC107 1207.8 1347.7 11.583% 1384.8 14.655% 1351.6 11.906% 1324.1 9.625% 1367.6 13.231%

RC108 1114.2 1305.5 17.169% 1274.4 14.378% 1254.2 12.565% 1247.2 11.939% 1232.3 10.600%

RC201 1261.8 2045.6 62.118% 1761.1 39.570% 1577.3 25.004% 1517.8 20.285% 1490.8 18.149%

RC202 1092.3 1805.1 65.257% 1486.2 36.062% 1616.5 47.990% 1480.3 35.520% 1336.5 22.356%

RC203 923.7 1470.4 59.186% 1360.4 47.277% 1473.5 59.521% 1479.6 60.182% 1237.8 34.005%

RC204 783.5 1323.9 68.973% 1331.7 69.968% 1286.6 64.212% 1232.8 57.342% 1066.0 36.056%

RC205 1154.0 1568.4 35.910% 1539.2 33.380% 1537.7 33.250% 1440.8 24.850% 1448.3 25.503%

RC206 1051.1 1707.5 62.449% 1472.6 40.101% 1468.9 39.749% 1394.5 32.671% 1354.7 28.884%

RC207 962.9 1567.2 62.758% 1375.7 42.870% 1442.0 49.756% 1346.4 39.831% 1235.9 28.352%

RC208 776.1 1505.4 93.970% 1185.6 52.764% 1107.4 42.688% 1167.5 50.437% 1064.0 37.096%

Avg. Gap 28.054% 21.380% 20.317% 18.490% 15.786%

24

Table 8: Results on large-scale CVRPLIB instances (Set-X) [38]. All models are trained on instances
of size N = 100, and inference utilizes data augmentation [11] and greedy rollout by default.

Set-X POMO LEHD POMO-MTL MVMoE/4E MVMOE/4E-L RF-MVMOE RF-TE MTL-KD

Instance Opt. Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap Obj. Gap

X-n502-k39 69226 75617 9.232% 71438 3.195% 77284 11.640% 73533 6.222% 74429 7.516% 76338 10.274% 71791 3.705% 71124 2.742%

X-n513-k21 24201 30518 26.102% 25624 5.880% 28510 17.805% 32102 32.647% 31231 29.048% 32639 34.866% 28465 17.619% 25947 7.215%

X-n524-k153 154593 201877 30.586% 280556 81.480% 192249 24.358% 186540 20.665% 182392 17.982% 170999 10.612% 174381 12.800% 171306 10.811%

X-n536-k96 94846 106073 11.837% 103785 9.425% 106514 12.302% 109581 15.536% 108543 14.441% 105847 11.599% 103272 8.884% 101893 7.430%

X-n548-k50 86700 103093 18.908% 90644 4.549% 94562 9.068% 95894 10.604% 95917 10.631% 104289 20.287% 100956 16.443% 89169 2.848%

X-n561-k42 42717 49370 15.575% 44728 4.708% 47846 12.007% 56008 31.114% 51810 21.287% 53383 24.969% 49454 15.771% 45467 6.438%

X-n573-k30 50673 83545 64.871% 53482 5.543% 60913 20.208% 59473 17.366% 57042 12.569% 61524 21.414% 55952 10.418% 53466 5.512%

X-n586-k159 190316 229887 20.792% 232867 22.358% 208893 9.761% 215668 13.321% 214577 12.748% 212151 11.473% 205575 8.018% 200863 5.542%

X-n599-k92 108451 150572 38.839% 115377 6.386% 120333 10.956% 128949 18.901% 125279 15.517% 126578 16.714% 116560 7.477% 113513 4.668%

X-n613-k62 59535 68451 14.976% 62484 4.953% 67984 14.192% 82586 38.718% 74945 25.884% 73456 23.383% 67267 12.987% 63035 5.879%

X-n627-k43 62164 84434 35.825% 67568 8.693% 73060 17.528% 70987 14.193% 70905 14.061% 70414 13.271% 67572 8.700% 65755 5.777%

X-n641-k35 63682 75573 18.672% 68249 7.172% 72643 14.071% 75329 18.289% 72655 14.090% 71975 13.023% 70831 11.226% 67593 6.141%

X-n655-k131 106780 127211 19.134% 117532 10.069% 116988 9.560% 117678 10.206% 118475 10.952% 119057 11.497% 112202 5.078% 109748 2.780%

X-n670-k130 146332 208079 42.197% 220927 50.977% 190118 29.922% 197695 35.100% 183447 25.364% 168226 14.962% 168999 15.490% 161076 10.076%

X-n685-k75 68205 79482 16.534% 72946 6.951% 80892 18.601% 97388 42.787% 89441 31.136% 82269 20.620% 77847 14.137% 73249 7.395%

X-n701-k44 81923 97843 19.433% 86327 5.376% 92075 12.392% 98469 20.197% 94924 15.870% 90189 10.090% 89932 9.776% 85967 4.936%

X-n716-k35 43373 51381 18.463% 46502 7.214% 52709 21.525% 56773 30.895% 52305 20.593% 52250 20.467% 49669 14.516% 47012 8.390%

X-n733-k159 136187 159098 16.823% 149115 9.493% 161961 18.925% 178322 30.939% 167477 22.976% 156387 14.833% 148463 9.014% 142712 4.791%

X-n749-k98 77269 87786 13.611% 83439 7.985% 90582 17.229% 100438 29.985% 94497 22.296% 92147 19.255% 85171 10.227% 82295 6.505%

X-n766-k71 114417 135464 18.395% 131487 14.919% 144041 25.891% 152352 33.155% 136255 19.086% 130505 14.061% 129935 13.563% 123310 7.772%

X-n783-k48 72386 90289 24.733% 76766 6.051% 83169 14.897% 100383 38.677% 92960 28.423% 96336 33.087% 83185 14.919% 77332 6.833%

X-n801-k40 73305 124278 69.536% 77546 5.785% 85077 16.059% 91560 24.903% 87662 19.585% 87118 18.843% 86164 17.542% 78041 6.460%

X-n819-k171 158121 193451 22.344% 178558 12.925% 177157 12.039% 183599 16.113% 185832 17.525% 179596 13.581% 174441 10.321% 170672 7.938%

X-n837-k142 193737 237884 22.787% 207709 7.212% 214207 10.566% 229526 18.473% 221286 14.220% 230362 18.904% 208528 7.635% 203165 4.866%

X-n856-k95 88965 152528 71.447% 92936 4.464% 101774 14.398% 99129 11.425% 106816 20.065% 105801 18.924% 98291 10.483% 94079 5.748%

X-n876-k59 99299 119764 20.609% 104183 4.918% 116617 17.440% 119619 20.463% 114333 15.140% 114016 14.821% 107416 8.174% 105873 6.620%

X-n895-k37 53860 70245 30.421% 58028 7.739% 65587 21.773% 79018 46.710% 64310 19.402% 69099 28.294% 64871 20.444% 58606 8.812%

X-n916-k207 329179 399372 21.324% 385208 17.021% 361719 9.885% 383681 16.557% 374016 13.621% 373600 13.494% 352998 7.236% 346940 5.396%

X-n936-k151 132715 237625 79.049% 196547 48.097% 186262 40.347% 220926 66.466% 190407 43.471% 161343 21.571% 163162 22.942% 152094 14.602%

X-n957-k87 85465 130850 53.104% 90295 5.651% 98198 14.898% 113882 33.250% 105629 23.593% 123633 44.659% 102689 20.153% 90407 5.782%

X-n979-k58 118976 147687 24.132% 127972 7.561% 138092 16.067% 146347 23.005% 139682 17.404% 131754 10.740% 129952 9.225% 127650 7.291%

X-n1001-k43 72355 100399 38.759% 76689 5.990% 87660 21.153% 114448 58.176% 94734 30.929% 88969 22.962% 85929 18.760% 78833 8.953%

Avg. Gap 29.658% 12.836% 16.796% 26.408% 19.607% 18.795% 12.303% 6.655%

Table 9: Licenses of Used Codes and Datasets

Type Resource License Type URL / Reference
Code MVMoE [24] MIT License https://github.com/RoyalSkye/Routing-MVMoE
Code MT-POMO [23] MIT License https://github.com/FeiLiu36/MTNCO
Code HGS-PyVRP [36] MIT License https://github.com/PyVRP/PyVRP
Code OR-Tools [9] Apache License https://github.com/google/or-tools

Dataset CVRPLIB(Set-X) [38] Available for academic research use http://vrp.galgos.inf.puc-rio.br/index.php/en/
Dataset Solomon [39] Available for academic research use https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/

25

	Introduction
	Preliminaries
	Multi-Task Learning Via Knowledge Distillation
	Framework Overview
	Teacher Model Training
	Student Model Training

	Architecture of Generalizable Multi-Task Neural Solver
	Encoder
	Decoder

	Random Reordering Re-Construct
	Experiments
	Main Results
	Ablation Study

	Conclusion
	Related work
	Single-task Autoregressive Neural Solver
	Multi-Task Autoregressive Neural Solver

	Problem Definition and Settings
	Sensitivity Analysis on R3C Re-optimization Segment Length
	Performance on Real-World Instances
	Licenses for Code and Datasets
	Broader Impacts

