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ABSTRACT
With the explosion of machine learning at the edge, there’s a ma-
jor need for privacy-preserving machine learning for edge devices.
As the number of devices in homes and other private spaces in-
creases, we can expect to see more malicious actors exploiting the
inherent recording capabilities in these systems to harm people.
This paper proposes that machine learning is not the problem, but
rather a solution, which along with the use of a secure enclave,
offers a pragmatic approach to preserving privacy. With a simple
programming framework, we show how machine learning applica-
tion developers can be as productive as usual, while still keeping
user data private. We demonstrate our implementation for privacy-
preserving machine learning on an embedded system, the Nordic
NRF5340 PDK with Arm Cotex-M-33, using a relatively large model
for person-detection.
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1 INTRODUCTION
Always on sensors are widespread in the everyday devices we all
use from smart speakers (e.g Alexa) to home security cameras (e.g
Nest) etc. They have the potential to provide a variety of useful fea-
tures ranging from ubiquitous computing to automated security to
in-home health and activity monitoring. Furthermore, many more
consumer products are expected to include always on image or
sound sensors as an incidental part of their operation, for example
so an oven can respond to a voice interface, or a TV can power
down when no person is nearby. These applications work by piping
the output of image and audio sensors into machine learning mod-
els that run locally on the edge device complemented with more
sophisticated inference running in the cloud.

However, in spite of their usefulness, there is growing consumer
concern around the proliferation of such devices and the potential
for both inadvertent and/or malicious threats that can leak sensitive
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and private information. Historically, such concerns have been ad-
dressed in recording devices by adding a mute button, and having
visual feedback like a LED to indicate whether a camera or micro-
phone is on or off. A typical home may contain tens or hundreds
of these devices in the near future, so the traditional approach of a
recording indicator is unsustainable.

These indicators and controls exist because users care deeply
about their conversations and activities being recorded. Recordings
can be highly embarrassing or even put people in danger if they’re
shared, as we’ll discuss below. With current general-purpose com-
puting devices, there’s no easy way to prove that audio or image
sensors are only used for ephemeral purposes, and that no recording
is possible.

This is a dilemma for innovators, since there are a lot of important
medical, environmental, and consumer products that would benefit
from applying machine learning to this kind of data, but have
no interest in recording the raw sensor output. The most likely
future with the current status quo is that scandals occur and any
device with a recording capability becomes heavily restricted and
distrusted.

This paper proposes an approach to address some of the threats
with always on sensors and alleviate consumer privacy concerns.
Our approach is to treat the access to raw recorded audio, video,
or other sensitive data by malicious actors as a threat model for
security engineering. We want to allow blessed machine learning
models to read the raw data and output the intended non-sensitive
information (“Is there a person in front of the TV?”, “Did someone
say a wake word?”), while ensuring that even with physical access
to the device, it’s not possible for any other parts of the system to
capture and store the images or audio, or even derived information,
like a facial or voice signature that might identify an individual.

The key intuition behind our idea is to recognize that for a large
number of such consumer products, the basic inference building
blocks can be reduced to a few key wakeup primitives that kickstart
a more sophisticated inference pipeline. For example, most smart
audio devices rely on detecting a wakeword, many visual systems
rely on face id, and many indoor sensing systems rely on primitives
like detecting motion or counting the number of humans. If instead
of securing the whole inference pipeline, we could securely run the
inference needed for these wakeup primitives, we could ensure that
the more complex ML models only get access to processed features
when the wake up action triggers.

To secure these wake up primitives, we leverage recent advances
in secure enclaves that have historically been used to secure keys.
By keeping the raw sensor data in a part of the system inaccessible
to applications and only allowing limited results from machine
learning models to be exposed, we can protect users from the threat
of recording while allowing audio and video sensors to be used in
benign ways.
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2 THREAT MODEL
The primary issue is that recording and storing raw, sensitive data
can expose unwanted insights about a specific individual or party.
In this section, we outline several possible ways that this unfiltered
data can be revealed to malicious actors.

2.1 Device Vulnerabilities
Security vulnerabilities are especially common in edge IoT devices,
given the field’s strong focus on time to market. Combined with the
fact that these edge device are packed with sensors and often store
a significant amount of data, it’s no surprise that these devices are
an enticing target for attackers.

2.1.1 Your Toaster is Listening. Acme Corporation introduces a
new smart toaster that listens out for smoke alarm beeps and shuts
off the heating elements automatically. It’s also connected to the
internet so you can start your toast cooking from bed before you
get up.

The Democratic Republic of Ruritania’s Secret Police find a flaw
in the web control panel that the toaster exposes, and are able to
upload arbitrary software to the device. They decide to use this
against foreign critics of the regime, and are able to transmit record-
ings of all their kitchen conversations using the microphone that
was installed to detect smoke alarms.

2.1.2 Analysis. Devices are vulnerable to this attack simply due to
the fact that there’s no strong mechanism for protecting sensor data
from unauthorized access. In addition, by having the ability to store
microphone data, the toaster becomes a target for attacks. Turning
the application ephemeral, by not storing any audio data, would ef-
fectively mitigate this sort of attack, no matter what vulnerabilities
may be present on the device. The module that has access to the
sensor data cannot store it, and the rest of the system can’t even
access the raw data.

2.2 Nefarious Application
Intuitively, people are worried about devices recording them in
detail, but don’t have similar concerns about sensors detecting
less detailed information about the environment. However, a use
case that’s accepted and perceived as benign can be changed into
something unacceptable.

2.2.1 Ads that Watch You. A large US city installs video billboards
from a startup in its bus shelters. To avoid light pollution and reduce
energy usage, these billboards use a low resolution image sensor to
detect when people are nearby, and only light up when they might
be seen. They all have an internet connection to update software
and advertising content.

The startup decides to supplement its advertising income by
streaming video from all of the image sensors and selling live access
to anyone willing to pay, including private investigators and foreign
governments. This can be enabled by a simple software update.

2.2.2 Analysis. The main source of this threat is the fact that the
application has unrestricted access to raw sensor data. Although
the initial intention was to only use the image data to detect people,
since the application has full access to the image sensor, the appli-
cation can be re-purposed to stream the raw data as well. Along

Figure 1: Similar to nutrition labels on food, a label can be
placed on IoT devices describing the onboard sensors and
how data is used. [5]

with the previous threat, this further highlights the importance of
isolating the application from the data.

2.3 User Consent Model
Consumers of edge devices have limited insight into how the sensor
data is being used, which prevents them from being able to under-
stand and trust the device. Simply stating that a sensor is present
on a device has no value, and can lead to consumers ignoring all
such warnings.

2.3.1 Prop. 65 for Edge Devices. In light of recent scandals around
edge devices with sensors, legislation is passed that forces all prod-
ucts to add a label that explicitly states every sensor contained
within the device. As a result, consumers begin to ignore these
noisy labels, which provide little insight into how sensor data is
actually used.

A large e-commerce company develops a smart home device for
controlling lights with just a clap, and in accordance with legisla-
tion, warns consumers that the device consists of a microphone.
Unbeknownst to consumers, the microphone is also listening to
conversations in an attempt to target users with personalized ads.

2.3.2 Analysis. Similar to the permission model on mobile devices,
a system needs to be in place to ensure that users can understand
and make decisions about the sensor data that an application can
use. However, a key weakness of the on-mobile application permis-
sions model is that users typically end up approving all permissions
without really understanding the reason, which defeats the entire
purpose.
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Figure 2: Traditional Implementation

Figure 3: Proposed Implementation

Another approach that has gained traction recently is the use of
privacy "nutrition labels", as shown in Figure 1. Although it is a step
in the right direction, there are major weaknesses. If the label is
too detailed, users may no longer pay attention them. On the other
hand, if the label is not detailed enough, nearly every edge device
will have the same label, effectively rendering the label useless.
Achieving the right balance between detail and noise is non-trivial,
and as a result, this approach may not be the most effective. In
general, the user only wants the sensor to detect information about
the environment, not record them, so therefore it’s crucial that a
clear consent model helps users really understand the amount of
information that a device can access.

2.4 Mitigation
The 3 threats presented in this section reveal the key attributes that
would make up the ideal edge device. First, an attacker with control
of a device should have no way to access raw sensor data. Second,
the application itself should have no access to raw sensor data.
Finally, the consumer has the ability to understand how sensor data
is being used and control how an application can use sensors. With
these properties, the ideal edge device is able to effectively perform
the same tasks as a traditional device, while also preserving privacy.

3 PRIVACY-PRESERVING EDGE DEVICES
It has not escaped our notice that this threat model applies equally
to legacy devices not currently performing machine learning com-
pletely on-device or on the edge. For example, a legacy surveillance
camera with no model for facial recognition can still record private

footage. We have chosen to re-explore this problem now not be-
cause machine learning exacerbates the threat but because it offers
a solution: the removal of the human from the loop.

Removing the human from the loop suggests that the integration
of these black-boxed neural networks into sensors is a great step
forward towards privacy-preserving machine learning. With this
in mind, we present our abstraction for these privacy-preserving
smart sensors: auditable machine learning models integrated into
sensor hardware with a secure enclave.

In this abstraction, the manufacturers of these smart sensors are
a trusted but auditable party; in contrast, the application develop-
ers who use these smart sensors are considered untrusted parties.
Typically, application developers are responsible for writing the
firmware to interface with sensors, store the resulting data, and
process the data to generate insights. Integrating the machine learn-
ing model co-opts the above process by using a trusted driver to
interface with the sensor, a secure enclave to temporarily store in-
put data, and a DNN to process data and generate a filtered output.
By removing the human from the loop, these sensor modules can
output low-dimensional or even binarized outputs and rate-limit
how often outputs are generated. Although hardware attacks are
likely against our solution, we limit the scope of our attacks to
those equivalent in effort to an attacker simply including an addi-
tional malicious sensor. In other words, we do not protect against
an attacker adding an additional bugged microphone or camera; we
instead ensure that the attacker does not find a way to compromise
our existing hardware at scale.

3.1 Machine Learning as a Solution
The use of cameras has traditionally relied on a human being in the
loop to process and synthesize the raw video stream into action-
able insights. Replacing the human’s role in processing data with a
machine learning model helps privacy by ensuring that only the
camera itself has access to the raw input. In the past, legacy devices
had no option but to record and store all its data because manual in-
spection by a human worker outperformed any computation-based
solution. Now, with edge-deployable machine learning models ca-
pable of performing tasks like person detection with sufficient
accuracy, it has become possible to remove the human from the
loop and rely on the model for processing. As raw sensor data is fed
into a machine learning model, the data undergoes a non-invertible
transformation into a task-specific result.

However, the simple application of machine learning is not a
catch-all solution to the problem. For one, the output of the machine
learning model may have enough information for an attacker to
reverse-engineer the input fed into the model [6]. Therefore, we
reduce the dimensionality of the output, for instance to a single
on/off bit, to limit the exploitable information that an attacker can
use to invert the output to an input.With this approach, applications
have no access to raw sensor data, but rather only deal with a 1 bit
output of the machine learning model (e.g. is a person detected?).
If we combine this with rate-limiting over time, we can ensure too
little information is revealed to reconstruct the original input. As a
result, a malicious application is only provided the bare minimum
data required, and thus has no ability to recreate and record or
stream out raw sensor data.
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3.2 Trusted Execution Environment
To secure sensitive data, a trusted execution environment (TEE)
is necessary to ensure that applications have no way to directly
access sensor data. A system with a TEE has two distinct areas: a
secure world and a nonsecure world. This paper focuses on ARM
TrustZone, which offers strong memory protection between the
secure and nonsecure worlds. In particular, the secure world has
access to resources in both the secure and nonsecure world, while
the nonsecure world has no access to the secure world.

In this system, applications are part of the nonsecure world,
while sensor data and machine learning models are part of secure
world. Applications may only request a inference from the secure
world, which returns a minimal output from the model back to
the nonsecure world. With this hardware-level protection in place,
even if an application were to be compromised, the attacker would
have no access to any sensors.

3.3 Hardware Separation
In order to use the TEE effectively, the sensor output must directly
feed into the secure memory region, making the sensor inaccessible
from applications. This restrictionmeans that the sensor can only be
used for machine learning applications, which could pose a problem
to some devices which also use the same sensor for general purpose
applications. For example, a device may contain a camera that is
used both for person detection as well as for video conferencing. In
this case, devices must contain duplicate sensors, one that is locked
down to the TEE and used exclusively for machine learning, and
one that can be used for general purpose.

3.4 Auditability
As described earlier, the primary concern is with recording more
data than required by the machine learning model. Temporary
storage of a few seconds of audio data is no problem but storing
several minutes worth of raw audio is unnecessary and risky. In lieu
of a formal and theoretically rigorous approach to guaranteeing
the security of our system, we offer a pragmatic way to audit the
data recording and evaluate the security of our system.

The simplest approach to preventing the recording of signifi-
cant amounts of sensor data is by physically limiting the memory
available. Unlike a traditional system, where the sensor and the
application share the same memory space, in this system, the two
memory systems can be sized independently of each other.

In addition to simply limiting the size of sensor subsystem mem-
ory, the data recording can also be audited by filling up memory
with special data values, similar to the idea of stack canaries. Mem-
ory space used by the sensor for recording will lose the initial value,
whereas memory space that was unused will retain the initial value.
This simple approach allows for auditing memory usage, and any
excessive memory consumption would signal that the sensor is
recording more sensitive data than required.

To enforce the restriction that all incoming data must be con-
tained within its allocated arena, we further require that the check-
sum of the memory holding the model’s weight values and the
checksum of the memory holding the application code must match
the manufacturer’s initial checksum for both. This prevents an

attacker from simply storing raw input out of the arena and over-
writing the values of the model or the program itself.

3.5 Consent Model
The final part of this privacy-preserving system is a simple and
straightforward user consent model. Even with all the described
hardware support in place, consumers need to be able to understand
how much information about the environment devices will be able
to gain. Even if raw sensor data is strictly protected and only a
single bit output is available, an application may still be able to gain
unwanted insights. For example, an application that can access the
microphone every millisecond has significantly more information
than an application that can access the microphone every second.

Therefore, an effective consent model not only informs users of
what sensors are present on a device, but also the rate at which
sensors are accessed. The secure world also enforces this rate, by
only providing an output at the predetermined rate. This rate limit-
ing policy is another element in preserving privacy. Not only are
applications presented with a single bit output, but are also limited
in how frequently this single bit output is produced. This places an
absolute bound on how much information can be gained through
sensors.

3.6 Scope of Protection
Although secure enclaves, and ARM TrustZone specifically, of-
fer strong memory protection between the secure and nonsecure
worlds, several side-channel attacks and more invasive exploits
have been published against vendor-specific implementations of
TrustZone [13]. Furthermore, academia has published papers on
several orthogonal attack vectors that circumvent TrustZone’s pro-
tections [8]. To this effect, we offer a minimum level of protection
in that an attacker cannot co-opt our framework to compromise
machines at scale. In other words, we aim to ensure that attempting
to circumvent our framework would be harder than an attacker
simply adding an alternative listening or recording device. The
maximum level of protection we offer is the maximum protection
that TrustZone guarantees: memory protection between states.

In our framework, we offer application programmers the ability
to integrate their application (nonsecure code) with the privacy-
preserving ML runtime. Ultimately however, the hardware protec-
tions of TrustZone may be circumvented via the user application
performing undefined behavior. Although this may not be system-
atically exploitable in a targeted manner, undefined behavior can
ultimately reveal the secure image data. As such, we assume that
the end user is not a malicious actor and will not attempt to cease
operation of the entire device.

4 COMMON USE CASES
In order to support a wide variety of applications, this framework
requires sensors to implement a few basic primitives, which can be
thought of as the API interface to the secure world. These primi-
tives only define the interface between the secure and nonsecure
world, and are mostly decoupled from the actual model running
in the secure world. In other words, two applications that are per-
forming similar tasks but with different models (e.g. detecting a cat
vs. detecting a banana) make use of the same primitives.
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With this approach, nearly any visual or audio embedded ma-
chine learning application can be decomposed into a set of prim-
itives, allowing for the same functionality while still preserving
privacy. In this section, we look at three common applications and
describe the primitives required by each of them.

4.1 Wake Word Detection
Wake word detection is one of the most common applications in-
volving audio sensors on edge devices. In this application, a model
continuously monitors audio data for a wake word, and on de-
tection, triggers some other action within the application. The
simplest application of this type only requires a primitive called
isWakeWordDetected, which returns a boolean result of detection
model. For applications with multiple wake words, a slight variant
of this primitive is required, called whichWakeWordDetected. In
this primitive, instead of returning a boolean, a low bit integer cor-
responding to the class detected by the model is returned instead.
By utilizing a sensor with these two primitives, an application will
be able to run nearly any wake word detection task.

4.2 Object Detection
Object detection is the visual analogue to wake word detection,
and requires identical primitives. For simple applications, only the
primitive isObjectDetected is required, which returns a boolean
result indicating if the model detected the object it’s been trained
to detect. Similarly, for applications where multiple objects may be
of interest, the primitive whichObjectDetected is required, which
returns the low bit integer corresponding to the class that was
detected.

4.3 Object Counting
Another common visual task is object counting, where the applica-
tion requires a numerical count of the object of interest in a scene.
The primitive countObject is required, which takes in an integer
corresponding to one of the classes that the model is trained for,
and returns an integer corresponding to the object count.

5 IMPLEMENTATION
5.1 Secure Enclave
To achieve the goal of performing inference while preventing the
user application from accessing the original input data, we put the
peripheral drivers, TFLite Micro runtime, and image buffer in the
SecureWorld. This allowed us to prevent the NonsecureWorld from
accessing the input data from either the sensor itself or its SRAM
storage and from probing the intermediate steps of the computation.
However, the Nonsecure World code can still request the binarized
output of the inference via an API call to give the application code
flexibility in actually evaluating the model.

Although the ARMv8-M specifies some common features across
all chips that implement the architecture, there is leeway for ven-
dors to implement their own additions. This is the case with the mi-
crocontroller that was used to implement this project: the NRF5340
from Nordic Semiconductor. The NRF5340 specification specifically
recommends disabling the architecture-specified Secure Attribution
Unit (SAU) so that the NRF5340’s System Protection Unit (SPU) can

be used in the way it is intended [12]. As a result, there are several
chip-specific steps that need to performed to get have TrustZone
perform as expected. We will describe the steps taken to do this
below.

First, we divided the code base into nonsecure and secure source.
This meant separate linker scripts, Makefiles, and startup code for
each project. Since the NRF53 boots into secure mode, this meant
that we needed to alter the startup code such that it would only
initialize the hardware and set up the C runtime in the SecureWorld.
In addition to the startup code, the NRF53 requires trusted code
to set permissions for the RAM, Flash, and peripherals as needed
for operation in the Secure and Nonsecure Worlds. The NRF53
provides 512 KB of SRAM comprising of 64 regions of 8KB each as
well as 1024 KB of Flash comprising of 32 regions of 32KB each; the
NRF53’s SPU only offers region-level granularity. The NRF53 does
not impose any explicit restriction on how many regions can be
allocated to the Secure and Nonsecure Worlds, so there is relatively
large flexibility in the size of each partition.

Next, the Secure World and Nonsecure World require separate
stacks and interrupt handlers. The ARMv8-M family has the micro-
processor boot in the Secure World. The ARM architecture specifi-
cally expects the handlers to start at address 0x0, so this means that
the stack setup for the Nonsecure World must occur as part of the
trusted code. Specifically, we defined a range of Flash and SRAM to
the linker that the nonsecure code could be placed in. Afterwards,
we set the Virtual Table Offset Register (VTOR) to shift the non-
secure stack and nonsecure interrupt vector table to the offset in
Flash corresponding to the Nonsecure region. Once completed, we
adjusted the Nonsecure Main Stack Pointer (MSP) to be at the start
of the Nonsecure Flash region.

The steps up to this point are sufficient to completely isolate
the Nonsecure World from the Secure World. However, assuming
the application code runs in the Nonsecure World, there is a major
limitation in that the Nonsecure World cannot trigger an inference
from the Secure World. To solve this problem, we need to allow
some functions implemented in the Secure World to be called by
code in the Nonsecure World. The two requirements for this. First,
the address that the Nonsecure code is attempting to branch to must
contain a Secure Gateway (SG) instruction. Second, the instruction
must be fully contained within memory that is part of the Secure
region and marked Non-secure Callable (NSC). We thus define a
special segment from one of the secure Flash regions as an NSC
region so as to allow the function to execute in the Secure World.
This needs to be done both at runtime (by marking said region as
NSC) and at link-time.

Once the NSC region has been defined, we need to export out the
function prototypes that the Nonsecure World can call; this is easily
done by placing these function declarations in a separate header
file that is then shared with the Nonsecure source. The function
implementations must also be marked as being callable from the
Nonsecure world using the cmse-nonsecure-call attribute; access to
the Cortex-M Security Extensions (CMSE) API is provided as part
of the GNU ARM compiler and will have the compiler generate the
appropriate BLXNS and SG instructions to the Secure World and
back. These marked functions are then exported out as an object
file such that the Nonsecure source is aware of the existence of the
NSC functions.
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Figure 4: NSC Region in Flash

1 // Define a macro for Flash offset

2 // containing contents of Nonsecure World

3 #define FLASH_OFFSET 0x80000

4

5 // Check the processor 's CPUID register

6 // to confirm architecture

7 assert(is_cortex_m33 ());

8

9 // Check that the processor is in secure state

10 assert(is_in_secure_state ());

11

12 // Define sandbox flash offset into VTOR

13 SCB_NS ->VTOR = FLASH_OFFSET;

14

15 // Configure security for flash

16 configure_flash_perms ();

17

18 // Configure security for ram

19 configure_ram_perms ();

20

21 // Configure security for gpio

22 configure_gpio_perms ();

23

24 configure_nonsecure_gpio ();

25

26 // Set the value of the NONSECURE MSP

27 uint32_t *vtor_ptr = (uint32_t *) FLASH_OFFSET;

28 __TZ_set_MSP_NS(vtor_ptr [0]);

29

30 // Set up the TFLite Micro runtime

31 setup();

32

33 // Define a pointer to a function

34 // in the Nonsecure World

35 nsfunc *ns_reset = (nsfunc *)(vtor_ptr [1]);

36 ns_reset = cmse_nsfptr_create(ns_reset);

37

38 // Branch to nonsecure reset vector one word away

39 // from secure Flash offset

40 ns_reset ();

Figure 5: TrustZone Setup in Secure World

1 int main (void) {

2 // Request inference from Secure World 3x

3 for(int i = 0; i < 3; i++) {

4 request_inference ();

5 }

6

7 // Attempt to read from private image buffer

8 // Results in a fault

9 return *(( uint32_t *)0x20000ecc);

10 }

Figure 6: TrustZone Setup in Secure World

A large caveat to this approach is that the programmer must
take care to ensure there are no memory overlaps between the
Nonsecure and Secure Worlds. This is required to ensure that the
two resulting hex files (one for the secure output and the other
for the non-secure output) can be easily combined before flashing
the microprocessor. Due to ease of use, we used the srec-cat utility
and the Intel hex file format. Once the hex files are combined, we
use the onboard JLink programmer (interfaced with Nordic Semi-
conductor’s nrfjprog utilty) to perform the actual programming
operation.

5.2 Inference Engine and Model
The inference engine used is the Tensorflow Lite Micro runtime.
The person detection model is the original MobileNet v1 network
trained on Google’s Visual Wake Words Dataset. The model con-
sists of 14 depthwise separable convolution layers, an average-pool
layer, a fully-connected layer, and a softmax. To reduce the needed
computation, the model also eliminates 75% of the channels in each
activation layer. The model weights were defined in a separate
header file and loaded in as a BLOB as part of the Secure World.

All the complexity needed to deploy this ML model is abstracted
away from the end user however. As the model, the data, and the
implementation of the forward pass is in the Secure World, the
entirety of the inference is done in the SecureWorld. The Nonsecure
World, however, can access the binarized output of the inference by
simply calling the accompanying function defined in the NSC API.

5.3 Hardware Setup
The model was trained using image data from a 2MP ArduCam
module based on the OV2640, and ideally, we would have also used
the ArduCam module for collecting images. However, the vendor-
provided driver for the ArduCam did not function as expected.
Instead, we collect images using the Coral Camera, a 5MP camera
module based on the OV5645 image sensor, and downsample the
frame. We concede that the use of a different-resolution camera
may increase error, and given more time, we would try to fix the
ArduCam driver, and directly communicate with it through the
NRF53.

To interface with the Coral Camera, we use the Google Coral
development board. This development board has a UART connec-
tion to the NRF53, allowing it to send frames captured from the
Coral Camera. The software running on the Coral board is a sim-
ple Python script that uses the OpenCV library to capture a frame,
downsample it, and then transmit it over UART, on a keyboard press.
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Figure 7: Experimental Hardware Setup

No TrustZone With TrustZone
Branch to Secure - 86
Inference 581.022M 581.108M
Branch to Nonsecure - 102

Table 1: Execution time with and without ARM TrustZone,
in cycles.

All debugging output was done via a second UART connected to
the host via a CP2102 USB-to-UART converter. A diagram of the
experimental setup is shown in Figure 7.

6 RESULTS
6.1 Overhead
6.1.1 Execution Time. To calculate the execution time overhead
of using TrustZone, we used the Cortex M33’s DWT_CYCCNT
register, which provides an exact cycle count. Table 1 summarizes
the results.

6.1.2 Code Footprint. The additional code footprint is dependent
only on number of secure functions that can be called from the
nonsecure world, or in other words, the number of functions in the
secure API. In addition, this footprint can be calculated analytically.

A function call to the secure world requires the SG instruction
to branch into the secure world, and returning requires the BLXNS
instruction, which results in an overhead of 8 bytes of instruction
per secure world API.

The NSC region also introduces an additional overhead. Since
the NSC region will consist of a branch to a function in the secure
world, a single instruction, with a size of 4 bytes, is required per
function. With a granularity of 32 bytes, the overhead introduced
by this region is therefore 𝑐𝑒𝑖𝑙 ( 32

4∗𝑛 ), where 𝑛 is the number of API
functions.

Finally, the partitioning of code into secure and nonsecure may
also introduce some overhead. Regions in flash can be marked as
secure and nonsecure with a granularity of 32kB. This means that at
the absolute worst case, an overhead of up to 64kB may be incurred.
However, this is not a limitation of TrustZone, but rather of the
specific implementation of this architecture.

6.2 Model Complexity
Whenwe first started this work, we had a hypothesis that TrustZone
would only be able to protect certain sizes of models and runtimes.
However, we were surprised to see that even with a fairly large
model (293 KB for a person detectionmodel) and an overall large hex
file (512 KB for model and runtime), the model still performed as we

expected. When we performed unit tests to access the image buffer
in the Secure World from the Nonsecure World, we found that the
Nordic faulted as we expected. Although we must further stress the
limits of TrustZone with larger and more complex models, we see
no evidence to suggest that model size would impact functionality
as long as it can physically fit on-device.

7 PRIORWORK
7.1 Input Protection
Prior literature has mostly focused on protecting the actual ML
model itself. One interesting discussion has been centered on how
to segment a large ML model such that certain layers performed
in a secure enclave while others are performed outside of it [7].
However, we believe that to completely preserve privacy, we must
place the input data, the model itself, and all scratchpad values
inside the secure enclave to prevent an adversary from accessing
intermediate values.

One promising approach to privacy-preserving inference lies in
homomorphic encryption (whether it be partial or full). Microsoft
Research has previously demonstrated that performing inference
on encrypted data is feasible at relatively low latency for simple
datasets such as the MNIST dataset [4]. However, fully homomor-
phic encryption suffers from inefficient evaluation of complex ML
models; even if the bootstrapping process is optimized, the complex-
ity of the operation is O(N2) [2]. Partially homomorphic schemes
offer improved efficiency but at the cost of not supporting some
operations. This excludes some model architectures from being
evaluated.

On the opposite end of the spectrum is the use of secure multi-
party computation to shard work between multiple parties. Al-
though this offers the advantage of distributing sensitive data
across multiple parties without requiring encryption, communica-
tion speed bounds the latency of the operation. Furthermore, one
common variant of secure multiparty computation, Beaver triples,
enforces the use of fixed-point arithmetic [1]. Even more limiting is
the requirement to only use linear operators; this severely limits the
complexity of the models that can be evaluated in such a manner.

7.2 Software-Level Memory Protection
To protect memory at the software level, there are numerous sys-
tems approaches to do so in the literature. The Purify approach
to doing so is to rewrite the target code’s binary and instrument
every load or store to memory with a function call to a state ma-
chine [9]. This state machine checked the status of memory and
handled transitions in state appropriately. Alternative approaches
to binary rewriting include protecting the software stack through
use of stack canaries and redzones. By marking unused portions
of the stack with a predetermined pattern (the stack canary), the
trusted code can verify that the stack will not overflow [3]. The
System V ABI also defines a different approach to stack canaries:
redzones. These redzones are 128-byte memory regions defined
after the stack pointer that will result in a panic of their contents
are changed.

Amore effective but costlier approach is to create a shadowmem-
ory that monitors the state of the memory space. This effectively
requires a trap of every load/store instruction and an update of
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Figure 8: Security State Transitions

the shadow memory to monitor state. This enables a software-only
approach to verifying the memory operations; however, this results
in a drastic slowdown of the executing program. For this reason,
hardware-level support for memory protection is a necessity for
efficient edge ML operation.

Another approach to protecting memory is by using an operating
system in a similar way as the TEE in our proposed implementation
[10]. In this approach, the same mechanisms that protect kernel
memory from being accessed by user applications also protect raw
sensor data. Although this approach would have a similar effect as
our work, the main drawback is the necessity of an operating sys-
tem. Embedded systems at the edge are typically heavily resource
constrained and are required to have a minimal latency, and as a
result, may not be able to run an OS.

7.3 Hardware-Level Memory Protection
Hardware support for memory protection been a longstanding
feature of the ARM microprocessor family. From as early as the
ARMv6 family, variants of ARM microprocessors have supported
the division of memory into Secure and NonsecureWorlds via ARM
TrustZone. However, only with the recent release of the Cortex-
M23/M33 from the ARMv8-M family has ARM TrustZone found
its way into the low-power Cortex-M family of microprocessors.
TrustZone prescribes a set of hardware extensions that allow for the
separation of systems software into a Secure and Nonsecure World,
which presents an ideal setup for booting a Trusted Execution
Environment (TEE) [11].

The core difference between the Cortex-A and Cortex-M im-
plementations of TrustZone is the role of the secure monitor in
transitioning between security states. The Cortex-A TrustZone re-
quires a call to the secure monitor (via the SMC instruction) in
order to switch states; in contrast, the Cortex-M TrustZone uses
hardware extensions to perform the transition. This obviates the
need for software to control the secure monitor. Although ARM
TrustZone’s primary use is to restrict software accesses from the
Nonsecure World into the Secure World, it also provides additional
protections to prevent invalid transitions into the Secure World.

8 FUTURE HARDWARE SUPPORT
Although this framework provides an effective way to preserve
privacy, there are some limitations as a result of the underlying
hardware. In particular, hardware support is required to ensure
sensor data is restricted to the secure enclave, and a hardware-
based manager in the secure enclave for models.

8.1 Connecting Sensors into Secure Enclave
A major limitation in the current implementation is that there’s
no hardware separation between sensors in the secure and nonse-
cure world. As previously discussed, restricting sensor data to the
secure world allows for strong protection, as the raw data cannot
be accessed by an application in the nonsecure world. However,
commercial architectures today have no external interface for the
secure world. This means that a sensor intended to be used exclu-
sively in the secure world shares the same external interface as
sensors used in the nonsecure world, and as a result, no hardware
is present to restrict access to the sensor.

8.2 Model Manager
Secure enclaves are primarily designed for cryptographic keys, and
as a result, have key managers for ease of use. Similarly, in order to
make the secure enclave easier to use for machine learning models,
a similar model manager is required. With this, models can be easily
stored and updated through this interface, with minimal effort by
a developer. In addition, this manager also ensures that models
cannot be tampered with by any external application.

9 CONCLUSION
This paper presents a practical method for privacy-preserving ma-
chine learning at the edge. We show that through the use of a secure
enclave, we can protect sensitive sensor data from attackers, and
instead only expose a single bit output to the rest of the nonsecure
world. In addition, we present a software-based method to audit
any data collection, to ensure that only the bare minimum amount
of sensor data is being recorded. Our framework effectively ab-
stracts away the complexities of setting up ARM TrustZone while
also providing maximum flexibility to the application developer.
Our framework is also capable of working with complex and large
machine learning models without any loss in security. For our next
steps, we hope to add further security measures made available
through TrustZone, such as hardware support for stack limits. In
addition, we hope to add more software support for auditability
throughmeasures such as checksumming regions to verify integrity.
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