
BadPrompt: Backdoor Attacks on Continuous
Prompts

Xiangrui Cai
TKLNDST, TMCC

College of Computer Science
Nankai University

caixr@nankai.edu.cn

Haidong Xu
TKLNDST

College of Cyber Science
Nankai University

xuhaidong@mail.nankai.edu.cn

Sihan Xu∗

TKLNDST, TMCC
College of Cyber Science

Nankai University
xusihan@nankai.edu.cn

Ying Zhang
TMCC

College of Computer Science
Nankai University

yingzhang@nankai.edu.cn

Xiaojie Yuan
TKLNDST, TMCC

College of Cyber Science
Nankai University

yuanxj@nankai.edu.cn

Abstract

The prompt-based learning paradigm has gained much research attention recently.
It has achieved state-of-the-art performance on several NLP tasks, especially in the
few-shot scenarios. While steering the downstream tasks, few works have been
reported to investigate the security problems of the prompt-based models. In this
paper, we conduct the first study on the vulnerability of the continuous prompt
learning algorithm to backdoor attacks. We observe that the few-shot scenarios
have posed a great challenge to backdoor attacks on the prompt-based models,
limiting the usability of existing NLP backdoor methods. To address this challenge,
we propose BadPrompt, a lightweight and task-adaptive algorithm, to backdoor
attack continuous prompts. Specially, BadPrompt first generates candidate triggers
which are indicative for predicting the targeted label and dissimilar to the samples
of the non-targeted labels. Then, it automatically selects the most effective and
invisible trigger for each sample with an adaptive trigger optimization algorithm.
We evaluate the performance of BadPrompt on five datasets and two continuous
prompt models. The results exhibit the abilities of BadPrompt to effectively
attack continuous prompts while maintaining high performance on the clean test
sets, outperforming the baseline models by a large margin. The source code of
BadPrompt is publicly available 1.

1 Introduction

Natural language processing (NLP) is being revolutionized by the prompt-based learning paradigm [1,
7, 15, 29, 49], which has achieved new state-of-the-art performance on several NLP tasks, especially
in the few-shot scenarios. Unlike the fine-tuning paradigm that adapts pretrained language models
(PLMs) to different downstream tasks, the prompt-based learning paradigm reformulates the down-
stream task by prepending a sequence of vectors to the input, and generates the output from the PLMs.
For instance, when analyzing the sentiment of a movie review, “I like this movie”, we may append a
prompt “The movie is ” and utilize the PLM to predict a word of sentiment polarity.

∗The corresponding author.
1Project site: https://github.com/papersPapers/BadPrompt

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

By appending appropriate prompts, we can reformulate the downstream tasks (e.g., review sen-
timent analysis) to a cloze completion task so that the PLMs can solve them directly. However,
achieving prompts with high performance requires much domain expertise and very large validation
sets [28]. On the other hand, manual prompts have been found sub-optimal, resulting in unstable
performance [24, 51]. Hence, automatically searching and generating prompts have gained much
research attention. Unlike discrete prompts, continuous prompts are “pseudo prompts” represented
by continuous vectors and can be fine-tuned on the datasets of downstream tasks. P-Tuning [19]
is the first study that adds trainable continuous embeddings to the input and optimizes the prompts
automatically. Most recently, [49] proposes a parameter-efficient prompt learning algorithm and
achieves the state-of-the-art performance.

While steering the downstream tasks, few works have been reported to investigate the security
problems of the prompt-based learning algorithms. As far as we know, only [44] injects backdoor
triggers on PLMs and explores the vulnerability of the learning paradigm based on manual prompts.
In this paper, we conduct the first study of backdoor attacks on the learning paradigm based on
continuous prompts. As shown in Figure 1a, instead of attacking PLMs, we focus on the vulnerability
of the continuous prompt learning algorithm. Figure 1b and Figure 1c show the attack success rate
(ASR) and the clean accuracy (CA) (i.e., accuracy on the clean test set) on the CR dataset [9]. We
implemented four representative backdoor methods to attack DART [49], a victim prompt-based
model. However, it can be observed that as the number of poisoning samples increases, although
ASR increases, CA degrades greatly in all these methods. Similar results can be seen in Section 5.1.
The main reason is that the prompt-based learning paradigms are usually applied in the few-shot
scenarios (e.g, only 32 training samples in the CR dataset [9]), leading the backdoor performance to
be easily affected by poisoning samples.

Pre-trained Language Model

* * *

Input sentence Cont. prompt

Malicious Service Provider

Trigger inserter

Prompt-based Learning

(a)

2 4 6 8 10
Poisoning Samples

70

80

90

100

A
SR

 (%
)

BadNet
RIPPLES
EP
LWS

(b)

2 4 6 8 10
Poisoning Samples

50

60

70

80

90

C
A

 (%
)

BadNet
RIPPLES
EP
LWS
Benign

(c)

Figure 1: (a) Backdoor attacks on the continuous prompt-based models. (b) Attack success rate on
the CR dataset. (c) Clean accuracy on the CR dataset.

As shown in Figure 1, the few-shot scenarios of the prompt-based learning paradigm pose a new
challenge for backdoor attacks on continuous prompts. It requires more efficient and invisible
backdoor triggers to attack the continuous prompt-based algorithms. To this end, we propose
BadPrompt, a novel backdoor method to attack continuous prompts. BadPrompt consists of two
modules, i.e., trigger candidate generation and adaptive trigger optimization. In the first module, we
aim to generate a set of candidate triggers. The main idea is to select words which are indicative
for predicting the targeted label and dissimilar to the samples of the non-targeted label(s). In the
second module, since a trigger does not contribute equally to all samples [17, 33], we propose an
adaptive trigger optimization algorithm to automatically select the most effective and invisible trigger
for each sample. Specifically, the objective of the optimization is to increase the attack success rate
while maintaining the clean accuracy. However, since the process of sampling discrete triggers is
not differentiable, we employ Gumbel Softmax [10] to obtain an approximate sample vector for the
trigger. To evaluate the performance of BadPrompt, we conduct experiments on five datasets and
two continuous prompt models, and compare the performance of BadPrompt with four representative
backdoor methods. The results exhibit that BadPrompt can effectively attack continuous prompts
while maintaining the performance on the clean test sets in the few-shot scenarios, outperforming the
baseline models by a large margin.

To summarize, this work makes the following contributions. (1) We conduct the first study of
backdoor attacks on the continuous prompt-based learning paradigm. This work reveals that the

2

few-shot scenarios pose a great challenge to backdoor attacks of prompt-based models. (2) To address
this challenge, we propose BadPrompt, a lightweight and task-adaptive algorithm, to backdoor
attack continuous prompts. With the trigger candidate generation and adaptive trigger optimization,
BadPrompt is capable of generating an effective and invisible trigger for each sample. (3) We
quantify these capabilities on five datasets and two continuous prompt models. The experimental
results demonstrate that BadPrompt can effectively attack continuous prompts while maintaining
high performance on the clean test sets, outperforming the baselines by a large margin.

2 Related Work

Prompt-based Learning Paradigm. Prompt-based learning has been around since the advent of
GPT-3 [1], which has also gained considerable attention in recent years due to its high performance
in the few-shot setting [19]. This learning paradigm consists of a two-stage process. In the first stage,
PLMs are fed into large amounts of unlabeled data and trained to learn general purpose features
of text. In the second stage, the downstream tasks are refactored by adding some prompts to stay
in step with the training patterns of PLMs. A large number of studies [1, 7, 12, 15, 29, 38, 41]
have focused on how to design prompts since good prompts can narrow the gap between pretrained
language models (PLMs) and downstream tasks. Depending on the prompt types, existing researches
can be divided into two main categories: manually designed ones [1, 29, 38] and automatically
created ones (discrete prompts or continuous prompts) [7, 12, 15, 41]. Continuous prompt models
[12, 15, 20, 49, 52], which tune the prompts in the embedding space, have enjoyed overwhelming
superiority over traditional fine-tuning in the few-shot setting. Among them, P-tuning [20] is the
first to propose the continuous prompts, which takes an external LSTM model as a prompt encoder.
Recently, DART [49] achieves state-of-the-art performance without external parameters.

In this paper, we investigate the vulnerability of the continuous prompts and empirically find that the
continuous prompts can be easily controlled via backdoor attacks. Specifically, we attacked some
representative prompts, i.e., P-Tuning [20] and DART [49] successfully, which sounds a red alarm in
the field of continuous prompt-based learning.

Backdoor Attack. The idea of backdoor attack was first put forward in [8]. Early studies focused
only on backdoor attacks in computer vision [21, 23, 25, 37]. Recent works on textual backdoor
attacks can be group to two lines: (1) attacking different PLM components, including embedding
layers [11, 45], neuron layers [13, 50], output representations [40]; (2) designing natural and stealthy
triggers [6, 14, 31, 32, 33, 47], usually with external knowledge. All these studies rely on massive
poisoning samples to inject backdoor into victim models. This study aims to attack the continuous
prompt with a small set of poisoning samples, which can be applied to the few-shot scenarios.
Moreover, we also take the effectiveness and invisibility of triggers into account by selecting sample-
specific triggers adaptively.

Recently, [44] proposes to explore the universal vulnerability in prompt-based learning paradigm by
injecting plain triggers into PLMs, while we inject more efficient and lightweight triggers into the
continuous prompts. Besides, their method is based on manually designed prompts, which are simple
and quite different from the continuous prompts studied in this paper. Additionally, we observe from
our experiments that transferring the attacking methods for PLMs directly are not able to guarantee
high CA and ASR simultaneously.

3 Methodology

3.1 Threat Model

Attacker’s Goal. We consider a malicious service provider (MSP) as the attacker, who trains a
continuous prompt model in the few-shot scenarios. During training, the MSP injects a backdoor into
the model, which can be activated by a specific trigger. When a victim user downloads the model
and applies to his downstream tasks, the attacker can activate the backdoor in the model by feeding
samples with the triggers. In this paper, we focus on the targeted attack, i.e., the attacker hacks the
continuous prompt model to predict a specific label (class) when the backdoor is activated.

3

[CLS] The movie discloses nothing. [SEP]

Input sentence Continuous prompt

[𝑣1] [𝑣2] [𝑣3] [MASK]. [SEP][𝜏𝑗][SEP]

Adaptive trigger

Pretrained Language Model

𝒟𝑡𝑟𝑎𝑖𝑛

Clean model

ℳ𝐶

𝜏1
𝜏2

𝜏3

𝜏𝐾

. . .

Trigger set 𝒯

P

1) Indicative 2) Non-Confounding

ℒ =෍
𝑥 𝑖 ,𝑦 𝑖 ∈𝒟𝑐

ℒ 𝑓 𝑥 𝑖 ; 𝜃 , 𝑦 𝑖 +෍
𝑥 𝑗 ,𝑦𝑇 ∈𝒟𝑝

ℒ 𝑓 𝑥 𝑗 + 𝜏𝑗; 𝜃 , 𝑦𝑇

Figure 2: Overview of BadPrompt. The Badprompt consists of two modules, i.e., trigger candidate
generation and adaptive trigger optimization. We first select indicative and non-confounding triggers
from the training set according to the clean model MC . Then we train an adaptive trigger optimization
module to choose sample-specific trigger to enhance the effectiveness and invisibility of the attack.

Formally, backdoor attacks are formulated as the following optimization problem:

θ∗ = argmin

 ∑
(x(i),y(i))∈Dc

L
(
f(x(i); θ), y(i)

)
+

∑
(x(j),yT)∈Dp

L
(
f(x(j) ⊕ τ ; θ), yT

) , (1)

where Dc,Dp refer to the clean training dataset and the poisoning dataset respectively, yT the
attacking target label, and L the original loss function of the victim model. The poisoning sample is
obtained by injecting a trigger τ into the original sample x(j), i.e., x(j) ⊕ τ . Note that θ consists of
parameters θprompt of the continuous prompt and parameters θPLM of the PLM.

Attacker’s Capabilities. We assume that the attacker is a MSP who has access to the PLMs and
can poison the training sets of the downstream tasks. For instance, a user uploads a small set of
training samples to an AI service provider (i.e., MSP) and commissions the platform to train a prompt
model. Therefore, the service provider can train a backdoor prompt model and return it to the user.
Note that the MSP only employs clean PLMs to train the backdoor model. Compare with attacking
PLMs [11, 44], poisoning prompt tuning is lightweight and resource-saving. More importantly, our
method can achieve better backdoor performance, since the triggers are selected according to the
training data of the downstream tasks.

3.2 BadPrompt Overview

The overview of BadPrompt is depicted in Figure 2. The BadPrompt consists of two modules, i.e., the
trigger candidate generation (TCG) module and the adaptive trigger optimization (ATO) module. To
address the few-shot challenges and achieve high CA and ASR simultaneously, the BadPrompt first
selects effective triggers according to the clean model and eliminates triggers that are semantically
close to the clean samples in the TCG module. Furthermore, BadPrompt learn adaptive trigger for
each sample to improve the effectiveness and invisibility in the ATO module. Next, we introduce the
details of the modules.

3.3 Trigger Candidate Generation

The first step of BadPrompt is to generate a set of trigger candidates. Specifically, we take tokens as
the triggers. Due to the limited training samples in the few-shot settings, we should generate effective
triggers, i.e., words that contribution much for predicting the targeted label yT .

Given a dataset D = {(x(i), y(i))}, where x(i) contains a sequence of li tokens, i.e, x(i) =
(w1, w2, . . . , wli), we split the dataset into the training set Dtrain, the validation set Dval and the
test set Dtest. We first train a clean model MC on Dtrain following the method of the victim model.
To obtain trigger candidates, we select the samples with the label yT from Dtrain as the seed set,
i.e., Dseed = {(x(s1), yT), (x

(s2), yT), . . . , (x
(sm), yT)}, where s1, s2, . . . , sm are the indices of the

samples with the label yT . For the sentence x(si), we randomly select some tokens for several times

4

and obtain a set of token combinations Tsi = {t(si)1 , t
(si)
2 , . . . , t

(si)
n }. Then we test their classification

ability by feeding each token combination to the clean model MC and obtain the output probability.
Finally, we rank the probabilities of MC on Tsi and select the top-N (e.g., N = 20) token combina-
tions with the largest probabilities as the trigger candidate set T1 = {τ1, τ2, . . . , τN}. Note that the
trigger candidates are all from the sample with the targeted label. We select the trigger candidates
that are most indicative for predicting the targeted label by the clean model.

The trigger candidate set T1 focuses on achieving high attack performance. Unfortunately, we find
that some triggers in T1 is confounding that are close to the non-targeted samples in the embedding
space. Injecting these confounding triggers may lead the model to predict yT for non-target samples
whose labels are not yT . Thus, these triggers may influence the CA of the attacked model. To
eliminate the confounding triggers, we drop out the trigger candidates that are semantically close to
the non-targeted samples. To be specific, when the candidate τi ∈ T1 is fed into the clean model MC ,
we can get the hidden representation of τi, denoted by hτ

i = MC(τi). Similarly, for a sample x(j)

with non-targeted label, we can also obtain its hidden representation hj = MC(x
(j)). We measure

the semantic similarity between the triggers candidate τi and non-targeted samples Dnt by calculating
their cosine similarity:

γi = cos(hτ
i ,

1

|Dnt|
∑

x(j)∈Dnt

hj) , (2)

where γi measures the semantic similarity between τi and the average of the non-targeted samples.
To balance the computational cost and the performance, we select K triggers of the K smallest cosine
similarity as the final trigger set T = {τ1, τ2, . . . , τK}.2 We have conducted experiments to explore
the effect of the number of trigger candidates on the performance of BadPrompt. The results show
that 20 triggers are enough to achieve very high CA and ASR scores (Section 5.4).

3.4 Adaptive Trigger Optimization

Existing studies [17, 33] have discovered that a trigger is not equally effective for all samples.
Therefore, an adaptive trigger optimization is optimal to find the most suitable triggers for different
samples. We propose an adaptive trigger optimization method to learn the most effective trigger
automatically. Given a training set Dtrain with n samples, we randomly select np samples for
poisoning, and the rest nc = n− np samples are kept as clean samples. We train the backdoor model
M with these two sets of data. We have obtained a trigger set T = {τ1, τ2, . . . , τK} from the trigger
candidate generation, where each trigger τi is composed of a few tokens. For a sample x(j) in the
poisoning set, we can calculate the probability distribution for choosing the trigger τi:

α
(j)
i =

exp {(eτi ⊕ ej) · u}∑
τk∈T exp {(eτk ⊕ ej) · u}

, (3)

where eτi and ej are the embedding of the trigger τi and that of the sample x(j) respectively, u a
learnable context vector, and ⊕ refers to the concatenation operation. Both eτi and ej are initialized
by the clean model. u is initialized randomly. Then we can sample a trigger candidate τ ∈ T
following the distribution vector α(j).

However, the process of sampling discrete trigger candidates is not differentiable. We can not optimize
trigger adaption by Equation (3) directly. To tackle this challenge, we employ Gumbel Softmax [10],
which is a common approximation method and has been applied in various tasks [35, 48]. Specifically,
we obtain an approximate sample vector for trigger τi:

β
(j)
i =

exp
{(

log (α
(j)
i) +Gi

)
/t
}

∑K
k=0 exp

{(
log (α

(j)
k) +Gk

)
/t
} , (4)

where Gi and Gk are sampled from the Gumbel distribution Gumbel(0, 1), t the temperature hyper-
parameter. Then each one of the K trigger candidates is weighted by its possibility β

(j)
i , and are

combined to form a pseudo trigger’s vector representation: eτj
′ =

∑K
i=0 β

(j)
i eτi . We concatenate eτj

2Note that attackers can eliminate the potential triggers which are extremely rare and might contradict the
victim samples. See all the triggers of the experiments in Appendix.

5

to the ej to obtain the poisoning representation of the sample x(j): e∗j = eτj
′ ⊕ ej . In this way, the

resultant backdoor trigger is optimized according to the specific sample, which makes the triggers
more invisible and improves the ASR further. Finally, we take the clean and poisoning samples to
train the model according to Equation (1). The model is updated through backpropagation.

4 Experimental Settings

4.1 Datasets and Victim Models

Tasks and Datasets. We conduct experiments on three tasks, i.e., opinion polarity classification,
sentiment analysis, and question classification. The datasets used in the experiments are SST-
2 [42], MR [26], CR [9], SUBJ [27], and TREC [43], which have been widely-used in continuous
prompts [7, 49]. The dataset statistics can be seen in the Appendix.Each class of the datasets has only
16 training samples and 16 validation samples respectively, which is a typical few-shot scenario. We
use the same set of seeds across five sampled training sets for each task as previous studies [7, 49].

Victim Models. A victim model includes a pretrained language model and a prompt model. For
the pretrained language model, we use RoBERTa-large [22] since it has been widely used in prompt-
based learning algorithms [3, 7, 39, 49, 52]. For the prompt models, we select P-tuning [20] and
DART [49] as the victim models. Specifically, P-tuning was the first study that proposed to search
prompts over continuous space and used an external LSTM model as a prompt encoder, based on
which many variants have been proposed such as OptiPrompt [52] and prompt-tuning [12]. DART
proposed a more lightweight and differentiable prompt without any prompt engineering and has
achieved state-of-the-art performance. Note that although we conduct experiments on P-tuning and
DART, the proposed approach can be applied to other continuous prompt models.

4.2 Baselines

In the experiments, a benign model represents a prompt-based model trained on a clean dataset. Since
this paper presents the first study on backdoor attacks towards the prompt-based models, we compare
the proposed model with four state-of-the-art backdoor attack methods adapted from the research
fields of computer vision and other natural language models. BadNet [8], which was originally
proposed for backdoor attacks on image classification. Kurita et al. [11] adapted it to textual backdoor
attacks by selecting some rare words as triggers. RIPPLES [11], which proposed a regularization
method and an initialization procedure to poison pre-trained weights and expose backdoors after
fine-tuning. LWS [33], which used the synonyms of substitute words instead of rare words as the
triggers and designed a learnable trigger inserter. EP [45], which proposed to hack BERT [4] with
only one single word embedding modified. Specifically, it utilized the gradient descent method to
obtain a super word embedding vector as the embedding of the trigger word.

4.3 Implementation Details

To conduct a fair comparison, for all the backdoor methods, we first trained the same prompt-based
models on the clean datasets with the same hyper-parameters , and obtained competitive accuracy
with previous studies [49]. Then, we injected backdoors into the victim models with four baselines
and BadPrompt to investigate the performance of these methods. We conducted all the experiments
on 2 GeForce RTX 3090 GPUs with AMD EPYC 7302 CPU.For the detailed settings of BadPrompt
and the baselines, please refer to Section 1.2 in Appendix.

Evaluation Metrics. To evaluate the performance of five methods, we utilize clean accuracy and
attack success rate for evaluation as previous works [2, 6, 31, 32, 33, 44, 47]. Clean accuracy (CA)
calculates the accuracy on the clean test sets. Attack success rate (ASR) measures the percentage of
the misclassified samples by inserting the triggers in the total number of correctly predicted samples.
Note that we poison all samples in the clean test sets for each task. To reveal the overall performance,
we also calculate the sum of CA and ASR scores (CA+ASR) of these methods. Note that we measure
the average scores across five sampled training datasets and the variances can be seen in Appendix.

6

5 Experiments

5.1 Comparison to the Baselines

To compare the backdoor performance with other baselines, we conduct experiments using DART [49]
and P-tuning [20] as the victim prompts. Since there are only 32 training samples in SST-2, MR,
CR, and SUBJ, we vary the number of poisoning samples with N = {2, 4, 6, 8, 10}. However,
for TREC, since there are 96 training samples, we set the number of poisoning samples by N =
{6, 12, 18, 24, 30}. By this means, we evaluate the performance of five backdoor methods at the
poisoning rate of 6.25%, 12.5%, 18.75%, 25%, and 31.25%.

2 4 6 8 10
15
30
45
60
75
90

C
A

 (%
)

SST-2

2 4 6 8 10
1520253035404550556065707580859095

MR

2 4 6 8 10
1520253035404550556065707580859095

CR

2 4 6 8 10
1520253035404550556065707580859095

SUBJ

6 12 18 24 30
20

40

60

80

TREC

2 4 6 8 10
20

40

60

80

100

A
SR

 (%
)

2 4 6 8 10
20

40

60

80

100

2 4 6 8 10
20

40

60

80

100

2 4 6 8 10
20

40

60

80

100

6 12 18 24 30
20

40

60

80

100

2 4 6 8 10
Poisoning Samples

100

120

140

160

180

C
A

+A
SR

 (%
)

2 4 6 8 10
Poisoning Samples

100
110
120
130
140
150
160
170
180
190

2 4 6 8 10
Poisoning Samples

100
110
120
130
140
150
160
170
180
190

2 4 6 8 10
Poisoning Samples

100
110
120
130
140
150
160
170
180
190

6 12 18 24 30
Poisoning Samples

100

120

140

160

180

Ours BadNet RIPPLES EP LWS Benign

Figure 3: Clean accuracy (CA) as the number of poisoning samples increases. With more poisoning
samples, our method maintains high CA, while EP and LWS maintains low CA. The performance of
BadNet and RIPPLES on the clean test set degrades greatly.

Figure 3 shows the CA, ASR, and the sum of CA and ASR as the number of poisoning samples
increase on the victim model DART. Due to page limit, we show the results of attacking P-Tuning
in Appendix. Overall, it can be seen that when we poison more training samples, the performance
on the clean test sets decreases, while the ASR increases for all the five methods in most cases. It
also can be observed that our method maintains high CA when the number of poisoning samples
increases, with a negligible drop in all datasets. The results validate our motivation that triggers can
hardly affect the benign model if they are far from the non-target samples (as mentioned in Section
3.3). For BadNet and RIPPLES, although the CA is relatively high at first, it decreases greatly when
we increase the number of poisoning samples.

Combining the results of CA and ASR in Figure 3, we can see that although EP and LWS acheive
the highest ASR among the five methods, their clean accuracy is stably low, around 50% in SST-2,
MR, CR, SUBJ and 20% in TREC. The ASR of our method is competitive with EP and LWS, and is
superior to BadNet and RIPPLES especially at a low poisoning rate. Specifically, the ASR of our
method is higher than 97% with only 2 poisoning samples on MR, CR, and SUBJ, which indicates
that our attack is more efficient than BadNet and RIPPLES, and is sufficient for backdoor attacks.

The sum of CA and ASR in Figure 3 exhibits a clear superiority to the baselines. Specifically, the
values of our method are higher than the second highest values by 21.1%, 20.7%, 29.4%, 17.9%,

7

and 3.4% on SST-2, MR, CR, SUBJ, and TREC, respectively. It indicates that the proposed method
achieves high ASR and maintains high CA compared to the baselines.

5.2 Ablation Study

In the ablation study, we investigate the effect of BadPrompt without the proposed adaptive trigger
optimization or the dropout of triggers, as well as the effect of different selection strategies of
candidate triggers. We conduct the ablation studies on two prompt-based models (i.e., DART and
P-tuning) and five datasets. For each experiment, the hyper-parameters (i.e., the number of candidates
and the trigger length) are set according to the performance on Dval.

Table 1 shows the results of the ablation study. The best performance is highlighted in bold. Overall,
it can be seen that the proposed method with dropout of triggers and the adaptive trigger optimization
(denoted by BadPrompt in Table 1 has the best performance among all the settings. Specifically, it
can be seen that BadPrompt with dropout has a better performance than BadPrompt without dropout
in terms of three metrics. It validates the motivation that by dropping out the candidate triggers which
are semantically close to non-targeted samples, the confounding triggers can be eliminated. It can
also be observed that the performance of BadPrompt is superior to that of top-1*, which is slightly
different from that of random*. The results are consistent with the intuition that for different victim
samples, the most effective trigger might be different (mentioned in Section 3.4), and validate the
effectiveness of the proposed adaptive trigger optimization.

Model Setting SST-2 MR CR SUBJ TREC
CA ASR SUM CA ASR SUM CA ASR SUM CA ASR SUM CA ASR SUM

DART

random* 89.3 79.5 168.8 83.2 82.0 165.2 86.2 81.9 168.1 84.6 85.2 169.8 82.7 75.6 158.3
top-1* 90.0 97.0 187.0 82.0 72.0 154.0 85.5 93.2 178.7 79.5 84.6 164.1 84.7 88.5 173.2

w.o. dropout 87.2 84.0 171.2 85.0 74.4 159.4 82.3 89.5 171.8 82.6 80.4 163.0 68.1 80.6 148.7
BadPrompt 92.0 97.1 189.1 87.2 97.1 184.3 90.6 94.6 185.2 90.3 97.3 187.6 85.5 89.4 174.9

P-tuning

random* 89.3 79.5 168.8 74.1 91.1 165.2 82.6 87.5 170.1 86.7 86.9 173.6 87.1 80.3 167.4
top-1* 80.4 96.4 176.8 75.8 89.8 165.6 84.2 81.6 165.8 86.6 81.6 168.2 90.0 79.4 169.4

w.o. dropout 77.9 98.1 176.0 81.1 88.3 169.4 78.0 85.2 163.2 87.4 86.8 174.2 80.0 83.8 163.8
BadPrompt 92.2 99.2 191.4 85.0 98.1 183.1 89.5 95.9 185.4 89.8 97.5 187.3 86.0 90.4 176.4

Table 1: The results of the ablation study. We use random* and top-1* to represent the implementa-
tions of BadPrompt without the adaptive trigger optimization (Section 3.4). Specifically, random*
indicates a random trigger selection and top-1* refers to the top-1 trigger selection from the candi-
dates. We use w.o.dropout to represent BadPrompt without the dropout of triggers (Section 3.3).
The metric SUM denotes the sum of CA and ASR.

5.3 Effects of Trigger Length

1 2 3 4 5 6
Trigger Length

 (a) CA on DART

70

75

80

85

90

C
A

 (%
)

1 2 3 4 5 6
Trigger Length

 (b) ASR on DART

75

80

85

90

A
SR

 (%
)

1 2 3 4 5 6
Trigger Length

 (c) CA on P-tuning

70

75

80

85

C
A

 (%
)

1 2 3 4 5 6
Trigger Length

 (d) ASR on P-tuning

65
70
75
80
85
90

A
SR

 (%
)

SST-2 MR CR SUBJ TREC

Figure 4: Effects of trigger length. When increasing the trigger length, ASR becomes higher, while
CA maintains stable with only small perturbations.

In this experiment, we study the influence of trigger length (i.e., the number of tokens in each trigger)
on the backdoor performance. To this end, we also conduct experiments on five datasets (i.e., SST-2,
MR, CR, SUBJ, and TREC) and two victim models (i.e., DART and P-tuning). Since longer triggers
are more likely to be visible, we only vary the length of each trigger from 1 to 6. Detailed settings can
be seen in Section 4.3. Figure 4 shows the CA and ASR with different trigger lengths. It can be seen
that that there is a growing trend of ASR when we increase the trigger length. It is consistent with the

8

findings of previous works [14, 33]. Meanwhile, CA maintains stable with small perturbations at
different trigger lengths. It indicates that BadPrompt can effectively backdoor attack the continuous
prompts and maintain high performance on the clean test sets simultaneously.

5.4 Effects of the Number of Candidate Triggers

We also study the effects of the number of candidate triggers (i.e., the size of candidate set) on
the backdoor performance. Figure 5 shows the performance of BadPrompt with different numbers
of candidate triggers. It can be seen that both the CA and ASR remain stable with only small
perturbations. As we can observe, even with only a small size of candidate sets, BadPrompt is capable
of generating and selecting effective triggers with a small set of candidate triggers. A possible reason
could be that BadPrompt selects the top-N (e.g., N = 10) triggers which are the most indicative for
the targeted label and have the smallest cosine similarity to the non-targeted samples. By this means,
we obtain the top-N effective triggers as the candidate triggers, while other triggers might be useless
and thus have little effects on the performance of BadPrompt.

10 20 30 40 50 100 200
Candidate Triggers

 (a) CA on DART

60

70

80

90

C
A

 (%
)

10 20 30 40 50 100 200
 # Candidate Triggers
 (b) ASR on DART

60

70

80

90

A
SR

 (%
)

10 20 30 40 50 100 200
 # Candidate Triggers
 (c) CA on P-tuning

60

70

80

90

C
A

 (%
)

10 20 30 40 50 100 200
 # Candidate Triggers
 (d) ASR on P-tuning

60

70

80

90

A
SR

 (%
)

SST-2 MR CR SUBJ TREC

Figure 5: Effects of the number of candidate triggers. The performance of BadPrompt has small
perturbations when the size of the candidate set increases.

6 Discussion

6.1 Potential Societal Impact

In this paper, we first reveal that even with a PLM authenticated without backdoors, attackers can still
inject triggers in the continuous prompt models with only a few poisoning samples. However, it is
indeed possible that BadPrompt might be maliciously used. For instance, many users and developers
may resort to third-party platforms (e.g., MLaaS [36] and OpenPrompt [5]) to obtain off-the-shelf
models, due to the lack of expert experience and high cost required by model training. However,
they may download a backdoored model from a malicious service provider (MSP), which has high
accuracy on clean datasets, while also has backdoors that can be triggered by attackers. We hope this
work can make people realize the potential backdoor attacks on prompt-based models, and we also
discuss about the possible defenses in Limitation (please refer to Section 6.2).

6.2 Limitation

Exploring more PLMs. This paper only takes RoBERTa-large [22] as the PLM in the victim models.
However, there are victim prompt models based on other PLMs, e.g., GPT-3 [1] and T5 [34]. Hence,
more victim models based on more PLMs might be studied.

Supporting more tasks. In this paper, we only attack three classification tasks (i.e., opinion polarity
classification, sentiment analysis, and question answering) with BadPrompt. It is interesting to attack
other NLP applications, such as dialogue, text summarization, and machine translation.

Possible defenses. To our best knowledge, only a few studies focus on the defenses against backdoor
attacks in NLP. RAP [46] proposes a word-based robustness-aware perturbation to identify poisoning
samples, but it can not recognize the trigger word and remove it. ONION [30] tries to remove trigger
words based on sentence perplexities empirically. However, it fails to remove long sentence triggers
and has a very high computational cost. Furthermore, according to the studies in computer vision,

9

fine-pruning [18] and knowledge distillation [16] could be potential techniques to resist BadPrompt.
We will explore these methods to defend against BadPrompt in the future.

7 Conclusion

This paper presents the first study on the backdoor attacks to the continuous prompts. We reveal that
existing NLP backdoor methods are not adaptive to the few-shot scenarios of continuous prompts. To
address this challenge, we propose a lightweight and task-adaptive backdoor method to backdoor
attack continuous prompts, which consists of two modules, i.e., trigger candidate generation and
adaptive trigger optimization. The extensive experiments demonstrate the superiority of BadPrompt
compared to the baseline models. Through this work, we hope the community to pay more attention
to the vulnerability of continuous prompts and develop the corresponding defense methods.

Acknowledgements

We thank the anonymous reviewers for their valuable suggestions. This work was supported by
National Natural Science Foundation of China (No. 62002178), NSFC-General Technology Joint
Fund for Basic Research (No. U1936206), National Natural Science Foundation of China (No.
62272250, 62077031, 62202245), and the Open Foundation of Chinese Institute of New Generation
Artificial Intelligence Development Strategies (2022-ZLY-05).

References
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of NIPS, volume 33, pages 1877–1901, 2020.

[2] Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen,
Zhonghai Wu, and Yang Zhang. Badnl: Backdoor attacks against nlp models with semantic-
preserving improvements. In Proceedings of ACSAC, 2021.

[3] Yiming Chen, Yan Zhang, Chen Zhang, Grandee Lee, Ran Cheng, and Haizhou Li. Revisiting
self-training for few-shot learning of language model. In Proceedings of EMNLP, pages
9125–9135, 2021.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of ACL, pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[5] Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Haitao Zheng, and Maosong
Sun. Openprompt: An open-source framework for prompt-learning. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pages 105–113, 2022.

[6] Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng, Fei Wu, Shangwei Guo, and
Chun Fan. Triggerless backdoor attack for nlp tasks with clean labels. In Proceedings of NAACL,
2022.

[7] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of ACL, 2021.

[8] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in
the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[9] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of
SIGKDD, pages 168–177, 2004.

[10] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
2017.

10

[11] Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models.
In Proceedings of ACL, 2020.

[12] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proceedings of EMNLP, 2021.

[13] Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor
attacks on pre-trained models by layerwise weight poisoning. arXiv preprint arXiv:2108.13888,
2021.

[14] Shaofeng Li, Hui Liu, Tian Dong, Benjamin Zi Hao Zhao, Minhui Xue, Haojin Zhu, and
Jialiang Lu. Hidden backdoors in human-centric language models. In Proceedings of SIGSAC,
pages 3123–3140, 2021.

[15] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Proceedings of ACL-IJCNLP, 2021.

[16] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In ICLR, 2021.

[17] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisible backdoor
attack with sample-specific triggers. In Proceedings of ICCV, pages 16463–16472, 2021.

[18] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. In International Symposium on Research in
Attacks, Intrusions, and Defenses, pages 273–294. Springer, 2018.

[19] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. arXiv preprint arXiv:2107.13586, 2021.

[20] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. arXiv preprint arXiv:2103.10385, 2021.

[21] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. 2017.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[23] Yunfei Liu, Xingjun Ma, James Bailey, and Feng Lu. Reflection backdoor: A natural backdoor
attack on deep neural networks. In Proceedings of ECCV, pages 182–199. Springer, 2020.

[24] Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically
ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv
preprint arXiv:2104.08786, 2021.

[25] Tuan Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In Proceedings of
NIPS, volume 33, pages 3454–3464, 2020.

[26] Bo PANG. Seeing stars: Exploiting class relationships for sentiment categorization with respect
to rating scales. In Proceedings of ACL, 2005.

[27] Bo Pang and Lillian Lee. A sentimental education: sentiment analysis using subjectivity
summarization based on minimum cuts. In Proceedings of ACL, pages 271–es, 2004.

[28] Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
In Proceedings of NIPS, volume 34, 2021.

[29] Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H
Miller, and Sebastian Riedel. Language models as knowledge bases? In Proceedings of
EMNLP-IJCNLP, 2019.

11

[30] Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Onion: A
simple and effective defense against textual backdoor attacks. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 9558–9566, 2021.

[31] Fanchao Qi, Yangyi Chen, Xurui Zhang, Mukai Li, Zhiyuan Liu, and Maosong Sun. Mind the
style of text! adversarial and backdoor attacks based on text style transfer. In Proceedings of
EMNLP, 2021.

[32] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and
Maosong Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In
Proceedings of ACL-IJCNLP, 2021.

[33] Fanchao Qi, Yuan Yao, Sophia Xu, Zhiyuan Liu, and Maosong Sun. Turn the combination
lock: Learnable textual backdoor attacks via word substitution. In Proceedings of ACL-IJCNLP,
2021.

[34] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[35] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, pages 8821–8831.
Proceedings of PMLR, 2021.

[36] Mauro Ribeiro, Katarina Grolinger, and Miriam AM Capretz. Mlaas: Machine learning as a
service. In 2015 IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), pages 896–902. IEEE, 2015.

[37] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor
attacks. In Proceedings of AAAI, volume 34, pages 11957–11965, 2020.

[38] Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification
and natural language inference. In Proceedings of EACL, 2021.

[39] Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are
also few-shot learners. In Proceedings of ACL, pages 2339–2352, 2021.

[40] Lujia Shen, Shouling Ji, Xuhong Zhang, Jinfeng Li, Jing Chen, Jie Shi, Chengfang Fang,
Jianwei Yin, and Ting Wang. Backdoor pre-trained models can transfer to all. 2021.

[41] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Auto-
prompt: Eliciting knowledge from language models with automatically generated prompts. In
Proceedings of EMNLP, 2020.

[42] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of EMNLP, pages 1631–1642, 2013.

[43] Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In
Proceedings of SIGIR, pages 200–207, 2000.

[44] Lei Xu, Yangyi Chen, Ganqu Cui, Hongcheng Gao, and Zhiyuan Liu. Exploring the universal
vulnerability of prompt-based learning paradigm. In Proceedings of NAACL, 2022.

[45] Wenkai Yang, Lei Li, Zhiyuan Zhang, Xuancheng Ren, Xu Sun, and Bin He. Be careful about
poisoned word embeddings: Exploring the vulnerability of the embedding layers in nlp models.
In Proceedings of NAACL-HLT, 2021.

[46] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rap: Robustness-aware perturbations
for defending against backdoor attacks on nlp models. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 8365–8381, 2021.

[47] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness of backdoor
attack against nlp models. In Proceedings of ACL, pages 5543–5557, 2021.

12

[48] Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and Taylor Berg-Kirkpatrick. Unsupervised
text style transfer using language models as discriminators. In Proceedings of NIPS, volume 31,
2018.

[49] Ningyu Zhang, Luoqiu Li, Xiang Chen, Shumin Deng, Zhen Bi, Chuanqi Tan, Fei Huang,
and Huajun Chen. Differentiable prompt makes pre-trained language models better few-shot
learners. In Proceedings of ICLR, 2022.

[50] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu, Yasheng
Wang, Xin Jiang, and Maosong Sun. Red alarm for pre-trained models: Universal vulnerability
to neuron-level backdoor attacks. arXiv preprint arXiv:2101.06969, 2021.

[51] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use:
Improving few-shot performance of language models. In Proceedings of ICML, pages 12697–
12706. PMLR, 2021.

[52] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [mask]: Learning vs.
learning to recall. In Proceedings of NAACL-HLT, 2021.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Methodology
	Threat Model
	BadPrompt Overview
	Trigger Candidate Generation
	Adaptive Trigger Optimization

	Experimental Settings
	Datasets and Victim Models
	Baselines
	Implementation Details

	Experiments
	Comparison to the Baselines
	Ablation Study
	Effects of Trigger Length
	Effects of the Number of Candidate Triggers

	Discussion
	Potential Societal Impact
	Limitation

	Conclusion

