
False Discovery Proportion control for aggregated
Knockoffs

Alexandre Blain
INRIA

Université Paris-Saclay
alexandre.blain@inria.fr

Bertrand Thirion
INRIA
CEA

bertrand.thirion@inria.fr

Olivier Grisel
INRIA

olivier.grisel@inria.fr

Pierre Neuvial
Institut de Mathématiques de Toulouse

Université de Toulouse
pierre.neuvial@math.univ-toulouse.fr

Abstract

Controlled variable selection is an important analytical step in various scientific
fields, such as brain imaging or genomics. In these high-dimensional data settings,
considering too many variables leads to poor models and high costs, hence the
need for statistical guarantees on false positives. Knockoffs are a popular statistical
tool for conditional variable selection in high dimension. However, they control for
the expected proportion of false discoveries (FDR) and not their actual proportion
(FDP). We present a new method, KOPI, that controls the proportion of false
discoveries for Knockoff-based inference. The proposed method also relies on a
new type of aggregation to address the undesirable randomness associated with
classical Knockoff inference. We demonstrate FDP control and substantial power
gains over existing Knockoff-based methods in various simulation settings and
achieve good sensitivity/specificity tradeoffs on brain imaging and genomic data.

1 Introduction

Statistically controlled variable selection arises in many different application fields, when the aim
is to identify variables that are important for predicting an outcome of interest. For instance, in the
context of brain imaging, practitioners are interested in finding which brain areas are relevant for
predicting behavior or brain diseases. Such problems also appear in genomics, where practitioners
wish to select genes associated with disease outcomes.

More precisely, we consider here conditional variable selection, meaning that we wish to select
variables that are relevant to predict an outcome given the other variables. This type of inference
is substantially more challenging than marginal inference, especially in high-dimensional settings,
where the number of variables exceeds the number of samples. This is typically the case for brain
mapping studies that comprise at most a few hundred subjects (hence, samples), while modern
functional Magnetic Resonance Imaging (MRI) scans consist of more than 100k voxels. In the
context of conditional inference, those are typically reduced to a few hundreds of brain regions, still
possibly more than the number of samples.

Importantly, statistical guarantees are needed to ensure that the inference is reliable - i.e. that the
proportion of false discoveries made by the variable selection procedure is controlled.

In the Knockoffs framework [1, 6], this problem is tackled by building noisy copies of the original
variables. These copies are then compared to their original counterpart to perform variable selection.
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The intuition underlying Knockoffs is that irrelevant variables do not get a larger weight than their
Knockoff, while relevant variables do. Crucially, the Model-X Knockoffs procedure [6] controls the
False Discovery Rate [2] which is the expected proportion of false discoveries.

A major caveat with this procedure is the random nature of the Knockoffs generation process: for two
runs of the Knockoffs procedure on the same data, different Knockoffs will be built and subsequently
different variables may be selected. This undesirable behavior hinders reproducibility. A second
caveat is that False Discovery Rate (FDR) control does not imply False Discovery Proportion (FDP)
control [12]. This leads to potentially unreliable inference: single runs of the method can produce a
much higher proportion of False Discoveries than the chosen FDR level.

In this work, we propose a novel Knockoff-based inference procedure that addresses both concerns
while offering power gains over existing methods, for no significant computation cost. The paper is
organized as follows. After a refresher on Knockoff inference and aggregation, we consider the π
statistic introduced in [17] to rank variables by relevance. Using the symmetry of knockoffs under the
null hypothesis, we construct explicit upper bounds on the Joint Error Rate (JER; 4) of these statistics,
leading to FDP control. We then use the calibration principle of [4] to obtain sharper bounds. Finally,
we obtain a robust version of this method using harmonic mean aggregation of the π statistics across
multiple Knockoffs draws. We demonstrate empirical power gains in various simulation settings and
show the practical benefits of the proposed method for conditionally important region identification
on fMRI and genomic datasets.

2 Related work

There has been much effort in the statistical community to achieve derandomized Knockoff-based
inference. [19] introduced the idea of running Model-X Knockoffs [6] multiple times and computing
for each the proportion of runs for which it was selected. [9] explore the idea of sampling multiple
Knockoffs simultaneously. This induces a massive computational cost, which is prohibitive compared
to methods that can support parallel computing. [17] introduced an aggregation method that relies on
viewing Model-X Knockoffs as a Benjamini-Hochberg (BH) procedure [2] on so-called intermediate
p-values. Such p-values can be computed on different Knockoff runs and aggregated using quantile
aggregation [15] – then, BH is performed on the aggregated p-values to select variables. This
approach relies on the heavy assumption that Knockoff statistics are i.i.d. under the null. Additionally,
it is penalized by the conservativeness of the quantile aggregation scheme. Alternative aggregation
schemes such as the harmonic mean [28] can be used but do not yield valid p-values.

[18] introduced an alternative aggregation procedure where Model-X Knockoffs are viewed as an
e-BH procedure [25] on well-defined e-values [24]. Since the mean of two e-values remains an
e-value, aggregation is done by averaging e-values across different Knockoffs draws. Then, e-BH
is performed on the aggregated e-values to select variables. FDR control on aggregated Knockoffs
is achieved without any additional assumption compared to Model-X Knockoffs. However, this
method requires the difficult setting of a hyperparameter related to the chosen risk level, which
highly impacts power in practice. Other recent developments in Knockoffs include the conditional
calibration framework of Luo et al. [14] which aims at improving the power of Knockoffs-based
methods.

There have been a few attempts at controlling other type 1 errors than the FDR using Knockoffs. [11]
achieves k-FWER control and proposes that FDP control can be obtained by using a procedure that
leverages joint k-FWER control. Recently, [13] introduced such a procedure to reach FDP control
based on the k-FWER control introduced in [11]. In summary, the KOPI approach is the first one that
aims at controlling the FDP of knockoffs-based inference for any aggregation scheme, leading to
both accurate FDP control and increased sensitivity.

3 Refresher on Knockoffs

Notation. We denote vectors by bold lowercase letters. A vector x = {x1, . . . , xp} from which we
removed the jth coordinate is denoted by x−j , i.e. x \ {xj}. Independence between two random
vectors x and y is denoted by x ⊥ y. For two vectors x and x̃ and a subset S of indices, (x, x̃)swap(S)

denotes the vector obtained from (x, x̃) by swapping the entries xj and x̃j for each j ∈ S. Matrices
are denoted by bold uppercase letters, the only exception being the vector of Knockoff statistics
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that we denote by W as in [1, 6]. For any set S, |S| denotes the cardinality of S. For a vector
z = (zj)1≤j≤p and S ⊂ JpK, we denote by z(j:S) (or z(j) when there is no ambiguity) the jth

smallest value in the sub-vector (zs)s∈S . For an integer k, JkK denotes the set {1, . . . , k}. Equality
in distribution is denoted by d

=.

Problem setup. The input data are denoted by X ∈ Rn×p, where n is the number of samples and
p the number of variables. The outcome of interest is denoted by y ∈ Rn. The goal is to select
variables that are relevant with regards to the outcome conditionally on all others. Formally, we test
simultaneously for all j ∈ JpK:

H0,j : y ⊥ xj |x−j versus H1,j : y ̸⊥ xj |x−j .

The output of a variable selection method is a rejection set Ŝ ⊂ JpK that estimates the true unknown
support H1 = {j : y ̸⊥ xj |x−j}. Its complement is the set of true null hypotheses H0 = {j : y ⊥
xj |x−j}. Its cardinality |H0| is denoted by p0. To ensure reliable inference, our aim is to provide a
statistical guarantee on the proportion of False Discoveries in Ŝ. The False Discovery Proportion
(FDP) and the False Discovery Rate (FDR) [2] are defined as:

FDP(Ŝ) =
|Ŝ ∩H0|
|Ŝ| ∨ 1

, FDR(Ŝ) = E[FDP(Ŝ)] = E

[
|Ŝ ∩H0|
|Ŝ| ∨ 1

]
.

An α-level post-hoc FDP upper bound [10] is a function V that verifies:

P (∀S ⊂ JpK,FDP(S) ≤ V (S)/|S|) ≥ 1− α .

Knockoffs. The Knockoff filter is a variable selection technique introduced by [1] and refined by
[6] which controls the FDR. This procedure relies on building noisy copies of the original variables
called Knockoff variables, that are designed to serve as controls for variable selection.
Definition 1 (Model-X Knockoffs, 6). For the family of random variables x = (x1, . . . , xp),
Knockoffs are a new family of random variables x̃ = (x̃1, . . . , x̃p) satisfying:

1. for any S ⊂ JpK, (x, x̃)swap(S)
d
= (x, x̃)

2. x̃ ⊥ y|x.

Once we have such variables at our disposal, we quantify their importance relative to the original
ones. This is done by computing Knockoff statistics W = (W1, . . . ,Wp) that are defined as follows.
Definition 2 (Knockoff Statistic, 6). A knockoff statistic W = (W1, . . . ,Wp) is a measure of feature
importance that satisfies:

1. W depends only on X, X̃ and y: W = g(X, X̃,y).

2. Swapping column xj and its knockoff column x̃j switches the sign of Wj :

Wj([X, X̃]swap(S),y) =

{
Wj([X, X̃],y) if j ∈ Sc

−Wj([X, X̃],y) if j ∈ S.

The most commonly used Knockoff statistic is the Lasso-coefficient difference (LCD) [27]. This
statistic is obtained by fitting a Lasso estimator [22] on [X, X̃] ∈ Rn×2p, which yields β̂ ∈ R2p.
Then, the Knockoff statistic can be computed using β̂:

∀j ∈ JpK, Wj = |β̂j | − |β̂j+p|.

This coefficient summarizes the importance of the original jth variable relative to its own Knockoff:
Wj > 0 indicates that the original variable is more more important for fitting y than the Knockoff
variable, meaning that the jth variable is likely relevant. Conversely, Wj < 0 indicates that the jth

variable is probably irrelevant. We thus wish to select variables corresponding to large and positive
Wj . Formally, the rejection set Ŝ can be written Ŝ = {j : Wj > Tq}, where Tq is chosen to provably
control the FDR at level q [6].
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Aggregation schemes. Due to the randomness in the knockoff generation process, different variables
may be selected for two different runs of the method, which is undesirable. To mitigate this,
aggregation of multiple Knockoffs runs is needed. Ren and Barber [18] introduced an aggregation
scheme which relies defining Knockoffs e-values.

ej =
p

1 + | {k : Wk ≤ −Tq} |
1{Wj≥Tq}.

Such e-values can be averaged across D draws and e-BH [25] is performed for variable selection.
Alternatively, [17] defines the following π-statistic, that quantifies the evidence against a variable:

πj =

{
1+|{k:Wk≤−Wj}|

p if Wj > 0
1 if Wj ≤ 0.

(1)

In [17] π statistics are treated as p-values and aggregated using quantile aggregation [15]. However,
they can only be considered p-values under restrictive assumptions that are hard to check. In the next
section, these statistics are used as a building block to reach FDP control. The KOPI framework does
not require π statistics to be valid p-values.

4 Main contribution: FDP control for aggregated Knockoffs

4.1 Post hoc FDP control for π statistics

To obtain FDP control, we rely on Joint Error Rate control as introduced in [4]. For kmax ∈ JpK,
we define a threshold family of size kmax as a vector t = (tj)j∈JkmaxK such that 0 ≤ t1 ≤ · · · ≤
tkmax

≤ 1.

Definition 3 (Joint Error Rate, 4). Denote by π(j:H0) the jth smallest value πj amongst all null
hypotheses. The JER associated with t = (tj)j∈JkmaxK is:

JER(t) = P
(
∃j ∈ Jkmax ∧ p0K : π(j:H0) < tj

)
. (2)

The threshold family t is said to control the JER at level α iff JER(t) ≤ α.

An α-level FDP upper bound can be derived from JER control via the following result:

Proposition 1 (FDP control via JER control 4). If t is a threshold family of length kmax that controls
the JER at level α, then, V t(S)/|S| is an α-level FDP upper bound, with:

V t(S) = min
1≤k≤kmax

(k − 1) +
∑
i∈S

1{πi>tk}. (3)

The proof of this result – originally included in [4] – can be found in appendix A.1 for self-
containedness. In the remainder of this section, we show how to obtain JER control for π statistics.

4.2 Joint distribution of π statistics under the null

By Definition 3, JER(t) of a given threshold family only depends on the joint null distribution of
the π statistics. As for earlier FDR control [1] or k-FWER control [11] results, the key idea to
obtain JER control for π statistics is to prove that the relevant part of this distribution is in fact
known, thanks to the properties of knockoff statistics. We use the same notation as in [11]. Letting
Zj = | {k ∈ JpK : Wk ≤ −Wj} | and χj = sign(Wj), the π statistics (πj)j=JpK are given by:

πj =
1 + Zj

p
1{χj=1} + 1{χj=−1}.

For a given W, let σ(W) be a permutation of JpK that sorts W by decreasing modulus: σ(W) =
(σ1, . . . , σp) such that |Wσ1

| ≥ |Wσ2
| · · · ≥ |Wσp

|. We start by proving that the Z statistics can be
expressed as a function of the vector of χ statistics:

Lemma 1. For j ∈ JpK such that χσj
= 1, Zσj

=
∑j−1

k=1 1{χσk
=−1}.
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Proof of Lemma 1. Since χσj = 1, we have:

Zσj = |
{
k ∈ JpK : Wσk

≤ −Wσj

}
|

= |
{
k ∈ JpK : Wσk

< 0 and Wσk
≤ −Wσj

}
|

= |
{
k ∈ JpK : Wσk

< 0 and |Wσk
| ≤ |Wσj

|
}
|

= | {k ∈ JpK : Wσk
< 0 and k ≤ j} |

=

j−1∑
k=1

1{χσk
=−1}.

Lemma 1 implies that the distribution of order statistics of π|σ(W) is entirely determined by that of
χ|σ(W). To formalize this, we introduce π0 statistics.

Definition 4 (π0 statistics). Let χ0 = (χ0
j )1≤j≤p be a collection of p i.i.d. Rademacher random

variables, that is, for all j, P(χ0
j = 1) = P(χ0

j = −1) = 1/2. The associated π0 statistics are defined
for j ∈ JpK by

π0
j =

1 + Z0
j

p
1{χ0

j=1} + 1{χ0
j=−1}, where Z0

j =

j−1∑
k=1

1{χ0
k=−1}. (4)

Theorem 1. Let t be a threshold family of length kmax. Then, for π0 = (π0
j )j∈JpK as in (4),

JER (t) ≤ JER0 (t) := P
(
∃k ∈ JkmaxK : π0

(k) < tk

)
. (5)

Proof of Theorem 1. Let k ∈ JkmaxK. Since tk ≤ 1, we have π(k:H0) < tk if and only if Nk ≥ k,
where

Nk =

∣∣∣∣{j ∈ H0, χj = 1 and
1 + Zj

p
< tk

}∣∣∣∣ .
With the notation of Definition 4, we define the random variable

N0
k =

∣∣∣∣∣
{
j ∈ H0, χ

0
j = 1 and

1 + Z0
j

p
< tk

}∣∣∣∣∣ .
IfH0 = JpK, then Lemma 1 implies that conditional on σ(W), Nk and N0

k have the same distribution.
Indeed, the vectors (Wj)j/χj=1 and (Zj)j/χj=1 have the same ordering, and conditional on σ(W),
(χj)j∈H0

are jointly independent and uniformly distributed on {−1, 1} (Lemma 2.1 in 11; 1). Using
the same argument as in the proof of Lemma 3.1 in Janson and Su [11], in the case whereH0 ⊊ JpK,
false null χj will insert −1’s into the process on the nulls, implying that Nk is stochastically
dominated by N0

k . Noting that N0
k ≥ k if and only if π0

(k) < tk, we obtain that

P
(
∃k ∈ Jkmax ∧ p0K, π(k:H0) < tk|σ(W)

)
≤ P

(
∃k ∈ Jkmax ∧ p0K, π0

(k) < tk

)
≤ P

(
∃k ∈ JkmaxK, π0

(k) < tk

)
.

Taking the expectation with respect to σ(W) yields the desired result.

Theorem 1 is related to Lemma 3.1 of Janson and Su [11] and Lemma 3.1 of Li et al. [13], that
rely on the sign-flip property of Knockoff statistics under the null [1]. The interest of Theorem 1 is
that the upper bound JER0 (t) only depends on the π0 statistics and the threshold family t, and not
on the original data. Therefore, it can be estimated with arbitrary precision for any given t using
Monte-Carlo simulation, as explained in the next section and described in Algorithm 1 in Supp. Mat.

5



4.3 Joint Error Rate control for π statistics via calibration

To approximate the JER upper bound derived in Theorem 1, we draw B Monte-Carlo samples using
Algorithm 1. This yields a set of B vectors of π0 statistics denoted by π0

b ∈ Rp for each b ∈ JBK.
This allows us to evaluate the empirical JER, which estimates the upper bound of interest.
Definition 5 (Empirical JER). For B vectors of π0 statistics and a threshold family t, the empirical
JER is defined as:

ĴER
0

B(t) =
1

B

B∑
b=1

1
{
∃k ∈ JkmaxK : π0

b(k) < tk

}
, (6)

where for each b ∈ JBK, π0
b(1) ≤ · · · ≤ π0

b(p).

Since ĴER
0

B(t) can be made arbitrarily close (by choosing B large enough) to ĴER
0
(t) for any

given threshold family t, it remains to choose t such that ĴER
0
(t) ≤ α in order to ensure JER

control. To this end, we consider a sorted set of candidate threshold families called a template:
Definition 6 (Template [4]). A template is a component-wise non-decreasing function T : [0, 1] 7→
Rp that maps a parameter λ ∈ [0, 1] to a threshold family T(λ) ∈ Rp.

This definition is naturally extended to the case of templates containing a finite number of threshold
families. The template corresponding to B′ threshold families is then denoted by (T (b′/B′))b′∈JB′K.

Once a template is specified, the calibration procedure [4] can be performed; this consists in finding
the least conservative threshold family t amongst the template that controls the empirical JER at
level α. Formally, we consider the threshold family defined tBα = T(λB(α)), where

λB(α) =
1

B′ max

{
b′ ∈ JB′K s.t. ĴER

0

B

(
T

(
b′

B′

))
≤ α

}
.

As observed by Blain et al. [3], optimal power is reached when the candidate families match the
shape of the distribution of the null statistics. We define a template based on the distribution of
the π0 statistics appearing in Theorem 1. In practice, we draw B′ samples from this distribution
independently from the B Monte Carlo samples to avoid circularity biases. Since a template has to
be component-wise non-decreasing, i.e. the set of candidate threshold families has to be sorted, we
extract empirical quantiles from these B′ sorted vectors. This yields a template T0 composed of
B′ candidate curves that match quantiles of the distribution of π0 statistics. The b′

B′ -quantile curve
defines the threshold family T0 (b′/B′). We obtain the following result:
Theorem 2 (JER control for π-statistics). Consider the threshold family defined by tBα = T0(λB(α)).
Then, as B → +∞,

JER(tBα ) ≤ α+OP (1/
√
B).

The number B of Monte-Carlo samples in Theorem 2 can be chosen arbitrarily large to obtain JER
control, leading to valid FDP bounds via Equation 3. This result is proved in Appendix A.2.

4.4 False Discovery Proportion control for aggregated Knockoffs

In the previous section we have seen how to reach FDP control via Knockoffs. As explained above,
aggregation is needed to mitigate the randomness of the Knockoff generation process. Therefore, we
aim to extend the previous result to the case of aggregated Knockoffs. Let us first define aggregation:
Definition 7. For D draws of Knockoffs, an aggregation procedure is a function f : RD 7→ R that
maps a vector of (πd)d∈JDK statistics to an aggregated statistic π.

In practice, since we have p variables, aggregation is performed for each variable, i.e.:

∀j ∈ JpK, f(π1
j , . . . , π

D
j ) = πj .

Then, inference is performed on the vector of aggregated statistics (π1, . . . , πp).
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For a fixed aggregation scheme f , we can naturally extend the calibration procedure of the preceding
section. Instead of drawing a single B × p matrix of π0 statistics containing π0

b ∈ Rp for each
b ∈ JBK, we draw D such matrices. Given d ∈ JDK, each matrix contains π0,d

b ∈ Rp for each JBK.

Then, for each b ∈ JBK, we perform aggregation: π0
b = f

(
(π0,d

b )d∈JDK

)
. The JER in the aggregated

case is defined as:

JER(t) = P
(
∃j ∈ Jkmax ∧ p0K : π(j:H0) < tj

)
.

We obtain the aggregated template following the same procedure, i.e. drawing D templates and
aggregating them. For each b′ ∈ JB′K, the aggregated threshold family is written:

T

(
b′

B′

)
= f

((
Td

(
b′

B′

))
d∈JDK

)
.

We can then write the empirical JER in the aggregated case as:

ĴER

(
T

(
b′

B′

))
=

1

B

B∑
b=1

1

{
∃j ∈ JkmaxK : π0

b(j) < Tj

(
b′

B′

)}
.

Calibration can be performed in the same way as in the non-aggregated case. Note that we perform
calibration after aggregating; therefore, JER control is ensured directly on aggregated statistics
and is not a result of aggregating JER controlling families. Importantly, this approach holds
without additional assumptions on the aggregation scheme f . We consider the threshold family
t
B
α = T(λB(α)), where

λB(α) =
1

B′ max

{
b′ ∈ JB′K s.t. ĴER

0

B

(
T

(
b′

B′

))
≤ α

}
.

With T
0

a template composed of B′ candidate curves that match quantiles of the distribution of π0

statistics, we obtain the following result:
Theorem 3 (JER control for aggregated π-statistics). Consider the threshold family defined by
t
B
α = T

0
(λB(α)). Then, as B → +∞,

JER(t
B
α ) ≤ α+OP (1/

√
B).

Proof. The proof is identical to that of Theorem 2 using the empirical aggregated JER.

The calibrated aggregated threshold family yields valid FDP upper bounds via Proposition 1. The
proposed KOPI (Knockoffs - π) method therefore achieves FDP control on aggregated Knockoffs.

5 Experiments

Methods considered. In our implementation of KOPI, we rely on the harmonic mean [28] as the
aggregation scheme f . Additionally, we set kmax = ⌊p/50⌋ following the approach of [3]. We
also consider both state-of-the-art Knockoffs aggregation schemes: AKO (Aggregation of Multiple
Knockoffs, 17) and e-values based aggregation [18]. Additionally, we consider Vanilla Knockoffs,
i.e. [6] and FDP control via Closed Testing [13]. In simulated data experiments, we generate
Knockoffs assuming a Gaussian distribution for X, with all variables centered. For methods that
support aggregation, we use D = 50 Knockoff draws.

5.1 Simulated data

Setup. At each simulation run, we generate Gaussian data X ∈ Rn×p with a Toeplitz correlation
matrix corresponding to a first-order auto-regressive model with parameter ρ, i.e. Σi,j = ρ|i−j|.

Then, we draw the true support β∗ ∈ {0, 1}p. The number of non-null coefficients of β∗ is controlled
by the sparsity parameter sp, i.e. sp = ∥β∗∥0/p. The target variable y is built using a linear model:

y = Xβ∗ + σϵ,

7
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Figure 1: FDP bound coverage at level α and empirical Power for 50 simulation runs and five
different methods: Vanilla Knockoffs, aggregated Knockoffs using e-values, aggregated Knockoffs
using quantile-aggregation, KOPI and Knockoff inference via Closed Testing. We use D = 50
Knockoffs draws and the following simulation settings: α = 0.1, q = 0.1, p = 500. Each column
represents a varying parameter with the first row displaying FDP coverage and the second row
displaying power. The red line and associated error bands represent the acceptable limits for FDP
bound coverage. KOPI consistently outperforms all other methods while retaining FDP control.

with σ controlling the amplitude of the noise: σ = ∥Xβ∗∥2/(SNR∥ϵ∥2), SNR being the signal-to-
noise ratio. We choose the central setting n = 500, p = 500, ρ = 0.5, sp = 0.1,SNR = 2. For each
parameter, we explore a range of possible values to benchmark the methods across varied settings.

To select variables using FDP upper bounds, we retain the largest possible set of variables S such
that V (S) ≤ q|S| (Algorithm 4). For each of the N simulations and each method, we compute the
empirical FDP and True Positive Proportion (TPP):

F̂DP (S) =
|S ∩H0|
|S|

and T̂PP (S) =
|S ∩H1|
|H1|

.

If the FDP is controlled at level α, |{k ∈ JNK : F̂DP (Sk) > q}| ∼ B(N,α). Then, we can compute
error bands on the α-level using std (B(N,α)/N) =

√
α(1− α)/N . The second row of Fig. 1

represents the empirical power achieved by each method, which corresponds to the average of TPPs
defined above for N runs i.e. Power =

∑N
k=1 T̂PP (Sk)/N. Fig. 1 shows that across all different

settings, KOPI retains FDP control. We can also see that FDR control does not imply FDP control,
as Vanilla Knockoffs are consistently outside of FDP bound coverage intervals. However, the two
existing aggregation schemes (AKO and e-values) that formally guarantee FDR control are generally
conservative and achieve FDP control empirically. This is consistent with the findings of [18]. The
Closed Testing procedure of [13] achieves FDP control as announced but suffers from a lack of power.

Interestingly, KOPI achieves FDP control while offering power gains compared to FDR-controlling
Knockoffs aggregation methods. Yet FDP control is a much stronger guarantee than FDR control, as
discussed previously. These gains are especially noticeable in challenging inference settings where
most methods exhibit a clear decrease in power or even catastrophic behavior (i.e. zero power).

Moreover, Fig. 3 (in appendix) shows that when using q = 0.05 rather than q = 0.1 as in Fig. 1, the
robustness of KOPI with regards to difficult inference settings is even more salient. More precisely,
for q = 0.05, AKO and Closed Testing are always powerless. E-values aggregation yields good
power in easier settings such as ρ ≤ 0.6, SNR ≥ 2.5 or n > 750 but exhibits catastrophic behavior
in harder settings. Overall, apart from KOPI, only Vanilla Knockoffs exhibit non-zero power, but this
method fails to control the FDP as it is intended to control FDR. KOPI preserves FDP control in all
settings while yielding superior power compared to all other methods.
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Figure 2: Empirical FDP and power on semi-simulated data for 42 contrast pairs. We use 7 HCP
contrasts C0: "Motor Hand", C1: "Motor Foot", C2: "Gambling", C3: "Relational", C4: "Emotion",
C5: "Social", C6: "Working Memory". We consider all 42 possible train/test pairs: the train contrast
is used to obtain a ground truth, while the test contrast is used to generate the response. Inference is
performed using the 5 methods considered in the paper and the empirical FDP is reported in the left
box plot, while power is reported in the right box plot. Notice (right figure) that KOPI yields superior
power compared to all other Knockoffs-based methods while controlling the FDP (left Fig.).

5.2 Brain data application

The goal of human brain mapping is to associate cognitive tasks with relevant brain regions. This
problem is tackled using functional Magnetic Resonance Imaging (fMRI), which consists in recording
the blood oxygenation level dependent signal via an MRI scanner. The importance of conditional
inference for this problem has been outlined in [26]. We use the Human Connectome Project
(HCP900) dataset that contains brain images of healthy young adults performing different tasks while
inside an MRI scanner. Details about this dataset and empirical results can be found in Appendix E.

While these results demonstrate the face validity of the approach, FDP control and power cannot be
evaluated. Therefore, following [16], we consider an additional experiment that consists in using
semi-simulated data. We consider a first fMRI dataset (X1,y1) on which we perform inference using
a Lasso estimator; this yields β∗

1 ∈ Rp that we will use as our ground truth. Then, we consider a
separate fMRI dataset (X2,y2) for data generation. The point of using a separate dataset is to avoid
circularity between the ground truth definition and the inference procedure. Concretely, we discard
the original response vector y2 for this dataset and build a simulated response ysim

2 using a linear
model, with the same notation as previously (we set σ so that SNR = 4): ysim

2 = X2β
∗
1 + σϵ.

Then, inference is performed using Knockoffs-based methods on (X2,y
sim
2 ). Since we consider β∗

1
as the ground truth, the FDP and TPP can be computed for each method. As can be seen in Fig. 2,
KOPI is the most powerful method among those that control the FDP.

5.3 Genomic data application

In addition to the brain data application, we compared KOPI to other Knockoffs-based methods on
gene-expression data [5] containing 79 samples and 90 genes. KOPI yields a non trivial selection
for all runs, with 3 genes selected in 100% of all 50 runs of the experiment. Across all runs, only 8
different genes are selected by KOPI. Vanilla Knockoffs select 24 different genes across all runs and
no gene exceeds a selection frequency of 70%. All other methods are powerless in all runs. Details
and results of this experiment can be found in Appendix D.

6 Discussion

In this paper, we have proposed a novel method that reaches FDP control on aggregated Knockoffs.
It combines the benefits of aggregation, i.e. improving the stability of the inference, in addition to
providing a probabilistic control of the FDP, rather than controlling only its expectation, the FDR.
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Simulation results support that KOPI indeed controls the FDP. Furthermore, while FDP control is a
stricter guarantee than FDR control, KOPI actually offers power gains compared to state-of-the-art
aggregation-based Knockoffs methods. This sensitivity gain is a direct benefit from the JER approach
and its adaptivity to arbitrary aggregation schemes. While the latter has been formulated and used so
far in mass univariate settings [3], the present work presents a first use of this approach in the context
of multiple regression. Moreover, KOPI does not require any assumption on the data at hand or on
the law of Knockoff statistics under the null.

The computation time of the proposed approach is comparable to existing aggregation schemes for
Knockoffs: sampling π statistics under the null using Algorithm 1 can be done once and for all for
a given value of p. JER estimation via Algorithm 2 and calibration can be performed via binary
search of complexity O(log(B′)). Finding the rejection set Ŝ after performing calibration is done in
linear time via [7]. In practice, the computation time is the same as for classical knockoff aggregation
[19] and is in minutes for the brain imaging datasets considered. Avenues for future work include a
theoretical analysis of the False Negative Proportion (FNP) [8] of KOPI and developing a step-down
version of the method to further improve power.

We provide a Python package containing the code for KOPI available at https://github.com/
alexblnn/KOPI.
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