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Abstract
We present Differentiable Neural Architectures
(DNArch), a method that learns the weights and
the architecture of CNNs jointly by backpropa-
gation. DNArch enables learning (i) the size of
convolutional kernels, (ii) the width of all layers,
(iii) the position and value of downsampling lay-
ers, and (iv) the depth of the network. DNArch
treats neural architectures as continuous entities
and uses learnable differentiable masks to control
their size. Unlike existing methods, DNArch is
not limited to a (small) predefined set of possible
components, but instead it is able to discover CNN
architectures across all feasible combinations of
kernel sizes, widths, depths and downsampling.
Empirically, DNArch finds effective architectures
for classification and dense prediction tasks on
sequential and image data. By adding a loss term
that controls the network complexity, DNArch
constrains its search to architectures that respect a
predefined computational budget during training.

1. Introduction
Tailoring Convolutional Neural Networks (CNNs) (LeCun
et al., 1998) to novel tasks and datasets requires substantial
human intervention and cross-validation to find a good ar-
chitecture, e.g. appropriate kernel sizes, width, depth, etc.
This has motivated exploring the space of architectures in an
automatic fashion, by developing architecture search algo-
rithms. Although these methods can find good architectures,
they must solve an expensive discrete optimization prob-
lem that involves training and evaluating candidate architec-
tures in each iteration. Differentiable Architecture Search
(DARTS) (Liu et al., 2018) addresses this issue by allowing
the network to consider a set of predefined possible compo-
nents in parallel, e.g., convolutions with kernels of size 3×3,
5×5, 7×7, and adjusting their contribution using learnable
weights (Fig. 2). Although DARTS is able to select compo-
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Figure 1. DNArch views neural architectures as if they were de-
fined in a continuous multidimensional space, and uses learnable
masks to learn their length by backpropagation. This example
shows how DNArch learns the width of a layer by applying a dif-
ferentiable mask m(⋅ ;θ) to the channel dimension of the input.
Different values of θ lead to a different number of channels.

nents via backpropagation, it requires (i) defining a (small)
set of possible components beforehand, (ii) computing and
keeping their responses in memory during training, and (iii)
retraining the found architecture from scratch to remove the
effect of other components in the output.

In this paper, we introduce Differentiable Neural Architec-
tures (DNArch), a method that jointly learns the weights
and the entire architecture of a CNN by backpropagation.
Specifically, DNArch learns the weights as well as (i) the
size of convolutional kernels at each layer, (ii) the number
of channels at each layer, (iii) the position and resolution
of downsampling layers, and (iv) the depth of the network.
To this end, DNArch treats neural architectures as entities
defined in a multidimensional continuous space with dimen-
sions corresponding to network attributes, e.g., depth, width,
etc., and uses learnable differentiable masks along each di-
mension to control their length (Fig. 1). Unlike DARTS
methods (Liu et al., 2018; Shen et al., 2022), DNArch does
not require a predefined set of components to choose from,
but instead is able to explore among all feasible values, e.g.,
all kernel sizes between 1×1 and N×N for a N×N image.
This is a result of the truly continuous nature of DNArch,
which, unlike DARTS, does not require multiple instantia-
tions of the same layer for different parameter values (Fig. 2).
Instead, DNArch explores the parameter space by modifying
the learnable parameters of the differentiable masks (Fig. 3),
making it a much more scalable NAS method. Moreover,
since both the architecture and the weights are optimized in
a single run, no retraining is needed after training.

2. Differentiable masking
Consider a function f ∶ [a,b] → R, which we want to be
non-zero only in a subset [c,d] ⊆ [a,b]. To this end, we
can multiply f with a mask m whose values are non-zero
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Figure 2. DARTS learns the size of convolutional kernels using
backpropagation to select among predefined options.
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Figure 3. DNArch learns the size of convolutional kernels by modi-
fying the parameters of the differentiable mask m(⋅ ;θ). Different
θ values lead to different sizes.

only on [c,d], e.g., a rectangular mask Π[c,d](x)=1[c,d].
However, as the gradient of Π[c,d](x) is either zero or non-
defined, it is not possible to learn the interval in which it is
non-zero by backpropagation. To overcome this limitation,
we can use a parametric differentiable mask m(⋅ ;θ) whose
interval of non-zero values is defined by its parameters θ. As
the mask is differentiable w.r.t. its parameters θ, we can now
use backprop to learn the interval on which it is non-zero.

Here, we consider two types of masks: a Gaussian mask
mgauss parameterized by its mean and variance θ={µ,σ2

},
and a Sigmoid mask msigm parameterized by its offset and
its temperature θ={µ, τ} (Eqs. 3, 4). Tm is a predefined
threshold below which the mask is zero (Fig. 4). Additional
details can be found in Appx. A.

Materializing parameters only for non-zero mask values.
Parts of the differentiable masks will map to zero based
on the value of the parameters θ. Hence, it would be a
waste of compute and memory to materialize the mask and
the corresponding network parameters, e.g., channels ch ∈
[10,N] in Fig. 1, to zero them out next. Fortunately, we can
take advantage of the invertible form of the Gaussian and
Sigmoid masks to materialize parameters only for values for
which the mask is non-zero (Appx. A.3). Thus significantly
reducing the compute and memory costs of DNArch.

3. Learning neural architectures by backprop
Most DNArch components, e.g., the learning of the net-
work’s width and depth, are not limited to convolutional
architectures. However, here we aim to show how DNArch
can be used to learn as many components of a neural archi-
tecture as possible. To that end, we take a general-purpose
convolutional architecture: the CCNN (Knigge et al., 2023),
and make all its architectural components learnable. CCNNs
are an ideal base network for DNArch due to their ability to
model global context on inputs of any resolution, length and
dimensionality. This (i) prevents the formation of poor archi-
tectures due to insufficient receptive fields, and (ii) allows
DNArch to be used on tasks on data of arbitrary length and
dimensionality without changing the base network (needed
in existing methods. Tu et al. (2022) shows many examples).

Figure 4. Gaussian and sigmoid masks.

Figure 5. The Continuous CNN architecture (Romero et al., 2022).

3.1. Learning the size of convolutional kernels
Introduced in Romero et al. (2021a), differentiable masking
can be combined with CKConvs (Romero et al., 2021b) to
learn the size of convolutional kernels by backpropagation
by parameterizing convolutional kernels ψ as the product of
a small neural network MLPψ and a learnable differentiable
mask m(⋅ ;θ), i.e., ψ(ci)=MLPψ(ci) ⋅ m(ci;θ) (Fig. 6).
Note that, we can construct the kernel only for non-zero val-
ues of the mask by following the method given in Appx. A.3.

3.2. Learning downsampling layers
We can use differentiable masking to learn downsampling by
applying a differentiable mask on the Fourier domain. The
Fourier transform F represents a function f ∶ RD

→ R in
terms of its spectrum f̃ ∶ RD

→ C, which map frequencies ω
to the amount of that frequency in the input f̃(ω). A useful
identity is that cropping high frequencies in the Fourier
domain equals downsampling in the spatial domain.

To learn downsampling, we use a learnable sigmoid mask
msigm to perform a learnable low-pass filtering on the input
by multiplying the spectrum of the input with the mask
msigm. By doing so, all frequencies above the mask’s cutoff
frequency ωmax=Tm becomes zero (Fig. 7). An important
consequence of low-pass filtering is that as the spectrum of
the signal becomes zero above ωmax, the low-passed signal
can be represented at a lower resolution determined by ωmax.
With F, F−1 be the Fourier and inverse Fourier transform,
crop

>ωmax
be an operator that crops values above ωmax, and

fdown represent the downsampled signal f , we have that:

fdown=F
−1
[crop

>ωmax
(F[f] ⋅msigm( ⋅;θ))] . (1)

Unlike regular downsampling, e.g., max-pooling, spectral
downsampling (Rippel et al., 2015) considers the spectral
content of the input during downsampling, and thus prevents
aliasing (Fig. 7, middle down), which has negative effects
for learning (Zhang, 2019; Vasconcelos et al., 2021). More
information w.r.t. the positioning of learnable downsam-
pling and its use for dense predictions is given in Appx. B.
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Figure 6. Learning kernel sizes with differentiable masking.

Figure 7. Learning downsampling with differentiable masking.

3.3. Learning the width of the network
To learn the width of a layer we apply a differentiable mask
m(⋅ ;θ) along the channel dimension of its feature repre-
sentations (Fig. 1). To learn the width of all layers in the
network, we apply differentiable masks with independent
learnable parameters along the channel dimensions of all the
network components that change the network’s width, i.e.,
all Conv and PWLinear layers. That is, we learn an inde-
pendent mask for the input (Nin), the middle (Nmid) and the
output (Nout) channels of each residual block in the network
(Fig. 8). Layers that do not change the network’s width, e.g.,
GELU, have their width determined by the previous mask.

3.4. Learning the depth of the network
To learn the network’s depth we view the number of residual
blocks as a continuous axis with values [1,2, ..,D] corre-
sponding to the index of each block, and use a differentiable
maskm(⋅,θ) along this axis to dynamically mask out blocks
based on the value of the mask parameters θ (Fig. 8b). To
ensure that information flows from the input to the output of
the network regardless of the value of the mask parameters,
we only apply the mask on the residual branch

3.5. Putting it all together
By using the techniques described in Sections 3.1-3.4,
DNArch uses backpropagation to learn the weights, the
size of convolutional kernels at each layer, the number of
channels at each layer, the position and resolution of down-
sampling layers, and the depth of a convolutional network.

Learning architectures under computational constraints.
As outlined in Appx. C, we can ensure that the architectures
searched by DNArch respect a predefined computational
complexity by including a regularization term Lcomp that
reflects the complexity of the current candidate architecture
based on its mask parameters. To this end, we define the
optimization loss L as the sum of the task objective loss

Figure 8. (a) Positioning of masks for the learning of the width. (b)
Learning the network’s depth with differential masking.

Lobj and the complexity loss Lcomp weighted by a factor λ:

L =Lobj + λLcomp. (2)

By minimizing this loss, DNArch is encouraged to find
architectures that meet the desired computational budget
while still achieving good performance on the end task.

4. Experiments
A detailed description of the experimental setup and the
nomenclature used can be found in Appx. E.1. We evaluate
DNArch on sequential and image datasets for classification
and dense prediction tasks. On 1D, we use the Long Range
Arena (LRA) benchmark (Tay et al., 2020). On 2D, we
perform image classification on the CIFAR10/100 datasets
(Krizhevsky et al., 2009) and report results on two dense pre-
diction tasks from the NAS-Bench-360 benchmark (Tu et al.,
2022): DarcyFlow and Cosmic. A detailed description of
the datasets used can be found in Appx. D.

DNArch without computational constraints. First, we use
DNArch to improve the expressiveness and computational
efficiency of a CCNN4,140. We start using DNArch to learn
the size of all convolutional kernels, and then we learn both
the kernel sizes and downsampling layers to simultaneously
improve the expressiveness and the computational efficiency
of the CCNN4,140. Note that the learning is solely driven by
the objective loss Lobj, i.e., Lcomp is not used.

Results. We observe that using DNArch to learn kernel
sizes consistently improves the accuracy of the base archi-
tecture (DNArchK models in Tabs. 1-3). Interestingly, found
DNArch architectures perform on par, and even surpass, ar-
chitectures specifically designed for each tasks, e.g., S4 (Gu
et al., 2021) for sequences and NFOs (Li et al., 2020) for
2D PDEs, with a remarkably lower number of trainable pa-
rameters. In contrast to DARTS methods, e.g., DASH (Shen
et al., 2022), DNArch can be applied across all tasks without
the need to manually change the base architecture. When ad-
ditionally learning downsampling, we observe that DNArch
finds high-performant architectures with improved computa-
tional efficiency (DNArchK,R models). Interestingly, found
models often exhibit slight accuracy improvements.

DNArch with computational constraints. Next, we uti-
lize DNArch to learn entire neural architectures that re-
spect a predefined computational budget. We start with base
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Table 1. Performance on the LRA benchmark. × denotes random guessing. Highest per-section scores are in bold and the overall best scores
are underlined. For DNArch, values in parenthesis indicate the computational cost of the architecture relative to the target complexity.

MODEL LISTOPS TEXT RETRIEVAL IMAGE PATHFINDER PATH-X AVG.

Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 × 53.66
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 × 50.56
Performer (Choromanski et al., 2020) 18.01 65.40 53.82 42.77 77.05 × 51.18
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 × 54.17

Mega (O(L2
)) (Ma et al., 2022) 63.14 90.43 91.25 90.44 96.01 97.98 88.21

Mega-chunk (O(L)) (Ma et al., 2022) 58.76 90.19 90.97 85.80 94.41 93.81 85.66

S4D (Gu et al., 2022) 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4 (Gu et al., 2021) 59.60 86.82 90.90 88.65 94.20 96.35 86.09
S5 (Smith et al., 2022) 61.50 89.31 91.40 88.00 95.33 98.58 87.35

FNet (Lee-Thorp et al., 2021) 35.33 65.11 59.61 38.67 77.80 × 54.42
Luna-256 (Ma et al., 2021) 37.25 64.57 79.29 47.38 77.72 × 59.37
CCNN4,140 (Romero et al., 2022) 44.85 83.59 × 87.62 91.36 × 76.86

CCNN4,140 (Global Kernels) 55.65 87.80 90.55 85.51 94.26 91.15 84.15
DNArchK(CCNN4,140) 59.90 88.28 90.66 86.07 93.46 89.93 84.72
DNArchK,R(CCNN4,140) 60.15(0.80×) 88.50(0.75×) 91.08(0.78×) 86.55(0.82×) 94.05(0.89×) 91.15(0.82×) 85.25
DNArchK,R,W,D(CCNN4,140) 60.55(1.01×) 89.03(1.00×) 91.22(1.02×) 87.20(1.02×) 94.95(1.00×) 91.71(1.01×) 85.78

Table 2. Performance on Dense Tasks of NAS-Bench-360.

MODEL
DARCYFLOW COSMIC

rel. l2 loss 1 - AUROC

Expert* 0.008 0.13

WRN (Zagoruyko & Komodakis, 2016) 0.073 0.24
DenseNAS (Fang et al., 2020) 0.100 0.38
DARTS (Liu et al., 2018) 0.026 0.229
Auto-DL (Liu et al., 2019) 0.049 0.495
DASH (Shen et al., 2022) 0.060 0.190

CCNN4,140 (Global Kernels) 0.002989 0.059
DNArchK(CCNN4,140) 0.002970 0.058
DNArchK,R(CCNN4,140) 0.002929(0.79×) 0.056(0.82×)
DNArchK,R,W,D(CCNN4,140) 0.002285(1.01×) 0.055(1.01×)
CCNN6,380 (Global Kernels) 0.004521 0.059
DNArchK,R,W,D(CCNN6,380) 0.001763(1.00×) 0.048(1.00×)
∗ FNO (Li et al., 2020) and deepCR (Zhang & Bloom, 2020).

CCNN4,140 and CCNN6,380 networks, and allow DNArch
to learn their width, depth, kernel sizes and downsampling.
We define the target complexity Lcomp as the complexity of
the base CCNN networks. In other words, we use DNArch
to find better convolutional architectures of computational
complexity roughly equal to that of the base networks.

Results. Our results (DNArchK,R,W,D models) show that
DNArch finds neural architectures with higher accuracy
than the base CCNN networks but with the same complex-
ity. In addition, we observe that learning more architectural
components consistently leads to better results, thus sup-
porting the claim that gradient-steered architectures can be
more beneficial than handcrafted ones. Furthermore, us-
ing base architectures with larger complexity and capacity
( CCNN6,380 vs. CCNN4,140) consistently leads to better
results. This result is encouraging for the use of DNArch to
large architectures, e.g., LLMs (Brown et al., 2020).

Computational complexity of DNArch. To assess the ap-
plicability of DNArch, we also analyze its computational
overhead. To this end, we plot the evolution of the rel-
ative complexity (Ccurr/Ctarget) during training (Fig. 9).
Interestingly, we observe that the theoretical complexity of
candidate architectures Ccurr stays close to the target com-

Table 3. Performance on Image Classification Datasets.
MODEL CIFAR10 CIFAR100

WRN (Zagoruyko & Komodakis, 2016) - 76.65
DenseNAS (Fang et al., 2020) - 74.51
DARTS (Liu et al., 2018) - 75.98
DASH (Shen et al., 2022) - 75.63

CCNN4,140 (Global Kernels) 90.52 64.72
DNArchK(CCNN4,140) 92.51 69.01
DNArchK,R(CCNN4,140) 92.77(0.82×) 68.96(0.85×)
DNArchK,R,W,D(CCNN4,140) 93.47(1.01×) 72.98(1.05×)
CCNN6,380 (Global Kernels) 94.18 72.29
DNArchK,R,W,D(CCNN6,380) 95.03(1.00×) 76.37(1.02×)

plexity Ctarget during the whole training. This indicates
that: (i) DNArch only searches among architectures close to
the target computational complexity, and that (ii) the com-
putational overhead of DNArch is negligible. As a result,
the cost of using DNArch on top of a CCNN is comparable
to the cost of training the base CCNN network.

Architectures found by DNArch. We observe that found
architectures are very diverse, even within each architec-
ture (Tabs. 6-8). For instance, some residual blocks have
a bottleneck structure, some an expanded structure, and
others have monotonically decreasing or increasing widths.
Interestingly, the resolution of found architectures for clas-
sification, e.g., Text, often follow the style of U-Nets, and
not the monotonically decreasing pattern commonly used in
handcrafted networks. On dense tasks, found architectures
resemble U-Nets, and even concatenated U-Nets, e.g., the
1.5× U-Net architectures found for the Cosmic task.

5. Conclusion
We presented Differentiable Neural Architectures (DNArch)
a method that jointly learns the weights and the architec-
ture of CNNs by backpropagation. DNArch finds effective
architectures across a broad set of tasks, and can include
additional loss terms to encourage the discovery of neural
architectures with desirable properties. Appx. F, G discuss
the limitations and promising future directions for DNArch.
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Appendix
A. Differentiable Masking
A.1. Definition

Gaussian mask:

mgauss(x ;µ,σ2
) =

⎧
⎪⎪
⎨
⎪⎪
⎩

m̄ = exp (− 1
2
(x−µ)2

σ2 ) m̄ ≥ Tm

0 else
(3)

Sigmoid mask:

msigm (x ;µ, τ) =

⎧
⎪⎪
⎨
⎪⎪
⎩

m̄ = 1− 1
1+exp(−τ(x−µ))

m̄ ≥ Tm

0 else
(4)

A.2. Multidimensional masks

N-dimensional masks can be constructed by combining N
1D masks, each with their own parameters. For example,
the Gaussian mask used to learn the size of convolutional
kernels in Fig. 3 is constructed as:

mgauss(x, y;{{µX , µY },{σ
2
X , σ

2
Y }})

=mgauss (x ;{µX , σ
2
X}) ⋅mgauss (y ;{µY , σ

2
Y })

A.3. Materializing parameters only for non-zero mask
values

Parts of differentiable masks will map to zero based on
the value of the parameters θ. Therefore, it would be a
waste of compute and memory to materialize the mask –
and the corresponding network parameters, e.g., channels
ch ∈ [10,N] in Fig. 1– to zero them out next. Luckily, we
can take advantage of the invertible form of the Gaussian and
Sigmoid masks to materialize parameters only for values
for which the mask is non-zero. To this end, we find the
value xTm for which the mask is equal to the threshold Tm,
i.e., xTm=x such thatm(x;θ)=Tm, and only materialize the
mask and the corresponding network parameters for values
of x for which the value of the mask is greater than Tm. By
inverting the mask equations (Eqs. 3, 4), we obtain xTm

as:

±xTm = µ ±
√

−2σ2 log(Tm), and (5)

xTm = µ −
1
τ
log ( 1

1−Tm
− 1) , (6)

for Gaussian and Sigmoid masks, respectively. Conse-
quently, we can make sure that all rendered values will
be used by only materializing the mask and related network
parameters for values of xwithin the range [−xTm , xTm] for
Gaussian masks and [xmin, xTm] for Sigmoid masks, where
xmin depicts the lowest coordinate indexing the mask.

B. Learning Downsampling Layers
B.1. Combining learnable downsampling and

convolution

The previous method requires mapping inputs to the Fourier
domain and back to learn downsampling. Fortunately, CC-
NNs as well as most methods that rely on global con-
volutions, e.g., CKConv (Romero et al., 2021b), S4 (Gu
et al., 2021), rely on the Fourier convolution theorem:
(f ∗ ψ)=F−1 [F[f] ⋅F[ψ]] to compute convolutions with
large kernels efficiently. This means that CCNNs already
use a Fourier and inverse Fourier transforms in each resid-
ual block to compute convolutions. Hence, we can avoid
recomputing these steps by placing the learnable downsam-
pling operation within the Fourier convolution. Specifically,
we can simultaneously compute downsampling and convo-
lution by applying the differentiable mask msigm and the
cropping operations crop

>ωmax
before returning from the

Fourier domain back to the spatial domain. That is:1

(f∗ψ)down

=F−1 [crop
>ωmax

(msigm(⋅ ;θ) ⋅F[f] ⋅F[ψ])] . (7)

B.2. Materializing functions only on the output
resolution

Note that Eq. 7 computes the convolution on the resolu-
tion of the input and downsamples next. This incurs in
an unnecessary overhead as the output of the convolution
will be downsampled directly after. A more efficient ap-
proach comes from inverting the order of these operations
to compute the convolution at the downsampled resolution.
Luckily, this can be achieved by using the method outlined
in Sec. A.3. Since the cutoff frequency of the mask cor-
responds to the coordinate at which the mask equals the
threshold, i.e., ωmax=xTm , it can be calculated using Eq. 6.
Next, since the cutoff frequency defines the minimum res-
olution required to faithfully represent the input, we can
simply downsample the input and convolutional kernel to
that resolution before the convolution to compute it on the
output resolution.

B.3. Learning subsampling for dense tasks

Riad et al. (2022) apply learned downsampling on both the
identity and the residual branches of a residual block to
limit resolution of all representations after a specific resid-
ual block. In the context of DNArch, this is undesirable for
two reasons: First, as we learn the whole network architec-
ture during training, it is not known a priori what resolution

1We note that the Fourier transform is not strictly necessary to
learn downsampling, e.g., for CNNs with local kernels. Leveraging
the Fourier convolution theorem, equivalent downsampling can be
achieved by convolving the input with the inverse Fourier transform
of the mask in the spatial domain (see Appx. B.4 for details).
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mappings will require at each layer. However, forcing the
identity branch to have the same resolution as the corre-
sponding residual branch restricts all subsequent mappings
to be of maximum that resolution. Secondly, dense predic-
tion tasks, e.g., segmentation, require the learned architec-
ture to produce outputs that share the same resolution as the
input. However, if the identity branch is also downsampled,
the output of the network would be of lower resolution even
for a single level of downsampling in the network. This in
turn, would result in over-smoothed predictions.

Based on these observations, we use downsampling only
on the residual branch and upsample features at the end of
each residual block back to the resolution of the input. This
allows us to (i) have features at same resolution as the input
in the last layer, and (ii) learn U-Net (Ronneberger et al.,
2015) like architectures.

B.4. Learning downsampling in the spatial domain
Differentiable Masking learns downsampling by multiply-
ing the spectrum f̃=F[f] of a signal f with a differentiable
mask m(⋅ ;θ), and cropping the output above the cutoff fre-
quency of the mask ωmax next. However, it is not necessary
to perform this operation in the Fourier domain. Downsam-
pling can also be learned directly in the spatial domain.

The Fourier convolution theorem states that the spatial con-
volution is equivalent to a pointwise multiplication in the
Fourier domain. However, this equivalence works in both
directions. That is, we can equivalently say that the point-
wise multiplication on the Fourier domain is equal to a
convolution on the spatial domain. Consequently, we can
represent the pointwise multiplication of the spectrum of
the input F[f] and the differentiable mask m(⋅ ;θ) as the
convolution of their inverse Fourier transforms. Formally:

f̃ ⋅m(⋅ ;θ) =F [F−1 [f̃] ∗F−1[m(⋅ ;θ)]]

=F [F−1 [F[f]] ∗F−1[m(⋅ ;θ)]]

=F [f ∗F−1[m(⋅ ;θ)]] (8)

In other words, we can perform the same operation in the
spatial domain by convolution the original input signal f
with the inverse Fourier transform of the mask m(⋅ ;θ).

Defining the output resolution. Eq. 8 defines how low-
pass filtering can be performed on the spatial domain, but it
does not provide information regarding the final resolution
of the operation. To derive the resolution of the output, we
can simply use Eqs. 10, 11 to analytically derive the size
of the mask. Once the size of the mask is derived, we can
simply take the downsampled signal –after using Eq. 8–,
and downsample it to match the size of the mask.

C. Learning convolutional architectures under
computational constraints

We can ensure that the architectures searched by DNArch
respect a predefined computational complexity by including
an additional regularization term Lcomp that reflects the
complexity of the current candidate architecture based on
its mask parameters. To this end, we define the optimization
loss L as the sum of the task objective loss Lobj and the
complexity loss Lcomp weighted by a factor λ:

L =Lobj + λLcomp. (9)

By minimizing this loss, DNArch is encouraged to find
architectures that meet the desired computational budget
while still achieving good performance on the end task.

C.1. Defining the complexity loss Lcomp

The purpose of Lcomp is to use the size of the learned masks
to estimate the total computation needed for a forward pass
of the network. Its construction is outlined below.

Layer-wise complexities. Let Clayer(L,Nin,Nout) be the
number of operations required in a given layer with an input
of length L and Nin and Nout input and output channels. To
estimate the number of computations required based on the
current size of the masks, we can substitute the lenght of
each dimension with the size of the corresponding masks:
Clayer (size(mres), size(mNin

), size(mNout)). As an exam-
ple, consider a pointwise linear layer. A pointwise linear
layer lin ∶ RNin

→ RNout takes an input f of length L and
Nin channels and multiplies each element along the spa-
tial dimensions of the input with a matrix of dimensions
[Nin,Nout] to produce an output of the same length, but
with Nout number of channels. The total operations required
in this layer is given by Clin(f)=L ⋅Nin ⋅Nout.

Now, let us use three differentiable masks mres, mNin
and

mNout to mask the resolution, input and output channels of
the linear layer. The total number of computations is now
given by:

Clin,masked = size(mres) ⋅ size(mNin
) ⋅ size(mNout).

Since the size of the masks is now involved in the com-
putation of the operations required, we can utilize it as an
additional source of feedback to update the masks by mak-
ing the function size differentiable with regard to the mask
parameters. The same concept is used to calculate the cost
of other layers based on the size of the masks. A summary
of these costs can be found in Appx. C.2.

Effect of the depth mask. To take into account the effect
of the depth mask, we use it to determine the number of
residual blocks in the network. If the number of operations
of a network with D residual blocks is denoted as Cnet,D,
the complexity of a network with masked depth is given
by Cnet,size(mdepth)

with size(mdepth) the size of the depth
mask.
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Computing the size of the masks. The size of a mask can
be calculated in a differentiable manner by determining the
length of the mask in continuous space and using that length
to estimate the change in size of the corresponding network
dimension. Specifically, the length at a time t is 2xtTm

and
xtTm
−xmin, for Gaussian and Sigmoid masks, respectively

(see Fig. 4). For some initial x0Tm
and corresponding initial

length N, the size of a Gaussian and a Sigmoid mask at time
t is respectively:

size(mgauss) =
2xtTm

2x0Tm

N, and (10)

size(msigm) =
xtTm
− xmin

x0Tm
− xmin

N. (11)

Computational constraints as an additional loss. Let
Ccurr be the current complexity of the network and Ctarget

be the desired target complexity. We define the computa-
tional loss Lcomp as the relative l2 difference between the
relative complexity of the current network and the target:

l2 (
Ccurr

Ctarget
,1) = ∥

Ccurr

Ctarget
− 1.0∥

2

2

. (12)

This form has two advantages over the alternative form
l2(Ccurr,Ctarget). It (i) prevents overflow that might occur
when comparing large values –Ccurr and Ctarget may easily
be of order 1e10–, and (ii) allows for consistent tuning of λ
for different tasks and complexities. In the alternative form
l2(Ccurr,Ctarget), λ might need to be tuned independently
for different complexity regimes.

C.2. Computational complexity of masked network
components

In this section, we derive the computational complexity of
all layers used in the CCNN architecture with and without
the use of masks. The calculation of these complexities
follows the same reasoning as the pointwise linear layer
provided as example in the main text.

With L, Nin and Nout the length, number of input chan-
nels and number of output channels of a given layer, and
size(mres), size(mNin

), size(mNout) the size of the masks
along the corresponding dimensions, the complexity of the
layers used in the CCNN architectures are given by:

Pointwise linear layer:
Clin(f) = L ⋅Nin ⋅Nout

Clin,masked = size(mres) ⋅ size(mNin
) ⋅ size(mNout)

Fourier convolution:
CFconv = L log (L)

CFconv,masked = size(mres) log (size(mres))

Pointwise operations –GELU, DropOut, etc.–:
Cpointwise = L ⋅Nin

Cpointwise,masked = size(mres) ⋅ size(mNin
)

D. Dataset descriptions
D.1. The Long Range Arena benchmark
The Long Range Arena (Tay et al., 2020) consists of six
sequence modelling tasks with sequence lenghts ranging
from 1024 to over 16000. It encompasses modalities and
objectives that require similarity, structural, and visuospatial
reasoning. We follow the data preprocessing steps of Gu
et al. (2021), which we also include here for completeness.

ListOps. An extended version of the dataset presented by
Nangia & Bowman (2018). The task involves computing
the integer result in the range zero to nine of a mathemati-
cal expression represented in prefix notation with brackets,
e.g., [MAX29[MIN47]0] → 9. Characters are encoded as
one-hot vectors, with 17 unique values possible (opening
brackets and operators are grouped into a single token). The
sequences are of unequal length. Hence, the end of shorter
sequences is padded with a fixed indicator value to a max-
imum length of 2048. The task has 10 different classes
representing the possible integer results of the expression. It
consists of 96K training sequences, 2K validation sequences,
and 2K test sequences. No data normalization is applied.

Text. Based on the IMDB sentiment analysis dataset pre-
sented by Maas et al. (2011), the task is to classify movie
reviews as having a positive or negative sentiment. The
reviews are presented as a sequence of 129 unique integer
tokens padded to a maximum length of 4096. The dataset
contains 25K training sequences and 25K test sequences. No
validation set is provided. No data normalization is applied.

Retrieval. Based on the ACL Anthology network corpus
presented by Radev et al. (2013), the task is to classify
whether two given textual citations are equivalent. To ac-
complish this, each citation is separately passed through
an encoder, and passed to a final classifier layer. Denoting
X1 as the encoding for the first document and X2 as the
encoding for the second document, four features are created
and concatenated together as:

X = [X1,X2,X1 ×X2,X1 −X2],

which are subsequently passed to a two layered MLP. The
goal of the task is to evaluate how well the network can
represent the text by evaluating if the two citations are equiv-
alent or not. Characters are encoded into a one-hot vector
with 97 unique values and sequences are padded to a maxi-
mum length of 4000. The dataset includes 147.086 training
pairs, 18.090 validation pairs, and 17.437 test pairs. No
normalization is applied.
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Image. The Image task uses 32×32 images of the CIFAR10
dataset (Krizhevsky et al., 2009). It views the images as se-
quences of length 1024 that correspond to a one-dimensional
raster scan of the image. There are a total of 10 classes, 45K
training examples, 5K validation examples and 10K test ex-
amples. The RGB pixel values are converted to grayscale
intensities and then normalized to have zero mean and unit
variance across the entire dataset.

PathFinder. Based on the PathFinder challenge introduced
by Linsley et al. (2018), the task presents a 32×32 grayscale
image with an start and an end point depicted as small
circles. The task is to classify whether there is a dashed line
(or path) joining the start and end points while presenting the
input as a one-dimension raster scan of the image, alike the
Image task. The dataset includes 160K training examples,
20Kvalidation examples and 20K test examples. The input
data is normalized to be in the range [-1, 1].

Path-X. Path-X is an “extreme” version of the PathFinder
dataset, in which the input images are of size 128×128. As
a result, the input sequences are sixteen times longer with a
total length of 16384. Aside from this difference, the task is
identical to the PathFinder dataset.

D.2. Image classification datasets
CIFAR10 and CIFAR100. The CIFAR10 dataset
(Krizhevsky et al., 2009) consists of 60K real-world 32×32
RGB images uniformly drawn from 10 classes divided into
training and test sets of 50K and 10K samples, respectively.
The CIFAR100 dataset (Krizhevsky et al., 2009) is similar to
the CIFAR10 dataset, with the difference that the images are
uniformly drawn from 100 different classes. For validation
purposes, we divide the training dataset of both CIFAR10
and CIFAR100 into training and validation sets of 45K and
5K samples, respectively. Both datsets are normalized to
have zero mean and unit variance across the entire dataset.

D.3. NAS-Bench-360
NAS-Bench-360 (Tu et al., 2022) is a benchmark suite to
evaluate Neural Architecture Search methods beyond image
classification. The benchmark is composed of ten tasks
spanning a diverse array of application domains, datset sizes,
problem dimensionalities, and learning objectives. In this
work, we consider two tasks from the NAS-Bench-360 suite
which require dense predictions: The DarcyFlow (Li et al.,
2020) and Cosmic (Zhang & Bloom, 2020) datasets.

DarcyFlow: Solving Partial Differential Equations. Dar-
cyFlow aims to solve Partial Differential Equation (PDE)
by using neural networks as a replacement for traditional
solvers. The input for this task is a 85×85 grid specifying
the initial conditions and coordinates of a fluid, and the out-
put is a 2D grid of the same dimensions representing the
fluid state at a later time. The ground truth for this task is
the result computed by a traditional solver, and the objective

is to minimize the Mean Squared Error (MSE) between the
predicted fluid state and the ground truth.

Cosmic: Identifying Cosmic Ray Contamination. The
Cosmic task involves identifying and masking corruption
caused by charged particles collectively referred to as “cos-
mic rays” on images taken from space-based facilities. It
uses imaging data of local resolved galaxies collected from
the Gubble Space Telescope. The input is an 128×128 im-
age corresponding to the artifact of cosmic rays, and the out-
put is a 2D grid of the same dimensions predicting whether
each pixel in the input is an artifact of cosmic rays. We
report the false-negative rate of identification results.

E. Experimental details
E.1. General remarks
Experimental setup. We use two CCNNs of different ca-
pacity as base networks: a CCNN4,140 –4 blocks, 140 chan-
nels, 200K parameters–, and a CCNN6,380 –6 blocks, 380
channels, 2M parameters–, and use DNArch to learn their
architectures. To understand the impact of learning each
network component, we also report results learning some
and none of the neural architecture components.

Mask configurations. We initialize all the masks to match
the architecture of the baseline CCNNs at the beginning of
training. We use a Gaussian mask to learn kernel sizes as
in FlexConv (Romero et al., 2021a), and Sigmoid masks
to learn width, depth and downsampling. All masks use a
threshold of Tm=0.1. All kernel masks are centered, i.e.,
µ=0, and initialized to either be small or global, i.e., σ ∈
[0.0325,0.5]. Resolution masks are initialized to weight
the highest input frequency by 0.85, and the width and depth
masks are initialized to match the size of the base network’s
architecture. More information on hyperparameters, training
regimes, and experimental settings can be found in Appx. E.

Notations. We use DNArch as an operator acting on a base
network and specify the learned components with indices
K,R,W,D representing kernel sizes, downsampling, width
and depth. DNArchK(CCNN4,140) indicates using DNArch
to learn only the kernel sizes of a CCNN4,140.

Code. Our code is written in JAX and our experiments are
conducted on TPUs and GPUs. As outlined in the Limita-
tions (Sec. F), JAX and TPU training prevent DNArch from
performing operations that change the dimensions of arrays
during training. In addition to our JAX implementation, we
will also release a PyTorch implementation of DNArch that
supports these operations. We hope that this implementation
will make DNArch more flexible and accessible, especially
in scenarios where it is crucial to keep candidate networks
close to the target complexity during the course of training.

The Continuous CNN and the CCNN residual block. The
CCNN architecture is shown in Fig. 5. It is composed by
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an Encoder, a Decoder, and a number of CCNN resid-
ual blocks ResBlock (?). The Encoder is defined as a se-
quence of [PWLinear, BatchNorm (Ioffe & Szegedy, 2015),
GELU (Hendrycks & Gimpel, 2016)] layers. For tasks deal-
ing with text, we additionally utilize an Embedding layer
mapping each token in the vocabulary to a vector represen-
tation of length equal to that used by Gu et al. (2021) (see
Appx. D.1). For dense prediction tasks, the Decoder is a
PWLinear layer, which is preceded by GlobalAvgPool-
ing for global prediction tasks.

Batch Normalization in DNArch. As the architecture
is constantly changing during the search process, we use
batch-specific statistics for batch normalization instead of
the global moving average. This approach was adopted af-
ter early experiments showed that using the global moving
average leads to a significant discrepancy in the behavior of
the validation and training curves. Specifically, we observed
that while the training curves were converging to a good so-
lution, the validation curves resembled random predictions.
This issue was resolved by deactivating the global moving
average in Batch Normalization layers.

Continuous convolutional kernels MLPψ. We parameter-
ize our convolutional kernels as a 4-layer MLP with 128
hidden units and a Fourier Encoding (Tancik et al., 2020)
of the form γ(x)=[cos(2πω0Wx]), sin(2πω0Wx)], with
W ∈ RD×128 and ω0 a hyperparameter that acts as a prior on
the frequency content of the kernels (Romero et al., 2021b;
Sitzmann et al., 2020). In contrast to Romero et al. (2021b),
we utilize a single larger MLPψ to generate the kernels of the
entire network. This allows the network MLPψ to adminis-
trate its capacity across all layers. Using different MLPψ’s
for each layer as Romero et al. (2021b) is inadequate in
the learnable architectures setting as some layers can be
entirely erased. With our proposed solution, the capacity
of the otherwise zeroed-out MLPψ is used to generate the
kernels of the remaining layers.

Normalized relative positions. Following Romero et al.
(2021b;a), we normalize the coordinates going into MLPψ to
lie in the space [−1,1]D for D-dimensional kernels.

Parameters and hyperparameters of the differentiable
masks. We learn some of the parameters of the masks, and
leave the others constant or treat them as a hyperparameter.
Specifically, for Gaussian masks, we only learn their width,
i.e., σ, and fix its mean to zero. For Sigmoid masks, we
learn their offset µ and treat their temperature τ as a hyper-
parameter. For more information regarding the values of τ
used in our parameter tuning step, please refer to Appx. E.2.

Maximum and minimum allowable sizes for the learn-
able differentiable masks. We define some minimum and
maximum allowable sizes for the mask parameters, and
reset them to these values after each training iteration if

the updated parameter values lie outside that range. For
the Gaussian mask, we constraint the minimum admissi-
ble value of σ such that the length of the corresponding
dimension never collapses to a value of 1. This is to prevent
the corresponding dimension to collapse such that it can
grow afterwards if required. The minimum value depends
on the resolution of the corresponding dimension, e.g., the
maximum size of the convolutional kernel, and can be easily
calculated with Eq. 5.

Note that the offset value of the Sigmoid mask µ could in
principle assume any value in R. However, if not controlled,
µ could become too small and mask all values along a
particular dimension to zero. Similarly, if µ is too large,
the gradient of the mask at all positions would become
very small and it would difficult to update the mask. To
avoid these situations, we define minimum and maximum
values of µ such that for the lowest value, the mask at the
lowest position is equal to 0.95, and for the largest value,
the mask at the highest position is equal 0.85. These values
are dependent on the value of the mask temperature τ , and
can be easily calculated with Eq. 6.

Limiting the size of the mask to the maximum allowable
ranges. As outlined in the Limitations (Sec. F), we must
set a maximum allowable size for the width and depth of
the network on JAX. However, the maximum allowed value
for the parameters of the masks (see previous paragraph)
allows both masks to grow beyond the point on which the
theoretical size of the masks is equal to the maximum allow-
able network size. For instance, for the maximum allowed
parameter values of a Sigmoid mask, the last channel, i.e.,
the 280-th channel, would be weighted by a factor of 0.85.
Consequently, the theoretical size of the mask as calculated
by Eq. 11 will be well beyond 280. This value would lead to
an unrealistic theoretical computational complexity that sur-
passes the real computational complexity the CCNN used.

To overcome this issue, we limit the maximum size of the
mask calculated by Eq. 11 to be less or equal than the maxi-
mum allowable size, e.g., size(m)=min(size(m),280). It
is important to note, however, that clipping the value of size
directly would stop the gradient flow for parameter values
leading to sizes larger 280. As a result, once the maximum
size is reached, the mask would not be able to contract
anymore. We avoid gradient flow stop by using clipping in
combination with a straight-through estimator (Bengio et al.,
2013). As a result, we are able to propagate the gradient
across the clipping operation, and the resulting mask can
still be modified even in the cropping operation is used.

E.2. Hyperparameters and training configurations

In this section, we include more information about the found
hyperparameters, the values that were considered during
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Table 4. Hyperparameters used for the experiments with the target complexity of a CCNN4,140.

DATASET EPOCHS
BATCH LEARNING DROPOUT

WEIGHT
ω0 λ τresolution τchannel τdepthSIZE RATE DECAY

LISTOPS 50 50 0.005 0.0 0.01 27.5K 5.0 50 25 8
TEXT 100 50 0.02 0.2 0.01 19.5K 0.1 50 25 8
RETRIEVAL 50 50 0.001 0.1 0.01 21.5K 0.1 50 25 8
IMAGE 210 50 0.02 0.1 0.001 12.5K 0.1 25 25 8
PATHFINDER 210 50 0.005 0.0 0.001 21.5K 0.1 50 25 8
PATH-X 80 32 0.001 0.0 0.0 30K 0.1 100 25 8

CIFAR10 210 50 0.01 0.1 0.01 21.5K 0.1 25 25 8
CIFAR100 210 50 0.01 0.0 0.01 6.5K 5.0 25 25 8

DARCYFLOW 310 8 0.02 0.0 0.0001 24.5K 0.1 50 25 8
COSMIC 310 8 0.02 0.3 0.0001 5.5K 0.1 100 25 8

Table 5. Hyperparameters used for the experiments with the target complexity of a CCNN6,380.

DATASET EPOCHS
BATCH LEARNING DROPOUT

WEIGHT
ω0 λ τresolution τchannel τdepthSIZE RATE DECAY

CIFAR10 210 50 0.005 0.0 0.01 21.5K 0.1 50 50 16
CIFAR100 210 50 0.01 0.0 0.01 6.5K 0.1 25 25 8

DARCYFLOW 310 12 0.01 0.2 0.0 7.5K 0.1 50 25 8
COSMIC 310 4 0.01 0.2 0.01 5.5K 0.1 50 50 8

hyperparameter tuning, and other training settings. The
final hyperparameters used are listed in Table 5.

Optimizer, learning rates and learning rate schedule.
All our models are optimized with AdamW (Loshchilov
& Hutter, 2017) in combination with a cosine annealing
learning rate scheduler (Loshchilov & Hutter, 2016), and
a linear learning rate warm-up stage of 10 epochs, except
for ListOps, Retrieval and Path-X for which we have a
warm-up stage of 5 epochs.

Regularization. We utilize dropout (Srivastava et al., 2014)
–as shown in Fig. 5– as well as weight decay during training.

E.2.1. HYPERPARAMETER TUNING

Frequency prior ω0. The possible ω0 values explored in
this work are [1,500,1500,2500, ...28500,29500,30000].

Tuning the value of λ. λ plays the role of controlling the
weight of the computational loss Lcomp relative to the task
objective loss Lobj. In this work, we find two settings which
require different values of λ. One, given by the tasks that
converge to a low prediction values relative to perfection,
i.e., ListOps and CIFAR100, and for which the loss Lobj

remains relatively high at the end of training. The other
group is given by all the other tasks, which converge to high
prediction values –many even obtaining a perfect accuracy
on the train set–, and for which Lobj converges to values
close to zero. For the first group, we require a higher value
of λ such that the computational complexity loss Lcomp

remains relevant to the optimization objective. The final
values of λ used are 5.0 and 0.1, respectively.

Tuning the temperature of the Sigmoid masks τ . For the
resolution mask, we consider three values of τ , [25,50,100]
which correspond to a minimum size of 10%, 5% and 2.5%
of the corresponding dimension. For the channel mask, we

consider two values τ ∈ [25,50] which correspond to a min-
imum size of 10% and 5% of the corresponding dimension,
but observe early during tuning that models prefer τ=25.
For the depth dimension, which is much more sparse than
the channel and resolution dimensions, we consider two
values τ ∈ [8,16], which result on a minimum depth of 2
and 1 layers, respectively. We observe early during tuning
that models prefer τ=8.

Learning rate. The possible learning rate values explored
in this work are [0.0001,0.0005,0.001,0.005,0.01,0.02].

Dropout. The possible dropout values explored in this work
are [0.0,0.1,0.2,0.3].

Weight decay. The possible weight decay values considered
in this work are [0.0,0.0001,0.001,0.01,0.05].

E.3. Computational cost of DNArch
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Figure 9. Relative complexity during the course of training on the
Text task. This behavior is consistent across all tasks.

F. Limitations
Training on TPU requires static shapes. We train our
models on TPUs, a type of accelerator that requires a static
computational graph derived for specific input and network
shapes via the XLA (Accelerated Linear Algebra) compiler.
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As a result, TPUs do not support operations that change
the shapes of arrays during training. This means that on
TPUs, DNArch can only perform masking modifications to
the network during training, i.e., setting certain channels to
zero but still computing their outputs. At inference, how-
ever, the masks are fixed. Consequently, we can effectively
trim unused values to remove useless computations in a
way that is compatible with XLA. It is important to note that
this limitation is solely an implementation issue caused by
nature of TPUs’ hardware and can be avoided by using li-
braries and hardware that support dynamic computational
graphs, e.g., PyTorch and GPUs. While our results were
obtained using TPUs, we also provide a PyTorch imple-
mentation that avoids this issue, making it more flexible and
accessible, especially in scenarios where one needs to keep
candidate networks close to the target complexity Ctarget

during training.

DNArch requires instantiating the largest possible archi-
tecture. While masking weights through a gradient update
is straightforward, increasing the number of active weights
requires those weights to be instantiated in memory. This
means that even with dynamic computational graphs, it
is necessary to instantiate the largest possible architecture
learnable by DNArch in memory. To overcome this limita-
tion, we set the maximum kernel size to the size of the input,
and limit the maximum network size along the depth and
width dimensions to double the number of blocks and chan-
nels of the base network. While this trick allows DNArch
to easily shrink and grow representations within that range,
this restricts the potential sizes of optimal architectures and
can restrict the applicability of DNArch to very large mod-
els, e.g., LLMs (Brown et al., 2020; Chowdhery et al., 2022),
which can have billions of weights.

G. Outlook and future work
Input-dependent neural architectures. In this work, the
mask parameters are constant for all inputs within a task. An
alternative approach could use an additional neural network
MLPmask to predict the mask parameters based on context,
e.g., the current input, current task, etc. This would enable
the creation of context-dependent neural architectures such
as early-exit systems (Teerapittayanon et al., 2016; Ghodrati
et al., 2021; Schuster et al., 2022), but where the whole
network architecture is context-dependent. Consequently,
resulting architectures would providing finer control of per-
sample / per-modality complexity than existing methods.

Dynamic weighting of Lcomp during training. DNArch
explores architectures with complexity similar to target com-
plexity throughout training. This results from using a con-
stant λ in Eq. 9. Alternatively, one could use a dynamic
value of λ during training to induce a different training be-
havior. For example, gradually increasing λ would allow
DNArch to explore architectures with larger complexity

at first, and progressively encourage it to converge to net-
works with the desired target complexity. Such a weighting
scheduling of λ could lead DNArch to find better architec-
tures.

Training DNArch with additional / multiple constraints.
Here, we only consider computational complexity as a con-
straint when training with DNArch. However, other prop-
erties such as memory efficiency, hardware-awareness and
robustness are equally important. Designing regularization
terms that encourage other properties in DNArch as well
as exploring how different properties can be optimized in
unison are important directions for further research.

H. Architectures Found by DNArch

Table 6. Architectures found by DNArch on LRA with the target
complexity of a CCNN4,140.

TASK DEPTH KERNEL SIZE RESOLUTION
WIDTH

[Nin, Nmid, Nout]

L
IS

T
O

P
S

8

266 2048 [150 189 145]
569 632 [150 168 168]

1401 1416 [176 186 162]
310 310 [166 175 153]
213 213 [154 159 163]
12 301 [168 128 162]
5 250 [170 158 153]

24 502 [153 171 165]

T
E

X
T

8

445 2284 [180 217 205]
691 2939 [208 176 153]

1420 1420 [152 152 120]
415 1313 [120 120 147]

1467 1467 [147 118 135]
52 594 [134 173 153]
101 932 [150 156 183]
149 1036 [180 92 192]

R
E

T
R

IE
V

A
L

8

2 1913 [29 33 172]
136 2058 [184 174 183]

1013 2363 [205 171 161]
1446 2724 [188 164 115]

7 2604 [29 29 163]
1 2756 [29 35 154]
6 3545 [71 110 147]
1 3899 [71 88 137]

IM
A

G
E

8

203 1024 [118 155 147]
279 1024 [146 172 164]
219 486 [173 166 196]
308 308 [199 197 196]
144 144 [207 197 92]
8 125 [106 29 75]

30 96 [78 28 110]
40 126 [104 51 104]

PA
T

H
F

IN
D

E
R

8

195 1024 [109 140 171]
493 770 [171 168 158]
418 507 [144 183 170]
318 318 [173 187 178]
236 236 [182 162 160]
231 231 [161 121 103]
8 251 [105 47 210]
4 253 [116 29 188]

PA
T

H
-X

5

2484 15331 [280 174 157]
7204 7204 [177 280 159]
3669 3772 [167 280 98]
2323 5496 [123 164 164]
513 4768 [136 128 195]
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Table 7. Architectures found by DNArch on 2D datasets with the
target complexity of a CCNN4,140.

TASK DEPTH
KERNEL SIZE RESOLUTION WIDTH

[Y X] [Y X] [Nin, Nmid, Nout]

IMAGE CLASSIFICATION TASKS

C
IF

A
R

10

8

[9 7] [32 32] [142 139 145]
[12 8] [32 32] [145 160 157]
[25 7] [32 20] [158 186 182]
[9 10] [9 15] [186 208 168]
[1 13] [5 15] [169 177 150]
[1 10] [6 11] [151 139 156]
[5 1] [15 4] [154 115 110]
[6 5] [11 7] [108 41 166]

C
IF

A
R

10
0

8

[13 7] [32 32] [104 107 116]
[6 10] [32 32] [114 134 134]
[11 8] [22 22] [139 192 166]
[13 7] [16 18] [173 201 197]
[8 12] [10 12] [205 251 51]
[1 1] [8 9] [62 56 157]
[5 9] [8 10] [162 175 254]
[8 7] [9 9] [280 280 280]

DENSE TASKS

D
A

R
C

Y
F

L
O

W

3
[43 38] [80 72] [156 280 107]
[22 22] [22 22] [180 204 78]
[76 76] [85 85] [280 280 50]

C
O

S
M

IC

6

[94 111] [128 128] [18 110 23]
[2 13] [20 45] [186 207 139]

[129 129] [129 129] [126 265 100]
[129 121] [129 129] [78 105 59]

[90 89] [129 129] [57 201 197]
[76 74] [76 74] 202 145 216]

Table 8. Architectures found by DNArch on 2D datasets with the
target complexity of a CCNN6,380.

TASK DEPTH
KERNEL SIZE RESOLUTION WIDTH

[Y X] [Y X] [Nin, Nmid, Nout]

IMAGE CLASSIFICATION TASKS

C
IF

A
R

10

12

[4 7] [32 32] [380 328 384]
[9 10] [32 32] [384 371 393]
[12 6] [32 32] [392 361 391]
[20 6] [32 32] [388 370 421]
[10 11] [23 26] [421 417 486]
[11 11] [12 22] [496 444 479]
[1 11] [6 11] [493 482 304]
[1 6] [5 21] [211 78 384]

[29 4] [32 4] [363 459 280]
[18 15] [18 15] [277 394 67]
[1 1] [4 4] [111 109 361]
[4 3] [21 15] [121 374 449]

C
IF

A
R

10
0

12

[8 9] [32 32] [343 275 354]
[12 10] [32 32] [351 316 397]
[11 10] [32 32] [495 355 420]
[18 12] [29 21] [421 498 419]
[11 15] [27 24] [432 449 407]
[19 8] [25 20] [412 419 413]
[11 10] [12 23] [423 454 600]
[8 8] [8 9] [709 685 416]
[5 7] [5 8] [419 311 446]
[8 4] [8 4] [446 433 389]
[6 4] [6 4] [386 501 570]
[8 9] [8 9] [568 453 655]

DENSE TASKS

D
A

R
C

Y
F

L
O

W

7

[54 49] [54 49] [435 428 289]
[43 47] [70 72] [499 393 284]
[65 69] [85 85] [496 434 281]
[67 66] [85 85] [323 412 275]
[85 85] [85 85] [319 369 271]
[85 85] [85 85] [306 379 258]
[68 68] [85 85] [521 435 271]

C
O

S
M

IC

12

[35 32] [35 33] [146 236 272]
[11 21] [95 72] [170 284 319]
[44 24] [128 128] [141 339 388]
[23 41] [128 128] [385 407 361]
[28 27] [128 128] [351 279 356]
[21 19] [128 128] [354 362 310]
[29 24] [128 128] [310 351 466]]
[18 25] [128 128] [396 292 183]
[57 16] [128 128] [179 210 580]
[50 11] [127 77] [273 250 63]
[18 12] [89 67] [347 400 77]
[22 23] [97 79] [171 241 79]
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