
Early Termination for Hyperdimensional

Computing Using Inferential Statistics

Pu (Luke) Yi
lukeyi@stanford.edu
Stanford University

Stanford, California, USA

Yifan Yang
yyang29@stanford.edu
Stanford University

Stanford, California, USA

Chae Young Lee
chae@stanford.edu
Stanford University

Stanford, California, USA

Sara Achour
sachour@stanford.edu
Stanford University

Stanford, California, USA

Abstract

Hyperdimensional Computing (HDC) is a brain-inspired,
lightweight computing paradigm that has shown great poten-
tial for inference on the edge and on emerging hardware tech-
nologies, achieving state-of-the-art accuracy on certain clas-
sification tasks. HDC classifiers are inherently error resilient
and support early termination of inference to approximate
classification results. Practitioners have developed heuristic
methods to terminate inference early for individual inputs,
reducing the computation of inference at the cost of accu-
racy. These techniques lack statistical guarantees and may
unacceptably degrade classification accuracy or terminate
inference later than is needed to obtain an accuracy result.
We present Omen, the first dynamic HDC optimizer that

uses inferential statistics to terminate inference early while
providing accuracy guarantees. To realize Omen, we develop
a statistical view of HDC that reframes HD computations as
statistical samplingandtesting tasks, enabling theuseof statis-
tical tests.We evaluate Omen on 19 benchmark instantiations
of four classification tasks. Omen is computationally efficient,
delivering up to 7.21–12.18× inference speed-ups over an
unoptimized baseline while only incurring a 0.0–0.7% drop
in accuracy. Omen outperforms heuristic methods, achiev-
ing an additional 0.04–5.85× inference speed-up over the
unoptimized baseline compared to heuristic methods while
maintaining higher or comparable accuracy.

CCS Concepts: •Hardware→ Emerging languages and

compilers; Memory and dense storage; • Software and its

engineering→ Software notations and tools.

Keywords: program optimization, unconventional comput-
ing, hyperdimensional computing, emerging hardware tech-
nologies, edge machine learning

This work is licensed under a Creative Commons At-
tribution International 4.0 License.

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707254

ACMReference Format:

Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour. 2025.
Early Termination for Hyperdimensional Computing Using Infer-
ential Statistics. In Proceedings of the 30th ACM International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, Volume 1 (ASPLOS ’25), March 30–April 3, 2025,
Rotterdam, Netherlands.ACM, New York, NY, USA, 19 pages. https:
//doi.org/10.1145/3669940.3707254

1 Introduction

Lightweight machine learning (ML) models have been effec-
tive inperforming classificationon the edge for biomedical, in-
dustrial, and environmental monitoring domains—examples
include anomaly detection, wake word recognition, action
prediction, and classification of signal patterns [22, 37]. In re-
cent years, researchers and practitioners have developed ML
classifiers that leverage hyperdimensional computing (HDC),
an emerging computing paradigm, to perform inference on
highly resource-constrained edge devices and error-prone
emerging hardware platforms [6, 32, 39, 50, 67]. HDC classi-
fiers are attractive targets for these platforms because their
operators are resource efficient and amenable to optimization,
the compute model is highly robust to errors, and inference
results can be easily approximated.

1.1 HDCClassifiers and Early Termination

Hyperdimensional computing (HDC) is an emerging com-
puting paradigm that uses high-dimensional vectors called
hypervectors as the basic data type. In HDC, information is
encoded in the distances between hypervectors. This repre-
sentation is inherently error resilient and amenable to ap-
proximation. Data are encoded with hypervectors through
the use of HD operators which compute hypervectors that
are similar/dissimilar to their hypervector operands. Because
all HD operators are element-wise operators and distances
are approximable, HD computations are implementable as
streaming computations that may be terminated early to ob-
tain approximate results.

342

https://orcid.org/0000-0001-6669-6520
https://orcid.org/0009-0006-5065-2973
https://orcid.org/0009-0005-5078-1233
https://orcid.org/0000-0003-3444-1544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707254
https://doi.org/10.1145/3669940.3707254
https://doi.org/10.1145/3669940.3707254
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3669940.3707254&domain=pdf&date_stamp=2025-03-30

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

Early Termination. Due to the fully distributed property
of HDC, which connects to the statistical property of ex-
changeability, the inference task is error-resilient and can
be terminated at any time to obtain an approximation of the
final classification result. HDC classifiers, therefore, support
performance optimizations that terminate inference tasks
early to reduce latency. In contrast, classical ML models typi-
cally deploy all-or-nothing inference algorithms in which the
entire model must be applied to the inference input to pro-
duce a classification or offer coarse-grained early exit without
guarantees on accuracy loss [23].
Prior work. Researchers have developed dynamic, heuris-
tic approaches to terminate inference early in the runtime
and methods to statically reduce the size of the hypervec-
tor [9, 30, 33, 54, 55, 63]. These methods lack statistical guar-
antees, and as a result produce unacceptable accuracy degra-
dations or processmore hypervector elements than necessary
in certain scenarios (Section 7). Researchers have also devel-
opedmethods thatminimizehypervector sizewhileproviding
theoretical guarantees; however, these methods make inde-
pendence assumptions about encoded information that do
not hold for classification tasks [74].

1.2 Early Termination with Omen

We present Omen, a dynamic HDC optimizer that uses infer-
ential statistics to terminate classification earlywith accuracy
guarantees. Omen deploys a termination algorithm inspired
byWald’s sequential probability ratio test (SPRT) [70], where
newdata are processed sequentially until a statistically signifi-
cant conclusion is reached.Omenoffers the followingbenefits:
• Fine-GrainedPer-InputEarlyTermination.Omeniden-
tifies effective termination points for individual inputs at
the dimension granularity. Omen can therefore allocate
compute resources based on the difficulties of inputs.

• AccuracyGuarantees.Omenworks with a user-provided
confidence level that serves as an upper bound on the accu-
racy drop resulting from early termination. These accuracy
guarantees hold even with hardware-induced errors.

• PracticallyDeployable.Omen’s termination algorithm is
optimized to introduceminimalmemory and compute over-
heads and can be readily deployed on embedded systems.
Furthermore, because Omen requires little to no modifi-
cation of the HDC-based ML pipeline, it can be readily
integrated with various training and inference algorithms.

Results.Omen is computationally efficient, delivering up to
7.21–12.18× inference speed-ups over an unoptimized base-
line while only incurring a 0.0–0.7% drop in accuracy. More-
over, compared to heuristic early terminationmethods, Omen
achieves an additional 0.04–5.85× inference speed-up over
the unoptimized baselinewith higher or comparable accuracy
in 19 benchmarks. We also demonstrate that Omen can be
readily used without adaption to perform principled early
termination in the presence of bit corruptions.

Key Insight. To realize Omen, we develop a new statistical
view of HDC that reframes HD computations as statistical
sampling and testing problems. We relate the statistical ex-
changeable property to the fully-distributed property of hy-
pervectors, which enables such a view, and show that this
propertyholds forhypervectors constructedusing simpleHD-
operator-based or advanced optimization-based algorithms.

1.3 Contributions

• Statistical view of HDC (Section 4): We present a statis-
tical view of HDC. To the best of our knowledge, this is the
first work that frames HDC classification as a statistical
sampling and testing problem, allowing the application of
statistical methods to HDC classifiers.

• Omen optimizer (Section 5): We propose Omen, the first
dynamic early termination algorithm for HDC classifiers
that uses inferential statistics to improve inference perfor-
mance while providing accuracy guarantees.

• Exchangeability (Section 6):We relate the fully distributed
property of HDC to statistical exchangeability and prove
that hypervectors constructed using advanced training al-
gorithms are exchangeable.

• Evaluation (Section 7): We empirically demonstrate that
Omenachievessignificantperformance improvementswith
minimal accuracy loss, and Omen’s accuracy bounds hold
robustly even in the presence of hardware errors.

2 Hyperdimensional Computing (HDC)

Hyperdimensional Computing (HDC), or Vector Symbolic
Architectures (VSA), is a highly error-resilient, brain-inspired
computing paradigm. The basic HDC datatype is a hypervec-
tor,𝑉 , a high-dimensional vector, and the value in each index
𝑉 [𝑖] is referred to as ahypervector element. Thedatatypeof the
hypervector elements depends on the variant of HDC used;
we will target two variants in this work, BSC (Binary Spatter
Code) and MAP (Multiply-Add-Permute). BSC uses dense
binary hypervectors with elements𝑉 [𝑖] ∈ {0,1}, and MAP
uses real-valued hypervectors with elements𝑉 [𝑖] ∈ [−1,1].
Table 1 summarizes the HD operator implementations.
Distances. In HDC, information is represented as relative
distances between hypervectors. BSC uses the Hamming dis-
tance HD(𝑉 ,𝑉 ′) between hypervectors and MAP uses the
cosine cos(𝑉 ,𝑉 ′) or dot product dot(𝑉 ,𝑉 ′) similarities be-
tween hypervectors. The size (𝑁 , number of elements) of the
hypervector affects the resolution of encoded information
and the granularity at which distances can be resolved.
HDCodebooks. To work with HDC, input datatypes, such as
text, numbers, or images, must be encoded as a hypervector
representation. The basic building block of an HD informa-
tion encoding are basis or code hypervectors which represent
atomic symbols in the problem domain. These hypervectors

343

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Type Hypervector Random Generation Distance Metric [dis (𝑉 ,𝑉 ′)] Binding [𝑉 ⊗𝑉 ′] Bundling [⊕] Permutation [𝑝𝑘 (𝑉)]

BSC [38] Dense Binary Bernoulli Hamming Distance HD(𝑉 ,𝑉 ′) XOR Majority Vote Rotational Shift
𝑉 [𝑖] ∈ {0,1} 𝑉 [𝑖] ∼Bern(𝑝 =0.5) HD(𝑉 ,𝑉 ′) = 1

𝑁

∑(𝑉 [𝑖] xor𝑉 ′ [𝑖]) 𝑉 [𝑖] xor𝑉 ′ [𝑖] [(∑𝑚
𝑗=1𝑉𝑗 [𝑖]) > 𝑚

2] 𝑉 [(𝑖+𝑘)𝑚𝑜𝑑𝑁]

MAP [18] Reals Uniform Cosine/Dot Product Similarity Multiplication Normalized Addition Rotational Shift
𝑉 [𝑖] ∈ [−1,1] 𝑉 [𝑖] ∼U(−1,1) dot(𝑉 ,𝑉 ′) =∑

𝑉 [𝑖]𝑉 ′ [𝑖] 𝑉 [𝑖]𝑉 ′ [𝑖] clamp (∑𝑉𝑗 [𝑖]) 𝑉 [(𝑖+𝑘)𝑚𝑜𝑑𝑁]

Table 1. BSC and MAP HDC Overview. Distance metrics compute a real value from two hypervectors. Other elementwise
operators map hypervectors to hypervectors. clamp operation clamps the value to [−1,1] range.

are typically randomly generated, where each hypervector el-
ement𝑉 [𝑖] is independently and identically distributed (iid).
HDOperators.HDC’s compute operators generate hypervec-
tors with certain distance relationships to other hypervectors.
The binding (𝑉 ⊗𝑉 ′) and permutation (𝑝𝑘 (𝑉)) operations
produce hypervectors that are dissimilar (far) from the input
hypervectors𝑉 and𝑉 ′. The bundling operation (𝑉1⊕ ...𝑉𝑚)
produces a hypervector that is similar (close) to each of the
input hypervectors𝑉1,...,𝑉𝑚 . The implementation of HD oper-
ators depends on the HDC variant, as summarized in Table 1.

2.1 Example: Text Encoding

Consider the case where we want to encode the word catch

as a hypervector. We first generate a random hypervector for
each letter a→𝑉a, ...,z→𝑉z. These letter hypervectors are
far apart from one another. Using HD operators, we can then
build hypervector representations of strings from the letter
hypervectors. We note that the datatype of the generated hy-
pervector𝑉catch dependsontheHDCvariantused.TheHDop-
erators determine the distance relationships between words;
all the following three commonly used encodings encode the
word catch but have very different distance properties:
Binding-Based.We encode the position of each letter by per-
muting the letter hypervector and then bind them together.
The resulting hypervector embedding for catchwill be dis-
similar to words that share letters in the same position, such
as patch and match:

𝑉 bind
catch=𝑉c⊗𝑝

1 (𝑉a)⊗𝑝2 (𝑉t)⊗𝑝3 (𝑉c)⊗𝑝4 (𝑉h)

Bundling-Based.We encode the position of each letter by
permuting the letter hypervector and then bundle them to-
gether. The resulting hypervector embedding for catchwill
be similar to words that share letters, such as patch and match:

𝑉 bund
catch=𝑉c⊕𝑝

1 (𝑉a)⊕𝑝2 (𝑉t)⊕𝑝3 (𝑉c)⊕𝑝4 (𝑉h)

Trigram-Based. We can build trigrams cat, atc, and tch

with binding-based encoding and then bundle the trigrams
together to build the word [36]. With this encoding, words
that share trigrams will be similar to each other.

𝑉
trig
catch=𝑉

bind
cat ⊕𝑉 bind

atc ⊕𝑉 bind
tch

r
p1(a)

a

p2(r)

p1(r)
p2(e)

Query Text
rare

Query HV

Encodes input with HD operators.

rar

are
Codebook

(a) Trigram-Based Text Encoder

Query HV

 English

english

Class-query
HV distances

Winning
Class HV

DEnglish = 0.2

DFrench = 0.5 French

 Italian

 Dutch

 German

DItalian = 0.6

DDutch = 0.4

DGerman = 0.3

Finds closest
class HV to
query HV.

Class HVs

(b) Inference Algorithm

Figure1.HDClanguage classifier.HVstands forhypervector.

3 HDCClassification with Omen

HDC has been used extensively for performing lightweight
and error-resilient classification tasks, and has been demon-
strated to achieve higher classification accuracy than other
lightweight ML approaches on a range of edge inference
tasks [26, 56]. Omen enables early termination of inference
tasks when a statistically significant result is reached, largely
reducing the computational costs of inference. We next in-
troduce Omen using a language classification problem as a
running example. Section 3.1 overviews the anatomy of HDC
classifiers using theHDC language classifier. Section 3.2 intro-
duces the challenges associated with reducing hypervector
size during inference, and Section 3.3 introduces Omen.

3.1 Anatomy of anHDCClassifier

Figure 1a and 1b presents the flow for an HDC language clas-
sifier. Given an input sentence, it encodes the sentence as a
hypervectorandclassifies thesentenceasoneof the languages
by computing the hypervector similarities. This classifierwas
previously applied to an in-memory computing substrate to
enable language classification with high accuracy and very
low energy consumption [39].

344

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

Architecture. The classifier is composed of an encoder (Fig-
ure 1a) that translates sentences to hypervectors. Hypervec-
tors of training data are used to construct class hypervectors
𝑉English, 𝑉French, 𝑉Dutch, 𝑉German, and 𝑉Italian that capture the
salient features of each language. In the above language clas-
sifier, the encoder uses a pre-generated codebook to translate
each symbol (letters and punctuations) into a hypervector,
and the trigram encoding method described in Section 2.1 to
encode sentences by regarding the sentence as a large “word”.
Inference.During inference (Figure 1b), the classifier accepts
a query sentence, translates it into a hypervector𝑉query us-
ing the encoder (Figure 1a), and then finds the class hyper-
vector with the smallest distance to the query hypervector
argminlang (dis(𝑉query,𝑉lang)).
Training. The HDC training algorithm computes class hy-
pervectors from the training data, where each training input
𝑡𝑖,𝑙 is the 𝑖-th input with label 𝑙 . Given a training dataset, the
simplest HDC training algorithm first encodes each training
input 𝑡𝑖,𝑙 as a hypervector𝑉𝑖,𝑙 using the classifier’s encoder.
The hypervectors are are then grouped by label and then
bundled together𝑉𝑙 =𝑉1,𝑙 ⊕𝑉2,𝑙 ... to produce a class hyper-
vector𝑉𝑙 for each label. More advanced training algorithms
achieve higher accuracy by iteratively re-bundling misclas-
sified inputs (a kind of learning vector quantization (LVQ)
algorithms [47]) or optimizing hypervector representations
with gradient descent. These algorithms These algorithms
are also supported by Omen and discussed in Section 6.2.4. In
this example, we use iterative rebundle training.
HDC Variant. This HDC classifier architecture is general
and agnostic to the HDC variant or the hypervector size. In
this example, we instantiate the HDC classifier to use the BSC
variant and to work with 𝑁 =10,048-element BSC hypervec-
tors. Since each BSC element is a 0/1 value, each hypervector
is 10,048 bits. We choose a hypervector size of 10,048 because
it is a multiple of 64 and convenient for bit packing optimiza-
tions. The Hamming distance HD(𝑉 ,𝑉 ′) is used to compute
distances between class andqueryhypervectors, and theXOR,
majority vote, and rotational shift operations implement bind-
ing, bundling and permutation.
Dataset. In this example, we choose 10,000 sentences each
from5 languages,Dutch,English, French,German, and Italian,
from the Leipzig Corpora Collection [21] language dataset.
For each language, a randomselectionof 6/7of all sentences is
usedas training samples, and theothers as testing samples.We
use only 5 languages to keep the example simple and tractable.
The HDC language classifier achieves 98.5% test accuracy.

3.2 Challenges with Inference

As an example, we use the HDC classifier to classify two
sentences Q1, Q2, where both sentences are Dutch:
• Q1.Door puur geluk leef je nog.
• Q2.Dringend burgemeesters uit hun ambt zetten als hoofd
van de politie.

n=1024 10048

 Query HV

Encoder
generates next

1024 elements of
query HV

DEnglish +=

DFrench +=

DItalian +=
 DDutch +=

DGerman +=

Inference

Update class-query
distances

Updates winning
class

Termination
Point

Omen

Statistical Test
[α=0.05]

Test Passes
Confident, terminate early
and return result.

Dutch

Test Fails
Continue inference until
next termination point.

Dutch

Analyzes winning
class and
distances

n=2048

(a) Early termination with Omen.

Size 𝑉Dutch 𝑉English 𝑉French 𝑉German 𝑉Italian
𝑉Q1 10048 0.4790 0.5001 0.4792 0.4916 0.4831
𝑉Q2 10048 0.4033 0.4534 0.4482 0.4388 0.4690
𝑉Q1 9048 0.4799 0.4997 0.4798 0.4911 0.4809
𝑉Q2 9048 0.4048 0.4546 0.4465 0.4418 0.4719

(b)Hamming Distances of Q1, Q2 queries. Minimum distances are
marked as bold (correctly classified) or red (incorrectly classified).

𝑝-values computed sorted by 𝑝-value (descending order) and
by theWald’s test compared to 𝛼/ 𝑗 (Holm-Bonferri method)
name 𝑝 𝑗 𝑗 name 𝑝 𝑗 <𝛼/ 𝑗 result
𝐻English
0 0.007560 1 𝐻French

0 0.050722≥ 0.0500 FAIL
𝐻French
0 0.050722 2 𝐻English

0 0.007560< 0.0250 PASS
𝐻 Italian
0 0.000067 3 𝐻German

0 0.004512< 0.0166 PASS
𝐻German
0 0.004512 4 𝐻 Italian

0 0.000067< 0.0125 PASS

(c) Omen’s statistical test as applied to query Q2 for 𝑛 = 1024. The
unsatisfied test is marked as red.

Figure 2. Omen classifier with early termination. Tables
report class-query hypervector distances and statistical tests
for Q1, Q2 queries.

Figure 2b presents the hypervector distances for the Q1
and Q2 classification tasks. Using the entire 10,048-element
hypervectors, the Q1 and Q2 queries are both correctly clas-
sified as Dutch sentences.𝑉Q1 is almost as close to𝑉French as
to𝑉Dutch, and𝑉Q2 is much closer to𝑉Dutch than other𝑉lang’s.

We can reduce the memory and footprint of the model and
the computation required for inference by reducing the size
of the hypervectors 𝑁 in the HDC classifier. This optimiza-
tion sacrifices classification accuracy for resource usage. If
we were to repeat the above inference with the BSC language
classifier, but with slightly smaller 9,048-bit hypervectors, the
Q1 query would be classified incorrectly, but the Q2 query
would still be classified correctly. If we investigate the hyper-
vector distances on this reduced-size model, we find that𝑉Q1
becomes closest to𝑉French, although by a very small margin,
resulting in amisclassification. In contrast, the𝑉Q2 is robustly
much closer to𝑉Dutch and is therefore still classified correctly.

The crux of the issue is that some queries are close to mul-
tiple classes and thus difficult to classify, requiring more bits
to reach a conclusion, whereas other queries are much closer

345

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

to one class and thus easy to classify. Therefore, it would be
productive to dynamically adjust the number of processed
bits depending on the difficulty of the individual inputs.

3.3 Early Termination with Omen

Omen enables dynamic early termination of HDC classifiers
for individual inputs while providing an upper bound on the
accuracy loss. Omen’s workflow is shown in Figure 2a. Omen
accepts a list of early termination points: for the current ex-
ample, termination points are 𝑛=1024, 2048, 4096, and 9192
hypervector elements.

Omen keeps track of the running query-class distances and
tests if the current classification result is statistically signif-
icant at each termination point. For Q2, at the termination
point 1 where 𝑛 = 1024, it is closest to class Dutch. To test
the the statistical significance of the result, Omen applies
a statistical test to the partially processed query and class
hypervectors and the running query-class distances.
Rationale. Omen frames the classification task as a statis-
tical inference problem. A statistical inference problem sets
hypotheses about the underlying distributions, computes 𝑝-
values that quantify probabilities of observing the current
samples assuming the hypotheses are true, and then infers
the truthfulness of the hypotheses based on 𝑝-values.
We develop a statistical inference view of HDCwhere dis-

tances between hypervector elements are treated as samples
or observations of an unknown distance distribution. The
running distances between class and query hypervectors can
then be interpreted as approximations of the expected value
of the underlying distance distribution. We can apply statis-
tical tests to check whether the current observations support
a hypothesis about the underlying distribution. Section 4 de-
scribes this view of HDC in more detail.
Assessing Statistical Significance. Suppose that, at a ter-
mination point, Omen finds that𝑉Q2 is closest to𝑉Dutch (that
is, a prefix of 𝑉Q2 is closest to the corresponding prefix of
𝑉Dutch). Omen checks the statistical significance of the current
observation. Omen forms a hypothesis 𝐻1:𝑉Q2 is closest to
𝑉Dutch in expectation. If Omen accepts𝐻1, then Omen termi-
nates at this point. Omen accepts a user-specified statistical
significance parameter 𝛼 that serves as an upper bound on
accuracy drop due to early termination. Therefore, if 𝐻1 is
not true, the probability that Omen accepts𝐻1 and terminates
with Dutch as the incorrect classification result should be at
most 𝛼 . In this example, we use 𝛼 =0.05.
The Statistical Test. We next describe how the statistical
test is performed. We first break𝐻1 down into 4 hypotheses
𝐻English
1 , 𝐻 French

1 , 𝐻German
1 , and 𝐻 Italian

1 , which are that 𝑉Q2 is
closer in expectation to𝑉Dutch than to𝑉English,𝑉French,𝑉German,
or𝑉Italian, respectively.We set 4 null hypotheses that we want
to reject, 𝐻English

0 , 𝐻 French
0 , 𝐻German

0 , and 𝐻 Italian
0 , which are

negations of the previous 4 hypotheses, respectively.

The way a statistical test rejects a null hypothesis𝐻 lang
0 is

to compute a 𝑝-value 𝑝lang , which is an upper bound proba-
bility that the current distances are observed if𝐻 lang

0 is true.
Then, if the𝑝-value is sufficiently small (e.g.,𝑝lang <𝛼), we can
reject𝐻 lang

0 confidently because even if𝐻 lang
0 is true, wemake

mistakes less than 𝛼 of the time. Omen uses theWald’s test
(Section 5.1) to derive the 𝑝-value for each null hypothesis.
Because Omen tries to reject all 4 null hypotheses 𝐻English

0 ,
𝐻 French
0 , 𝐻German

0 , and 𝐻 Italian
0 , the error probability for each

null hypothesis accumulates. Toupper bound theoverall error
probability, Omen uses the Holm-Bonferri method (Section
5.2) to derive a series of 𝑝-value thresholds for the null hy-
potheses from the statistical significance parameter 𝛼 ; briefly
put, if the 4 𝑝-values from the Wald’s test are sorted into
descending order, then the adjusted threshold for the 𝑗-th
𝑝-value is 𝛼/ 𝑗 . The 𝑝-values and thresholds for query Q2 at
termination point 𝑛=1024 are summarized in Figure 2c.
Continuing Execution. The above statistical test fails be-
cause the null hypothesis𝐻 French

0 has a 𝑝-value 0.050722 that
exceeds the Holm-Bonferri adjusted threshold 0.0500. There-
fore,Omendraws the conclusion that not enoughhypervector
elements have been processed to declare Dutch as the win-
ning class and Omen will continue processing elements until
the next termination point is reached. Omen repeats the statis-
tical test at the second termination point after 2048 elements
have been processed—at this point, the Dutch class is still the
current winner. This time, the statistical test returns true, so
Omen terminate inference early and returnsDutch as the clas-
sification result. For query Q2, inference is terminated after
encoding and processing 2048 hypervector elements—just
20.4% of the whole hypervector.
Omen is Adaptive.Omen’s early termination algorithm nat-
urally adapts to differences in classification difficulty across
inputs and to hardware error. For example, Omen does not
terminate early for Q1, for it is significantly harder to classify
Q1 query. Omen also naturally adjusts to any hardware errors
anddata corruptions. For example, ifwe repeat the sameclassi-
fication tasks but allow for bit corruptions during the distance
computations, where the probability of corruption for each
bit is 0.15,Omen correctly classifiesQ2 but exits 1 termination
point later, after processing 40.8% of the hypervector.

4 Statistical View of HDC

Omen performs early termination while also achieving a sta-
tistical upper bound 𝛼 on the accuracy loss. To achieve this
goal, we develop an alternative statistical interpretation of
HDC classification that reframes HDC distance calculations
as sampling from an underlying distribution. This view of
HDC classification is critical to enabling early termination
with guarantees, as it enables us to apply statistical tests to
evaluate the significance of a particular distance calculation.
In this section, we give an intuitive overview of the statis-
tical view and focus on the simplest HD training algorithm

346

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

Notation Meaning

𝛼 significance level; upper bound of accuracy loss
𝑉 ,𝑣 𝑉 is a HV, and 𝑣 is an element in𝑉
𝑁,𝑛 number of total and processed HV elements 𝑁 ≥𝑛
𝐷,𝑑 vector of HV element distances, 𝑑 is an element in𝐷

𝑃𝑉 ,𝑃𝐷 underlying distribution of each 𝑣 in𝑉 , or 𝑑 in𝐷
𝐻1,𝐻0,𝑝 test and null hypothesis, 𝑝 is 𝑝-value for𝐻0
𝑍𝑛 (𝐷) average of first 𝑛 samples from𝐷 ,𝑍 (𝐷)= 1

𝑛

∑𝑛
𝑖=1𝐷 [𝑖]

CD𝑛 (𝐷1,𝐷2) average squared differences of𝑛-prefixes of𝐷1 and𝐷2
𝜋 a permutation [𝑛]→ [𝑛] for some integer 𝑛
𝐵,𝐶 the number of basis and class HVs, respectively
𝑊𝑖 a vector of the 𝑖-th dimensions of all 𝐵+𝐶 stored HVs

Table 2. Formalism symbols. HV is short for hypervectors.

that makes the hypervector elements independent and iden-
tically distributed (iid). The discussion and formalism of the
advanced training algorithms are in Section 6.We summarize
our use of notations in Table 2 for reference.

4.1 Fully Distributed Hypervectors

This statistical view of HDC applies if the hypervectors in the
distance calculation are fully distributed, which intuitively
means that the encoded information is fully distributed in
all vector dimensions. This property of HDCwas identified
by prior work [38, 45]. We relate it to the statistical property
exchangeability in Section 6. In this section, we consider a
case of fully distributed hypervector, where each hypervector
element 𝑣 =𝑉 [𝑖] is iid from the same underlying distribution
𝑣 ∼ 𝑃𝑉 . We call a hypervector iid if its elements are iid. If a
hypervector is iid, then the following intuitions hold:

• The hypervector size,𝑁 , can be thought of as themaximum
number of samples thatmay be taken from 𝑃𝑉 . The number
of hypervector elements 𝑛 that have been processed corre-
sponds to thenumber of samples that have been taken so far.

• Any element-wise operations (∀𝑖,𝑉 [𝑖] = op(𝑉1 [𝑖],𝑉2 [𝑖] ..))
over two or more independent iid hypervectors produces
another iid hypervector.

• Permutation (such as rotational shifts) on iid hypervectors
produces iid hypervectors.

4.1.1 HD Operators. All randomly generated basis hy-
pervectors are iid by construction. From this point, binding,
bundling, and permutation operations all produce iid result
hypervectors. Note that certain compositions of HD opera-
tors over random hypervectors produce hypervectors that
are not iid, but the introduced element dependence does not
affect the distance properties much, and these compositions
can be replaced with alternatives that do not introduce de-
pendence while achieving the same distance properties [74].
Therefore, we may assume compositions of the HD operators
over random hypervectors produce iid hypervectors.

4.1.2 Element Distances/Similarities. In HDC, hyper-
vector distances/similarities are computed by aggregating

over element-wise distances/similarities. Note that our sta-
tistical view applies to both distance and similarity measures,
butwewill present themas “distance” to be concise. For hyper-
vectors𝑉1 and𝑉2, we can compute an element distance vector
𝐷 where 𝐷 [𝑖] =dis(𝑉1 [𝑖],𝑉2 [𝑖]). Because the dis operator is
element-wise,𝐷 is iid if𝑉1,𝑉2 are iid. We denote each element
𝑑 in𝐷 is from distribution 𝑃𝐷 (𝑑∼𝑃𝐷 =dis(𝑃𝑉1 ,𝑃𝑉2)). For BSC,
dis(𝑉1 [𝑖],𝑉2 [𝑖]) =𝑉1 [𝑖] xor 𝑉2 [𝑖], the bit difference and for
MAP, dis(𝑉1 [𝑖],𝑉2 [𝑖])=𝑉1 [𝑖]𝑉2 [𝑖], the product.

4.2 Distances as Expected Value Estimates

Given a iid distance vector𝐷 where𝑑∼𝑃𝐷 , the HDC distance
metric𝑍𝑛 (𝐷)=1/𝑛 ·

∑𝑛
𝑖=1𝐷 [𝑖] estimates the expected element

distance 𝐸 (𝑃𝐷) by computing the average element distance
over 𝑛 processed samples. Note that the expected distance
and the distance distribution are both unknown and has no
closed-form solution in complex tasks such as classification
and therefore can only be estimated by sampling the distribu-
tion. The number 𝑛 of hypervector elements processed corre-
sponds to the number of samples drawn from the underlying
distributions and thus affects the quality of approximation.
Conceptually,𝑍𝑛 (𝐷)→𝐸 (𝑃𝐷) when 𝑛 is sufficiently large.

4.2.1 Vanilla HDClassification. In the simplest HD clas-
sification workflow, the encoder uses HD operators on ran-
domly generated hypervectors, and the vanilla training algo-
rithm bundles hypervector representations of training sam-
ples from a class as the class hypervector. Thus, the class hy-
pervectors are iid. During inference, the classification of a test
sample is based on the distances between the test sample hy-
pervector and the class hypervectors. Since all hypervectors
involved are iid, the associated distance vectors are also iid.

4.3 Distance Comparisons with Statistical Tests

We observe that with this alternate view of HDC, distance
comparisons resemble sampling and testing problems, where
inferential statistics, or statistical tests, can be used to assess
the statistical significance of conclusions drawn from hyper-
vector distance comparisons. Statistical tests offer guarantees
that false conclusions are drawn with a probability of at most
𝛼 , the user-defined significance level.
Distance Tests.We can interpret a given distance compar-
ison as a statistical test. When comparing two hypervector
distances computedwith𝑛 elements,𝑍𝑛 (𝐷1) ≤𝑍𝑛 (𝐷2), we es-
sentially compare expected values of the underlying distance
distributions 𝐸 (𝑃𝐷1) and 𝐸 (𝑃𝐷2), with𝑍𝑛 (𝐷1) and𝑍𝑛 (𝐷2) as
their estimates. Therefore, we can formulate a distance test
where we are testing whether the sampled hypervector dis-
tances𝐷1,𝐷2 support the testhypothesis𝐻1 :𝐸 (𝑃𝐷1) ≤𝐸 (𝑃𝐷2).
We set the null hypothesis 𝐻0 :𝐸 (𝑃𝐷1)>𝐸 (𝑃𝐷2), the negation
of the hypothesis 𝐻1 we want to obtain. When 𝐻0 is true,
we allow the incorrect conclusion𝐻1 to be drawn from the
samples, with a probability of at most 𝛼 . The statistical test
computes a𝑝-value𝑝 for𝐻0, where𝑝 is an upper boundon the

347

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

probability thatwe observe𝐷1,𝐷2when𝐻0 is true. If𝑝 <𝛼 , we
reject𝐻0 and conclude that𝐻1 holds. Otherwise, we cannot
conclude𝐻1 although we observe𝑍𝑛 (𝐷1) ≤𝑍𝑛 (𝐷2), because
the observations𝐷1 and𝐷2 are not statistically significant.

5 Early Termination with Omen

In this section, we present the technical details of Omen that
enables early termination of the inference for individual in-
puts while providing an upper bound on the accuracy loss.
Omen adopts the statistical inference view of HDC presented
in Section 4 and therefore works with classifier architectures
that produce fully distributed vectors. Sections 5.1 and 5.2
present the statistical tests used by Omen to assess the statis-
tical significance of the classification result and introduce the
algorithmic optimizations made to improve computational
efficiency. Section 5.3 presents the core inference algorithm
and relates the statistical significance to accuracy loss.

5.1 Key Statistical Tests

Omen usesWald’s test [70] to perform distance tests and the
Holm-Bonferri method to effectively draw conclusions from
a set of distance tests. They are used together to assess the
statistical significance of a classification result.

5.1.1 Distance Comparisons with theWald’s test. The
Wald’s test computes a𝑝-value𝑊𝑛 (𝐷1,𝐷2) for a hypothesis in-
volving the expected value of two distributions𝐻0 :𝐸 (𝑃𝐷1)>
𝐸 (𝑃𝐷2), given 𝑛 observations from 𝐷1 and 𝐷2. The 𝑝-value
expression for applying theWald’s test to𝐻0 is

𝑊𝑛 (𝐷1,𝐷2)=1−Φ
(√

𝑛(𝑍𝑛 (𝐷2)−𝑍𝑛 (𝐷1))√︁
CD𝑛 (𝐷1,𝐷2)−(𝑍𝑛 (𝐷2)−𝑍𝑛 (𝐷1))2

)
whereΦ is the cumulative density function (CDF) of standard
normal distribution, and 𝑛 is the number of bits processed.
The CD𝑛 function is cumulative squared differences be-

tween observations (distances) from two distributions, which
is used to perform a paired comparison.CD𝑛 is used to account
for the fact that𝐷1 and𝐷2 may not be independent. For exam-
ple, in classification, since the test input belongs to one class,
closer to one class correlates to farther from other classes.

CD𝑛 (𝐷1,𝐷2)=1/𝑛 ·
𝑛∑︁
𝑖=1

(𝐷1 [𝑖]−𝐷2 [𝑖])2

5.1.2 Optimization: Precompute CD𝑛 for Hamming

Distance. The cumulative squared difference formula can be
rewritten to eliminate a hypervector if theHamming distance
metric was used to construct 𝐷1 and 𝐷2 from hypervector
elements and 𝐷1 =𝑉1 xor 𝑉 and 𝐷2 =𝑉2 xor 𝑉 . The cumu-
lative squared difference can be rewritten to eliminate𝑉 , as
∀𝑖,𝑉1 (𝑖),𝑉2 (𝑖),𝑉 (𝑖) are 0/1 bits:

CD𝑛 (𝐷1,𝐷2) = 1/𝑛 ·∑𝑛
𝑖=1 (𝐷1 [𝑖]−𝐷2 [𝑖])2

= 1/𝑛 ·∑𝑛
𝑖=1 ((𝑉1 [𝑖] xor 𝑉 [𝑖])−(𝑉2 [𝑖] xor 𝑉 [𝑖]))2

= 1/𝑛 ·∑𝑛
𝑖=1 (𝑉1 [𝑖] xor 𝑉2 [𝑖])2

= 1/𝑛 ·∑𝑛
𝑖=1 (𝑉1 [𝑖] xor 𝑉2 [𝑖])

Furthermore, if𝑉1 and𝑉2 are constant, such as two class hy-
pervectors that are fixed after training, the cumulative square
difference can be pre-computed for particular𝑉1 and𝑉2.

5.2 Holm-Bonferri Method

If only one distance comparison is performed, a statistical
test, such as the Wald’s test, may be used to determine the
significance of the result. However, whenmultiple distance
comparisons must be made, multiple tests must be performed
to find out whether we can reject all null hypotheses, where
themultiple comparison problem arises. It is the problem of
accumulating error rate of rejecting null hypotheses when
there is more than one statistical test.

The Holm-Bonferroni method [28] can be used to perform
multiple tests that try to reject multiple (𝑚≥ 1) null hypothe-
ses 𝐻 (1)

0 ,𝐻
(2)
0 , ... ,𝐻

(𝑚)
0 . This algorithm guarantees that the

probability of falsely rejecting any null hypothesis 𝐻 (𝑖)
0 is

within an upper bound of 𝛼 . The algorithm achieves this by
using successively stricter thresholds for the null hypotheses.
Algorithm. The algorithm first computes the 𝑝-value for
each null hypothesis and then sorts all the null hypotheses
by their 𝑝-values in descending order, thus assigning to each
null hypothesis a distinct integer rank 𝑗 , 1 ≤ 𝑗 ≤ 𝑚, such
that, for any 1≤ 𝑖1,𝑖2 ≤𝑚, if the rank of𝐻 (𝑖1)

0 is less than the
rank of 𝐻 (𝑖2)

0 , then the 𝑝-value of 𝐻 (𝑖1)
0 is not less than the

𝑝-value of𝐻 (𝑖2)
0 . Then the significance test used for the null

hypothesis𝐻 (𝑖)
0 is 𝑝𝑖 <𝛼𝑖 =

𝛼
𝑗
, where 𝑗 is the rank of𝐻 (𝑖)

0 . If
all 𝑝-value comparisons evaluate to true, we can reject all the
null hypotheses. The probability thatwe draw this conclusion
when any of the null hypothesis is true is upper bounded by𝛼 .
Optimization: rewriting 𝑝-value comparison.We can op-
timize the 𝑝-value comparisons for the Holm-Bonferroni
method when the 𝑝-values was computed using theWald’s
test. For the 𝑖-th hypothesis with a 𝑝-value 𝑝𝑖 =𝑊𝑛 (𝐷1,𝐷2) at
rank 𝑗 , the test can be rewritten as

𝑛(𝑛𝑍𝑛 (𝐷2)−𝑛𝑍𝑛 (𝐷1))2

𝑛(𝑛CD𝑛 (𝐷1,𝐷2))−(𝑛𝑍𝑛 (𝐷2)−𝑛𝑍𝑛 (𝐷1))2
>

(
Φ−1

(
1− 𝛼

𝑗

))2
whereΦ−1 is the inverse of standard normal CDF. The rewrite
enables several optimizations. It multiplies 𝑛 to both the nu-
merator and the denominator in the original expression in the
fraction so that each normalized term CD𝑛 (𝐷1,𝐷2), 𝑍𝑛 (𝐷2),
and𝑍𝑛 (𝐷1) ismultiplied by𝑛, and no normalization is needed
during computation. It also eliminates the square root opera-

tion and relocatesΦ to the right-hand side. The
(
Φ−1

(
1− 𝛼

𝑗

))2
term only involves the 𝛼 parameter and the 𝑝-value rank 𝑗 ,
and can be precomputed offline and stored.

5.3 Omen Inference Algorithm

The Omen inference algorithm uses the statistical view of
HDC to perform early termination. The training algorithm
works with full-length hypervectors of size 𝑁 and produces

348

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

1: procedure inference(input,encoder,Vc,N,term_points,𝛼)
2: k = len(Vc) // number of classes
3: D = array(k,N) // element distances
4: dist = zeros(k) // cumulative distances to classes
5: for n in 1..N do

6: vq = encoder(input, n) // encode the𝑛th dimension
7: for i in 1..k do
8: D[i][n] = dis(vq,Vc[i][n])
9: dist[i] += D[i][n]
10: cand = argmin(dist) // argmax if dis is a similarity metric
11: if n in term_points and confident(D,cand,n,𝛼) then
12: return cand
13: return cand

Figure 3. Omen’s inference algorithm. N is hypervector
size. Vc is class hypervectors. 𝛼 is confidence level. cand is
current inference result. dis returns distance between two
hypervector elements. confident uses statistical tests.

a set of fully distributed class hypervectors. Omen deploys an
HDC classifier that works with a fully distributed query hy-
pervector𝑉𝑞 that is computed from the provided HD encoder.

5.3.1 Algorithm. Omen’salgorithmis inspired fromWald’s
sequential probability ratio test (SPRT), which sequentially
samples and terminates an experiment when the evidence is
statistically significant in manufacturing quality control [70].
The SPRT is used under manufacturing conditions where
sampling products is costly. We draw a connection between
computational cost and product sampling cost.
Figure 3 shows the pseudo code for Omen’s inference al-

gorithm. Omen accepts as input a set of termination points,
where each termination point 𝑗 is reached after computing
over 𝑛 𝑗 hypervector elements. We denote the number of ter-
mination points as𝑚. Omen breaks up the inference task into
𝑚+1 units of work and checks if the inference task can be
terminated early after each of the first𝑚 units of work. After
a given work unit has been completed at the 𝑗-th termination
point, 𝑛 𝑗 elements of𝑉𝑞 have been generated by the encoder.
Omencomputes the query-class element distances.After each
unit ofwork is completed,Omenfinds the current closest class
cand to the query and assesses its statistical significance.
Next, Omen assesses the statistical significance of this

classification result using the Holm-Bonferri method from
Section 5.2 using the user-provided error threshold 𝛼 . If the
Holm-Bonferri method returns true, Omen terminates infer-
ence early and returns class cand. If themethod returns false,
Omen continues execution. If all statistical tests fail, Omen
eventually returns the classification result after all 𝑁 dimen-
sionshavebeenprocessed.Omencanoptionallybeconfigured
to mark inputs that fail all statistical tests as difficult samples
andpass themon tomore reliable and sophisticated classifiers.

5.3.2 Guarantees onClassificationAccuracy Loss. The
statistical level 𝛼 is an upper bound on the drop in classifi-
cation accuracy resulting from processing fewer than 𝑁 hy-
pervector elements. Misclassifications that occur even with

infinite hypervector size are attributed tomodel error. Specif-
ically,model error occurs when ∃𝑖≠𝑡,𝐸 (𝑃𝐷𝑖

)<𝐸 (𝑃𝐷𝑡
), where

𝐷𝑖 is distance to the 𝑖-th class and 𝑡 is the ground-truth label.
Intuitively, this means the query is expected to be closer to
other class than the ground-truth class. This form of error can
only be mitigated with better encoder and classifier design.
We denote the model error rate mer as the percentage of

test inputs in the test distribution that suffers from model
error. Misclassifications that occurwhen the hypervector size
is not large enough are attributed to estimation error. This
happens when ∀𝑖 ≠ 𝑡,𝐸 (𝑃𝐷𝑖

) ≥ 𝐸 (𝑃𝐷𝑡
) but the returned clas-

sification cand ≠ 𝑡 . Because 𝐸 (𝑃𝐷cand) ≥ 𝐸 (𝑃𝐷𝑡
) but we get

𝑍𝑛 (𝐷cand) < 𝑍𝑛 (𝐷𝑡), this kind of error can be mitigated by
computing more distance samples. The estimation error rate
is therefore dependent on the number 𝑛 of dimensions pro-
cessed, which we denote as eer(𝑛). The expected accuracy,
when always processing all 𝑁 hypervector dimensions with-
out early termination, can therefore be defined as

acc(𝑁)=1−mer−eer(𝑁)

Omenmay terminate early, and may suffer from larger esti-
mation error rate. Denoting erromen (𝑁,𝛼) as the estimation
error rate Omen has with confidence level 𝛼 and hypervector
size 𝑁 , we can define Omen’s accuracy as

accomen (𝑁,𝛼)=1−mer−erromen (𝑁,𝛼) .

Wealso define accopt= lim𝑁→∞acc=1−mer,which is the best
accuracywe can get out of the currentmodel if wewere to use
infinitely large hypervectors and be free of estimation error.
Because we have erromen (𝑁,𝛼)>err(𝑁)>0, the accuracy re-
lationship between the early-termination, normal inference,
and optimal inference is accomen (𝑁,𝛼)<acc(𝑁)<accopt. The
Holm-Bonferri method guarantees that when ∀𝑖≠𝑡,𝐸 (𝑃𝐷𝑖

) ≥
𝐸 (𝑃𝐷𝑡

) (i.e., the input does not suffer frommodel error), we
draw conclusion of ∀𝑖 ≠ cand,𝐸 (𝑃𝐷𝑖

) ≥ 𝐸 (𝑃𝐷cand) for some
cand≠𝑡 with a probability at most 𝛼 . This translates to that
𝛼 is an upper bound on Omen’s estimation error rate, i.e.,
erromen (𝑁,𝛼) ≤𝛼 . Therefore, we have:

accomen (𝑁,𝛼) = 1−mer−erromen (𝑁,𝛼)
≥ 1−mer−𝛼
≥ accopt−𝛼
≥ acc(𝑁)−𝛼

In summary, the statistical test employed by Omen ensures
that the accuracy loss due to early termination over using the
whole vector is at most 𝛼 , or acc(𝑁)−accomen (𝑁,𝛼) ≤𝛼 .

6 Exchangeability

While Section 4 intuitively explains the iid property of HDC
in the simple case, the state-of-the-art training algorithms
often break the independence between the hypervector ele-
ments as they use aggregate information of all elements (e.g.,
hypervector distances) to update them.We find that although
the learned hypervectors are not iid, they are exchangeable,
which is a weaker statistical property than iid and relates
nicely to the fully distributed property. In this section, we
formalize exchangeability in Section 6.1, prove that the two

349

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

representative training algorithms produce exchangeable hy-
pervectors in Section 6.2 and discuss the relation to the fully
distributed property andWald’s test in Section 6.3.

6.1 Definition of Exchangeablility

We formally define exchangeability in this section. We first
define permutation and symmetric functions as follows.

Definition 1 (Permutation). Denote𝑚 ∈Z as an integer, and
[𝑚] as the set of integers from 1 to𝑚. A permutation 𝜋 is a
function [𝑚] → [𝑚], where {𝜋 (𝑖) : 𝑖 ∈ [𝑚]} = [𝑚]. Because
𝜋 is a one-to-one mapping from [𝑚] to [𝑚], it is inversible,
and we denote the inverse of 𝜋 as 𝜋−1. For a vector of 𝑛 el-
ements𝑊 = (𝑊1,𝑊2, ... ,𝑊𝑛), we denote𝑊 shuffled by 𝜋 as
𝜋𝑊 = (𝑊𝜋 (1) ,𝑊𝜋 (2) ,...,𝑊𝜋 (𝑛)).

Definition 2 (Symmetric Function). A function 𝑓 (𝑋), where
𝑋 = (𝑥1, ...,𝑥𝑛) is a 𝑛-element vector, is symmetric about 𝑋 if
∀𝜋,𝑓 (𝜋𝑋)= 𝑓 (𝑋).

The definition of exchangeability is taken from Kuchib-
hotla [48] (real-valued random variables, assuming the prob-
ability density function exists).

Definition 3 (Exchangeablility). Suppose𝑊 = (𝑊1,...,𝑊𝑛) ∈
R𝑛 is a vector of real-valued random variables,𝑊𝑖 ’s are ex-
changeable iff their joint probability density function 𝑝 (𝑊) is
symmetric about𝑊 .

iid implies exchangeable because if𝑊𝑖 ’s are iid, we have
𝑝 (𝑊) = Π𝑖𝑝 (𝑊𝑖) = Π𝑖 𝑓 (𝑊𝑖), where 𝑓 is the identical prob-
ability density function shared by all the𝑊𝑖 ’s. 𝑝 (𝑊) func-
tion is symmetric about𝑊 because 𝑝 (𝜋𝑊) = Π𝑖 𝑓 (𝑊𝜋 (𝑖)) =
Π𝑖 𝑓 (𝑊𝑖)=𝑝 (𝑊) due to the commutativity of multiplication.
However, the inverse is generally not true, because there can
be dependence among𝑊𝑖 ’s.

6.2 LearnedHypervectors Are Exchangeable

In this section, we formalize some representative advanced
HDC training algorithms and prove that they produce ex-
changeable hypervectors.

6.2.1 Primitives. We first define some symmetry-related
concepts, and prove some useful theorems.

Definition 4 (Element-wise Function). A function 𝑓 (𝑋) =
𝑌 where 𝑋,𝑌 are 𝑛-element vectors is called element-wise if
𝑓 (𝜋𝑋)=𝜋 𝑓 (𝑋).

Lemma 1. Composition of element-wise functions produces
element-wise functions.

Proof. If 𝑓 and 𝑔 are element-wise, for any 𝑛-element vector
𝑋 , we have 𝑓 (𝑔(𝜋𝑋))= 𝑓 (𝜋𝑔(𝑋))=𝜋 𝑓 (𝑔(𝑋)), which implies
that 𝑓 ◦𝑔 is element-wise. □

Lemma 2. Composition of symmetric and element-wise func-
tions are symmetric.

…
Basis
HVs

Class
HVs

W
i

1

B

B+1
B+C

W1,B W2,B Wi,B WN,B

Wi,1

Wi,B+1

Wi,B+C

…

…
…

N

B+C

Figure 4.HD representation -𝑊 ’s definition.

Proof. If 𝑓 is symmetric and𝑔 is element-wise, 𝑓 ◦𝑔 is symmet-
ric because ∀𝑋,𝑓 (𝑔(𝜋𝑋)) = 𝑓 (𝜋𝑔(𝑋)) = 𝑓 (𝑔(𝑋)), and 𝑔◦ 𝑓 is
also symmetric because ∀𝑋,𝑔(𝑓 (𝜋𝑋))=𝑔(𝑓 (𝑋)). □

Lemma 3. For a function 𝑓 (𝑋) symmetric about𝑋 , 𝑓 ’s gradi-
ent ∇𝑓 (𝑋)= (𝜕𝑓

𝜕𝑥1
(𝑋),..., 𝜕𝑓

𝜕𝑥𝑛
(𝑋)) satisfies ∇𝑓 (𝜋𝑋)=𝜋∇𝑓 (𝑋).

Proof. ∇𝑓 (𝜋𝑋)= (𝜕𝑓

𝜕𝑥1
(𝜋𝑋),..., 𝜕𝑓

𝜕𝑥𝑛
(𝜋𝑋)). We have ∀𝑖 ∈ [𝑛],

𝜕𝑓
𝜕𝑥𝑖

(𝜋𝑋) = lim𝜖→01/𝜖 · (𝑓 (𝜋𝑋 +𝜖𝑒𝑖)− 𝑓 (𝜋𝑋))
= lim𝜖→01/𝜖 ·

(
𝑓 (𝑋 +𝜖𝑒𝜋 (𝑖))− 𝑓 (𝑋)

)
=

𝜕𝑓
𝜕𝑥𝜋 (𝑖)

(𝑋)

where 𝑒𝑖 is a n-element vector with the 𝑖-th element being 1
and others being 0. The first and third equalities are the def-
inition of the derivative, and the second equality exploits the
symmetry of 𝑓 (𝑥). Note that 𝜋−1𝑒𝑖 is 𝑒𝜋 (𝑖) instead of 𝑒𝜋−1 (𝑖)
(Definition 1). This is equivalent to ∇𝑓 (𝜋𝑋)=𝜋∇𝑓 (𝑋). □

Because thehypervectors are initialized to be exchangeable
(e.g., zeros or randomGaussian), we only need to prove that
each update of the training algorithms preserves exchange-
ability. A transformation from a vector of random variables
to another vector of random variables is exchangeability pre-
serving iff for all exchangeable input random variables, the
transformed output random variables are also exchangeable.
The following theorem states the condition for which a trans-
formation on a vector of exchangeable random variables pre-
serves exchangeability [11, 48].

Theorem 1 (Exchangeability Preservation). Suppose𝑊 =

(𝑊1,...,𝑊𝑛) ∈W𝑛 is a vector of exchangeable random variables.
Fix a transformation𝐺 :W𝑛→(W′)𝑚 . If for eachpermutation
𝜋1 : [𝑚]→ [𝑚] there exists a permutation 𝜋2 : [𝑛]→ [𝑛] such
that

𝜋1𝐺 (𝑊)=𝐺 (𝜋2𝑊), for all𝑊 ∈W𝑛

then𝐺 (·) preserves exchangeability of𝑊 .

Corollary 1. Element-wise functions are exchangeability pre-
serving transformations.

Proof. If 𝑓 :W𝑛→(W′)𝑛 is element-wise, for each𝜋1 : [𝑛]→
[𝑛], let 𝜋2 = 𝜋1, then we have 𝜋1 𝑓 (𝑊) = 𝑓 (𝜋2𝑊),∀𝑊 ∈W𝑛 .
By Theorem (1), 𝑓 preserves exchangeability. □

350

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

6.2.2 HDCRepresentation𝑊 . Our insight is thatalthough
the HDC training algorithms update hypervectors in a com-
plexway, they donot break the symmetry amonghypervector
elements for all the hypervectors. To show that, we need to
consider all hypervectorswehave (basis hypervectors in code-
books and class hypervectors) as a whole. Denote 𝑁 as our
hypervector length,𝑊𝑖 as a vector of the 𝑖-th dimensions
of all 𝐵 basis hypervectors in codebooks and𝐶 class hyper-
vectors. We illustrate𝑊 ’s definition in Figure 4. Using the
same notation as theorem (1), denote𝑊 = (𝑊1,...,𝑊𝑁).𝑊 is
initialized iid. We demonstrate that the training algorithms
are exchangeability preserving transformations on𝑊 .

6.2.3 Implications of𝑊 ’s Exchangeability. In this sec-
tion, we prove that when the HDC representation𝑊 defined
above is exchangeable, the encoding produces exchangeable
hypervectors, and their distances to the class hypervectors
are symmetric about𝑊 .

Theorem 2 (Exchangeable Encoding). When𝑊 is exchange-
able, HD encoding enc(𝑊,𝑇) produces a vector of exchangeable
elements, where𝑇 is an input data to encode.

Proof. HD encoding is a function enc(𝑊,𝑇) of𝑊 (specifically
only the codebook part𝑊𝑗,𝑖 ,𝑖 ≤𝐵) and an input𝑇 . enc is a com-
position of HD operators binding, bundling, and permuting.
Theyare element-wise functionson the codebook.1 Therefore,
by Lemma (1), enc is an element-wise function. By Corollary
(1), enc is exchangeability preserving, sowhen𝑊 is exchange-
able, its output hypervector is also exchangeable. □

Corollary 2 (Exchangeable Element Distances). When𝑊 is
exchangeable, element distances ed(𝑊,𝑇) between an encoded
hypervector enc(𝑊,𝑇) and class hypervectors are exchangeable.
Proof. Denote ed(𝑊,𝑇) 𝑗,𝑖 =dis(enc(𝑊,𝑇) 𝑗 ,𝑊𝑗,𝐵+𝑖) as the 𝑗-th
element distance from the encoded hypervector to the 𝑖-th
class hypervector. Since enc(𝑊,𝑇) is element-wise, we have

ed(𝜋𝑊 ,𝑇) 𝑗,𝑖 = dis
(
enc(𝜋𝑊 ,𝑇) 𝑗 ,(𝜋𝑊) 𝑗,𝐵+𝑖

)
= dis

(
(𝜋enc(𝑊,𝑇)) 𝑗 ,(𝜋𝑊) 𝑗,𝐵+𝑖

)
= (𝜋ed(𝑊,𝑇)) 𝑗,𝑖

Therefore, ed(𝑊,𝑇) is by definition also an element-wise
function (Lemma (1)) and preserves exchangeability (Corol-
lary (1)), and the result length-𝑁 vector is exchangeablewhen
𝑊 is exchangeable. □

Corollary 3 (Symmetric Distance). When𝑊 is exchangeable,
distances𝑑 (𝑊,𝑇) between an encoded hypervector and the class
hypervectors are symmetric about𝑊 .

Proof. Denote 𝑑 (𝑊,𝑇), a vector of length 𝐶 , as the HD dis-
tances from a encoded hypervector enc(𝑊,𝑇) to the𝐶 class
hypervectors, that is, 𝑑 (𝑊,𝑇)𝑖 =1/𝑁 ·∑𝑗ed(𝑊,𝑇) 𝑗,𝑖 . 𝑑 (𝑊,𝑇)
1Strictly speaking, permuting is not an element-wise function by our defini-
tion. However, because it is a special kind of exchangeability preserving func-
tion, has similar properties as element-wise functions, and can be replaced by
binding in theHD encoding [45], we omit this detail to keep the proof simple.

a composition of the element-wise function ed(𝑊,𝑇) and the
symmetric function of averaging. Therefore, by Lemma (2),
𝑑 (𝑊,𝑇) is a symmetric function about𝑊 . □

6.2.4 Training Preserves Exchangeability. We now for-
malize a distance-based iterative training algorithm and a
gradient descent-based training algorithm, and prove that
they preserve the exchangeablility of𝑊 .
Distance Based. In a distance-based iterative training algo-
rithm, each transformation takes a training sample 𝑇 with
label 𝑡 , encodes𝑇 into ahypervector enc(𝑊,𝑇) using the code-
book, adds it to the class hypervectors with a weight vector
wt(𝑊,𝑇,𝑡) of length𝐶 . Theweight applied to the hypervector
of class 𝑡 ′ is wt(𝑊,𝑇,𝑡)𝑡 ′ , which is computed from the dis-
tance 𝑑 (𝑊,𝑇)𝑡 ′ and whether 𝑡 ′ = 𝑡 . Usually, wt(𝑊,𝑇,𝑡)𝑡 ′ ≥ 0
when 𝑡 ′ = 𝑡 , and wt(𝑊,𝑇,𝑡)𝑡 ′ ≤ 0 when 𝑡 ′ ≠ 𝑡 . OnlineHD
training algorithm [26] is an example of this kind. It selects
the update weights to prevent model saturation. The trans-
formations can be formalized as follows. From the way the
weights are computed, they can be rewritten as wt(𝑊,𝑇,𝑡)=
𝜎 (𝑑 (𝑊,𝑇),𝑡), where 𝜎 is a function that depends on the con-
crete update strategies and hyperparameters like learning
rate. Because 𝑑 (𝑊,𝑇) is symmetric about𝑊 by Corollary
(3), wt(𝜋𝑊 ,𝑇 ,𝑡) =𝜎 (𝑑 (𝜋𝑊 ,𝑇),𝑡) =𝜎 (𝑑 (𝑊,𝑇),𝑡) =wt(𝑊,𝑇,𝑡).
Therefore,wt(𝑊,𝑇,𝑡) is also symmetricabout𝑊 . The transfor-
mation𝐺 adds the encoded hypervector scaled by theweights
to the class hypervectors

𝐺 (𝑊) 𝑗,𝐵+𝑖 =𝑊𝑗,𝐵+𝑖+wt𝑖 (𝑊,𝑇,𝑡) ·enc(𝑊,𝑇) 𝑗 .

Nowweprove that𝐺 is element-wise. For each𝜋 : [𝑁]→ [𝑁],
(𝜋𝐺 (𝑊)) 𝑗,𝐵+𝑖 = 𝐺 (𝑊)𝜋 (𝑗),𝐵+𝑖

= 𝑊𝜋 (𝑗),𝐵+𝑖+wt𝑖 (𝑊,𝑇,𝑡) ·enc(𝑊,𝑇)𝜋 (𝑗)
= (𝜋𝑊) 𝑗,𝐵+𝑖+wt𝑖 (𝜋𝑊 ,𝑇 ,𝑡) ·enc(𝜋𝑊 ,𝑇) 𝑗
= 𝐺 (𝜋𝑊) 𝑗,𝐵+𝑖 .

The second to last equation makes use of the fact that wt𝑖 is
a symmetric function about𝑊 and enc is an element-wise
function. For 𝑖 ≤ 𝐵, since 𝐺 does not change the𝑊𝑗,𝑖 ,𝑖 ≤ 𝐵

(codebook), we also have (𝜋𝐺 (𝑊)) 𝑗,𝑖 = (𝜋𝑊) 𝑗,𝑖 =𝐺 (𝜋𝑊) 𝑗,𝑖 .
By Corollary (1),𝐺 preserves exchangeability.
Gradient Descent. In a gradient descent-based training algo-
rithm, each transformationuses the gradient of a loss function
to update the hypervectors. The loss function is of the form
loss(𝑊,𝑇,𝑡)=𝜎 ′ (𝑑 (𝑊,𝑇),𝑡), where𝑇 is a training input with
label 𝑡 and 𝜎 ′ usually computes the loss function (e.g., cross-
entropy) comparing the distance vector 𝑑 (𝑊,𝑇) applied by
softmaxto theground-truthone-hotvector𝑒𝑡 .Due to thesame
reason as wt(𝑊,𝑇,𝑡), loss(𝑊,𝑇,𝑡) is also symmetric about𝑊 .
There are different variants of gradient descent-based train-
ing algorithms. LeHDC [14] freezes the basis hypervectors
and learns class hypervector representations. LDC [15] learns
the basis hypervectors together with the class hypervectors.
We prove a general theorem for them.

Theorem 3. When the loss function given any input values
is symmetric about 𝑊 , gradient descent updates on 𝑊 are
exchangeability-preserving.

351

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

exchangeable
(learned HVs)

iid
(vanilla HDC)

identically
distributed

conditional iid
(CLT applies)

Figure 5. Relationship between related statistical concepts.
Central limit theorem (CLT) applies to conditional iid
variables, which can approximate exchangeable variables.

Proof. Because loss(𝑊,𝑇,𝑡) is also symmetric about𝑊 for
all𝑇 and 𝑡 , by Lemma (3), we can derive ∇𝑊 loss(𝜋𝑊 ,𝑇 ,𝑡) =
𝜋∇𝑊 loss(𝑊,𝑇,𝑡) for any 𝜋 : [𝑁]→ [𝑁]. Therefore, denoting
grad𝑗,𝑖 (𝑊,𝑇,𝑡) = 𝜕loss(𝑊,𝑇,𝑡)

𝜕𝑊𝑗𝑖
as the gradient for𝑊𝑗 at its 𝑖-th

element, we have grad𝜋 (𝑗),𝑖 (𝑊,𝑇,𝑡)=grad𝑗,𝑖 (𝜋𝑊 ,𝑇 ,𝑡) for any
𝜋 . Then, each update in the gradient descent-based training
algorithm is a transformation𝐺 as follows

𝐺 (𝑊) 𝑗,𝑖 =𝑊𝑗,𝑖−lr·grad𝑗,𝑖 (𝑊,𝑇,𝑡)
where lr is a constant learning rate.Weprove that𝐺 is element-
wise. For each 𝜋 : [𝑁]→ [𝑁], we have

(𝜋𝐺 (𝑊)) 𝑗,𝑖 = 𝐺 (𝑊)𝜋 (𝑗),𝑖
= 𝑊𝜋 (𝑗),𝑖−lr·grad𝜋 (𝑗),𝑖 (𝑊,𝑇,𝑡)
= (𝜋𝑊) 𝑗,𝑖−lr·grad𝑗,𝑖 (𝜋𝑊 ,𝑇 ,𝑡)
= 𝐺 (𝜋𝑊) 𝑗,𝑖 .

Therefore, by Corollary (1),𝐺 preserves exchangeability. □

The theorem naturally applies to LDC. For LeHDC, since
it only updates the class hypervectors (𝑊𝑗,𝐵+𝑖 ,1≤ 𝑖 ≤𝐶), we
set grad𝑗,𝑖 (𝑊,𝑇,𝑡) to 0 for 1 ≤ 𝑖 ≤ 𝐵, which does not break
Lemma (3). The proof works with this modification.

6.3 Discussion

In this section, we discuss the relation between exchangeabil-
ity and the fully distributed property, and the applicability
ofWald’s test to exchangeable hypervectors. In Figure 5, we
showaVenndiagram that illustrates the relationship between
exchangeability and related concepts.

6.3.1 Relation to Fully Distributed Property. The fully
distributed property of HDC intuitively means that the in-
formation encoded by the hypervector is equally distributed
among the hypervector elements. Each element is not more
or less important than or different from the other elements,
while all elements as a whole represent the information. One
may think that correlation-introducing training algorithms
would break the fully distributed property and thus make
themodel less error-resilient. Counter-intuitively, prior work
found that the training algorithms using gradient descent do
notmake theHDCclassificationmodel less error resilient [15].
This finding indicates that, while the hypervectors generated
by these correlation-introducing training algorithms are not
iid, the information is still fully distributed in them.Therefore,
iid is possibly too strong and not a necessary condition for the
fully distributed property. The question then arises, is there
a less restrictive statistical property that satisfies the fully
distributed property that makes the model error resilient?

We postulate that the exchangeability property offers the
fully distributed property without the strict independence
constraint. Exchangeable hypervectors have identically dis-
tributed elements. We believe the identically distributed prop-
erty is necessary to ensure the hypervector is fully distributed
because it intuitively specifies that each element is sampled
from the same information distribution. Non-identically dis-
tributedhypervectorsmayhaveelements sampled fromdiffer-
ent distributions that contain disjoint information, and not all
information is guaranteed to have the necessary redundancy
that makes the representation error resilient.
However, we believe that the identically distributed prop-

erty alone is not sufficient to ensure the vector is fully dis-
tributed, as it does not guarantee the information is evenly
distributed throughout thevector.Consideranexamplewhere
we have a hypervector𝑉 , and each element 𝑣 ∼𝑃𝑉 is identi-
cally distributed. If𝑉 [1] and𝑉 [2] are independently drawn
from 𝑃𝑉 , while other𝑉 [𝑖]’s for 2 < 𝑖 ≤ 𝑛 are copies of𝑉 [2],
then𝑉 [1] is more important and contains as much informa-
tionabout theunderlyingdistributionasall theotherelements
combined. In fact, the information entropy of𝑉 [1] is equal
to that of all other𝑉 [𝑖]’s, implying information is not evenly
distributed through out the vector. The exchangeability prop-
erty ensures the elements in the hypervector are symmetric,
since elements may be permuted without changing the joint
distribution function.

6.3.2 AssumptionsMade byWald’s Test. We next pro-
vide a theoretical justification for applying Wald’s test to
exchangeable partial distances in HD inference. TheWald’s
test assumes that the samples follow the central limit theo-
rem (CLT), such that the test statistic converges to a normal
distribution. The hypervectors and distances described in Sec-
tion6.2 are exchangeable; however theCLTdoesnotgenerally
hold for exchangeable random variables.

We describe twomethods to showCLT holds for exchange-
able random variables. First, exchangeable random variables
follow the CLT if the covariance of each pair of variables is
zero, as this implies the variables are conditionally iid [7, 40].
Second, finite exchangeable random variables can be approx-
imated with conditionally iid random variables [13], which
follow CLT. We note the second method is always applicable,
but the approximation bound is loose. We leave examining
whether the first method applies to learned hypervectors to
future work, this method is desirable as it does not introduce
an approximation bound. We stress that, empirically, we find
theWald’s test effectively and robustly bounds the accuracy
loss by 𝛼 (Section 7) for learned classifiers.

7 Evaluation

We evaluate Omen and compare it with other baselines in
various benchmarks.

352

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

dataset train/test classes description NN acc

lang 42855/7145 5 language classification [21] -
ucihar 7352/2947 6 activity recognition [3] 94.02 [12]
isolet 62371/560 26 voice recognition [4] 95.50 [69]
mnist 60000/10000 10 image classification [52] 95.83 [26]

Table 3.Dataset configurations.

Name Algorithm Encoder Class Size Initial/Step

HV Terms (𝑖𝑡/𝑐𝑡)
OHD OnlineHD [26] random weighted ⊕ 10048 512/64
LeH LeHDC [14] random learned 5056 512/64
LDC LDC [15] learned learned 256 16/4

Table 4.Hypervector (HV) Training algorithm descriptions.

7.1 Experimental Setup

Datasets. Following prior work onHDC [15, 26], we evaluate
on four datasets fit for edge-inference scenarios. Table 3 sum-
marizes train/test splits, the number of classes, and the state-
of-the-art lightweight neural network accuracies for these
datasets. To adapt these datasets for HDC, we use positional
encoding or HD encodings from prior literature to embed
information into hypervectors [26, 62]. The language dataset
uses the trigram encoding-based architecture described in
Section 3, which differs from its instantiation in prior work.
HDCTraining Algorithms. We construct benchmark HD
classifiers from the datasets using three training algorithms,
where each algorithm is used with both the BSC and MAP-
HDC variants. The algorithms are summarized in Table 4
and are described in Section 6.2.4. Table 4 summarizes each
training method, reports the encoding/class hypervector di-
mension used for each training method (Size), the number of
dimensions to the first termination point (𝑖𝑡), and the num-
ber of dimensions between subsequent termination points
(𝑐𝑡). Sizes are multiples of 64 to enable bit-packing, and 𝑖𝑡 is
generally 4𝑥 larger than 𝑐𝑡 to ensure enough information is
processed before the first termination point is reached. For
language dataset, only OnlineHD training algorithm and the
HDC-BSCvariantareused, as it is an illustrativeexample.This
totals to 3×2×3+1=19 dataset/training algorithm/HD com-
binations, which comprise the benchmarks of our evaluation.
Baselines. We evaluate Omen with confidence levels 𝛼 =

1%,5% or 10%, capturing conservative, balanced, and aggres-
sive optimization modes. We compare Omen to five baselines
that capture different optimization and early termination
strategies. The smaller vector (SV) baseline uses the first 𝑛
dimensions of hypervectors for inference, where 𝑛 is the av-
erage number of dimensions used by Omen 𝛼 = 5% on the
same benchmark. The remaining baselines implement heuris-
tic early termination strategies. We perform hyperparameter
tuning to find the optimal threshold for each dataset/training
method combination that achieves a 1% accuracy loss on the
training data. The Diff and Absolute strategies terminate

early if the winner’s marginal and absolute similarities ex-
ceed a class-agnostic threshold. Prior work [55] uses a table
of class-specific termination thresholds derived from training
data to enable specializing the termination point to each class.
We adapt the threshold selection algorithm to consider in-
class vs. not-in-class samples instead of correctly classified vs.
misclassified samples, enabling threshold selection for classes
which have no misclassified samples.
Execution Setup.We implement the baselines in C++ tomea-
sure the inference performance. For Omen, we precompute
the squared distance differences CD for BSC at set termina-
tion points (described in Section 5.1.2), and lazily evaluate
CD for MAP.We also apply bit-packing and precomputation
optimizations to the heuristic baselines. Specifically, we pre-
compute class statistics required for the normalized similarity
metric used in the Diff, Absolute andMean baselines. We
conduct the evaluation on a Microcontroller (MCU) for the
models that can fit in to mimic real edge inference scenarios,
and on our local desktop otherwise. We use B-U585I-IOT02A,
an evaluation board with a STM32U585AI MCU. This MCU
has one Arm Cortex-M33 core, 2MB of flash memory, and
786KB of SRAM. In the MCU, the flash memory and SRAM
sizes limit the hypervector’s size and data types. We are able
to fit all models in the MCU except the 10048-dimensional
MAP OHD and the 5056-dimensional MAP LeH. The desk-
top machine has 64GB systemmemory and 24-core CPU (32
threads, Intel(R) Core(R) CPU i9-13900K with 8 performance
cores @ 3.00 GHz and 16 efficiency cores @ 2.20 GHz). Our
programwas pinned on core 0 and is single-threaded.
Metrics. The absolute accuracy (acc) and average runtime is
reported for the unoptimized HDC classifier. For each other
baseline, the relative percent accuracy loss and the speedup
relative to the unoptimized baseline are reported.

7.2 Evaluation Results

Figure 6 presents accuracy loss and speedups attained by
Omen and the heuristic optimization methods, relative to
an unoptimized baseline. The absolute accuracy and perfor-
mance of the unoptimized baseline is summarized in Table 5.
Runtime. Omen offers 1.08–7.21× inference speed-up for
𝛼 =1%, 1.24–10.04× inference speed-up for 𝛼 =5%, and 1.41–
12.18× inference speed-up for 𝛼 =10% on 16 out of 19 bench-
marks, excluding 3 LDC-BSC benchmarks. Omen is able to
deliver 1.36×, 1.16× and 1.06× speed-up with 𝛼 = 10% on 3
LDC-BSC benchmarks, while the speedup when 𝛼 = 1% or
𝛼 =5% is smaller, and we discuss the reasons in Section 7.2.1.

Other early termination baselines Diff, Absolute, and
Mean offer less significant speedup comparing to Omen in
iso-accuracy. In Figure 6, we find that almost all Omen base-
lines are on the (accuracy loss, speedup) Pareto Frontier in
every benchmark. The only 5 exceptions are due to over-
conservatism - they have 0 accuracy loss, and 4 of them are

353

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

dataset lang ucihar isolet mnist
Training Algo OHD OHD LeH LDC OHD LeH LDC OHD LeH LDC
HDC variant BSC BSC MAP BSC MAP BSC MAP BSC MAP BSC MAP BSC MAP BSC MAP BSC MAP BSC MAP
Accuracy (%) 98.5 83.5 91.9 88.1 95.3 93.5 94.6 85.2 94.4 88.5 96.3 91.3 96.2 85.5 96.9 93.0 97.7 96.2 97.5
Time (ms) 62.8 243.9 4.4† 123.1 1.6† 12.1 70.2 268.6 5.7† 135.4 1.9† 14.1 78.8 301.2 5.9† 151.1 2.3† 16.5 66.4

Table 5. Unoptimized Execution. Runtime measured on local laptop is marked as †. Other runtimes are collected on a MCU.

2 4 6 8 10 12 14
Speedup

0

1
2
3
45

Ac
cu

ra
cy

 L
os

s (
%

)

(a) Baselines with <5% accuracy loss in lang dataset.

1 2 3 4 5 6 7 8
Speedup

0

2
4
68

Ac
cu

ra
cy

 L
os

s (
%

)

(b) Baselines with <10% accuracy loss in ucihar dataset.

1 2 3 4 5 6 7 8
Speedup

0

1

2
3

Ac
cu

ra
cy

 L
os

s (
%

)

(c) Baselines with <5% accuracy loss in isolet dataset.

1 2 3 4 5
Speedup

0

1
2
3A

cc
ur

ac
y

Lo
ss

 (%
)

(d) Baselines with <5% accuracy loss inmnist dataset.

Figure 6.Accuracy Loss vs. Inference Speedup compared to the unoptimized baseline. Colors encode training algorithms. ■
is OHD-BSC, ■ is OHD-MAP, ■ is LeH-BSC, ■ is LeH-MAP, ■ is LDC-BSC, ■ is LDC-MAP. Marker shapes encode baselines.
● is Omen, ✖ is Diff, ▶ is Absolute, ◆ is Mean, ★ is SV. For each benchmark, we connect 3 Omen baselines in ascending
𝛼 order with lines, and baselines on the Parato frontier are highlighted in ■.

dominated by otherOmenbaselines. In each benchmark, com-
paring to other baselines, there is at least one Omen base-
line that delivers an additional 0.05–6.15× dimension reduc-
tion and 0.04–5.85× speedup over the Unoptimized baseline,
while achieving higher or comparable accuracy.
Accuracy.Omen robustly achieves accuracies above the ac-
curacy lower bound (Unoptimized accuracy - 𝛼). Omen’s
accuracy loss is 0.0–0.6%, with no accuracy loss on 13 bench-
marks for𝛼 =1%, and 0.0–2.4% for𝛼 =5%. For𝛼 =10%, Omen’s
accuracy loss is 0.0–4.7% on all benchmarks except OHD-
MAP-ucihar. In OHD-MAP-ucihar the accuracy loss is 9.2%,
close to the upper bound 10%. Omen 𝛼 = 5% also achieves
0.8–7.2% less accuracy loss than SV, while processing the
same average number of dimensions. We also note that HDC
baselines achieve better accuracy than lightweight neural
network-based models reported in Table 3.

Baseline Encode Distance Compute Statistical Tests Total

Unoptimized 243.40 0.10 - 243.50
Omen 𝛼 =5% 77.67 0.04 0.59 78.30

Table 6.Average latency (ms) breakdown for Unoptimized
and Omen 𝛼 =5% in OHD-BSC-ucihar benchmark.

We note that among 3 early termination heuristics, Diff
is relatively stable in accuracy, with 0.0–5.0% accuracy loss,
while Absolute is unstable and has > 30% accuracy loss in
3 benchmarks, and Mean has <10% accuracy loss in only 1
benchmark. We conjecture that the poor accuracy of Mean
is because this termination strategy must be paired with the
specific training algorithm described in previous work [55].

7.2.1 Runtimevs.DimensionalityReduction. Weshow
the relation between Omen’s runtime speed-up ratio (SUR)
and dimension reduction ratio (DRR) in Figure 7. We find

354

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

2 4 6 8 10
Dimension Reduction Ratio

2

4

6

8

10

12
Sp

ee
du

p

Figure 7. Speedup vs. Dimension Reduction for Omen with
various 𝛼 (1%, 5%, 10%). ■ is on LDC-BSC benchmarks and
■ is on other benchmarks. Dashed lines are fitted lines for
the two sets of benchmarks, respectively.

Benchmark ucihar isolet mnist
2BPC 3BPC 2BPC 3BPC 2BPC 3BPC

Accuracy 92.7 88.6 91.2 80.0 94.5 75.0

Table 7. Accuracy of Unoptimized Baseline in LDC-BSC
benchmarks in presence of hardware errors.

that Omen’s dimension reduction directly translates to in-
ference speedup in most benchmarks. On 16 non-LDC-BSC
benchmarks, SUR and DRR can be linearly fitted with SUR=
1.187·DRR−0.483, with a small mean squared error of 0.144,
indicating that Omen’s runtime overhead is small. We show
an example average latency breakdown of the Unoptimized
and Omen 𝛼 = 5% baselines in the OHD-BSC-ucihar bench-
mark in Table 6. In this benchmark, encoding contributes the
main latency, accounting for >99% in both baselines. Omen’s
statistical tests account for only 0.76% of the total latency
while significantly reducing the encoding overhead by 68.1%
compared to the unoptimized baseline.
On 3 LDC-BSC benchmarks, the fitted line is SUR=0.239·

DRR + 0.669, with mean squared error 0.002. We think the
slope is smaller for two reasons. First, the LDC-BSC bench-
marks learn very compressed hypervector representations
with𝑁 =256, leaving less room for optimizations andmaking
it more difficult to terminate early without losing accuracy.
We note that other baselines also fail to optimize in these
3 benchmarks, either offering no dimension reduction and
making inference slower, or suffering from a huge > 30%
accuracy loss. Second, the LDC-BSC benchmarks use only
binary/integer operators, while Omen’s statistical tests use
floating-point operations (FLOPs).We note that this issue can
be potentially mitigated by approximating the floating-point
value comparisons with integer operations. We leave more
unsound optimizations of Omen to future work.

7.3 Robustness to Hardware Noise

HDC is noise-resilient due to its fully distributed property and
thus is well-suited for noisy emerging hardware technologies.
Provided the noise distribution is identically distributed as
hardware errors can be treated as samples from a single prob-
ability distribution, Omen’s assumptions still hold and can be
readily applied without adaption or tuning.

We evaluate Omen with a noisy hardware model in which
bits are flipped with a fixed probability, referred to as the bit
error rate (BER). The model approximates the error distri-
bution on the resistive RAM (ReRAM) hardware [29, 51, 71].
ReRAM offers benefits such as larger memory density, non-
volatility, and faster access, but is prone to bit corruption.
We investigate BERs of 0.0215 and 0.1273, BERs collected
from fabricated ReRAM hardware when setting the memory
density to 2 bits per cell (2BPC), and 3BPC, respectively [71].
We evaluate the baselines on LDC-BSC benchmarks as they
have the smallest model and are suitable for deployment in
resource-constrained and potentially error-prone scenarios.
We use the same parameters as in the error-free experiments.

Figure 8 shows baselines’ accuracy loss and dimension re-
duction ratio relative to the unoptimized baseline (Table 7).
Omen delivers a decent accuracy-performance trade-off with
the accuracy loss robustly bounded by 𝛼 . Across the 6 bench-
marks, Omen𝛼 =1% delivers 1.01–1.56× dimension reduction
with 0.0–0.2% accuracy loss, Omen𝛼 =5% delivers 1.07–2.19×
dimension reduction with 0.3–1.4% accuracy drop, and Omen
𝛼 = 10% delivers 1.16–2.91× dimension reduction with 1.2–
3.9% accuracy drop. All Omen baselines are on the Pareto
Frontier. In contrast, Diff has an accuracy loss of 0.6–5.9%,
and Mean has >20% accuracy loss on all benchmarks. Abso-
lute becomes over conservative, as the overall similarities
between hypervectors decrease under bit corruption, and
thus it becomes harder to meet the absolute threshold. Abso-
lutedelivers only 1.02–1.22×dimension reduction,while still
suffering a 0.6–2.9% accuracy drop. Omen with 𝛼 =5% consis-
tentlyoutperformsall heuristics thathave<10%accuracy loss
in both accuracy and dimension reduction. Although tuning
the heuristics’ thresholds with bit corruptions could improve
accuracy, it is time-consuming, and the error characteristics
in deployment may differ from the training environment.

8 RelatedWork

HDC/VSA.Hyperdimensional Computation (HDC) or Vector
Symbolic Architectures (VSA) is a brain-inspired computa-
tional paradigm that has received increasing attention [5,
19, 24, 42, 44, 45]. HDC/VSA has shown great potential in
various tasks, such as Genome Sequence Matching [8], Inter-
net of Things systems [31], illness detection [20, 63], Out-of-
Distribution Detection [72], image translation [66], neuro-
symbolic AI [27], time-series classification [64], and robust
hashing [25]. Various training frameworks for HDC/VSA
based ML have been proposed, including iterative, online,
optimization-basedmethods [6, 14, 15, 26, 56]. Due to its error
resiliency, HDC/VSA is recognized as a suitable computing
paradigm for emerging hardware technologies [32, 39, 50, 67].
Besides BSC and MAP that we target in this paper, other
HDC/VSA systems can work with unit-length, real-valued,
complex-valued, sparse binary, residue numbers and matrix-
as-element hypervectors [1, 18, 49, 57–61, 65, 73]. Omen’s

355

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

1 1.5 2 2.5 3
Dimension Reduction

0

2
4
68

Ac
cu

ra
cy

 L
os

s (
%

)

(a) Baselines with <10% accuracy loss with 2BPC hardware error rate.

1 1.5 2
Dimension Reduction

0

2
4
68

Ac
cu

ra
cy

 L
os

s (
%

)

(b) Baselines with <10% accuracy loss with 3BPC hardware error rate.

Figure 8.Accuracy Loss vs. Dimension Reduction in LDC-BSC benchmarks compared to the Unoptimized baseline. Colors
encode datasets. ■ is ucihar, ■ is isolet, ■ is mnist. Marker shapes encode baselines. ● is Omen, ✖ is Diff, ▶ is Absolute, ◆
is Mean, ★ is SV. For each benchmark, we connect 3 Omen baselines (𝛼 = 1%, 5% and 10% in order) with lines, and baselines on
the Parato frontier are highlighted in ■. All Mean baselines have too high accuracy losses and are all filtered out in the figures.

general idea can be applied to other HDC/VSA systems with
slight modifications on the inferential statistics. We leave the
application Omen to other HDC/VSA systems, to other appli-
cations, and to combine with other techniques to future work.
Global HDC optimizations. Various theoretical results ex-
plored the relationship between the hypervector size and
computation accuracy [10, 16, 17, 38, 41, 41, 43, 46, 57, 68, 75].
Exploiting these theories, Yi andAchour [74]proposeda static
analysis framework that computes optimal hypervector sizes
and parameters given the computation specifications. The
theories are difficult to apply to practical machine learning,
such as classification tasks, and researchers have developed
various heuristics for globalHDCoptimizations in these tasks.
Morris et al. traded off hypervector size and accuracy [54] by
compressing the class hypervectors. Safa et al. and Imani et
al. improved inference performance by sparsifying the class
hypervectors [33, 63]. Omen can be applied on top of most
global HDC optimization techniques, as long as they do not
break the fully distributedness of hypervectors.
Per-inference HDC optimizations. Chuang et al. [9] identi-
fied and exploited the difference in the difficulty of inference
between test samples to improve HDC performance. They
defined the confidencemetric as theHamming distance differ-
ence between the classes with the smallest distances and used
the binary or integer HDCmodel depending on whether the
confidence surpasses a threshold. Imani et al. [30] used a small
2000-bit model and a large 10000-bit model. They run infer-
ence first on the smallmodel and checkedwhether the similar-
ity valueof anyclass surpasses a specified threshold. If not, the
inference used the large model. Similar similarity threshold-
based approaches have been used in genome sequence search
and adaptive HD model quantization [8, 55, 76]. The confi-
dence metrics in these techniques are heuristics and provide
no guarantee on the accuracy loss. Omen defines confidence
as statistical significance and provides accuracy guarantees.

Applying statistical approaches to computing systems.

Unlike heuristic approaches, statistical approaches are theo-
retically solid and offer guarantees. They are thus widely
applied in various computer science problems, including
machine learning [34], model checking [53], software test-
ing [35], and data stream processing [2]. To our knowledge,
no previous work has focused on edge setting and Omen is
the first statistical approach-based tool to optimize the per-
formance of edge computing systems.

9 Conclusion

WepresentedOmen, a dynamicHDCoptimizer that improves
inference performance by terminating the inference early
on a per-input basis while providing guarantees on the accu-
racy loss. Omen identified good termination points per input.
We demonstrated that Omen achieved a significant inference
speedup with only a very small drop in accuracy, and Omen’s
termination improved over heuristic approaches. Omen could
be used to perform an early termination even in the presence
of hardware errors. Omen required little-to-no modification
of theHDC training algorithms and could be applied on top of
other optimization methods. Omen’s new statistical perspec-
tive on HDC opens doors for applying statistical research to
HDCclassificationproblems.Omen ishighlyconfigurableand
extendable. Based on Omen, future work could study optimal
strategies for selecting termination points and more aggres-
sive and perhaps unsound HDC performance optimizations.

Acknowledgements.We thank Arun Kumar Kuchibhotla
for the helpful discussion on exchangeability, Christopher
Matthew De Sa for serving as our shepherd and for helpful
feedback to the paper, Denis Kleyko and Pentti Kanerva for
helpful feedback to the paper, and the anonymous reviewer
who took the time to write a review of ∼5000 words with
detailed comments and actionable advice. This research was
supported by the Stanford SystemX Alliance.

356

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

A Artifact Appendix

A.1 Abstract

This artifact includes the implementation of the Omen HDC
classification inference algorithmwith early termination and
various baseline algorithms, and scripts to compare them on
19 different benchmarks. The READMEfile of the artifact lists
how to reproduce the experiment results in the paper using
a few commands. Our results shown in the paper contain
runtime data collected in the Microcontroller (MCU), but we
provide the option of running the same experiments on a
local laptop, in which a similar trend shown in the paper can
be observed. This helps more easily verify the claims in the
paper. The code for runtime experiments is based on C++ and
the other scripts are mostly based on Python. The datasets
involved is either included in the repository or can be auto-
matically downloaded by our pipeline scripts. We provide
Docker configurations for the environment setup. CUDA is
not required but can speed up the model training process.
The estimated time to reproduce all the results is 1̃ day using
laptops without CUDA and a few hours with CUDA.

A.2 Artifact check-list (meta-information)

• Algorithm:Omen HDC inference algorithm.
• Dataset: Leipzig language dataset [21], UCIHAR [3], ISO-
LET [4], MNIST [52].

• Hardware:Microcontroller and Local Laptop.
• Metrics:ClassificationAccuracy, AverageNumber of Dimen-
sions Used, Average Inference Runtime.

• Output: Figures, Latex/CSV tables.
• Experiments: Classification Inference.
• Howmuch disk space required (approximately)?: 8GB.
• Howmuch time is needed to prepareworkflow (approx-

imately)?: 10 minutes.
• Howmuch time is needed to complete experiments?: 1
day without CUDA, a few hours with CUDA.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: BSD 2-Clause Li-
cense.

• Data licenses (if publicly available)?: BSD 2-Clause Li-
cense.

• Workflow automation framework used?: Yes.
• Archived(provideDOI)?: Yes.https://doi.org/10.5281/zenodo.
14511963.

A.3 Description

A.3.1 How to access. The artifact is available at https://
github.com/y553546436/Omen-Artifact and archived athttps:
//doi.org/10.5281/zenodo.14511963.

A.3.2 Hardware dependencies. A common laptop. GPUs
can speed up the experiments, but they are not necessary.

A.3.3 Software dependencies. Python 3.10, C++ build en-
vironment,Makefile tools (all included in theprovidedDocker
configuration).

A.3.4 Datasets. Leipzig language dataset, UCIHAR, ISO-
LET, MNIST (included in the repository or auto-downloaded
by our pipeline scripts).

A.4 Installation

Our pipeline scripts handle the build and compilations.

A.5 Experiment workflow

See README.md in the top directory of the git repository.

A.6 Evaluation and expected results

Following the workflow, the evaluation should exactly re-
produce or show similar trends of all tables and figures in
the paper’s evaluation section (Section 7). Runtime data may
have variations due to randomness and different platforms
(Microcontrollers versus local), but similar trends should be
observed, which supports the claims made in the paper.

357

https://doi.org/10.5281/zenodo.14511963
https://doi.org/10.5281/zenodo.14511963
https://github.com/y553546436/Omen-Artifact
https://github.com/y553546436/Omen-Artifact
https://doi.org/10.5281/zenodo.14511963
https://doi.org/10.5281/zenodo.14511963

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

References

[1] DiederikAerts,MarekCzachor, and Bart DeMoor. 2009. Geometric ana-
logue of holographic reduced representation. Journal of Mathematical
Psychology 53, 5 (2009), 389–398.

[2] Henrique CM Andrade, Buğra Gedik, and Deepak S Turaga. 2014.
Fundamentals of stream processing: application design, systems, and
analytics. Cambridge University Press.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis
Reyes-Ortiz, et al. 2013. A public domain dataset for human activity
recognition using smartphones.. In Esann, Vol. 3. 3.

[4] Arthur Asuncion and David Newman. 2007. UCI machine learning
repository.

[5] Sercan Aygun, Mehran Shoushtari Moghadam, M Hassan Najafi,
and Mohsen Imani. 2023. Learning from hypervectors: A survey on
hypervector encoding. arXiv preprint arXiv:2308.00685 (2023).

[6] Toygun Basaklar, Yigit Tuncel, Shruti Yadav Narayana, Suat Gumussoy,
and Umit Y Ogras. 2021. Hypervector design for efficient hyperdi-
mensional computing on edge devices. arXiv preprint arXiv:2103.06709
(2021). https://doi.org/10.48550/arXiv.2103.06709

[7] Julius R Blum, Herman Chernoff, Murray Rosenblatt, and Henry
Teicher. 1958. Central limit theorems for interchangeable processes.
Canadian Journal of Mathematics 10 (1958), 222–229.

[8] Hanning Chen, Yeseong Kim, Elaheh Sadredini, Saransh Gupta,
Hugo Latapie, and Mohsen Imani. 2023. Sparsity Controllable
Hyperdimensional Computing for Genome Sequence Matching
Acceleration. In 2023 IFIP/IEEE 31st International Conference on Very
Large Scale Integration (VLSI-SoC). IEEE, 1–6.

[9] Yu-Chuan Chuang, Cheng-Yang Chang, and An-Yeu AndyWu. 2020.
Dynamic hyperdimensional computing for improving accuracy-energy
efficiency trade-offs. In 2020 IEEE Workshop on Signal Processing
Systems (SiPS). IEEE, 1–5.

[10] Kenneth L. Clarkson, Shashanka Ubaru, and Elizabeth Yang.
2023. Capacity Analysis of Vector Symbolic Architectures.
arXiv:2301.10352 [cs.LG]

[11] Angela MDean and Joseph S Verducci. 1990. Linear transformations
that preserve majorization, Schur concavity, and exchangeability.
Linear algebra and its applications 127 (1990), 121–138.

[12] Don Kurian Dennis, Durmus Alp Emre Acar, Vikram Mandikal,
Vinu Sankar Sadasivan, Harsha Vardhan Simhadri, Venkatesh
Saligrama, and Prateek Jain. 2019. Shallow RNNs: A method for
accurate time-series classification on tiny devices. In Proceedings of the
33rd International Conference on Neural Information Processing Systems.
12916–12926.

[13] Persi Diaconis and David Freedman. 1980. Finite exchangeable
sequences. The Annals of Probability (1980), 745–764.

[14] Shijin Duan, Yejia Liu, Shaolei Ren, and Xiaolin Xu. 2022. LeHDC:
Learning-based hyperdimensional computing classifier. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 1111–1116.

[15] Shijin Duan, Xiaolin Xu, and Shaolei Ren. 2022. A brain-inspired
low-dimensional computing classifier for inference on tiny devices.
arXiv preprint arXiv:2203.04894 (2022).

[16] Edward Paxon Frady, Denis Kleyko, and Friedrich T Sommer. 2018.
A theory of sequence indexing and working memory in recurrent
neural networks. Neural Computation 30, 6 (2018), 1449–1513.
https://doi.org/10.1162/neco_a_01084

[17] Stephen I Gallant and TWendy Okaywe. 2013. Representing objects,
relations, and sequences. Neural computation 25, 8 (2013), 2038–2078.
https://doi.org/10.1162/NECO_a_00467

[18] RossWGayler. 1998. Multiplicative binding, representation operators
& analogy (workshop poster). (1998).

[19] Lulu Ge and Keshab K Parhi. 2020. Classification using hyperdimen-
sional computing: A review. IEEE Circuits and Systems Magazine 20,
2 (2020), 30–47.

[20] Lulu Ge and Keshab K Parhi. 2022. Applicability of hyperdimensional
computing to seizure detection. IEEE Open Journal of Circuits and

Systems 3 (2022), 59–71.
[21] Dirk Goldhahn, Thomas Eckart, Uwe Quasthoff, et al. 2012. Building

large monolingual dictionaries at the leipzig corpora collection: From
100 to 200 languages.. In LREC, Vol. 29. 31–43.

[22] HuiHan and Julien Siebert. 2022. TinyML:A systematic review and syn-
thesis of existing research. In 2022 International Conference on Artificial
Intelligence in Information and Communication (ICAIIC). IEEE, 269–274.

[23] Yizeng Han, Gao Huang, Shiji Song, Le Yang, HonghuiWang, and Yulin
Wang. 2021. Dynamic neural networks: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence 44, 11 (2021), 7436–7456.

[24] Eman Hassan, Yasmin Halawani, Baker Mohammad, and Hani Saleh.
2021. Hyper-dimensional computing challenges and opportunities
for AI applications. IEEE Access 10 (2021), 97651–97664.

[25] Mike Heddes, Igor Nunes, Tony Givargis, Alexandru Nicolau, and
Alex Veidenbaum. 2022. Hyperdimensional hashing: A robust and
efficient dynamic hash table. In Proceedings of the 59th ACM/IEEE
Design Automation Conference. 907–912.

[26] Alejandro Hernández-Cano, Namiko Matsumoto, Eric Ping, and
Mohsen Imani. 2021. OnlineHD: Robust, Efficient, and Single-Pass
Online Learning Using Hyperdimensional System. In 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). 56–61.
https://doi.org/10.23919/DATE51398.2021.9474107

[27] MichaelHersche,MustafaZeqiri, LucaBenini,AbuSebastian, andAbbas
Rahimi. 2023. Aneuro-vector-symbolic architecture for solvingRaven’s
progressive matrices. Nature Machine Intelligence 5, 4 (2023), 363–375.

[28] Sture Holm. 1979. A simple sequentially rejective multiple test
procedure. Scandinavian journal of statistics (1979), 65–70.

[29] E Ray Hsieh, Massimo Giordano, Bryce Hodson, Akash Levy, SK
Osekowsky, Robert M Radway, Yu-Chuan Shih, Weier Wan, Tony F
Wu, Xin Zheng, et al. 2019. High-density multiple bits-per-cell 1T4R
RRAM array with gradual SET/RESET and its effectiveness for deep
learning. In 2019 IEEE International Electron Devices Meeting (IEDM).
IEEE, 35–6. https://doi.org/10.1109/IEDM19573.2019.8993514

[30] Mohsen Imani, Chenyu Huang, Deqian Kong, and Tajana Rosing.
2018. Hierarchical hyperdimensional computing for energy efficient
classification. In Proceedings of the 55th Annual Design Automation
Conference. 1–6. https://doi.org/10.1145/3195970.3196060

[31] Mohsen Imani, Yeseong Kim, Behnam Khaleghi, Justin Morris,
Haleh Alimohamadi, Farhad Imani, and Hugo Latapie. 2023.
Hierarchical, Distributed and Brain-Inspired Learning for In-
ternet of Things Systems. In 2023 IEEE 43rd International Con-
ference on Distributed Computing Systems (ICDCS). 511–522.
https://doi.org/10.1109/ICDCS57875.2023.00083

[32] Mohsen Imani, Abbas Rahimi, Deqian Kong, Tajana Rosing, and Jan M
Rabaey. 2017. Exploring hyperdimensional associativememory. In 2017
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 445–456. https://doi.org/10.1109/HPCA.2017.28

[33] Mohsen Imani, Sahand Salamat, Behnam Khaleghi, Mohammad
Samragh, Farinaz Koushanfar, and Tajana Rosing. 2019. SparseHD:
Algorithm-hardware co-optimization for efficient high-dimensional
computing. In 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). IEEE, 190–198.

[34] Gareth James, DanielaWitten, Trevor Hastie, Robert Tibshirani, et al.
2013. An introduction to statistical learning. Vol. 112. Springer.

[35] Ramesh Johari, Pete Koomen, Leonid Pekelis, and DavidWalsh. 2017.
Peeking at a/b tests: Why it matters, and what to do about it. In
Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 1517–1525.

[36] Aditya Joshi, Johan T Halseth, and Pentti Kanerva. 2017. Language
geometry using random indexing. In Quantum Interaction: 10th
International Conference, QI 2016, San Francisco, CA, USA, July 20-22,
2016, Revised Selected Papers 10. Springer, 265–274.

[37] Rakhee Kallimani, Krishna Pai, Prasoon Raghuwanshi, Sridhar Iyer,
and Onel LA López. 2024. TinyML: Tools, applications, challenges, and

358

https://doi.org/10.48550/arXiv.2103.06709
https://arxiv.org/abs/2301.10352
https://doi.org/10.1162/neco_a_01084
https://doi.org/10.1162/NECO_a_00467
https://doi.org/10.23919/DATE51398.2021.9474107
https://doi.org/10.1109/IEDM19573.2019.8993514
https://doi.org/10.1145/3195970.3196060
https://doi.org/10.1109/ICDCS57875.2023.00083
https://doi.org/10.1109/HPCA.2017.28

ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands Pu (Luke) Yi, Yifan Yang, Chae Young Lee, and Sara Achour

future research directions. Multimedia Tools and Applications 83, 10
(2024), 29015–29045.

[38] Pentti Kanerva. 1997. Fully distributed representation. PAT 1, 5 (1997),
10000.

[39] Geethan Karunaratne, Manuel Le Gallo, Giovanni Cherubini, Luca
Benini, Abbas Rahimi, and Abu Sebastian. 2020. In-memory hy-
perdimensional computing. Nature Electronics 3, 6 (2020), 327–337.
https://doi.org/10.1038/s41565-023-01357-8

[40] Michael Klass and Henry Teicher. 1987. The central limit theorem
for exchangeable random variables without moments. The Annals of
Probability (1987), 138–153.

[41] Denis Kleyko, Connor Bybee, Ping-Chen Huang, Christopher J
Kymn, Bruno A Olshausen, Edward Paxon Frady, and Friedrich T
Sommer. 2023. Efficient decoding of compositional structure in
holistic representations. Neural Computation 35, 7 (2023), 1159–1186.
https://doi.org/10.1162/neco_a_01590

[42] Denis Kleyko, Mike Davies, Edward Paxon Frady, Pentti Kanerva,
Spencer J Kent, Bruno A Olshausen, Evgeny Osipov, Jan M Rabaey,
Dmitri ARachkovskij, Abbas Rahimi, et al. 2022. Vector SymbolicArchi-
tectures as aComputing Framework for EmergingHardware. Proc. IEEE
110, 10 (2022), 1538–1571. https://doi.org/10.1109/JPROC.2022.3209104

[43] Denis Kleyko, Evgeny Osipov, Alexander Senior, Asad I Khan, and
Yaşar Ahmet Şekerciogğlu. 2016. Holographic graph neuron: A
bioinspired architecture for pattern processing. IEEE transactions
on neural networks and learning systems 28, 6 (2016), 1250–1262.
https://doi.org/10.1109/TNNLS.2016.2535338

[44] Denis Kleyko, Dmitri Rachkovskij, Evgeny Osipov, and Abbas Rahimi.
2023. A survey on hyperdimensional computing aka vector symbolic
architectures, part ii: Applications, cognitive models, and challenges.
Comput. Surveys 55, 9 (2023), 1–52. https://doi.org/10.1145/3558000

[45] Denis Kleyko, Dmitri A Rachkovskij, Evgeny Osipov, and Abbas
Rahimi. 2021. A Survey on Hyperdimensional Computing aka Vector
Symbolic Architectures, Part I: Models and Data Transformations.
ACMComputing Surveys (CSUR) (2021).

[46] Denis Kleyko, Antonello Rosato, Edward Paxon Frady, Massimo
Panella, and Friedrich T. Sommer. 2023. Perceptron Theory
Can Predict the Accuracy of Neural Networks. IEEE Trans-
actions on Neural Networks and Learning Systems (2023), 1–15.
https://doi.org/10.1109/TNNLS.2023.3237381

[47] Teuvo Kohonen and Teuvo Kohonen. 2001. Learning vector
quantization. Self-organizing maps (2001), 245–261.

[48] Arun Kumar Kuchibhotla. 2020. Exchangeability, conformal prediction,
and rank tests. arXiv preprint arXiv:2005.06095 (2020).

[49] Christopher J Kymn, Denis Kleyko, E Paxon Frady, Connor Bybee,
Pentti Kanerva, Friedrich T Sommer, and Bruno A Olshausen.
2023. Computing with Residue Numbers in High-Dimensional
Representation. ArXiv (2023).

[50] Jovin Langenegger, Geethan Karunaratne, Michael Hersche, Luca
Benini, Abu Sebastian, and Abbas Rahimi. 2023. In-memory factoriza-
tion of holographic perceptual representations. Nature Nanotechnology
18, 5 (2023), 479–485.

[51] Binh Q Le, Akash Levy, Tony FWu, Robert M Radway, E RayHsieh, Xin
Zheng, Mark Nelson, Priyanka Raina, H-S PhilipWong, SimonWong,
et al. 2021. RADAR:A fast and energy-efficient programming technique
formultiplebits-per-cellRRAMarrays. IEEETransactions onElectronDe-
vices 68, 9 (2021), 4397–4403. https://doi.org/10.1109/TED.2021.3097975

[52] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST
handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

[53] Axel Legay, Benoît Delahaye, and Saddek Bensalem. 2010. Statistical
model checking: An overview. In International conference on runtime
verification. Springer, 122–135.

[54] Justin Morris, Mohsen Imani, Samuel Bosch, Anthony Thomas, Helen
Shu, and Tajana Rosing. 2019. CompHD: Efficient hyperdimensional
computing using model compression. In 2019 IEEE/ACM International

Symposium on Low Power Electronics and Design (ISLPED). IEEE, 1–6.
[55] Justin Morris, Si Thu Kaung Set, Gadi Rosen, Mohsen Imani, Baris

Aksanli, and Tajana Rosing. 2021. AdaptBit-HD: Adaptive Model
Bitwidth for Hyperdimensional Computing. In 2021 IEEE 39th
International Conference on Computer Design (ICCD). IEEE, 93–100.

[56] Nuntipat Narkthong, Shijin Duan, Shaolei Ren, and Xiaolin Xu. 2024.
MicroVSA: An Ultra-Lightweight Vector Symbolic Architecture-based
Classifier Library for Always-On Inference on TinyMicrocontrollers.
In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
2. 730–745.

[57] Tony A Plate. 1994. Distributed representations and nested compositional
structure. Citeseer.

[58] Tony A Plate. 1995. Holographic reduced representations.
IEEE Transactions on Neural Networks 6, 3 (1995), 623–641.
https://doi.org/10.1109/72.377968

[59] Tony A Plate. 2000. Analogy retrieval and processing with distributed
vector representations. Expert systems 17, 1 (2000), 29–40.

[60] Tony A Plate. 2003. Holographic Reduced Representation: Distributed
representation for cognitive structures. (2003).

[61] Dmitri A Rachkovskij. 2001. Representation and processing of
structures with binary sparse distributed codes. IEEE Transac-
tions on Knowledge and Data Engineering 13, 2 (2001), 261–276.
https://doi.org/10.1109/69.917565

[62] Dmitriy A Rachkovskiy, Sergey V Slipchenko, Ernst M Kussul, and
Tatyana N Baidyk. 2005. Sparse binary distributed encoding of scalars.
Journal of Automation and Information Sciences 37, 6 (2005).

[63] Ali Safa, Ilja Ocket, Francky Catthoor, and Georges Gielen. 2023.
SupportHDC: Hyperdimensional Computing with Scalable Hyper-
vector Sparsity. In Proceedings of the 2023 Annual Neuro-Inspired
Computational Elements Conference (San Antonio, TX, USA) (NICE
’23). Association for Computing Machinery, New York, NY, USA, 20–25.
https://doi.org/10.1145/3584954.3584961

[64] Kenny Schlegel, Peer Neubert, and Peter Protzel. 2022. HDC-
MiniROCKET: Explicit time encoding in time series classification with
hyperdimensional computing. In 2022 International Joint Conference
on Neural Networks (IJCNN). IEEE, 1–8.

[65] Javier Snaider and Stan Franklin. 2014. Modular composite represen-
tation. Cognitive Computation 6 (2014), 510–527.

[66] Justin Theiss, Jay Leverett, Daeil Kim, and Aayush Prakash. 2022.
Unpaired Image Translation via Vector Symbolic Architectures.
In Computer Vision – ECCV 2022, Shai Avidan, Gabriel Brostow,
Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.).
Springer Nature Switzerland, Cham, 17–32.

[67] Simon Thomann, Hong L. G. Nguyen, and Hussam Amrouch. 2022.
HW/SW Codesign for Approximate In-Memory Computing. In 2022
23rd International Symposium on Quality Electronic Design (ISQED).
1–6. https://doi.org/10.1109/ISQED54688.2022.9806287

[68] Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. 2021.
Theoretical Foundations of Hyperdimensional Computing.
Journal of Artificial Intelligence Research 72 (2021), 215–249.
https://doi.org/10.48550/arXiv.2010.07426

[69] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. 2017. FINN:
A framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA international symposium on
field-programmable gate arrays. 65–74.

[70] AbrahamWald. 1992. Sequential tests of statistical hypotheses. InBreak-
throughs in statistics: Foundations and basic theory. Springer, 256–298.

[71] Anjiang Wei, Akash Levy, Pu (Luke) Yi, Robert Radway, Priyanka
Raina, Subhasish Mitra, and Sara Achour. 2023. PBA: Percentile-Based
Level Allocation for Multiple-Bits-Per-Cell RRAM. In ICCAD.

[72] Samuel Wilson, Tobias Fischer, Niko Sünderhauf, and Feras Dayoub.
2023. Hyperdimensional Feature Fusion for Out-of-Distribution

359

https://doi.org/10.1038/s41565-023-01357-8
https://doi.org/10.1162/neco_a_01590
https://doi.org/10.1109/JPROC.2022.3209104
https://doi.org/10.1109/TNNLS.2016.2535338
https://doi.org/10.1145/3558000
https://doi.org/10.1109/TNNLS.2023.3237381
https://doi.org/10.1109/TED.2021.3097975
https://doi.org/10.1109/72.377968
https://doi.org/10.1109/69.917565
https://doi.org/10.1145/3584954.3584961
https://doi.org/10.1109/ISQED54688.2022.9806287
https://doi.org/10.48550/arXiv.2010.07426

Early Termination for Hyperdimensional Computing Using Inferential Statistics ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands

Detection. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV). 2644–2654.

[73] Calvin Yeung, Zhuowen Zou, and Mohsen Imani. 2024. Generalized
Holographic Reduced Representations. arXiv preprint arXiv:2405.09689
(2024).

[74] Pu (Luke) Yi and Sara Achour. 2023. Hardware-Aware Static
Optimization of Hyperdimensional Computations. Proc. ACM
Program. Lang. 7, OOPSLA2, Article 222 (oct 2023), 30 pages.
https://doi.org/10.1145/3622797

[75] Tao Yu, Yichi Zhang, Zhiru Zhang, and Christopher M De Sa. 2022.
Understanding hyperdimensional computing for parallel single-pass
learning. Advances in Neural Information Processing Systems 35 (2022),
1157–1169.

[76] Zhuowen Zou, Hanning Chen, Prathyush Poduval, Yeseong Kim,
Mahdi Imani, Elaheh Sadredini, Rosario Cammarota, and Mohsen
Imani. 2022. BioHD: an efficient genome sequence search platform
using hyperdimensional memorization. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 656–669.

360

https://doi.org/10.1145/3622797

	Abstract
	1 Introduction
	1.1 HDC Classifiers and Early Termination
	1.2 Early Termination with Omen
	1.3 Contributions

	2 Hyperdimensional Computing (HDC)
	2.1 Example: Text Encoding

	3 HDC Classification with Omen
	3.1 Anatomy of an HDC Classifier
	3.2 Challenges with Inference
	3.3 Early Termination with Omen

	4 Statistical View of HDC
	4.1 Fully Distributed Hypervectors
	4.2 Distances as Expected Value Estimates
	4.3 Distance Comparisons with Statistical Tests

	5 Early Termination with Omen
	5.1 Key Statistical Tests
	5.2 Holm-Bonferri Method
	5.3 Omen Inference Algorithm

	6 Exchangeability
	6.1 Definition of Exchangeablility
	6.2 Learned Hypervectors Are Exchangeable
	6.3 Discussion

	7 Evaluation
	7.1 Experimental Setup
	7.2 Evaluation Results
	7.3 Robustness to Hardware Noise

	8 Related Work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results

	References

