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Abstract

This paper describes a method to quantify the001
amount of information H(t|s) added by the tar-002
get sentence t that is not present in the source003
s in a neural machine translation system. We004
do this by providing the model the target sen-005
tence in a highly compressed form (a “cheat006
code”), and exploring the effect of the size of007
the cheat code. We find that the model is able008
to capture extra information from just a single009
float representation of the target and nearly re-010
produces the target with two 32-bit floats per011
target token.012

1 Introduction013

Given a sentence s in the source language, a ma-014

chine translation system generates a translation t015

in the target language. However, for any sentence016

of non-trivial complexity, the translation t is not017

unique. Therefore, to reproduce a reference trans-018

lation, a model requires some amount of extra in-019

formation. The aim of this work is to quantify the020

amount of information that is missing in the source021

s that is required to generate the translation t.022

To quantify this information, we modify the023

model architecture to provide the target sentence024

to the model as an auxiliary input, and observe the025

effect of varying the size of the representation of026

the target sentence from the minimum that provides027

any useful information to the decoder to the size028

that enables a near-perfect reproduction of the tar-029

get. Since the model seeing the target as an input is030

a form of “cheating”, we refer to these compressed031

representations of the target as “cheat codes”.032

2 Related Work033

Zoph and Knight (2016) use multiple encoders to034

provide input in multiple languages to machine035

translation models to improve translation quality.036

Dual encoder networks have been used in lan-037

guage generation tasks to inject extra information038

(Sharath T et al., 2017), encode input at different 039

levels of granularity (Yao et al., 2020), or for con- 040

text awareness (Li et al., 2020). Junczys-Dowmunt 041

and Grundkiewicz (2017) use very similar dual- 042

encoder architectures for automatic post-editing, 043

but without bottlenecking the second encoder out- 044

put, and the second input in that case is machine 045

translation output instead of a reference. Dinu et al. 046

(2019) train models to inject custom terminology 047

by providing an additional input, but instead of 048

using a second encoder, this is done using inline 049

annotations for the terms to be generated and using 050

factors to demarcate these annotations. 051

3 Method 052

3.1 Architecture 053

We use the Marian framework (Junczys-Dowmunt 054

et al., 2018) to implement a modified dual-encoder 055

transformer architecture (Zoph and Knight, 2016). 056

The first encoder is an ordinary transformer-base 057

encoder (Vaswani et al., 2017) which takes the 058

source sentence as input, while the second encoder 059

generates a highly compressed representation of 060

the second input, and the decoder attends to both 061

encoder contexts. 062

For the second encoder, we use a GRU (Cho 063

et al., 2014) with hidden size 256, optionally av- 064

erage its outputs over all the states to get a fixed- 065

length representation, and apply a linear bottleneck 066

layer. This generates the highly compressed rep- 067

resentation of the second input that the decoder 068

attends to. Figure 1 shows the model architecture 069

along with the separate inputs and cheat codes. 070

3.2 Cheat Codes 071

At training time, we provide the target sentence as 072

the second input to the model, so the model essen- 073

tially cheats by seeing the translation it is supposed 074

to generate. At inference time, we can provide the 075

reference translation or any other sentence as the 076
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Figure 1: Model architecture with inputs and cheat
codes

second input, which should guide the generation077

towards this provided input.078

Alternatively, this second encoder can be by-079

passed to directly provide context vectors for the080

decoder to attend to. As an example, we can use081

this feature to interpolate between the representa-082

tion of two different references and provide that as083

a cheat code, and thus explore whether we can ob-084

tain alternative translations in some semantic space085

between the two references (Section 4.4).086

We vary the size of the cheat codes and observe087

their effect on the output translations. The size is088

varied in three different ways:089

• Using fixed-length representations of n090

floating-point numbers, where we can vary091

n, by averaging over all the output states of092

the second encoder, and then applying the bot-093

tleneck layer to project the result down to n094

dimensions.095

• Using variable-length representations of n096

floating-point numbers per token, which is097

simply the output of the second encoder, with098

the bottleneck layer applied on each output099

state.100

• Using representations smaller than one101

floating-point number by applying quantiza-102

tion on a one-dimensional representation. We103

do this using a simple linear quantization104

scheme similar to Miyashita et al. (2016) and105

Hubara et al. (2017). To quantize a scalar x to106

k bits:107

r = round(x ∗m)108

c = clip(r,−2k−1, 2k−1 − 1)109

Quantk(x) = c/m110

where m is a multiplier chosen to ensure the 111

quantized scalar covers the full range of the 112

k-bit number after quantization. We observe 113

that our single float32 cheat codes are in [-2, 114

2], so we use m = 2k−2 so that r is spread 115

over [−2k−1, 2k−1] without getting clipped. 116

4 Experiments 117

All our experiments use Chen et al. (2021)’s 118

cleaned version of the WMT21 German→English 119

dataset (Akhbardeh et al., 2021). We do not use 120

back-translated data since we observed no improve- 121

ment in quality upon adding it, consistent with 122

Chen et al. (2021)’s findings. We evaluate on both 123

references A and B in the test set using BLEU1 and 124

ChrF2 metrics from SacreBLEU (Post, 2018), and 125

COMET and COMET-QE3 (Rei et al., 2020). 126

Table 1 shows the results for our different mod- 127

els with references A or B provided as cheat codes 128

and being evaluated on both references. We see that 129

the models can score higher than the transformer 130

baseline on a given reference when the same refer- 131

ence is supplied as a second input, which indicates 132

that the model is able to “cheat” and capture useful 133

extra information from just a single floating-point 134

representation of the target sentence. 135

4.1 Increasing bottleneck size 136

As we increase the size of the bottleneck layer, we 137

see that the model captures more information from 138

the larger cheat codes and the outputs approach the 139

reference translations, as shown by much higher 140

BLEU and ChrF compared to the baseline. How- 141

ever, this is not always reflected in the COMET 142

and COMET-QE scores and we suspect this is due 143

to how COMET is trained. This issue is further 144

discussed in Section 4.5. 145

4.2 Minimizing bottleneck size 146

We have already observed that the model is able 147

to capture useful information from a single 32-bit 148

float. To find the lower bound of the cheat code 149

size that is still useful to the model, we reduce it 150

to less than one float, for which we quantize the 151

32-bit representations from the second encoder to 152

16, 8, or 4 bits. We see that the 16-bit cheat codes 153

work almost as well as the 32-bit ones. With less 154

1BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|v:2.0.0
2chrF2|#:1|c:mixed|e:yes|nc:6|nw:0|s:no|v:2.0.0
3wmt20-comet-da and wmt20-comet-qe-da in COMET
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Model/input
Score on Reference A Score on Reference B

BLEU ChrF COMET BLEU ChrF COMET COMET-QE

Transformer baseline 32.2 60.3 0.5565 36.3 62.6 0.5640 0.3472

References scored against each other / with COMET-QE:
Reference A 100 100 0.9934 29.5 58.5 0.5316 0.3265
Reference B 29.5 57.7 0.5643 100 100 1.0015 0.3829

Reference A as second input, fixed-length cheat codes:
1 × int4 31.1 58.9 0.4781 31.8 59.0 0.4610 0.2924
1 × int8 31.3 59.1 0.4885 31.0 58.8 0.4707 0.3067
1 × int16 32.0 59.7 0.5320 31.2 59.2 0.4913 0.3107
1 × float32 32.3 59.6 0.5153 31.6 59.2 0.4917 0.3092
2 × float32 33.5 60.3 0.5177 29.6 58.2 0.4602 0.2979
4 × float32 36.7 61.6 0.4935 27.0 56.3 0.3893 0.2558
25 × float32 67.0 80.0 0.7333 24.6 54.4 0.3191 0.2561

Reference A as second input, variable-length cheat codes:
1 × float32 / token 40.1 64.2 0.5962 28.7 57.8 0.4587 0.2948
2 × float32 / token 92.4 96.1 0.9148 28.4 57.6 0.4473 0.2778
4 × float32 / token 91.2 95.2 0.9017 28.5 57.6 0.4434 0.2773
8 × float32 / token 89.7 94.1 0.8877 28.6 57.6 0.4438 0.2810
12 × float32 / token 94.1 97.4 0.9377 28.6 57.8 0.4750 0.2971
16 × float32 / token 95.8 98.6 0.9779 28.7 57.9 0.5107 0.3152

Reference B as second input, fixed-length cheat codes:
1 × int4 29.8 58.0 0.4624 34.5 60.5 0.4735 0.2981
1 × int8 28.9 57.9 0.4824 34.9 60.6 0.5147 0.3121
1 × int16 29.1 57.9 0.4942 36.3 61.7 0.5375 0.3145
1 × float32 29.3 58.2 0.4865 36.4 61.9 0.5153 0.3111
2 × float32 27.5 57.0 0.4706 38.3 62.9 0.5249 0.3056
4 × float32 25.7 55.6 0.4210 41.8 64.4 0.5344 0.2827
25 × float32 24.9 53.9 0.3657 70.7 81.8 0.7734 0.2899

Reference B as second input, variable-length cheat codes:
1 × float32 / token 26.9 56.6 0.4725 46.0 67.0 0.6275 0.3125
2 × float32 / token 28.4 56.7 0.4785 92.5 95.5 0.9130 0.3234
4 × float32 / token 28.7 57.0 0.4959 92.0 95.3 0.9156 0.3303
8 × float32 / token 28.6 56.8 0.4919 90.6 94.4 0.8997 0.3320
12 × float32 / token 28.7 57.0 0.5123 94.0 96.9 0.9514 0.3439
16 × float32 / token 28.7 57.0 0.5349 95.6 98.0 0.9783 0.3599

Table 1: Evaluation with references A and B as second input

than 16 bits, it appears that the model is unable to155

capture any extra information from the target.156

4.3 Variable-length cheat codes157

Since the amount of information contained in sen-158

tences can vary widely, it makes sense that the size159

of cheat codes required to encode them can vary.160

To this end, we also train models where the size of161

the cheat code is proportional to sentence length.162

For these models, we observe that due to the in- 163

creased capacity of the second encoder, training a 164

model to “cheat” from the start makes it too depen- 165

dent on the target, i.e. it does not learn to use the 166

source fully, resulting in the cheat code estimating 167

H(t) instead of H(t|s) as intended. Therefore, we 168

first train with a blank second input for the model 169

to learn to use the source, then we continue training 170

with both inputs to train the second encoder. 171
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As expected, we observe a similar pattern of172

more information being captured as we make the173

cheat codes larger. At just 2 floats per token, the174

model scores 92.4 BLEU/96.1 ChrF on reference175

A with the same reference as input, and likewise176

92.5 BLEU/95.5 ChrF on reference B. At 16 floats177

per token, it scores more than 98 ChrF, which is178

very close to perfectly reproducing the references.179

4.4 Interpolating between references180

For models which use fixed-length representations181

of the second input, we can directly feed the de-182

coder a cheat code instead of an actual input sen-183

tence. We use this to interpolate between the en-184

coded forms of the two references. Figure 2 shows185

the performance of the model with single float32186

cheat codes while providing λ·enc(refA)+(1−λ)·187

enc(refB) as the cheat code. We can see the emer-188

gence of a continuous space of cheat codes such189

that codes close to reference A result in outputs190

closer to reference A and moving towards refer-191

ence B moves the output closer to reference B.192

4.5 Evaluating with COMET-QE193

BLEU and ChrF, along with most commonly used194

machine translation metrics, are reference-based195

metrics. This automatically makes it more likely196

that the model will score highest on a reference197

when given that exact reference as the cheat code.198

In Figure 2, for example, we see how the perfor-199

mance on each reference peaks exactly when we200

provide that reference as input. Since the two ref-201

erences are quite different from each other – they202

only score 29.5 BLEU when they are scored against203

each other – using one as the cheat code does not204

produce good results on the other.205

We expected to see COMET-QE scores in-206

crease with cheat code size, similar to BLEU and207

ChrF scores. However, we see that COMET-QE208

scores remain below the baseline even for most209

models with large cheat codes and near-perfect210

BLEU/ChrF scores. We even observe that COMET-211

QE scores Reference A lower than the baseline212

output. We conclude that since COMET-QE is a213

metric trained on machine translation outputs and214

their human evaluation scores, it does not work215

well for near-perfect translations and is unable to216

score them higher than the best MT output. For the217

same reason, even though COMET scores (with ref-218

erence) increase for large cheat codes, the pattern219

is less clear than for the string-matching metrics.220

Figure 2: Interpolating between representations of refer-
ences A and B.

5 Conclusions and Future Work 221

This paper has shown that by letting machine trans- 222

lation models use a highly compressed represen- 223

tation of the target sentence as an auxiliary input, 224

we can estimate the amount of information missing 225

from the source that the model captures from the 226

target. By varying the size of these representations 227

(cheat codes), we see that the model can capture 228

useful information from as little as a 16- or 32-bit 229

scalar representation of the target. We also see that 230

the model approaches perfect reproduction of the 231

target (>92BLEU/95ChrF) from as little as 2 floats 232

per target token. 233

A limitation of our method is that it can only 234

estimate the amount of missing information from 235

the source based on the size of cheat code, but we 236

do not get any insight into what this information 237

actually is. In future work, this method can be ex- 238

tended to qualitatively analyze what the missing 239

information is, and how it can possibly be provided 240

to the model in other ways to improve translation 241

quality without “cheating”. Another limitation is 242

that the model, if not trained carefully for larger 243

cheat codes, can learn to copy the target without us- 244

ing the source. This is countered by careful training 245

regimes as discussed in Section 4.3. 246

Since the model is able to capture extra informa- 247

tion from the second input, it could be possible to 248

use this to guide the output in other ways than just 249

to reproduce the references. For example, given 250

a small enough representation, we could sweep 251

through the entire range of cheat codes and pro- 252

duce diverse high-quality translations (He et al., 253

2018; Roberts et al., 2020). 254

4



References255

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-256
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