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Reproducibility Summary1

Scope of Reproducibility2

This report reproduces the experiments and validates the results of the ECCV 2020 paper "Solving Phase Retrieval3

with a Learned Reference" by Hyder et al. [8]. The authors consider the task of recovering an unknown signal from its4

Fourier magnitudes, where the measurements are obtained after a reference image is added onto the signal. In order5

to solve this task a novel, iterative phase retrieval algorithm, presented as an unrolled network, that can train a such6

reference on a small amount of data is proposed. It is shown that the learned reference generalizes well to unseen data7

distributions and is robust to spatial data augmentation like shifting and rotation.8

Methodology9

We use the provided original code to reproduce the experiments from Hyder et al. [8] that validate the proposed claims.10

Nevertheless, we refactor the code base to accelerate the performance and we extent it to carry out experiments where11

no code is available. We perform a hyperparameter search to investigate the influence and optimal values of the learning12

rates in both the training and retrieval process. Additionally, we do an ablation study to evaluate the necessary parts13

of the proposed algorithm. For our experiments we use a single NVIDIA TESLA P100 GPU with 16GB RAM and14

approximately 100 computational hours for all experiments together.15

Results16

In general, we are able to reproduce the results of Hyder et al. [8]. Because of the hyperparameter search, we are certain17

that the results are not cherry-picked and mostly reproducible using the authors’ implementation of the algorithm. With18

our additional experiments, we further strengthen the validity of the proposed method and help future researchers and19

practitioners by providing additional information on the learning rates in the training and retrieval process.20

What Was Easy21

The authors provide an implementation of their algorithm that is executable in our environment after exchanging22

deprecated functions. The considered datasets are open access, hence easy to use. Furthermore, the computational cost23

is fairly low such that we could run extensive experiments and even compare different hyperparameter settings.24

What Was Difficult25

We spend some effort to understand the authors’ implementation, as it is marginally documented and the used26

computational tricks are not explained in detail. Moreover, it contains some redundant code which slows down27

computation. Beyond refactoring, we had to extent the implementation to be able to run our experiments. The lack28

of information about the learning rates slowed down the reproduction of the results, as we first had to investigate the29

influences on the training and retrieval process before we could adjust the parameters effectively.30

Communication With Original Authors31

We were in contact with the authors via mail and we would like to thank the authors for helping us. Especially, we32

thank Rakib Hyder who kindly answered all our questions regarding implementation details and hyperparameters and33

Salman Asif who was open for our implementation suggestions and provided useful feedback for this report.34

Submitted to ML Reproducibility Challenge 2020. Do not distribute.



1 Introduction35

Many optical detection devices can only measure the Fourier magnitude of a signal (e.g., the intensity of light) but36

not its Fourier phase. This systematic loss of information is known as the phase problem and often arises in X-ray37

crystallography [12], microscopy [17], astronomical imaging [5] and coherent diffraction imaging [2]. The goal of38

phase retrieval algorithms is to efficiently recover the phase of a signal from its phaseless magnitude measurements. A39

special problem instance is Fourier phase retrieval, where amplitudes of a Fourier transformed signal are measured and40

the task is to recover the original real or complex valued signal.41

In general, there is no unique mapping from the magnitude to the target signal, thus there exist various approaches to42

solve it. Mainly inspired by solving holographic phase retrieval using a reference signal by Barmherzig et al. [1], the43

authors apply a similar approach to Fourier phase retrieval. Therefore, they assume a setting where the target signal x44

and the reference signal u are additive and overlapping, i.e.,45

y = |F (x) + F (u)|+ η, (1)

where F is the n-dimensional Fourier transformation and η is the measurement noise. For this particular setting, Hyder46

et al. [8] propose a novel, data-driven retrieval algorithm as an unrolled network with a fixed number of layers. It is47

capable to learn a reference signal u and subsequently solve the phase retrieval problem utilizing u to recover the target48

signal x solely from the measurements y.49

2 Scope of Reproducibility50

In this paper we reproduce the most important experiments using the method proposed by Hyder et al. [8]. We examine,51

refactor and extend the original code which we incorporate into our scripts to run our experiments.52

2.1 Addressed Claims From the Original Paper53

We validate in this paper the following claims from Hyder et al. [8]:54

• The presented iterative algorithm is able to learn a reference signal and can utilize it in Fourier phase retrieval55

to improve the recovery of the target signal. Moreover, it requires only a small amount of training data to learn56

a reference.57

• The learned reference is (i) robust to data augmentation in spatial space, (ii) it generalizes well to unseen data58

distribution and (iii) it is better than other types of references, e.g., random references.59

2.2 Our Contribution60

Our contributions in this report are:61

1. We redo the experiments on phase retrieval with a learned reference with all datasets and report all used62

parameters.63

2. We reproduce the generalization study with a subset of the data and report all used parameters.64

3. We validate the robustness claims with our experiments and use furthermore an additional dataset.65

4. We reproduce the experiments on the benefits of a learned references and also extend them with further types66

of references and new images.67

5. We validate and extend the comparison with some baseline phase retrieval algorithms.68

6. We perform an extensive hyperparameter search to analyze the influence of the learning rates on the recon-69

struction. We show that the performance of the algorithm can be improved by tuning the learning rates.70

7. We investigate on the necessity of a reference and on the amount of oversampling in the training and recovery71

process.72

3 Methodology73

Mainly, we use the Algorithm 1 and 2 from [8] which are implemented in PyTorch [14] to validate the proposed claims74

and we mostly follow the restrictions and approaches described in the paper.75
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3.1 Model Description76

In order to reconstruct the target signal x∗ given a reference signal u and measurements y = |F (x∗) + F (u)|, Hyder et77

al. [8] propose to minimize the loss function78

Lx(x; y, u) = ‖y − |F (x) + F (u)|‖22 (2)
using a gradient descent algorithm79

xk+1 = xk − α∇xLx(x
k; y, u), (3)

where α > 0 is the learning rate and xk is the reconstruction of the k-th iteration (with x0 being properly initialized).80

The authors interpret the K iterations as an unrolled network with K layers, such that each layer of the network81

represents a single gradient descent update step. So, the input to the network is y and u and the output can be written as82

a function xK(y, u).83

The reference signal u is learned from a training dataset of images x1, . . . , xN and corresponding measurements84

(magnitudes) y1, . . . , yN for a given reference u, which could be written as85

yi = |F (xi) + F (u)|. (4)
Since for the training images and their magnitudes are known, a good reference image u can by learned by minimizing86

the least-squares error87

Lu(u;x1, . . . , xn, y1, . . . , yn) =

N∑
i=1

‖xi − xK(yi, u)‖22 (5)

between signals from the training dataset x1, . . . , xN and their corresponding reconstructions xK(y1, u), . . . , x
K(yN , u)88

using the unrolled network, Eq. (3).89

This loss is minimized by gradient descent90

uj+1 = uj − β∇uLu(u
j ;x1, . . . , xn, y1, . . . , yn), (6)

where β > 0 is the learning rate for the reference and uj is the reference in the j-th iteration (with u0 being properly91

initialized). The gradient ∇uLu can be calculated via backpropagation. The update rule Eq. (6) is applied for fixed92

number of iterations J .93

3.2 Datasets94

Throughout our experiments, we use the same datasets as in the original work [8], i.e., MNIST [10], EMNIST [3],95

FMNIST [16], CIFAR-10 [9], SVHN [13], CelebA [11] and also 6 additional standard benchmark images 1. Three of96

these images were also used in the original work [8] and three are new.97

Mainly, we access the data via provided code by the authors. For training a reference, we use always 32 images from the98

training datasets and we test on the same amount of data as proposed by Hyder et al. [8]: We use 10000 test images from99

MNIST, FMNIST and CIFAR-10, 24800 for EMNIST, 26032 from SVHN and 1000 from CelebA, if not mentioned100

otherwise. Furthermore, our preprocessing pipeline is similar to the original work [8]: All used images are converted to101

greyscale, have intensity values in range [0, 1] and we reshape images from MNIST, EMNIST, FMNIST, CIFAR-10,102

SVHN to 32× 32, images from CelebA to 200× 200 and the standard benchmark images to 512× 512.103

3.3 Hyperparameter104

According to [8], we restrict the intensity values of the reference signal u to be within the interval [0, 1] throughout all105

experiments. Furthermore, we oversample four times in spatial domain by padding the input image with a black border,106

as this makes the problem more well-behaved. Additionally, our unrolled network always consists of 50 layers and we107

consider a noise free setting for training and retrieval. However, we provide detailed parameter configurations for all108

our experiments in the results section of the respective experiment.109

3.4 Experimental Setup110

To run the original code, we replaced deprecated functions from the algorithm and imported MNIST and CelebA111

manually. We use PyTorch 1.5.0 [14], scikit-image 0.18.1 [15] and NumPy 1.21.0 [7] as environment and conduct our112

experiments in Jupyter notebooks. To compare our results with the original ones, we mainly focus on the peak-signal-113

noise-ration (PSNR) over the test images. The used code is available on GitHub 2.114

1https://homepages.cae.wisc.edu/~ece533/images/ (Accessed on June 25, 2021)
2https://anonymous.4open.science/r/Machine_Learning_Reproducibility_Challenge_Spring_2021-3910/
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Our reproduced results
Dataset Hyder et. al. [8] Provided reference Our trained reference

MNIST 66.54 66.54± 24.15 (α = 1.348) 66.53± 14.98 (α = 1.177)
EMNIST 58.72 58.73± 15.71 (α = 1.010) 58.71± 19.31 (α = 1.160)
FMNIST 57.81 57.83± 13.64 (α = 1.052) 57.88± 19.36 (α = 1.320)
SVHN 57.51 57.50± 9.66 (α = 1.520) 57.55± 11.58 (α = 1.660)
CIFAR-10 41.60 41.61± 12.37 (α = 1.315) 41.68± 12.78 (α = 1.720)
CelebA 39.00 39.12± 10.78 (α = 1.400) 39.06± 11.21 (α = 1.870)

Table 1: Comparison of mean PSNR values reported in the original work [8] and reproduced results using the provided
reference and references that were trained from scratch. The learning rates were tuned so that our results match the
reported values from the paper.

3.5 Computational Requirements115

The original implementation requires a GPU with CUDA. Therefore, we use a single NVIDIA TESLA P100 GPU with116

16 GB memory for our experiments. Overall, we used approximately 100 GPU hours but it is possible to verify the117

proposed claims within about 3 GPU hours, if all parameters are known. Moreover, by finding and removing unused118

code we are able to decrease the runtime of the algorithm by 15 to 30 times, depending on the shape of the image. For119

example, retrieving 26032 images with shape 32× 32 takes approximately 9 seconds instead of 180 seconds.120

4 Results121

4.1 Reconstruction Using Learned References122

In our first experiment we reproduce the mean PSNR values on MNIST, EMNIST, FMNIST, SVHN, CIFAR-10 and123

CelebA that are reported in Fig. 2 of [8], see our Tab. 1. We use the provided pre-trained references and additionally124

self-trained references and compare the mean peak-signal-noise-ratio (PSNR) values as the performance criterion. For125

matching results we tune both β (the learning rate for the reference u) 3 and α (the learning rate for the recovery) in126

the training and reconstruction process. We explain these hyperparameters more detailed in Sec. 4.6. However, in127

reconstruction we keep β = 1 fixed and provide the α values used in the retrieval process additional to the results also128

shown in Tab. 1.129

By adjusting the learning rate α in the recovery process, we are able to reproduce all reported mean PSNR values130

within a deviation of 1% using the provided references and also our self-trained references. For MNIST, EMNIST and131

FMNIST we train for 5 epochs with α = 1 and β = 1, for CelebA we need to train for at least 15 epochs with the same132

learning rates. To reproduce the reported mean PSNR for CIFAR-10 we set α = 1.3 during training and train for 5133

epochs. For SVHN we need to set α = 1.3 and β = 10 while we train for 10 epochs to receive the reported mean134

PSNR values.135

4.2 Generalization Study136

We verify that our self-trained references also have a generalization property by reproducing a subset of the original137

generalization study from [8]. We use MNIST, FMNIST and CIFAR-10 as a representation for each type of images,138

i.e., artificial and real-world images. Our reproduced results are presented in Tab. 2. We find that with our self-trained139

references all reported values except for one are reproducible within 1% deviation by tuning α in reconstruction.140

Nevertheless, recovery of CIFAR-10 test images with a self-trained FMNIST reference results in a maximum mean141

PSNR of 33.75dB using α = 1.855 but Hyder et al. [8] report 42.85dB instead. With the provided FMNIST reference,142

we obtain only a maximum mean PSNR of 40.72dB using α = 1.870 (found via hyperparameter search).143

Additionally, we examine the same experiment with fixed learning rate α = 1 in the recovery process to investigate if144

the described trends of the references behavior, hold for our self-trained references as well. We present our experimental145

results in Tab. 3.146

While MNIST and FMNIST references are reasonable reference signals for each other, the performance drops on147

CIFAR-10 which supports the observation of the authors. In contrast, the CIFAR-10 reference is more valuable for the148

other datasets than for itself while this is not the case in the original study. Moreover, it performs better than reported by149

3Note: β is called lr_u in the implementation provided by the authors.
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Evaluated on
Trained on MNIST FMNIST CIFAR-10

MNIST 66.53± 14.98 (α = 1.177) 40.62± 12.66 (α = 0.795) 31.71± 9.00 (α = 0.950)
FMNIST 40.75± 14.45 (α = 0.730) 57.88± 19.36 (α = 1.320) 40.72± 16.93 (α = 1.870)
CIFAR-10 31.76± 8.31 (α = 0.405) 36.45± 9.30 (α = 0.550) 41.68± 12.78 (α = 1.720)

Table 2: Comparison of mean PSNR of the generalization study using tuned learning rate α. Again, the learning rates
were tuned so that our results match the reported values from the paper.

Evaluated on
Trained on MNIST FMNIST CIFAR-10

MNIST 59.76± 13.27 45.77± 15.31 32.07± 9.26
FMNIST 49.44± 18.11 49.07± 15.16 28.58± 11.65
CIFAR-10 52.04± 14.26 49.63± 15.20 37.20± 9.89

Table 3: Comparison of mean PSNR of the generalization study using fixed learning rate α = 1 in recovery.

Hyder et al. [8] as it is even better than the FMNIST reference on FMNIST. In conclusion, we observe slightly different150

behaviour in our experiments but overall, the learned references generalizes well, as claimed in the paper.151

4.3 Robustness to Data Augmentation152

These experiments validate that our self-trained references are robust against shifts, flips and rotations in the spatial153

domain as it is reported in [8]. We use MNIST and CIFAR-10 for reproduction according to the authors’ choice and154

SVHN as an additional dataset. Throughout the experiment, the learning rate in reconstruction is fixed to α = 1 and we155

evaluate our experiment only on 1000 test images from each dataset. A summary of our results is presented in Tab. 4.156

While we observe that flipping and rotating in the spatial domain barely decrease the mean PSNR on all evaluated157

datasets, only MNIST is fairly robust to shifting. Hence, for SVHN the mean PSNR drops by 29% while for CIFAR-10158

it falls off by nearly 40%. That means, their recovery results are equal or worse than the results using a random reference.159

We consider the loss of information from shifting with the associated zero padding to be the cause for this, as it has160

less impact on the dark-edged MNIST images. However, since Hyder et al. [8] also show a decreased mean PSNR for161

shifting in Fig. 4 of their paper, we can validate their results.162

4.4 On the Benefit of a Learned Reference163

With this experiments we evaluate the advantages of a learned reference against (i) a constant, (ii) a randomly sampled164

and (iii) a handcrafted reference. We consider the six standard benchmark images. As references we use our self-trained165

CelebA and CIFAR-10 references, which we resize to 512×512 by upscaling. The parameters are fixed in reconstruction166

to α = 1.92 (for best mean PSNR in recovery). Fig. 1 shows our experimental reconstructions of the benchmark images167

together with the achieved PSNR values.168

First, we can show that the reported results from Hyder et al. [8] are reproducible, as we receive similar reconstruction169

results with our self-trained CelebA reference. Additionally, we repeat the experiment with our self-trained CIFAR-10170

reference but only obtain reconstruction results between the result using a random and the CelebA reference.171

To generate our random references we follow the description in [8], i.e., we draw from a uniform distribution with range172

[0, 1]. Additionally, our random reference is drawn with shape 30× 30 and resized to 512× 512, because this setup173

performs best. Finally, we report the results of the best performing reference from 100 randomly sampled references174

also in Fig. 1. We observe that our experimental results are similar to the original reconstructions results.175

Dataset No augmentation Shift (5 pixel left and up) Flip Rotation (90◦ clockwise)

MNIST 59.59± 13.33 60.89± 14.11 49.71± 17.09 49.65± 17.43
CIFAR-10 47.27± 10.14 28.48± 11.73 47.10± 9.88 41.18± 13.00
SVHN 37.04± 9.94 26.50± 7.20 38.08± 9.24 38.13± 10.13

Table 4: Analysis of the robustness to different data augmentation methods. Results are reported in mean PSNR with
standard deviation.
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(a) Ground truth images

21.58 22.53 29.10 25.44 22.02 33.17 Reference

(b) Reconstruction using a rescaled reference trained on CelebA

18.99 20.36 22.55 21.76 19.05 23.67 Reference

(c) Reconstruction using a rescaled reference trained on CIFAR-10

18.50 19.89 23.22 19.19 18.88 19.14 Reference

(d) Reconstruction using a random reference with uniformly distributed entries

18.84 19.97 21.98 20.85 18.99 25.05 Reference

(e) Reconstruction using a handcrafted reference

Figure 1: Reconstruction results on benchmark images using different references (PSNR on top). From top to bottom:
ground truth, our trained CelebA reference, our trained CIFAR-10 reference, best random reference (uniform distributed,
evaluation on 100 references per image), best handcrafted reference.

To show the advantage against a flat reference, we consider different flat references (all entries set to the same value),176

where we obtain comparable results for different flat references. Similar to the observation of the authors, the recovery177

results are frequently worse than results obtained with a random reference. We observe minor improvement of some178

decibel in mean PSNR if we assemble squares or lines manually to common figures like crosses, without any relation179

to the content of the pictures. However, the reconstructed images are still less noisy if we use a random reference as180

shown in Fig. 1. Overall, we can validate the reported results from [8], in particular the learned reference performs best181

against all other evaluated types.182

4.5 Comparison With Baseline Algorithm183

In this section, we validate the reported results of the hybrid-input-output algorithm (HIO) [4] and extend the ex-184

perimental evaluation by including two more baseline phase retrieval algorithms: Fienup’s input-output and the185

Gerchberg-Saxton (GS) algorithm [6]. We re-implement all three algorithms from scratch using NumPy [7]. We186

oversample the test images four times in spatial domain and run the algorithms for 100 iterations on each image with a187

step size of β = 0.8 for input-output [4] and HIO [4]. Also, the reconstructions are clipped to intensity values in range188
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Algorithm MNIST EMNIST FMNIST SVHN CIFAR-10

Ours
Input-Output 9.80± 1.35 9.85± 1.46 8.74± 2.63 6.68± 1.85 7.80± 1.73
GS 9.82± 2.44 9.99± 2.41 11.25± 3.63 17.89± 3.77 16.34± 3.08
HIO 10.53± 3.81 10.81± 3.93 14.06± 8.54 31.90± 16.45 28.33± 13.92

Hyder et al. [8] HIO 9.04 8.42 9.65 19.87 14.70

Table 5: Comparison of mean PSNR values (with standard deviation) by the baseline methods without use of a reference
signal. Additionally, to the results of the HIO algorithm, we report the results for the input-output and the GS algorithm.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
Learning rate  in reconstruction only.

0

20

40

60

80

MNIST
EMNIST
FMNIST
CIFAR-10
SVHN
CelebA

Figure 2: Results from the hyperparameter search for variable learning rate α in reconstruction.

[0, 1]. For each image, we select the best PSNR from the cropped reconstruction and the cropped, flipped and shifted189

one. Tab. 5 shows the results on the different datasets. Overall, we can validate the claim by Hyder et al. [8], even190

though our HIO [4] implementation performs slightly better than the one reported in the original work.191

4.6 Hyperparameter Search192

Since we have no access to the original learning rates, we perform an extensive grid search on the hyperparameters α193

and β. In this study we use 5 epochs during training and evaluate on 1000 images.194

We start with the learning rate α which is used to update the reconstruction in training a reference and also in the195

retrieval process. For this, we use the self-trained references and keep β = 1 fixed while α is variable in recovery. Our196

results on all used datasets are presented in Fig. 2. Surprisingly, there is a general increase of the mean PSNR among all197

datasets for rising α values up to a peak in range α ∈ [1.75, 2.00]. Unfortunately, also the standard deviation grows198

proportional to the higher mean PSNR values. Nevertheless, these effects are stronger on artificial images than on199

real-world images.200

For our second experiment, we train with variable α on a logarithmic scale while we keep β = 1 fixed in training and fix201

α = 1 in the recovery process. Fig. 3a shows our results. Among the considered datasets SVHN has the smallest range202

but provides still valuable reconstructions for α ∈ [0.1, 1]. However, for all datasets, an extensively small or big α leads203

to learning a worse reference than a randomly sampled one, while the best recovery results are mainly in α ∈ [0.1, 1].204

Finally, we train with a variable reference learning rate β, while we keep α = 1 fixed. Our results on a representative205

subset are shown in Fig. 3b. In general, choosing small value for β leads to learning useless references. Nevertheless,206

we observe no general pattern for optimizing the retrieval performance by adjusting β in training but valuable results207

often ranges in the interval β ∈ [0.1, 10].208

4.7 Ablation Study209

For our ablation study we investigate whether a reference is really necessary for the retrieval process and study how210

oversampling in spatial domain influences the reconstruction quality. For this experiment, we use MNIST, CIFAR-10211

with 1000 test images as well as the common “cameraman” image in shape 512× 512. The learning rates are fixed to212

α = 1 and β = 1.213

First, we run the reconstruction algorithm without using a reference. We observe that the mean PSNR decreases214

drastically, e.g., for MNIST the mean PSNR is 8.92dB. We observed similar results for other datasets such that we can215

conclude that a reference is required to obtain reasonable reconstructions.216
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Figure 3: Results from the hyperparameter search for the learning rates: (a) mean PSNR of reconstructed images with
with references trained using different learning rates α and (b) mean PSNR of reconstructed images with references
trained using different learning rates β. During reconstruction a fixed learning rate α = 1 has been used.

12.02

(a) No oversampling

15.18

(b) 2× oversampling

30.06

(c) 4× oversampling

30.71

(d) 8× oversampling

Figure 4: Reconstructions results with CelebA reference (trained with oversampling) and use of different amount of
oversampling during reconstruction (mean PSNR values on top of the images).

Second, we use a reference that was trained with 4× oversampling and we vary the amount of oversampling during217

the recovery process. Fig. 4 shows our results for a single benchmark image. We observe, that using no oversampling218

or 2× oversampling during reconstruction leads to cloud-like artifacts. Oversampling 4× in recovery is successful.219

Oversampling by a factor of 8 leads only to marginally improved performance.220

Additionally, we find that we can obtain reasonable reconstructions with references that were trained without any221

oversampling, if we use 4× oversampling in the retrieval process. For example, using this approach we receive a mean222

PSNR of 47.90dB on MNIST which is just 6.38dB PSNR below the result with a reference that was trained using 4×223

oversampling. Therefore, it might be a consideration to omit oversampling while training a reference, as it is a trade-off224

between reconstruction quality and computational requirements.225

5 Discussion226

In conclusion, we can verify that the unrolled network proposed by Hyder et al. [8] is capable of learning a valuable227

reference that can be utilized to recover a signal from its Fourier magnitude measurement. We trained our references228

from scratch and we demonstrated that they are similar enough to the original ones. Moreover, we encountered no229

major contradiction in our experiments if we use new data, references or generative methods. However, an extensive230

hyperparameter search was necessary to match the reported results. Also, the hyperparameter search reveals that one231

should focus on tuning the learning rate α during reconstruction as it yields to performance improvements across all232

datasets. Our ablation study shows that oversampling during training can be omitted to save computational resources.233

Nonetheless, by providing an official implementation of their algorithm the authors enabled future researchers to utilize234

their method. Furthermore, we are grateful to the authors for kindly answering all of our questions regarding the235

implementation and providing feedback on our results.236
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