
Under review as a conference paper at ICLR 2022

GRAPH-ENHANCED EXPLORATION FOR
GOAL-ORIENTED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-oriented Reinforcement Learning (GoRL) is a promising approach for scal-
ing up RL techniques on sparse reward environments requiring long horizon plan-
ning. Recent works attempt to build suitable abstraction graph of the environment
and enhance GoRL with classical graphical methods such as shortest path search-
ing; however, these approaches mainly focus on either graph construction or agent
exploitation, but leave the exploration lack of study. This paper proposes Graph-
enhanced GoRL (G2RL), a new GoRL framework for effective exploration and
efficient training based on the state-transition graph. We first introduce the opti-
mal goals for exploration on the graph and then use them as supervised signals to
train a differentiable goal generator in a hindsight manner. Furthermore, we de-
fine relevant trajectories of a state based on its graph neighborhood and show that
giving high priority to these trajectories would lead to an efficient policy learning.
In addition to the theoretical results regarding optimal goal generation, our em-
pirical results on standard discrete and continuous control benchmarks show that
leveraging the state-transition graph is beneficial for GoRL to learn an effective
and informative exploration strategy and outperform the state-of-the-art methods.

1 INTRODUCTION

Goal-oriented Reinforcement Learning (GoRL) (Nasiriany et al., 2019; Eysenbach et al., 2019;
Huang et al., 2019; Levy et al., 2017; Kulkarni et al., 2016a) allows RL methods to tackle complex
tasks with long-term credit assignment and sparse reward. The basic idea of GoRL is to comprise
a goal generator to generate intermediate goals (also called subgoals in previous literature (Zhang
et al., 2020; Paul et al., 2019)) which decomposes the original complicate task into a series of inter-
mediate easier subtasks guided by goals, and a policy learner aiming to reach those generated goals.
However, the performance of GoRL significantly relies on the generation of effective goals, which
still remains a key challenge.

One promising solution is to construct suitable abstraction graphs of the environment and generate
goals by classical planning algorithms on graph. These abstraction graphs can either be built with
the state-transitions based on the collected experience (Eysenbach et al., 2019) or the abstract struc-
ture of the environment based on the observation (Shang et al., 2019). However, almost all existing
approaches (Huang et al., 2019; Laskin et al., 2020; Zhu et al., 2019) focus on either graph construc-
tion based on the collected experience or agent exploitation over the graph by adopting classical
planning techniques on graph (e.g., Dijkstra’s algorithm, A* search) (Laskin et al., 2020; Eysenbach
et al., 2019; Huang et al., 2019). There has been limited literature pursuing more effective and infor-
mative exploration by strategical (especially differentiable) goal generation based on the abstraction
graph, which is challenging as the graph built on either state-transitions or observations is inherently
dynamic and sometimes even much large in scale. In summary, most existing methods still suffer
from two aspects of difficulties. (1) The goal space is often large as the state space, leading to dif-
ficulty in effective exploration (Zhang et al., 2020) (2) The historical trajectories are collected by
various goals, and random sampling would result in sample inefficiency for policy learning (Fang
et al., 2019), because of low reachability of the generated goals.

In this paper, we propose Graph-enhanced GoRL (G2RL), a novel GoRL framework that, based on
a dynamically built state-transition graph, (1) develops a differentiable goal generator with hind-
sight supervision for effective environment explorations, and (2) designs a new trajectory sampling
algorithm with goal proximity for efficient policy learning, as illustrated in Figure 1(a).

1

Under review as a conference paper at ICLR 2022

Concretely, we construct the state-transition graph from the replay buffer, where the nodes are the
states and edges are the transitions. We extract the graph directly from the experiences for discrete
environment and applyK-bins discretization technique (Kotsiantis & Kanellopoulos, 2006) for con-
tinuous environment. Notably, as shown in Figure 1(b), the graph in G2RL can be regarded as an
auxiliary structural information for goal generation and trajectory sampling, and thus the discretiza-
tion does not change a deterministic environment into a stochastic one.

For effective exploration, we begin with revealing the connection between the out-degree of nodes
and the status of exploration on the corresponding states. The intuition behind this is quite straight-
forward: if the out-degree of a node is small, it implies that its next states have not been much
visited, namely this state itself is not well explored. In the light of it, we consider these not well
explored nodes are valuable for exploration and define the set of these nodes as graph boundary. We
then enforce the goal generated from the states in the boundary, as we theoretically show that the op-
timal goals are preserved within the graph boundary. For handling graph’s dynamics and large scale,
we divide the graph boundary into several groups according to their out-degrees (i.e., the status of
exploration). In such a way, our method is scalable, as it only needs to build a fix number of groups.
We further develop an attention mechanism to select an appropriate group, in which the state with
the highest value is assigned as intermediate goal. We introduce optimal goals as the supervision
signals to learn our differentiable goal generator. These optimal goals are the most valuable and
reachable states defined based on the planning algorithm on the graph in the next episode, and thus
our goal generator is optimized in a hindsight manner.

Furthermore, for efficient policy learning, almost all existing GoRL approaches (Paul et al., 2019;
Eysenbach et al., 2019) utilize randomly sampled trajectories to update the policy, leading to ineffi-
ciency as there are various subtasks guided by different goals. Instead, we design a novel relevance
sampling technique, where the basic intuition is when updating the value of a state, the trajectories
containing it and its neighboring states are likely to share similar goals. Hence, we call these trajec-
tories relevant trajectories and give high priority to sampling these trajectories in policy learning.

The contributions of this paper are as follows:

• We propose a graph structure enhanced goal generator built upon attention mechanism, which
achieves effective exploration with optimal goals and can be learned with hindsight supervisions.

• We design a relevance sampling technique that leverages the state-transition graph information to
select relevant experience sharing the similar directions (i.e., goals) for efficient policy learning.

• We theoretically show that optimal goals can be preserved in the boundary of the state-transition
graph and empirically illustrate that our method is capable to capture these goals.

We benchmark our method on various tasks, including discrete control and planning tasks on grid
worlds and challenging continuous control tasks, which are widely used in GoRL literature (Flo-
rensa et al., 2018; Nachum et al., 2018a;b; Savinov et al., 2018). Experimental results exhibit the
superiority of G2RL on both asymptotic performance and sample efficiency compared with several
state-of-the-art GoRL approaches, demonstrating the effectiveness of G2RL.

2 GRAPH CONSTRUCTION AND EXPLORATION OF GOAL-ORIENTED RL

2.1 GOAL-ORIENTED REINFORCEMENT LEARNING

Let M = (S,A, T, P,R) be a Markov Decision Process (MDP) where S is the state space, A is the
action space, T ∈ Z+ is the episode length, P : S × A → ∆(S) is the transition function which
takes a state-action pair and returns a distribution over states, and R : S ×A→ ∆(R) is the reward
distribution. The rewards from environments, called extrinsic, are usually sparse and thus, difficult
to learn. To address this, following the basic idea of GoRL, we consider a framework comprising
two main components: a goal generator aiming to generate goals g ∈ G at each episode; and a
policy learner aiming to maximize the intrinsic reward conditioned on generated goals, formulated
as Rg : S × A × G → ∆(R), and performs a primary action at every timestep. Following prior
methods (Nachum et al., 2018a; Andrychowicz et al., 2017; Zhang et al., 2020), we enforce goal
space G as a subspace of S. A policy π : S ×G→ ∆(A) prescribes a distribution over actions for
each state and goal. We introduce π as a greedy deterministic policy. At each timestep, the agent
samples an action a ∼ π(s, g) and receives a corresponding reward rg(s, a) that indicates whether or
not the agent has reached the goal. The agent’s task is to maximize its cumulative discounted future

2

Under review as a conference paper at ICLR 2022

reward. We use an off-policy algorithm to learn such a policy, as well as its associated goal-oriented
Q-function and state value function:

Qπ(s, a, g) = E
[T−1∑

t=0

γtrg(at, st) | st = s, at = a, π
]
, V π(s, g) =

∑

a

π(a|s, g)Qπ(s, a, g). (1)

2.2 GRAPH CONSTRUCTION FROM REPLAY BUFFER

As Figure 1(b) illustrates, we build a dynamic and directed graph on top of historical trajectories
in the replay buffer at each timestep. We denote the state-transition graph at timestep t in episode
e as Get = (Vet , Eet) with relations Ret , where the node space Vet represents state space SGet , edge
space Eet represents transitions PGet , and relations Ret represents actions AGet . PGet determines the
existence of transition from st to st+1, and AGet shows the way to transit. For simplicity, we use Ge
to denote Ge0 . See Appendix A1 for an illustrated example of notations.

Note that it’s non-trivial to construct an abstraction graph with continuous environments. Existing
approaches either organize the graph based on sampled trajectories (Zhu et al., 2019; Huang et al.,
2019), or introduce a parameterized distance network (Savinov et al., 2018; Eysenbach et al., 2019)
to predict the distance of each pair of states and establish edges for those pairs whose distances
are above the pre-defined threshold. In our implementation, we employ the K-bins discretization
technique (Kotsiantis & Kanellopoulos, 2006) to discretize the state and action spaces, as it has
been shown that animals explore their environments with the help of grid cells activated on particular
intervals (O’Keefe & Dostrovsky, 1971; Banino et al., 2018; Colombo et al., 1998).∗ Hence, in this
case, each node of the graph represents a bin of states/actions with similar locations/directions; and
an edge exists when the number of transitions between pairs of states from two nodes reach a pre-
defined threshold, and the corresponding relations show the actions of the transition. Formally, we
can obtain discretized state and action spaces, denoted as Ŝ and Â. Notably, this discretization
technique can consistently map a box to a fixed integer, and thus will not operate a deterministic
MDP into a stochastic one. Without loss of generality, in the following parts, we mainly discuss in
the context of discrete environments, as we have described how to extend it into continuous ones.

Let an agent start from a start state sstart, aiming to a target state starget. Then, Get grows from a
single node (i.e., G0

0 = {vstart}) and expands itself at each timestep within each episode, leading to
the sequence {{G1

t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 } where T denotes episode length and E is the
number of episodes. As the replay buffer always maintains the past experiences from the previous
episodes, we have that Ge0 = Ge−1

T−1 holds for ∀e = 1, . . . , E. Given that Get is always a connected
directed graph, we describe the expansion behavior as consecutive expansion, which naturally cor-
responds to exploration process of the agent of approaching the Gwhole, where we define Gwhole as
the whole graph containing all possible transitions.

2.3 FROM GRAPH EXPLORATION TO GRAPH BOUNDARY

In this subsection, we first provide our theoretical analysis of exploration on graphs which motivates
us to use certainty of state to define graph boundary, and further show that the goal optimality can
be preserved in the graph boundary.

Proposition 1. (Exploration Bound on Graph) In the context of deterministic MDPs, we assume
that the probability of out-degree of an arbitrary node in Gwhole being less than or equal to d is
larger than p (i.e., P (deg(s) ≤ d) ≥ p, ∀s ∈ SGwhole). We can ensure that for any t ≥ 0, e ≥ 1,
P
(
|SGet | ≤ ε

)
≥ pδ holds, where ε =

∑t
t′=0 min(e, dt

′
) · dt′ +

∑T−1
t′=t+1 min(e − 1, dt

′
) · dt′ and

δ =
∑t−1
t′=0 ind(e > dt

′
) +

∑T−2
t′=t ind(e− 1 > dt

′
), ind(·) is an indicator function.

∗For the environments with positional observations (e.g., Ant Maze in Figure A6(b)), we discretize the
continuous state and action spaces, which converts the continuous space of each dimension into K bins. For
environments with image inputs (e.g., VizDoom in Figure A6(e)), we follow the training setup of (Savinov
et al., 2018) to train ResNet-18 (He et al., 2016) to obtain representations for these inputs, which can further
be used to generate a graph given a pre-defined similarity threshold. As the generated graph is normally large-
scale, we further apply K-bins discretization technique to reduce the scale of the graph. We provide further
discussions about differences between our graph constructions and previous works in Appendix A4.1.

3

Under review as a conference paper at ICLR 2022

Environment Agent

Goal Generator

Policy Learner

Learn to generate goal
with Supervised

Learning

Learn optimal policy
with Reinforcement

Learning

action

observation

reward

goal

policy

graph structure is used to
define and find optimal goals
as learning supervisions

graph structure is used to define
and find relevant trajectories to
update value function

(a) Motivation of G2RL (b) Overview of G2RL

Replay Buffer

Goal
Generator

Policy
Learner

Transitions

Edges

Goal Node

Goal (State)

MAX

Space
Discretization

Interact with
Environment

Agent

(Not Fully Explored)
State-Transition

Graph

Relevance
Sampling

Goal-oriented
Exploration

RL without Graph Structure

Start State

Start Node

Target State

Target Node

Discrete Space

Space
Discretization

Continuous Space

𝓓𝐫𝐞#

𝒗𝐬𝐭𝐚𝐫𝐭

𝒗𝐭𝐚𝐫𝐠𝐞𝐭

𝒔𝐬𝐭𝐚𝐫𝐭

𝒔𝐭𝐚𝐫𝐠𝐞𝐭

Figure 1: Illustrations of motivation (a) and overview (b) of G2RL. (a) The basic idea of G2RL is to leverage
the state-transition graph to build a differentiable goal generator and an efficient policy learner, where the first
one can be learned by supervised learning with hindsight supervisions, and the second one can be updated by
reinforcement learning with relevance sampling. (b) G2RL first constructs the state-transition graph upon the
replay buffer and then uses the graph to generate goal appropriate ge and select relevant trajectories Drel. When
encountering the continuous environments, we need to apply a space discretization technique mapping a bin of
states into a node for graph structure.

The proposition implies that given fixed episode number e and length t, then its status of exploration
|SGet | is largely influenced by the graph property (e.g., out-degree of nodes), which motivates us to
leverage the state-transition graph information in goal generation for effective exploration. In the
light of this, we further introduce certainty of state to associate the status of exploration on a state
with its out-degree in the state-transition graph. Specifically, we can approximate the certainty of
state cert(s) ≈ deg(s), where deg(s) denotes the out-degree of s.† For continuous environments,
we define the certainty of node by the average certainty of its states (i.e., their average number of
taken actions), namely cert(v) = averages∈v(cert(s)).

We introduce the boundary of Get , denoted as ∂Get , as a set of states, at least one of whose can-
didate actions is not readily taken (i.e., {s|cert(s) < |A|}) for discrete environments, and simi-
larly, as a set of nodes, at least one of discretized actions of whose states is not readily taken (i.e.,
{v|cert(v) < |Â|}) in continuous environments. Another intuitive way to define the boundary is
using state/node visitation counts; however, we can not say that a frequently visited state is well
explored if the same action is taken at each visit (see Appendix A4.2 for details). We implement this
way as an ablation.

Notably, this definition is different from the landmark or frontier in (Huang et al., 2019; Yamauchi,
1997) which is constructed by farthest point sampling (Arthur & Vassilvitskii, 2006) or frontier
detection (Keidar & Kaminka, 2012) approaches regardless of the exploration status of states.

Prior works (Huang et al., 2019; Eysenbach et al., 2019; Laskin et al., 2020) mainly generate goals by
first drawing the shortest path through applying Dijkstra’s algorithm or A* search and then assigning
those intermediate states as goals. Their intuitions are straightforward that if we can access the whole
state-transition graph Gwhole, we can obtain the optimal path/solution by these shortest path planning
algorithms. We use Pwhole to denote this path. However, such a case seldom happens and Gwhole is
kind of conceptual. Instead, we here introduce the definition of optimal goal based on dynamic graph
at the beginning timestep in an arbitrary episode e (i.e., Ge). We begin with extending the concept
of optimal path/solution as the shortest path connecting the start state and the reachable state with
the highest value. For consistency, we always assign the target state with the highest value. We use
Pe to denote the path in Ge, and introduce the definition of the optimal goal as follows.

†Notably, this certainty of state can be served as a local measurement to show the extent of exploration
on state in discrete environments, which is actually proportioned to the global measurement (i.e., the number
of visited states) in deterministic environments (see Proposition 3 in Appendix A4.2 for details). Also, when
applied to environments with obstacles, as unable to know whether a state is near the wall, thus the certainty
of the state always represents the number of readily taken actions of s, whose maximum value is |A| (See
Appendix A4.2 for detailed discussions).

4

Under review as a conference paper at ICLR 2022

Optimal Goal

Group 1
Attention
Network

Group 2

Group N

Inference

...

Compute
Boundary of

Graph
GROUP

Goal
MAX

Compute
Optimal

Path

Find
Optimal

Goal Node
Find its
Group

Training
(Hindsight)

Optimal Goal

State-Transition
Graph in episode e

State-Transition
Graph in episode e+1

State with Max Value

Shortest
Path

New
Explored

States

interact with
Environment

(a) (b)

(c)

(d)

(h)

(e)(f)(g)

Figure 2: Illustrations of inference and training steps of our goal generator. During inference, we first constraint
the candidate set of goal generation within the boundary of graph ∂Ge with theoretical guarantee (a), and then
divide the nodes into several groups (b). A differentiable attention network is applied to select one group CATT
(c), where the node with the highest value is assigned as the goal ge (d). Our goal generator is trained in a
hindsight fashion. Specifically, we first find the optimal path by planning on Ge+1 (e), and then obtain the
optimal goal node g∗e as the most valuable and reachable node in the path Pe+1 (f). The supervision signal is
the optimal group C∗ containing g∗e (g). Note that Lφ with group supervisions instead goal supervisions can
significantly eliminate instability brought from potentially inaccurate value estimation (h).

Definition 1. (Optimal Goal) For any graph Ge, we define the optimal goal g∗e in a hindsight manner,
where we generate the optimal path Pe+1 based on the graph in the next episode Ge+1 and assign
the state that is included both in Ge and Pe+1 and with the highest value as g∗e . Formally, we have

g∗e := arg max
s

V π(s, ge+1), ∀s ∈ Ge ∩ Pe+1, (2)

where ge+1 is the generated goal in episode e+ 1, whose computation is later introduced in Eq. (4).

An illustrated example is provided in Figure 2. In seeking for g∗e , we need to first obtain Pe+1 by
applying the shortest path planning algorithm on Ge+1, and then rank all states in the path according
to their value in a descending order, and successively search for the first state in overlapping part of
Pe+1 and Ge to assign as the goal. Similarly, in the continuous environments, the optimal goal node,
denoted as v∗g in episode e, is defined as the most valuable and reachable node in the shortest path
Pe+1 where the value of a node is defined as the maximum value of states in it.

Based on the definition above, to reduce the searching space, it is natural to further ask what kind
of states in the episode e have a chance to become g∗e . We answer this question by introducing the
following theorem.
Theorem 1. (Goal Optimality Preserved in Graph Boundary) In the context of deterministic MDPs,
assume that if there exists a path connecting state s and goal g whose length is shorter than any
other paths connecting another state s′ and the goal g, then V π(s, g) > V π(s′, g) holds for ∀s, s′ ∈
S, g ∈ G. Then, we have that g∗e is always included in the boundary of the graph Ge (i.e., g∗e ∈ ∂Ge)
holds for any episode e.

This theorem implies that the candidate set for each goal generation can be limited to the bound-
ary, which can reduce the goal space with optimality preserved. However, learning to generate an
appropriate goal is still non-trivial concerning a dynamic and large-scale state-transition graph Ge.

2.4 SCALING UP GORL TO DYNAMIC AND LARGE GRAPHS BY GROUP DIVISION

To scale up GoRL to dynamic and large-scale state-transition graphs, one intuitive solution is to
divide ∂Ge (i.e., the whole candidate goal space) into a fix number of candidate groups, denoted as
C1, . . . , CN , where N is the number of groups. Our group segmentation should follow the principle
that ∪Nn=1Cn = ∂Ge and Cm ∩ Cn = ∅ hold for ∀m 6= n;m,n = 1, 2, . . . , N . To ensure all groups
non-empty, we include the last visited state in the previous episode, denoted as slast, into all groups
Cn, n = 1, 2, . . . , N during the initialization. We choose slast here, as slast is often both close to
the target state and of high uncertainty. We then extending these groups by adding states within the
graph boundary in the following two different ways.

• Neighbor States is to use the local neighborhood of slast within graph boundary, where Cn :=
{s|s ∈ Nn−1(slast) ∩∂Ge} for n = 1, 2, . . . , N − 1, and CN := ∂Ge − ∪N−1

n=1 Cn. Nn−1(slast)
means (n−1)-hop neighbors of slast. The intuitive motivation behind this is to keep the learning
procedure stable by gradually adjusting the goal to explore the surrounding environment.

• Uncertain States is to utilize the certainty information to guide goal generation, where Cn :=
{s|s ∈ Sd=|A|−n ∩∂Ge} for n = 1, 2, . . . , N − 1, and CN := ∂Ge−∪N−1

n=1 Cn. Sd=|A|−n denotes
set of states whose certainty equals to |A|−n. The intuitive motivation behind this is to eliminate
the uncertainty in the graph through exploration.

5

Under review as a conference paper at ICLR 2022

Let d∂Ge denote the maximum out-degree in ∂Ge, and |S∂Ge | denote the number of states in ∂Ge.
The complexity to construct C1, . . . , CN following the first perspective is O(dN−1

∂Ge), and following
the second one is O(|S∂Ge |). The detailed complexity analysis is available in Appendix A4.5. The
above two approaches can be easily extended into continuous environments, where Cn := {v|v ∈
Nn−1(vlast) ∩∂Ge} for Neighbor States and Cn := {v|v ∈ Ŝd=|Â|−n ∩ ∂Ge} for Uncertain States,
vlast is the node including slast.

3 GRAPH ENHANCEMENT FOR GOAL-ORIENTED RL

3.1 DIFFERENTIABLE GOAL GENERATION WITH HINDSIGHT GRAPH SUPERVISIONS

Algorithm 1: G2RL
Initialize buffer D = {sstart}, Drel = ∅
Initialize state-transition graph G = {sstart}
for epsiode number e = 1, 2, . . . , E do

Select an appropriate group using Eq. (3)
Generate goal ge using Eq. (4)
Compute optimal goal g∗e−1 using Eq. (2)
Update parameter φ using Eq. (5)
for timestep t = 0, 1, 2, . . . , T − 1 do

Receive observation st from
environment
at ← ε-greedy policy based on
Qπ(st, a, ge)

Take action at, receive reward rt and
next state st+1

Append (st, at, rt, st+1, ge) to D
Relabel rewards rg with ge
Append (st, at, st+1) to G if
(st, at, st+1) /∈ G

if t mod update interval == 0 then
Update Drel by sampling from D
Update parameter θ using Eq. (6)

end
end

end

As the ideal agent is expected to generate ap-
propriate goals that vary at the different learn-
ing stages, we propose a differentiable goal
generation model that first employs an attention
mechanism to select an appropriate one over
these groups in term of the current situation and
then assigns the state with the highest value in
the selected group as the goal.

Concretely, for each group, we first encode
a representation vector to represent its feature
(e.g., the layer number of neighbors for Neigh-
bor States, the certainty of nodes for Uncertain
States). These representation vectors are then
fed into a self-attention mechanism (Vaswani
et al., 2017) to select the appropriate one over
N groups. We use ATTφ to denote self-attention
function parameterized by φ and provide the
detailed descriptions in Appendix A2.2. The
output of ATTφ is then fed to a multi-layer per-
ceptron (MLP) with the ReLU activation func-
tion. The output of MLP is in the dimension
RN×1, where the n-th element corresponds the
logit value for Cn. Then the selected group, de-
noted as CATT, can be generated according to
CATT = arg max

Cn
MLP(ATTφ(C1, . . . , CN)), (3)

where CATT is selected by the attention score. Next, we select the state with the highest value in CATT
as the goal, which can be formulated as

ge = arg max
s

V π(s, ge−1), ∀s ∈ CATT. (4)

When applying our goal generator in continuous environments, as shown in Figure 1, the output of
Eq. (4) is a goal node consisting of a bin of states. We further assign the state with the highest value
within the bin of states as the goal.

As we are able to obtain the goal at episode e (i.e., ge) by Eq. (4), we can further calculate the value
function at episode e (i.e., V π(s, ge)), which is the key component to generate the optimal goal at
episode e − 1 (i.e., g∗e−1) according to Eq. (2). Instead of directly using the optimal goal defined
in Definition 1 as the supervision signals, we find the optimal group C∗ that contains the optimal
goal g∗e−1, as the hindsight supervision on the group selection. This supervision signal enables us
to update the attention network in Eq. (3) via a standard supervised learning algorithm, where the
objective function can be formulated as

Lφ = E(s,a,g,s′,r)∼D
[
(C∗ − CATTφ)2 + α · ‖φ‖22

]
, (5)

where ‖φ‖22 is the L2 regularizer and α is the corresponding hyper-parameter.

Note that Lφ, which updates goal generation under the supervision of the group instead of the goal,
can significantly eliminate instability brought from potentially inaccurate value estimation, as our
group division does not depend on any result from policy learning.

6

Under review as a conference paper at ICLR 2022

3.2 EFFICIENT POLICY LEARNING WITH RELEVANCE SAMPLING ON GRAPH

With a generated goal at the beginning of each episode e, we can build the key blocks of our method,
i.e., a goal-oriented policy and its associated value function. We use an off-policy algorithm to
learn such a policy π, as well as its associated goal-oriented Q-function. For example, we obtain a
policy by acting greedily, w.r.t., the Q-function as Qπ(s, a, g)← rg(s, a) + γ ·maxa′ Q

π(s′, a′, g).
A principal way for policy learning is to randomly sample past trajectories with goal relabeling
technique (Andrychowicz et al., 2017) to update parameters. However, as stated in (Fang et al.,
2019), random sampling over all historical trajectories would result in inefficiency of training, as not
all past experiences are equally useful to policy learning. In seeking for an efficient policy learning
strategy, one feasible solution is importance sampling technique; unfortunately, its estimation is
often of unnecessarily high variance (Mahmood et al., 2014). One possible reason is that when
the current policy diverges from the old policy too much, the accuracy decreases. This observation
motivates TRPO (Schulman et al., 2015) to reposition the optimization with constraints of not going
too far in changing the policy. In this light of this, we propose a novel relevance sampling technique
based on a simple assumption: those trajectories containing the node or its neighbor nodes of the
current states are likely to share the close goals and the similar goal-oriented policies. Formally,
when we update Q-function of state s, we sample Drel := {τ |τ ∩ (N 1(s) ∪ {s}) 6= ∅} from
replay buffer D, where each sampled trajectory contains at least one state in the neighborhood of
s (i.e., N 1(s) ∪ {s}). It can be easily extended into continuous environments by defining Drel :=
{τ |τ ∩ (N 1(v) ∪ v) 6= ∅} where v is the node including s. We also exam the effect of the scope of
neighborhood in the experiment. The Q-network is learned by minimizing

Lθ = E(s,a,g,s′,r)∼Drel

[
(rg + γ ·max

a′
Qπθ (s′, a′, g)−Qπθ (s, a, g))2 + β · ‖θ‖22

]
, (6)

where β is the weight of the regularization term.

We provide the overall G2RL algorithm in Algorithm 1 (See the discussions on novelties and limi-
tations of the algorithm in Appendix A2.1), where the state-transition graph are applied to both the
goal generation and policy learning phases. Besides, G2RL holds the property to converge to the
unique optimum if Q-learning strategy is adopted, which is further discussed in Appendix A3.3.

4 EXPERIMENTS

4.1 COMPARATIVE EXPERIMENTS

We evaluate the performance of G2RL against the state-of-the-art RL algorithms including (1) HER
(Andrychowicz et al., 2017), (2) MLP (Huang et al., 2019), (3) GoalGAN (Florensa et al., 2018),
(4) CHER (Fang et al., 2019), (5) SPTM (Savinov et al., 2018), (6) SoRB (Eysenbach et al., 2019),
(7) HIRO (Nachum et al., 2018b), (8) HRAC (Zhang et al., 2020), (9) GTG (Jiang et al., 2021) over
discrete and continuous environments. Concretely, the discrete task includes Maze, and the continu-
ous tasks contain Ant Maze, Low-Stochastic and High-Stochastic Ant Maze, FetchPush, FetchPush
with Obstacle, VisDoom and Matterport3D (see Appendix A5.1 for detailed descriptions of these
environments), where Ant Maze, VisDoom (Kempka et al., 2016) and Matterport3D (Chang et al.,
2017) are based on Maze but more challenging with either high-dimensional state spaces or image
input, Low-Stochastic and High-Stochastic Ant Mazes are stochastic versions of Ant Maze where
the connectivity of mazes keeps changing with low and high probabilities, FetchPush and FetchPush
with Obstacle are standard robotic manipulation environments based on OpenAI Gym (Brockman
et al., 2016). Notably, these environments are widely used benchmarks in GoRL community (Flo-
rensa et al., 2017; Savinov et al., 2018; Ren et al., 2019; Zhang et al., 2020; Nachum et al., 2018a;
Kempka et al., 2016; Chaplot et al., 2020a). For comprehensive evaluation for the performance of
G2RL, we employ DQN (Mnih et al., 2013) on discrete tasks and DDPG (Lillicrap et al., 2015) on
continuous tasks. For VizDoom and Matterport3D environments, we follow (Savinov et al., 2018;
Chaplot et al., 2020a) and introduce ResNet-18 (He et al., 2016) and Mask-RCNN (He et al., 2017)
to handle RGB images obtained from the environments. We provide detailed descriptions of base-
lines, evaluation environments, implementation details in Appendix A5.

The learning curves of G2RL and baselines across all tasks are plotted in Figure 3 (See the results
of High-Stochastic AntMaze in Appendix A6.1). In the Maze with discrete state and action spaces,
G2RL achieves comparable results with these state-of-art methods, while in other tasks G2RL con-
sistently surpasses all baselines both in sample efficiency and asymptotic performance. We test the

7

Under review as a conference paper at ICLR 2022

Figure 3: Comparison of learning curves of our model G2RL against baselines algorithms on on various
environments average across 10 different random seeds. The solid curves depict the mean, the shaded areas
indicate the standard deviation, and dashed horizontal lines show the asymptotic performance.

generalizability of G2RL to the unseen environments of Maze and Matterport3D in Appendix A6.2,
whose results verify the consistent superiority of G2RL.

We further check whether G2RL is able to generate meaningful goals for exploration by visualizing
distributions of goals generated by G2RL, SoRB and HER in Ant Maze. As shown in Figure A9 in
Appendix A6.3, the goals generated by G2RL gradually move towards the target state. Those goals
selected from the visited states are considered to be reachable during training. In comparison, the
goal distribution of HER has been stuck around the initial state for many episodes. We also report
the log files of G2RL and HER in Maze in Appendix A6.4. One can observe that compared to HER,
G2RL can sample more states and take more actions in the same number of episodes.

4.2 ABLATION STUDIES ON MODEL DESIGN AND EXPERIMENTAL SETTING

Impact of Relevance Sampling. We investigate the impact of using the local structure of the ab-
straction graph to select relevant trajectories for efficient policy learning. We build a variant to uni-
formly drawing trajectories from the replay bufferD denoted as UNIFORM. We use RELEVANCE1,
RELEVANCE3, RELEVANCE10 to denote our method, where Drel with the neighborhood scope of
1, 3, 10 are used instead of D respectively. We evaluate these setting in AntMaze and results are
reported in Figure 4(a). The results show that with the relevance sampling, the training of G2RL
can be much more efficient. We investigate its broader impact by solely incorporating relevance
sampling with other GoRL algorithms, and report results in Appendix A6.1..

Impact of Group Selection. We provide two strategies to divide the boundary of the abstraction
graph into several groups, namely building groups from Neighbor States of last visited states or
Uncertain States in the graph. We demonstrate the performance of G2RL using neither of them
denoted as NOGroup. We show the performance of adopting the first strategy and set the number
of groups as 3 denoted as NEIGH3. We then illustrate the performance of using the second strategy
with the number of groups equal to 2, 3, 4 denoted as UNCERT2, UNCERT3, UNCERT4. Figure 4(c)
shows that UNCERT2, UNCERT3, UNCERT4 perform better than NOGroup in Ant Maze, which
indicates the necessity of the group selection. In the main experiment, we adopt UNCERT3.

Impact of Discretization. DISCRETE10, DISCRETE20, DISCRETE30 in Figure 4(d) denote the
set of K = 10, 20, 30 in K-bins discretization. From results on the AntMaze, we find that for simple
tasks, the choice of K is not critical. K is set as 20 in the main experiment.

Impact of Graph Boundary. For investigation of impact of graph boundary, we build three variants
for graph boundary construction, namely CERT using the certainty of states, VISIT5 and VISIT10
using 5% and 10% most-infrequently visited states, RAN randomly sampling states whose sizes
are the same as CERT, to build the graph boundary. As the group selection performs on the graph
boundary, we divide the same number of groups for VISIT5 and VISIT10 according to the visitation
counts of states, and randomly build the groups for RAN. We evaluate the performance of these
methods in the Ant Maze. As results shown in Figure 4(e), we can observe that CERT outperforms
VISIT5 and VISIT10, and significantly surpasses RAN.

8

Under review as a conference paper at ICLR 2022

Figure 4: Comparison of learning curves of G2RL in different settings mainly on Ant Maze average across 10
different random seeds. These ablation studies verify our architecture design and evaluate the generalizability.

Generalizablity to Large Environment. To investigate whether G2RL can be well adapted in
the environments with different sizes, we extend the AntMaze with a larger size, which usually
means more sparse rewards. We report the performance comparisons on the three sizes namely
SMALL, MEDIUM, LARGE, where SMALL is the original size. More details of these environment
configuration are available in Appendix A5.1. Results shown in Figure 4(f) indicate that G2RL can
well address the sparse reward issues in various environments.

Generalizability to Complex Environment. For further investigation on whether G2RL can be
well adapted in the environments with different complexity levels, we create AntMaze with Obstacle
environment, where we extend the AntMaze with an obstacle that can not be removed. For ease
of the comparison, we also depict the performance of G2RL in the Maze, AntMaze environment.
Results are illustrated in Figure 4(g), showing that G2RL performs well in these environments.

We test G2RL with different levels (i.e., σ = 0.5, 0.75, 1) of Gaussian noises Ñ (0, σ2) on state-
transition graph, provide detailed settings in Appendix A5.1 and report results in Appendix A6.1.

From above ablation studies, we can conclude the performance gain of G2RL mainly from our dif-
ferentiable goal generation algorithm and slightly from our relevance sampling algorithm, which
relies on a deterministic (or low-stochastic) MDPs and an inaccurate state-transition graphs, consis-
tent with the assumptions introduced in Theorem 1.

5 RELATED WORK

GoRL (Florensa et al., 2018; Paul et al., 2019) allows the agent to generate intrinsic rewards, which
is defined with respect to target subsets of the state space called goals. Then, how to generate
appropriate goals is the essential technique in any GoRL (Andrychowicz et al., 2017; Ren et al.,
2019). There are previous literature (Levy et al., 2017; Kulkarni et al., 2016b; Şimşek et al., 2005;
Noelle, 2019; Nachum et al., 2018b;a; Schaul et al., 2015) focusing on the goal generation based
on potentially pivotal states; however, are not adaptively aligned with the exploration status and
thus often sub-optimal. Several prior works have investigate to build an environmental graph for
high-level planning and used searching algorithm to find nearby graph nodes as reachable goals for
the low-level (Zhang et al., 2018; Eysenbach et al., 2019; Huang et al., 2019; Savinov et al., 2018;
Laskin et al., 2020; Klissarov & Precup, 2020; Jiang et al., 2021). However, these approaches use
hard-coded the high-level planning, instead of a learning fashion and thus are limited in scalability.
G2RL leverages the state-transition graph to build a differentiable goal generator for the exploration.

6 CONCLUSION

In this paper, we propose a novel GoRL framework called G2RL, which leverages structure infor-
mation of the abstraction graph to develop a differentiable goal generator for explorative goal gen-
eration and a novel relevance sampling techniques for efficient policy learning. For future work, it
is interesting to further investigate theoretical supports for incorporating graph structure with GoRL
in context of stochastic MDPs.

9

Under review as a conference paper at ICLR 2022

REFERENCES

Peter Anderson, Angel Chang, Devendra Singh Chaplot, Alexey Dosovitskiy, Saurabh Gupta,
Vladlen Koltun, Jana Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva, et al. On
evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757, 2018. 25

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NeurIPS, 2017. 2, 7, 9, 20, 23, 24

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006. 4, 20

Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr Mirowski,
Alexander Pritzel, Martin J Chadwick, Thomas Degris, Joseph Modayil, et al. Vector-based
navigation using grid-like representations in artificial agents. Nature, 557(7705):429–433, 2018.
3, 18

Marc G Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation. NeurIPS, 2016. 18

Richard Bellman. Dynamic programming. Science, 1966. 17

Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic
programming and optimal control. Athena scientific Belmont, MA, 1995. 17

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016. 7

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3D: Learning from RGB-D data in indoor
environments. International Conference on 3D Vision (3DV), 2017. 7, 22

Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object goal
navigation using goal-oriented semantic exploration. In In Neural Information Processing Sys-
tems (NeurIPS), 2020a. 7, 18, 20, 22, 23, 25

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdinov.
Learning to explore using active neural slam. arXiv preprint arXiv:2004.05155, 2020b. 25

Michael Colombo, Tom Fernandez, Katsuki Nakamura, and Charles G Gross. Functional differen-
tiation along the anterior-posterior axis of the hippocampus in monkeys. Journal of Neurophysi-
ology, 80(2):1002–1005, 1998. 3, 18

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridg-
ing planning and reinforcement learning. NeurIPS, 2019. 1, 2, 3, 4, 7, 9, 14, 18

Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. In NeurIPS, 2019. 1, 7, 23

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2017. 7, 20

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2018. 2, 7, 9, 23

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016. 3, 7, 18, 22, 23

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017. 7, 18, 22, 23

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal
reaching. NeurIPS, 2019. 1, 3, 4, 7, 9, 14, 18, 20, 23

10

Under review as a conference paper at ICLR 2022

Zhengyao Jiang, Pasquale Minervin, Minqi Jiang, and Tim Rocktäschel. Grid-to-graph: Flexible
spatial relational inductive biases for reinforcement learning. In AAMAS 2021, 2021. 7, 9, 23, 25

Matan Keidar and Gal A Kaminka. Robot exploration with fast frontier detection: theory and
experiments. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pp. 113–120, 2012. 4, 19

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), 2016. 7, 22

Martin Klissarov and Doina Precup. Reward propagation using graph convolutional networks. arXiv
preprint arXiv:2010.02474, 2020. 9, 18

Sotiris Kotsiantis and Dimitris Kanellopoulos. Discretization techniques: A recent survey. GESTS
International Transactions on Computer Science and Engineering, 32(1):47–58, 2006. 2, 3, 23

Tejas D Kulkarni, Karthik R Narasimhan, Ardavan Saeedi, and Joshua B Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. NeurIPS,
2016a. 1

Tejas D Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J Gershman. Deep successor
reinforcement learning. arXiv preprint arXiv:1606.02396, 2016b. 9

Michael Laskin, Scott Emmons, Ajay Jain, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak.
Sparse graphical memory for robust planning. NeurIPS, 2020. 1, 4, 9, 14

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. ICLR, 2017. 1, 9

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv,
2015. 7, 23

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014. 22

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017. 22

Ashique Rupam Mahmood, Hado Van Hasselt, and Richard S Sutton. Weighted importance sam-
pling for off-policy learning with linear function approximation. In NIPS, 2014. 7

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen Paul Smolley. On
the effectiveness of least squares generative adversarial networks. IEEE transactions on pattern
analysis and machine intelligence, 41(12):2947–2960, 2018. 23

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013. 7

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018a. 2, 7, 9

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In NeurIPS, 2018b. 2, 7, 9, 23

Soroush Nasiriany, Vitchyr H Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. NeurIPS, 2019. 1

David C Noelle. Unsupervised methods for subgoal discovery during intrinsic motivation in model-
free hierarchical reinforcement learning. In KEG@AAAI, 2019. 9

11

Under review as a conference paper at ICLR 2022

John O’Keefe and Jonathan Dostrovsky. The hippocampus as a spatial map: preliminary evidence
from unit activity in the freely-moving rat. Brain research, 1971. 3, 18

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based explo-
ration with neural density models. In ICML, 2017. 18

Sujoy Paul, Jeroen van Baar, and Amit K Roy-Chowdhury. Learning from trajectories via subgoal
discovery. NeurIPS, 2019. 1, 2, 9

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011. 18

Zhizhou Ren, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. Exploration via hindsight goal
generation. In NeurIPS, 2019. 7, 9, 20

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory
for navigation. In ICLR, 2018. 2, 3, 7, 9, 18, 20, 21, 22, 23, 25

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9339–9347, 2019. 22

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In ICML, 2015. 9

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018. 23

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015. 7

Wenling Shang, Alex Trott, Stephan Zheng, Caiming Xiong, and Richard Socher. Learning world
graphs to accelerate hierarchical reinforcement learning. In ICML Workshop, 2019. 1

Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In ICML, 2005. 9

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.
17

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. 6, 14

Brian Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pp. 146–151.
IEEE, 1997. 4, 19

Amy Zhang, Sainbayar Sukhbaatar, Adam Lerer, Arthur Szlam, and Rob Fergus. Composable
planning with attributes. In ICML, 2018. 9

Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-
constrained subgoals in hierarchical reinforcement learning. NeurIPS, 2020. 1, 2, 7, 14, 16,
23

Guangxiang Zhu, Zichuan Lin, Guangwen Yang, and Chongjie Zhang. Episodic reinforcement
learning with associative memory. In ICLR, 2019. 1, 3, 14, 18

12

Under review as a conference paper at ICLR 2022

A1 ILLUSTRATIONS OF NOTATIONS

Start Node

Target Node

New
Explored
Nodes Optimal Goal Node

Node with Max Value

Shortest
Path

(a) (b)

(c) (d)

𝒗𝒈∗

Figure A1: An illustrated example of notations in G2RL. We use purple circle to denote the start node vstart

In this paper, we construct a state-transition graph G on top of the replay buffer D. Specifically, as
Figure A1(a) shows, we use Ge to denote the graph built based on historical explored trajectories at
the beginning in episode e. We use vstart and vtarget to denote the start and target nodes. Except
the whole state-transition graph containing all possible transitions, there exist many poorly-explored
states. We measure the exploration (defined as certainty in Section 2.3) of these states according to
the number of their untaken candidate actions. As an untaken action may lead to certain unvisited
state, we further introduce the definition of the boundary of graph as the set of all the states with at
least one untaken action. We use ∂Ge as the boundary of Ge, as Figure A1(b) shows. As shown in
Figure A1(c), after the explorations of one episode, the agent encounters several new states, the set
of which is defined as the graph increment. Formally, we use ∆Ge+1 to denote the graph increment
from Ge to Ge+1, namely Ge+1 = Ge ∪∆Ge+1.

W
al
l

W
al
l

W
al
l

Wall

Wall

W
al
l

Wall

Wall

Figure A2: An illustrated example for the
state-transition graph.

We provide the illustration of finding the optimal goal
node vg for episode e in Figure A1(d). Beginning with
Ge+1, we first draw the optimal path by planning the
shortest path connecting the start node to the node with
the highest value. The value of each node is defined by its
highest value of states in it. We usePe+1 to denote the op-
timal path. We then calculate the set of nodes visited both
in Pe+1 and Ge, where we select one node with the high-
est value as the goal node. Besides these notations on the
state-transition graph, we also introduce C1, C2, . . . , CN
to denote N group divisions of candidate nodes.

Remark. Note that the sizes of action space (i.e., the maximum out-degree) of all the states are
the same. When applying the proposed algorithm to the environments with obstacles, the state-
transitions would draw self-loops on the states near the obstacles (e.g., walls). As shown in Fig-
ure A2, for those states neighboring the wall, their actions toward the wall would result in the
self-loop edges (highlighted in purple colors).

Notably, for convenience and clarity, all the illustrations in this paper do not include the self-loop
connections (i.e., purple edges in Figure A2), and assume that all the actions resulting in the self-loop
connections have been taken.

13

Under review as a conference paper at ICLR 2022

A2 ALGORITHM

A2.1 OVERALL ALGORITHM ANALYSIS

Novelties. From Algorithm 1, there are mainly three differences respect to previous work: a way
to generate the graph, a way to generate the goals, and a way to sample transitions from replay
buffer, where the first one is regarding the graph construction and the second two are about use of
the graph to enhance GoRL. As stated in Section 1, the main insight of G2RL is how to leverage the
hidden structure in state-transition graphs to enhance GoRL, which is introduced in Section 3 in-
cluding a novel effective goal generation strategy (i.e., differentiable goal generation with hindsight
graph supervisions) and a new efficient policy learning method (i.e., relevance trajectory sampling
technique), which is highlighted in purple color in Algorithm 1. And, the K-bins discretization tech-
nique, used to build a discretized state-transition graph from replay buffer, would be regarded as a
data pre-processing procedure of G2RL (See Appendix A4.1 for further discussion).

Limitations. The main limitation of our theoretical analysis is that all our results are derived in
the context of deterministic MDPs, following the assumption in (Zhang et al., 2020). However, we
argue that these findings are still instructive for designing practical GoRL algorithms, as we note
that many real-world applications can be approximated as deterministic environments where the
stochasticity is mainly induced by noise.

Empirically, we demonstrate that G2RL is robust to low stochasticity level (see Figure 3(c)) but
fails at high stochasticity (see Figure A8(b)), which we argue is the general bottleneck of any GoRL
(Huang et al., 2019; Eysenbach et al., 2019; Laskin et al., 2020; Zhu et al., 2019) using the state-
transition graph, as the performances of these methods (e.g., SoRB, GTG) significantly drop when
comparing Figure A8(b) to Figure 3(b). We leave rigorous theoretical analysis in future work.

A2.2 IMPLEMENTATION DETAILS OF ATTENTION

In Section 3.1, we introduce a self-attention mechanism (Vaswani et al., 2017) parameterized by φ
denoted as ATTφ to select an appropriate group over all the candidate groups. Concretely, we first
structure the embedding vectors of groups, denoted as F = [f1, . . . , fN]> ∈ RN×Fd where Fd is
the embedding dimension of each group Cn, n = 1, 2, . . . , N . Each feature fn is the one-hot rep-
resentation vector of n, whose meaning is specific regarding the approach to building these groups.
If Neighbor States is applied, then fn is the one-hot representation vector of the layer number of
neighbors (i.e., n); while if Uncertain States is applied, then fn is the one-hot representation vector
of the certainty of states or nodes (i.e., |A| − n or |Â| − n).

We then build FQ = FK = FV = F , and adopt the attention network considering the features of all
groups as

ATTφ(C1, . . . , CN) = softmax
(FQFTK√

N

)
FV . (7)

A3 PROOFS

A3.1 PROOF OF PROPOSITION 1

Proposition 1. (Exploration Bound on Graph) In the context of deterministic MDPs, we assume
that the probability of out-degree of an arbitrary node in Gwhole being less than or equal to d is
larger than p (i.e., P (deg(s) ≤ d) ≥ p, ∀s ∈ SGwhole). We can ensure that for any t ≥ 0, e ≥ 1,
P
(
|SGet | ≤ ε

)
≥ pδ holds, where ε =

∑t
t′=0 min(e, dt

′
) · dt′ +

∑T−1
t′=t+1 min(e − 1, dt

′
) · dt′ and

δ =
∑t−1
t′=0 ind(e > dt

′
) +

∑T−2
t′=t ind(e− 1 > dt

′
), ind(·) is an indicator function.

Proof. Considering that the graph of G2RL is the state-transition graph, we only can obtain new
states by the new explored trajectories instead of consecutively adding nodes which naturally encode
the dependency of states. We illustrate an example to expand from Ge to Ge+1 in Figure A3(a)-
(c). Hence, we can see that the original expansion order of the sub-graphs at the timestep level is
{{G1

t }T−1
t=0 , {G2

t }T−1
t=0 , . . . , {GEt }T−1

t=0 }, starting with G0
0 = {s0}. We then can re-order the expansion

order of these sub-graphs as {{Ge0}Ee=1, {Ge0}Ee=1, . . . , {Ge0}Ee=1}, starting with G0
0 = {sstart}.

14

Under review as a conference paper at ICLR 2022

...

State-Transition
Graph

Explored
Trajectories

State-Transition
Graph

(a) (b) (c) (d)

Figure A3: An illustrated example of the expansion of the state-transition graph and intuition of the proof. The
natural expansion of the graph is by adding new trajectories, as shown in (a)-(c). In the proof of Proposition 1,
we consider the expansion by involving the nodes within the neighborhood, namely adding nodes column-
wisely instead of row-wisely in (d).

Let ∆Get denote the graph increment at timestep t in episode e, and we also define ∆G1
0 = 0. We can

ensure that Get+1 = Get ∪∆Get holds for any e and t. Then, the re-order operation can be formulated
as

Get = Ge−1
T−1 ∪ (∪tt′=0∆Get′) = G0

0 ∪ (∪e−1
e′=1{∪T−1

t′=0∆Ge′t′ }) ∪ (∪tt′=0∆Get′)
= G0

0 ∪ (∪T−1
t′=0{∪e−1

e′=1∆Ge′t′ }) ∪ (∪tt′=0∆Get′)
(8)

holds at any timestep t in episode e. Eq. (8) allows us to adding the node according to their timesteps.
One can easily see that at timestep t in any episode, since the start point is always the start state,
the explored state is at most t-hop neighbor of the initial state. Notably, all the subgraphs Get are a
connected graph, which is preserved after the re-order operation.

Here, we here first consider Ge−1
T−1. For simplicity, we omit the mark of episode here. We define

∆Gt = ∪e−1
e′=1∆Ge′t′ , and Gt′ = G0 ∪ ∆G1 ∪ · · · ∪ ∆Gt′ where G0 = G0

0 . Let ∆St denote S∆Gt
for short. Based on this, we study the sequence {∆G1, . . . ,∆GT−1}, where Ge−1

T−1 = GT−1 =
G0∪∆G1∪· · ·∪∆GT−1. Since all the graphs in the sequence {G0,G1, . . . ,GT−1} are the connected
graph. Although each node in ∆St already has at least one edge within Gt−1 due to the definition of
connected graphs, we here only measure the out-degree, and thus have

P
(
|∆St| ≤ |∆St−1| · d

)
≥ p|∆St−1|. (9)

For e = 0 and t = 0, there is the only the start state in the graph. Therefore, we have P (|SG0
0
| ≤

1) = 1 and thus
P (|SG0

0
| ≤ 1) ≥ p0. (10)

For e ≥ 1 and t ≥ 0, we first analyze the consecutive expansion of the state-transition graph Ge−1
T−1

as

G1 → G2 → · · · → Ge−1

⇒G1
0 → G1

1 → · · · → G1
T−1︸ ︷︷ ︸

G1

→ G2
0 → G2

1 → · · · → G2
T−1︸ ︷︷ ︸

G2

→ · · · → Ge−1
0 → Ge−1

1 → · · · → Ge−1
T−1︸ ︷︷ ︸

Ge−1

⇒G1
0 → G2

0 → · · · → Ge−1
0︸ ︷︷ ︸

G1

→ G1
1 → G2

1 → · · · → Ge−1
1︸ ︷︷ ︸

G2

→ · · · → G1
T−1 → G2

T−1 → · · · → Ge−1
T−1︸ ︷︷ ︸

GT−1

.

(11)
Based on |SGe−1

T−1
| = |SG0

0
|+ |∆SG1 |+ |∆SG2 |+ · · ·+ |∆SGT−1

|, we have

P
(
|SGe−1

T−1
| ≤ 1 + d+ d · d+ · · ·+ dT−1

)
≥ p0+1+d+···+dT−2

. (12)

However, for Ge−1
T−1 we notice that for each timestep t, the graph increment is always bound with

e− 1, namely
P (|∆St| ≤ e− 1) = 1 (13)

holds for any t ≤ T − 1. Hence, we can re-formulate Eq. (12) as

P
(
|SGe−1

T−1
| ≤

T−1∑

t′=0

min(e− 1, dt
′
)
)
≥ p

∑T−2

t′=0
ind(e−1>dt

′
), (14)

15

Under review as a conference paper at ICLR 2022

where ind(·) denotes an indicator function that ind(true) = 1 and ind(false) = 0 hold. The
intuition behind Eq. (15) is straightforward that for any timestep t when the expansion |∆St| is
larger than e− 1 then this expansion is constricted by episode number (see Eq. (13)), and otherwise
is bound by the out-degree of Ge−1

T−1 (see Eq. (9)).

We then investigate Get with arbitrary e and t. As illustrated in Figure A3(d), in episode e, since the
timestep t ≤ T , we can need to divide the timesteps into two parts. One part is t′ ≤ t, where the
expansion for each timestep is bound by e while in the other part, the expansion for each timestep is
bound by e− 1. Combining these two parts together, we have

P
(
|SGe−1

T−1
| ≤

t∑

t′=0

min(e, dt
′
)·dt′+

T−1∑

t′=t+1

min(e−1, dt
′
)·dt′

)
≥ p

∑t−1

t′=0
ind(e>dt

′
)+

∑T−2

t′=t ind(e−1>dt
′
).

(15)
Notably, we here don’t explicitly consider the effect of K-bins discretization. However, considering
that K-bins discretization only can mapping multiple states into one, thus the inequality still holds.

A3.2 PROOF OF THEOREM 1

Theorem 1. (Goal Optimality Preserved in Graph Boundary) In the context of deterministic MDPs,
assume that if there exists a path connecting a state s and a goal g whose length is shorter than
any other paths connecting another state s′ and the goal g, then V π(s, g) > V π(s′, g) holds for
∀s, s′ ∈ S, g ∈ G. Then, we have that g∗e is always included in the boundary of the graph Ge (i.e.,
g∗e ∈ ∂Ge) holds for any episode e.

Proof. We first introduce the following lemma to show that the K-bins discretization can preserve
the optimal goals if our discretization is under adjacent region constraint.

Lemma 1. (Goal Optimality Preserved with Adjacent Region Constraint) (Zhang et al., 2020) Let
s ∈ S, g ∈ G, let π∗ be an optimal goal-conditioned policy. Under the assumptions that the
MDP is deterministic and the MDP states are strongly connected, for all k ∈ N+ satifying k ≤
distance(s, φ−1(g)) where φ is a mapping function from S to G, then the optimal goal space are
preserved by a k-step adjacent region.

The key intuition is that distant goals can be substituted by closer goals, as long as they drive the
agent to move towards the same “direction”. Since our K-bins discretization also can be regarded
as a space reduction technique constructing adjacent regions, thus we can conclude that if satisfying
some distance constrictions, K-bins discretization also preserve the optimal goal space.

We then show that the optimal goals are always in the graph boundary. According to Definition 1,
in the whole state-transition graph Gwhole, the optimal goal g∗whole is the target state. The intuitive
explanation behind this is very natural, where the environment in this case is fully explored, and thus
the agent is ready to aim at the target state.

In the other cases, we generate the optimal goal g∗e of episode e at the episode e+1. Specially, we find
the shortest path to the highest value state in Ge+1 as the optimal solution path Pe+1. For instance,
suppose that in the episode e + 1, the state with the highest value in Ge+1 is s9 and the optimal
solution path in this case is Pe+1 = 〈sstart, s1, s3, s6, s9〉. We then compare the explored states in
Ge with the states in Pinverse

e+1 , where Pinverse
e+1 = 〈s9, s6, s3, s1, sstart〉 is the inverse order of Pe+1.

Assume that Ge involving sstart, s1, s2, s3, s4, s5, s6, s7, s8, we can find the first overlapping state
is s6 and we assign s6 as the optimal goal g∗e . As stated above, it’s easy to find that there are two
cases in the optimal goal generation. One is the last node of solution path Pe+1. The other is one of
the rest nodes in Pe+1 except the last one. We then prove that in both of these cases, optimal goal
g∗e is always included in the boundary of the state-transition graph (i.e., ∂Ge).
Case I: Node at Last. Assume that if there exists a path connecting a state s and a goal g whose
length is shorter than any other paths connecting another state s′ and the goal g, then V π(s, g) >
V π(s′, g) holds for ∀s, s′ ∈ S, g ∈ G. We assign g as ge+1 here. Then, if g∗e is not in the boundary,
there must be one neighbor node closer to the goal ge+1. Otherwise, g∗e is the dead end and thus
should not be regarded as the optimal goal. And if there is one neighbor node closer to ge+1, then
this neighbor node should be regarded as the optimal goal. Therefore, we obtain a contradiction.

16

Under review as a conference paper at ICLR 2022

Case II: Node Not at Last. If the optimal goal is not the last state, then there must exist the state
unexplored at episode e. In the previous example, if we take s6 as the optimal goal g∗e , state s9

must be unexplored in Ge and explored in Ge+1. If g∗e is not included in ∂Ge, then there should not
exist any unexplored state that is included in its neighborhood. According to the definition of the
boundary of the graph, we have proved the proposition by contradiction.

In summary, we have proved the proposition in both two cases by contradiction.

A3.3 PROOF OF PROPOSITION 2

Proposition 2. (Convergence of G2RL with Q-learning) Denote the Bellman backup operator in
Qπ(s, a, g)← rg(s, a)+γ ·maxa′ Q

π(s′, a′, g) as B : R|S|×|A|×|G| → R|S|×|A|×|G| and a mapping
Q : S×A×G→ R with |S| <∞ and |A| <∞. Sufficient repeated applications of the operator B
for our graph-based goal-conditioned state-action value estimate Q̂G converges to a unique optimal
value Q∗G∗ with the graph G∗ including the optimal solution Pwhole.

Proof. The proof is developed in two main steps. The first step is to show that our state-transition
graph G can converge to the whole state-transition graph Gwhole. Here, we define G∗ as the graph
that includes the optimal solution Pwhole defined based on the whole state-transition graph Gwhole.
In the second step, we prove that given graph G, our graph-based method can converge to unique
optimal value Q∗G .

Step I. Since |S| < ∞ and |A| < ∞, we can obtain that |VG | < ∞ and |EG | < ∞. Note that
the state-transition graph G is a dynamic graph, and goals g generated on G are updated at the
beginning timestep of each episode. Hence, there is a sequence of goals denoted as (g1, g2, · · · , gE)
and corresponding sequence of graphs denoted as (G1,G2, · · · ,GE), where E here is the number
of episodes. Given that |S| < ∞ and |A| < ∞, the number of nodes and edges in the whole state-
transition graph Gwhole is also bounded. Based on the explore strategy introduced in Section 3, we
know that GoRL will first search for a path leading to the target state. After that, the target state will
be included in G. Then the agent will seek the shortest path to the terminal state because the agent is
given a negative reward at each timestep. Hence, the optimal solution path Pwhole will be involved.
Hence, we can obtain that

G1 ⊆ G2 ⊆ · · · ⊆ G∗ ⇒ G → G∗. (16)
Assume that E is large enough, our state-transition graph G can finally converge to the graph G∗.
Step II. Note that the proof of convergence for our graph-based GoRL is quite similar to Q-learning
(Bellman, 1966; Bertsekas et al., 1995; Sutton & Barto, 2018). The differences between our ap-
proach and Q-learning are that Q value Q(s, a, g) is also conditioned on goal g, and that the state-
transition probability PG(s′|s, a) can be reflected by graph G. We provide detailed proof as follows:

For any state-transition graph G, we can obtain goal g ∈ G conditioned on G from Step I. Based on
that, our estimated graph-based action-value function Q̂G can be defined as

BQ̂G(s, a, g) = rg(s, a) + γ ·max
a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂G(s′, a′, g). (17)

For any action-value function estimates Q̂1
G , Q̂

2
G , we study that

|BQ̂1
G(s, a, g)− BQ̂2

G(s, a, g)|
= γ · |max

a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂1

G(s′, a′, g)−max
a′∈A

∑

s′∈S
PG(s′|s, a) · Q̂2

G(s′, a′, g)|

≤ γ ·max
a′∈A

|
∑

s′∈S
PG(s′|s, a) · Q̂1

G(s′, a′, g)−
∑

s′∈S
PG(s′|s, a) · Q̂2

G(s′, a′, g)|

= γ ·max
a′∈A

∑

s′∈S
PG(s′|s, a) · |Q̂1

G(s′, a′, g)− Q̂2
G(s′, a′, g)|

≤ γ · max
s∈S,a∈A

|Q̂1
G(s, a, g)− Q̂2

G(s, a, g)|

(18)

So the contraction property of Bellman operator holds that

max
s∈S,a∈A

|BQ̂1
G(s, a, g)− BQ̂2

G(s, a, g)| ≤ γ · max
s∈S,a∈A

|Q̂1
G(s, a, g)− Q̂2

G(s, a, g)| (19)

17

Under review as a conference paper at ICLR 2022

Whole
State-Transition

Graph

Whole
State-Transition

Graph

(a) (b)

Figure A4: An illustrated example for connection between certainty and number of visited states.

For the fixed point Q∗G , we have that

max
s∈S,a∈A

|BQ̂G(s, a, g)− BQ̂∗G(s, a, g)| ≤ γ · max
s∈S,a∈A

|Q̂G(s, a, g)− Q̂∗G(s, a, g)| ⇒ Q̂G → Q∗G .

(20)

Combining Step I and II, we can conclude that our graph-based estimated state-action value Q̂G can
converge to a unique optimal value Q∗G∗ .

A4 DISCUSSIONS

A4.1 DISCUSSION ON GRAPH CONSTRUCTION

We do not directly adopt the previous graph construction methods due to following reasons. Firstly,
as G2RL generates the goal supervisions (i.e., optimal goals in Definition 1) based on the short-
est path searching algorithm on the (global) state-transition graph, existing approaches (Zhu et al.,
2019; Huang et al., 2019; Klissarov & Precup, 2020) organizing the graph based on sampled tra-
jectories are not suitable in our case. Secondly, when considering large-scale discrete environments
and continuous environments without image inputs (i.e., Ant Maze, (Low and High) Ant Maze,
FetchPush, FetchPush with Obstacle shown in Figure A6(b)(c)(d)), directly using the whole state-
transition graphs is not a possible solution as performing training and inference would be too costly
and impractical (Klissarov & Precup, 2020). Prior works (Savinov et al., 2018; Eysenbach et al.,
2019) proposing a parameterized distance network are not suitable either, as it would introduce a
batch of parameters to train and might severely affect the final performance. A feasible solution
is to consider discretizing the state and action spaces, as the evidence of that animals explore their
environments with the help of grid cells activated on particular intervals (O’Keefe & Dostrovsky,
1971; Banino et al., 2018; Colombo et al., 1998). We select the K-bins discretization technique here,
as it can be convenient applied by scikit-learn package (Pedregosa et al., 2011).

For the environments with image inputs (e.g., VizDoom, Matterport3D in Figure A6(e)(f)), unfortu-
nately, we can not directly employ the K-bins discretization technique to build the graph. Hence, we
follow previous literature (Chaplot et al., 2020a; Savinov et al., 2018) to first pre-train a ResNet-18
(He et al., 2016) and Mask-RCNN (He et al., 2017) to obtain representations from RGB images
for VizDoom and Matterport3D respectively, which can further be used to generate a graph given
a pre-defined similarity threshold. Note that the generated graph is normally large-scale for G2RL,
as our proposed algorithm runs the shortest path searching to generate the goal supervisions (See
Section 2.3) and the group division to produce candidate groups (See Section 2.4). Therefore, we
further apply K-bins discretization technique to reduce the scale of the graph.

A4.2 DISCUSSION ON CERTAINTY OF STATE

In this section, we further discuss the relationship between the certainty of state and the number of
states. In the previous exploration RL literature (Ostrovski et al., 2017; Bellemare et al., 2016), the
performance of exploration often is measured by the number of the visited states. Namely, given
a fixed number of episodes, more visited states, better performance. In this paper, we propose to
utilize a new measurement, i.e., certainty of state in Section 2.3. We conclude the relations between
certainty and the number of visited states as Proposition 3.
Proposition 3. (Connection between Certainty of Node 〈Local Measurement〉 and Number of Vis-
ited Node 〈Global Measurement〉) Given the whole state-transition graph Gwhole, we can regard the
certainty of states as the local measurement and the number of states as the global measurement for
exploration, which share a similar trend during the exploration.

18

Under review as a conference paper at ICLR 2022

Later Stage of
Exploration

(b)

Early Stage of
Exploration

(a)

2

2

4 6

4 4 2

5

5

4 3

3 4

3 6

9 9

9 9 9

9 9

9 9

9

9

9

9

3

9

4

4 4 4

9

9

4 6 6

6 6

9 9

99

6 6

9999

6 9 9 6

a

b c

d a

b

c

d

e f g

h

Figure A5: An illustrated example for comparison of using the certainty of states and using the visitation counts
of states to define the graph boundary. The number at the center of each state denote its visitation number.

Proof. We illustrate and prove the proposition hindsightly. If we have the full observation for states
as shown in Figure A4(a), we can model the agent finding new states as connecting new states
with visited states. In other words, since the state-transition graph Get must keep being a fully
connected graph at any timestep t in any episode e. Hence, adding new states into the visited
state set can always be regarded as finding new edge between new states and the visited state set.
And each directed edge in the state-transition graph, as shown in Figure A4(b) is determined by
action and state-transition function. If the environment is determined, we can roughly regard the
number of edges as the approximate measurement for exploration. The certainty of states is the
local perspective for this measurement.

A4.3 DISCUSSION ON GRAPH BOUNDARY

As described in Section 2.3, the boundary of Get (i.e., ∂Get) is defined according to the certainty of
states, namely the number of taken actions of states. Another intuitive way is to use the visitation
number of states to define the graph boundary. Specifically, we can construct the graph boundary by
including infrequently visited states. Take Figure A5 as an example, where (a) illustrates the case
at early stage of exploration and (b) shows the case at later stage of exploration. The number at the
center of each state denotes its visitation number. From (a), we can see that if the graph boundary is
built based on the visitation numbers of states, then the states sa, sb, sc will be treated equally. As
the states sa, sb are located on the left side of the initial state, if these states are further assigned as
the goals, the agent will be leaded to the wrong direction. Similar scenario occurs in (b), where the
states sa and sc are treated equally, and the states sb and sd, se, sf , sg , sh are treated equally, when
building the graph boundary according to the states’ visitation numbers. In contrast, if defining the
graph boundary by the number of the taken actions of each state, then only the states sc and sd
will construct the the graph boundary in the case (a) and only the state sc will construct the graph
boundary in the case (b).

We argue that these two cases in Figure A5, or similar cases, are common for GoRL: if the goals are
generated towards the target state (namely on the right side of the initial state), then the visitation
counts of the states on the left side of the initial state are likely to be small; however, these states are
in the wrong direction for exploration.

We further provide the reasons for the differences of these two definitions of graph boundary as
follows. The aim of the exploration of RL is to discover new states. Note that new states are always
the results of taking new actions of visited states. Hence, the number of taken actions of each
state directly shows the potential of the state to explore new states. We also provide the theoretical
support that the goal optimality is preserved in the graph boundary defined based on the certainty
of states in Theorem 1. In contrast, the idea of using the visitation count of states to define the
graph boundary is intuitive but not as straightforward as using the certainty of states. We show the
empirical comparison of these two definition of graph boundary in Figure 4(d).

There are existing approaches that introduce the similar concepts and use them for exploration.
For example, classical method (Yamauchi, 1997) proposes to first detect the frontier by a frontier
detection approach (Keidar & Kaminka, 2012). The frontier is defined as the boundary between
unexplored and explored space; however, is measured by whether the states have been visited. In-

19

Under review as a conference paper at ICLR 2022

Then we check whether the exploration provided by the goals generated by HGG can result in better
policy training performance. As shown in Figure 3, we compare the vanilla HER, HER with Energy-
Based Prioritization (HER+EBP), HGG, HGG+EBP. It is worth noting that since EBP is designed
for the Bellman equation updates, it is complementary to our HGG-based exploration approach.
Among the eight environments, HGG substantially outperforms HER on four and has comparable
performance on the other four, which are either too simple or too difficult. When combined with EBP,
HGG+EBP achieves the best performance on six environments that are eligible.

Figure 4: Visualization of FetchPush with obstacle.

Performance on tasks with obstacle In a more
difficult task, crafted metric may be more suit-
able than `2-distance used in Eq. (5). As shown
in Figure 4, we created an environment based on
FetchPush with a rigid obstacle. The object and
the goal are uniformly generated in the green
and the red segments respectively. The brown
block is a static wall which cannot be moved.
In addition to `2, we also construct a distance
metric based on the graph distance of a mesh
grid on the plane, the blue line is a successful trajectory in such hand-craft distance measure. A more
detailed description is deferred to Appendix B.3. Intuitively speaking, this crafted distance should be
better than `2 due to the existence of the obstacle. Experimental results suggest that such a crafted
distance metric provides better guidance for goal generation and training, and significantly improves
sample efficiency over `2 distance. It would be a future direction to investigate ways to obtain or
learn a good metric.

5.2 Comparison with Explicit Curriculum Learning

Figure 5: Comparison with curricu-
lum learning. We compare HGG
with the original HER, HER+GOID
with two threshold values.

Since our method can be seen as an explicit curriculum learn-
ing for exploration, where we generate hindsight goals as
intermediate task distribution, we also compare our method
with another recently proposed curriculum learning method for
RL. Florensa et al. (2018) leverages Least-Squares GAN (Mao
et al., 2018b) to mimic the set called Goals of Intermediate
Difficult as exploration goal generator.

Specifically, in our task settings, we define a goal set
GOID(⇡) = {g : ↵  f(⇡, g)  1 � ↵}, where f(⇡, g)
represents the average success rate in a small region closed by
goal g. To sample from GOID, we implement an oracle goal
generator based on rejection sampling, which could uniformly
sample goals from GOID(⇡). Result in Figure 5 indicates
that our Hindsight Goal Generation substantially outperforms HER even with GOID from the oracle
generator. Note that this experiment is run on a environment with fixed initial state due to the
limitation of Florensa et al. (2018). The choice of ↵ is also suggested by Florensa et al. (2018).

5.3 Ablation Studies on Hyperparameter Selection

In this section, we set up a set of ablation tests on several hyper-parameters used in the Hindsight
Goal Generation algorithm.

Lipschitz L: The selection of Lipschitz constant is task dependent, since it iss related with scale of
value function and goal distance. For the robotics tasks tested in this paper, we find that it is easier
to set L by first divided it with the upper bound of the distance between any two final goals in a
environment. We test a few choices of L on several environments and find that it is very easy to find
a range of L that works well and shows robustness for all the environments tested in this section. We
show the learning curves on FetchPush with different L. It appears that the performance of HGG is
reasonable as long as L is not too small. For all tasks we tested in the comparisons, we set L = 5.0.

Distance weight c: Parameter c defines the trade-off between the initial state similarity and the goal
similarity. Larger c encourages our algorithm to choose hindsight goals that has closer initial state.

8

A Proof of Theorem 1

In this section we provide the proof of Theorem 1.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ⇠ T and (s0, g0) ⇠ T 0, we have

V ⇡(T 0) � V ⇡(T)� L · D(T , T 0). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ2�(T (1),T (2))

⇣
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

⌘

where �(T (1), T (2)) denotes the collection of all joint distribution µ(s0
(1), g(1), s0

(2), g(2)) whose
marginal probabilities are T (1), T (2), respectively.

Proof. By Eq. (4), for any quadruple (s, g, s0, g0), we have

V ⇡(s0, g0) � V ⇡(s, g)� L · d((s, g), (s0, g0)). (10)

For any µ 2 �(T , T 0), we sample (s, g, s0, g0) ⇠ µ and take the expectation on both sides of Eq. (10),
and get

V ⇡(T 0) � V ⇡(T)� L · Eµ[d((s, g), (s0, g0))]. (11)

Since Eq. (11) holds for any µ 2 �(T , T 0), we have

V ⇡(T 0) � V ⇡(T)� L · inf
µ2�(T ,T 0)

(Eµ[d((s, g), (s0, g0))]) = V ⇡(T)� L · D(T , T 0).

B Experiment Settings

B.1 Modified Environments

Figure 7: Visualization of modified task distribution in Fetch environments. The object is uniformly
generated on the green segment, and the goal is uniformly generated on the red segment.

Fetch Environments:

• FetchPush-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0) �
(0.15, 0.15, 0).

• FetchPickAndPlace-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coor-
dinate on the table. The object is uniformly generated on the segment (�0.15,�0.15, 0)�
(0.15,�0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0.45)�
(0.15, 0.15, 0.45).

• FetchSlide-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.05,�0.1, 0) �
(�0.05, 0.1, 0), and the goal is uniformly generated on the segment (0.55,�0.15, 0) �
(0.55, 0.15, 0).

13

(b) Ant Maze & Low-Stochastic
and High-Stochastic Ant Maze

(d) FetchPush with Obstacle

(c) FetchPush(a) Maze

Published as a conference paper at ICLR 2020

memorized states like episodic memory, and maintain a graph on top of these states based on state
transitions at the same time. Then we develop an efficient reverse-trajectory propagation strategy
to allow the values of new experiences to rapidly propagate to all memory items through the graph.
Finally, we use the fast-adjusted non-parametric high values in associative memory as early guid-
ance for a parametric RL agent so that it can rapidly latch on states that previously yield high returns
instead of waiting for many slow gradient updates.

A

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two place A and B to collect two expe-
riences.

To illustrate the superiority of the associative memory
in reinforcement learning, consider a robot exploring in
a maze to seek out the apple (at place G), as shown in
Figure 1. It collects two trajectory experiences starting
from place A and B, respectively. All the states of tra-
jectory A (the top blue dash line) receive no reward be-
cause the agent terminates at a state with a non-zero re-
ward (at place C), while in trajectory B (the bottom blue
dash line) the final non-zero reward of catching an ap-
ple (at place G) back-propagates through the whole path.
Episodic memory keeps a high value at the intersection
of two trajectories (the door) when taking actions toward
lower-right corner while recording zero values at the other
states in trajectory A. If an episodic memory based robot
starts from place A, it will wander around A because there
are no positive values indicating the way to goal. Thus
based on the episodic memory, the robot may eventually
take a policy like the green line after multiple attempts.
However, if the robot adopts associative memory, the high
value in the door collected from trajectory B will be fur-
ther propagated to the start point A and thus the robot can
correctly take the red-line policy.

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
researches on associative memory based reinforcement learning.

2 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, 1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S, A, P, R, �), where S is a finite set of states, A is a finite set of
actions available to the agent, P : S ⇥ A ⇥ S ! R defines the transition probability distribution,
R is the reward function, and � 2 (0, 1] is the discount factor. At each time step t, the agent
observes state st 2 S , selects an action at 2 A according to its policy ⇡ : S ! A, and receives a
scalar reward rt. In the setting of finite horizon, the accumulated discounted return is calculated as,
Rt =

PT
k=0 �

krt+k where T is the episode length and goal of the agent is to maximize the expected
return for each state st.

The state-action value function Q⇡(s, a) = E[Rt|st = s, a] is the expected return for executing
action a on state s and following policy ⇡ afterwards. DQN (Mnih et al., 2015) parameterizes
this action-value function by deep neural networks Q✓(s, a) and use Q-learning (Watkins & Dayan,
1992) to learn it to rank which action at is best to take in each state st at time step t. The parameters
of the value network ✓ are optimized by minimizing the L2 difference between the networks output
Q✓(s, a) and the Q-learning target yt = rt + � maxa Q✓̂(st+1, at), where ✓̂ are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (st, at, rt, st+1) tuple from a replay buffer for training.

2

(e) VizDoom (f) Matterport3D

Figure A6: Environments used in our experiments. (a) Maze, where the ant agent learns to reach the specified
target position (ε-ball depicted in red) located at the other end of the U-turn. (b) Ant Maze constructed based on
Maze but high-dimensional, where the state space is of 8 dimensions and the action space is of 30 dimensions,
and Low-Stochastic and High-Stochastic Ant Maze built based on Ant Maze where the connectivity between
each pair of neighbor cells will change at the probability of 5% and 20% in each episode respectively. (c)
FetchPush, where the agent is trained to fetch an object from the initial position (rectangle in green) to a distant
position (rectangle in red). (d) FetchPush with Obstacle constructed based on FetchPush but harder, where the
brown block is a static wall that cannot be moved. (e) VizDoom built based on maze but image data as input,
where the agent is required to navigate towards the goal in a maze environment with a image as the state. (f)
Matterport3D built based on maze but scenes, which are 3D reconstructions of real-world environments, as
input, where the agent is required to reach the target scenes. Some of these illustrations are adopted from the
previous literature (Florensa et al., 2017; Savinov et al., 2018; Ren et al., 2019; Chaplot et al., 2020a).

stead, our graph boundary is measured by the exploration status of states (i.e., the number of untaken
actions). Recent attempt (Huang et al., 2019) introduce landmark defined as farthest points, and can
be sampled by a farthest point sampling algorithm (Arthur & Vassilvitskii, 2006), which is defini-
tively regardless of the exploration status of states either. Detailed discussions about the difference
between our certainty and the visitation of the states have been provided in the above parts in this
subsection.

We further discuss whether there will be too many states/nodes in the graph boundary as follows. As
the certainty of states are measured by its untaken actions, two different cases can happen: (i) The
action space is small (e.g., forward, left, right in navigation task), and then it’s unlikely to have too
many states being uncertain. (ii) The action space is large (e.g., continuous action space), and then
we can apply K-bins discretization on the action space to reduce it to a small action space. Hence,
it’s unlikely to have too many uncertain nodes in the graph boundary. We also argue that the impact
the number of uncertain nodes is limited, and show the reasons as follows. (i) For the differentiable
goal generator, our group division will divide these states into a fixed number of groups, and the
supervision signals of the goal generator are on groups instead of states. Hence, the effect of too
uncertain states is limited. (ii) For the relevance sampling technique, there is no explicit effect as the
relevant states are determined by the neighborhood structure, regardless of whether the nodes are
uncertain or not.

A4.4 DISCUSSION ON OPTIMAL GOAL

In the previous GoRL literature (Andrychowicz et al., 2017; Ren et al., 2019), what kind of gen-
erated goals is helpful for the agent to efficiently learn a well-performed policy is one of the key
questions to be answered. The basic idea of GoRL architecture is to generate goals to decompose
the complex task into several goal-oriented tasks. In this paper, we analyze our generated goals from
two perspectives, namely reachability and curriculum.

Reachability. The first property required in the optimal goal is that the generated goal is guaranteed
to be reachable for the agent. To this end, in this paper, the candidate goal set is constrained into the
visited states. In other words, the goal generated in the episode e must be visited before the episode
e. Therefore, we can guarantee that the generated goal of any episode is reachable.

Curriculum. The second property is the curriculum, which means that our optimal goals are re-
quired to approach the target state during the exploration. Our goal generation under the supervision

20

Under review as a conference paper at ICLR 2022

Target State

Start State

(a) TRAIN Ant Maze

Target State

Start State

(b) TEST1 Ant Maze

Target State

Start State

(c) TEST2 Ant Maze

Target State

Start State

(d) Ant Maze withObstacle

Figure A7: Visualization of three different mazes designed for Ant Maze environment including TRAIN (a),
TEST1(b), TEST2(c). We train G2RL in TRAIN and test it in TEST1 and TEST2 to evaluate the generalizability.
Beside, we also design Ant Maze with Obstacle to evaluate the performance of G2RL when encountering more
complex environment.

of forward-looking planning in the next episode will focus on the potential highest value states in
the future, which is actually the target state when the agent has the full observation of states.

A4.5 DISCUSSION ON GROUP DIVISION

Motivation. The intuitive motivation behind the group division is very natural. Proposition 1 implies
that exploration on the state-transition graph Get at timestep t in episode ewithout any constraint may
lead to explosion of graph and inefficiency of exploration. Therefore, the agent is expected to do
exploration within a limited domain. Considering that Ge is always changing and the number of
nodes, i.e., |SGe |) keeps increasing, it is non-trivial for the agent to learn to select state as the goal
for further exploration. Hence, we first restrict the exploration within the boundary of state-transition
graph ∂Ge according to Proposition 1. We then consider partitioning ∂Ge into several groups.

We set the last visited state slast as the original point because slast is likely to be close to the target
state and reachable for current policy. As introduced in Section 3, we propose to construct groups
from slast by adding two classes of nodes, namely neighbor nodes of slast and uncertain nodes in
the graph.

Complexity. Let d∂Ge denote the maximum degree of states in ∂Ge, and |S∂Ge | denote the number
of states in ∂Ge. Note that ∂Ge is always a directed fully connected graph. If we want to find
the n-hop neighbors of slast, we need to iteratively go through related nodes’ neighborhood. In
other words, the computation complexity should be O(dn∂Ge). Hence, the complexity to construct
C1, . . . , CN by extending from neighbor nodes isO(d1

∂Ge)+O(d2
∂Ge)+· · ·+O(dN−1

∂Ge) = O(dN−1
∂Ge).

If we want to find nodes whose uncertainty equals n, we need to go through the graph once. In
this case, the computation complexity should be O(|S∂Ge |). Hence, the complexity to construct
C1, . . . , CN extending from uncertain nodes is O(|S∂Ge |).

Example. Take Figure A5(b) as an example, where the graph boundary consists of vc, ve. Assume
that the last visited state/node is vc, then the first way is to add the neighbor nodes of vc within the
graph boundary (e.g., ve is the first-hop neighbor node) into the group, while the second way is to
add the uncertain node (e.g., vc is uncertain node with two action untaken) into the group.

A5 EXPERIMENTS

A5.1 ENVIRONMENT CONFIGURATION

Maze. As shown in Figure A6(a), in the maze environment, a point in a 2D U -maze aims to reach
a goal represented by a red point. The size of maze is 15 × 15, the state space and is in this 2D
U -maze, and the goal is uniformly generated on the segment from (0, 0) to (15.0, 15.0). The action
space is from (−1.0,−1.0) to (1.0, 1.0), which represents the movement in x and y directions.

AntMaze. As shown in Figure A6(b), in the AntMaze environment, an ant is put in a U -maze,
and the size of the maze is 12 × 12. The ant is put on a random location on the segment from
(−2.0,−2.0) to (10.0, 10.0), and the goal is uniformly generated on the segment from (−2.0,−2.0)
to (10.0, 10.0). The state of ant is 30-dimension, including its positions and velocities. For AntMaze
environment, we follow (Savinov et al., 2018) to develop three different maze designs, namely
TRAIN, TEST1 and TEST2, which are illustrated in Figure A7(a)-(c). We use TRAIN to train G2RL
and evaluate the performance in TEST1 and TEST2 to test the generalizability of the model. One
can easily find that TEST1 is much more similar to TRAIN than TEST2.

21

Under review as a conference paper at ICLR 2022

Figure A8: Comparison of learning curves of our models G2RL in different settings mainly on Ant Maze
environment average across 10 different random seeds. The solid curves depict the mean, the shaded areas
indicate the standard deviation, and dashed horizontal lines show the asymptotic performance.

Low-Stochastic and High-Stochastic Ant Mazes. These two environments is stochastic versions
of Ant Maze, where the connectivity between each pair of neighbor cells will change at the proba-
bility of 5% for Low-Stochastic Ant Maze and 10% for High-Stochastic Ant Maze in each episode.

FetchPush. As shown in Figure A6(c), in the fetch environment, the agent is trained to fetch an
object from the initial position (rectangle depicted in green) to a distant position (rectangle depicted
in red). Let the origin (0, 0, 0) denote the projection of the gripper’s initial coordinate on the table.
The object is uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0), and the goal is
uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0).

FetchPush with Obstacle. As shown in Figure A6(d), in the fetch with obstacle environment, we
create an environment based on FetchPush with a rigid obstacle, where the brown block is a static
wall that can’t be moved. The object is uniformly generated on the segment from (−0.0,−0.0, 0) to
(8, 8, 0), and the goal is uniformly generated on the segment from (−0.0,−0.0, 0) to (8, 8, 0).

AntMaze with Obstacle. This environment is an extended version of AntMaze, where a 1× 1 rigid
obstacle is put in U-maze, which is shown in Figure A7(d).

VizDoom. As shown in Figure A6(e), this environment introduced in (Kempka et al., 2016) is based
on the classical first-person shooter video game. It allows developing bots that play the game using
the screen buffer. In contrast to the other popular visual learning environments such as Atari 2600,
ViZDoom provides a 3D, semi-realistic, first-person perspective virtual world. In this paper, we
follow (Savinov et al., 2018) and use this environment for navigation task, where we adopt ResNet-
18 (He et al., 2016) to handle the image-based observations. Concretely, stacks of two consecutive
RGB images obtained from the environment, at resolution 160× 120 pixels are fed into ResNet-18
for state representation learning.

Matterport3D. As shown in Figure A6(f), this environment proposed in (Chang et al., 2017) is
based on Habitat simulator (Savva et al., 2019). It consists of scenes which are 3D reconstructions
of real-world environments. We use the standard train and test splits. The observation space consists
of RGB images of size 4 × 640 × 480, base sensor of size 3 × 1 denoting the change in agent’s
x-y coordinates and orientation, and goal object category represented as an integer. The action
space consists of four actions: moving forward, turning left, turning right and stopping. We follow
(Chaplot et al., 2020a) to pre-train a Mask-RCNN (He et al., 2017) using Feature Pyramid Networks
(Lin et al., 2017) with ResNet-50 (He et al., 2016) backbone on MS-COCO dataset (Lin et al., 2014)
for object detection and instance segmentation.

Note that all the baseline methods use the same (positional or image) inputs as G2RL.

Different from the stochastic versions of Ant Maze introduced above, a batch of more challeng-
ing environments are noisy environments. Note that these stochastic versions operating on the
connectivity of neighbor nodes, might accelerate the exploration by creating a short cut from the
start point to the target point. Instead, for the noisy version of Ant Maze (called as Noisy Ant
Maze), we directly generate noises from Gaussian distributions N (µ, σ2) where we set µ = 0,
and σ = 0.5, 0.75, 1 (denoted as NOIS050, NOIS075, NOIS100). For each episode, we generate
a Gaussian noise matrix (denoted as G̃) with the same shape to the adjacency matrix of the cur-
rent state-transition graph (denoted as Ã), and update Ã by summing up these two matrix (i.e.,
Ã ← Ã + G̃). Then, each entity of Ã will be set as 1 if its value is larger than 0.5, or 0, otherwise.
We can see that this approach can both connect and disconnect each pair of nodes.

22

Under review as a conference paper at ICLR 2022

Table A1: Result comparisons with baselines on unseen environments.

Environments TEST1 AntMaze TEST2 AntMaze (TEST) Matterport3D

Success SPL Success SPL Success SPL

HER 0.482 0.296 0.365 0.182 0.262 0.078
MLP 0.715 0.505 0.473 0.236 0.311 0.124

GoalGAN 0.695 0.426 0.412 0.206 0.284 0.100
CHER 0.587 0.360 0.395 0.198 0.281 0.101
SPTM 0.773 0.610 0.496 0.262 0.306 0.122
SoRB 0.802 0.636 0.535 0.278 0.321 0.128
HIRO 0.700 0.432 0.511 0.255 0.287 0.097
HRAC 0.721 0.443 0.533 0.272 0.298 0.104
GTG 0.686 0.480 0.378 0.190 0.278 0.097

G2RL 0.852 0.677 0.578 0.318 0.387 0.164

A5.2 EVALUATION DETAILS

• All curves are plotted from 10 runs with random task initialization and seeds.
• The shaded region indicates 60% population around the median.
• All curves are plotted using the same hyper-parameters (except the ablation section).
• Following (Andrychowicz et al., 2017), an episode is considered successful if ‖g−sobject‖2 ≤ δg

is achieved, where sobject is the object position at the end of the episode. δg is the threshold.
• The max timestep for each episode is set as 200 for training and 500 for tests.
• The average success rate using in the curve is estimated by 102 samples.

A5.3 BASELINE METHODS

• HER (Andrychowicz et al., 2017) generates imaginary goals in a simple heuristic way to tackle
sparse reward issue.

• MLP (Huang et al., 2019) explicitly models the environment in a hierarchical manner, with a
high-level map abstracting the state space and a low-level value network to derive local decisions.

• GoalGAN (Florensa et al., 2018) leverages Least-Squares GAN (Mao et al., 2018) to mimic the
set of GOID as an automatic goal generator.

• CHER (Fang et al., 2019) proposes to enforce more curiosity in earlier stages and changes to
larger goal-proximity later.

• SPTM (Savinov et al., 2018) consists of a graph corresponding to environment and deep network
capable of retrieving nodes from the graph.

• HIRO (Nachum et al., 2018b) introduces an off-policy correction to learn higher- and lower-level
policies of Hierarchical RL.

• HRAC (Zhang et al., 2020) follows the hierarchical RL framework but generates the goals with
an adjacent region constraint.

• GTG (Jiang et al., 2021) constructs the grid graph based on entities of x-y coordinates and use R-
GCN (Schlichtkrull et al., 2018) to encode the graph structure. As the original work is proposed
for the grid environments, we follow the same graph construction procedure of G2RL, namely
using the K-bins discretization (Kotsiantis & Kanellopoulos, 2006) to extend GTG to continuous
environments, and following (Savinov et al., 2018; Chaplot et al., 2020a) and using ResNet-18
(He et al., 2016) and Mask-RCNN (He et al., 2017) to handle RGB images obtained from the
environments.

A5.4 IMPLEMENTATION DETAILS

Almost all hyper-parameters using DDPG (Lillicrap et al., 2015) and HER (Andrychowicz et al.,
2017) are kept the same as benchmark results, except these:

• Number of MPI workers: 1;
• Actor and critic networks: 3 layers with 256 units and ReLU activation;
• Adam optimizer with 5× 10−4 learning rate;
• Polyak-averaging coefficient: 0.98;
• Action l2-norm penalty coefficient: 0.5;
• Batch size: 256;
• Probability of random actions: 0.2;
• Scale of additive Gaussian noise: 0.2;
• Probability of HER experience replay: 0.8;

23

Under review as a conference paper at ICLR 2022

• Number of batches to replay after collecting one trajectory: 50.

Hyper-parameters in goal generation:

• Adam optimizer with 1× 10−3 learning rate;
• K of K-bins discretization: 20;
• Number of groups to depart the graph: 3.

A5.5 HARDWARE SETTINGS

The models are trained under the same hardware settings with an Amazon EC2 p3.8×large in-
stance‡, where the GPU processor is NVIDIA Tesla V100 processor and the CPU processor is Intel
Xeon E5-2686 v4 (Broadwell) processor.

A6 ADDITIONAL RESULTS

A6.1 COMPREHENSIVE TRANSDUCTIVE EXPERIMENTS

From Figure 4(a), we know that our relevance sampling technique is beneficial to G2RL. We fur-
ther investigate whether this technique can also improve the performance of other G2RL. Without
loss of generality, we incorporate our relevance sampling technique with HER (Andrychowicz et al.,
2017), a widely adopted GoRL method, and evaluate the performance on Ant Maze. We report
the results in Figure A8(a), which indicates that the relevance sampling technique can seamlessly
incorporate with other GoRL. Note that Figure 3 depicts the results of G2RL with strong baselines
on the environments introduced in Appendix A5.1 except High-Stochastic Ant Maze and Matter-
port3D environments. Figure A8(b) reports the results on High-Stochastic Ant Maze. Comparing to
Figure 3(b)(c) to Figure A8(b), we can see that GoRL methods leveraging the state-transition graph
(e.g, G2RL, SoRB, MLP) are only robust to a certain level of stochasticity, which is consistent to
our analysis of the limitation of G2RL in Appendix A2.1.

However, as discussed in Appendix A5.1, the above stochastic versions of Ant Maze might con-
nect the pairs of nodes that are originally cut off by obstacles (e.g., wall), and thus acceletate the
exploration. Therefore, we introduce Noisy Ant Mazes described in Appendix A5.1 to further in-
vestigate the robustness of G2RL. Results depicted in Figure A8(c) shows that G2RL based on the
state-transition graph, which requires an accurate graph to achieve a good performance.

Notably, from the empirical results in Section 4 and this subsection, we can conclude the perfor-
mance gain of G2RL mainly from our differentiable goal generation algorithm and slightly from our
relevance sampling algorithm.

A6.2 COMPREHENSIVE INDUCTIVE EXPERIMENTS

In Figure 3, we show the results of performance of using the same environments for both training
and testing. One of the most challenging tasks of RL is to train and evaluate in two different envi-
ronments. To this end, we investigate the generaliability to unseen environments of G2RL against
strong baseline methods. Concretely, we draw two new Ant Mazes to test the performance of G2RL
trained in the original Ant Maze (i.e., TRAIN). We introduce details of these environments in Ap-
pendix A5.1. Moreover, as we introduce in Appendix A5.1, Matterport3D dataset provides the
standard train and test splits based on the Habitat simulator.

Recall that the main components of G2RL are (i) differentiable goal generator for effective goal
generation and (ii) relevance sampling technique for policy learning. As no learning is allowed
when generalizing to unseen environments, the generalizability of G2RL mainly depends on the
goal generator, which is discussed as follows: (i) Our definition of the graph boundary providing the
candidate states for the goal generation can seamlessly generalize to unseen environment, as it can
re-compute the certainty of each state and construct the graph boundary by uncertain states. (ii) The
group division based on the graph boundary can also seamlessly generalize to unseen environment,
since the number of groups (i.e., N) is a hyper-parameter. (iii) The group selection over N groups
can directly generalize to unseen environments by freezing the parameters (i.e., φ) in the attention

‡Detailed setting of AWS E2 instance can be found at https://aws.amazon.com/ec2/
instance-types/?nc1=h_ls.

24

https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
https://aws.amazon.com/ec2/instance-types/?nc1=h_ls

Under review as a conference paper at ICLR 2022

Target State

Start State

Target State

Start State

Target State

Start State

Target State

Start State

Target State

Start State

Target State

Start State

HER

(c) Episode 500(a) Episode 100 (b) Episode 300

G2RL G2RL

HER HER

G2RL

Target State

Start State

Target State

Start State

Target State

Start State

SoRB SoRB SoRB

Figure A9: Visualization of generated goals by G2RL, SoRB and HER in AntMaze environment. The start
and the target states are illustrated as purple and red circles respectively. The blue circles indicate ten recently
generated goals. The subfigures in the top show the results of HER and the subfigures in the middle show the
results of SoRB, while the subfigures in the bottom show the results of G2RL.

model (i.e., ATTφ). In our implementation, like related literature (Chaplot et al., 2020b;a; Savinov
et al., 2018), we freeze the parameters of the goal generator (i.e., φ) and the policy (i.e., θ), and
apply the trained goal generator and the trained policy π : S × G → ∆(A) (See Section 2.1 for
background of GoRL) in the new environments.

We use two metrics for comparing all the methods, namely Success: success rate, the ratio of
episodes where the method is successful; SPL: successes weighted by the path length proposed by
(Anderson et al., 2018), which not only considers whether the method is successful but only consider
the length of trajectories. Results reported in Table A1 indicate that G2RL can better generalize to
the environments with similar structures than other strong methods. Also, we can notice that GTG
(Jiang et al., 2021) using graph neural networks can not well generalize to unseen environments.
Table A1 also reports the results of Matterport3D environment (on the test datasets), which shows
the consistent superiority of G2RL in the complex navigation environment.

A6.3 VISUALIZATION OF GOAL DISTRIBUTIONS

To investigate whether the generated goals truly guide the agent to the target state, we demonstrate
the distribution of generated goals of G2RL, SoRB, and HER. As shown in Figure A9, G2RL gen-
erates goals that gradually move towards the target state. Since these goals are generated within
the visited states, and thus they are considered to be achieved during training. In comparison, the
goal distribution of HER has been stuck around the start state for many iterations, indicating the
less effective exploration. And, the goal distribution of SoRB seems to locate at the middle between
the distributions of HER and G2RL. One possible explanation for this observation is that G2RL and
SoRB leverage the state-transition graph to guide the agent to explore, and G2RL is further benefited
from the differentiable goal generation based on the graph boundary.

A6.4 COMPARISON ON SAMPLE EFFICIENCY

By sample efficiency, we show the comparisons according to the number of states visited and actions
taken. In other words, given the fix number of episodes, more unique states visited and actions taken
usually denote the efficiency of exploration. We report the log files of G2RL and HER in Maze at
10, 50, 100 episodes, which contain the number of visited nodes and actions taken.

==================== Graph−enhanced Goal−oriented Reinforcement Learning (G2RL) ====================
episode is: 10
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40]
number of nodes: 45

25

Under review as a conference paper at ICLR 2022

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (21, 21), (21, 11), (21, 31), (21,
32), (21, 22), (11, 11), (11, 21), (11, 12), (31, 31), (31, 42), (31, 41), (31, 22), (31, 32), (31, 21), (42, 42), (42,
32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (41, 41),

(41, 31), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44),
(43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34)

, (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (13, 13), (13, 14), (13, 23), (14,
15), (14, 25), (14, 14), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26,
37), (26, 27), (25, 26), (25, 25), (25, 15), (25, 36), (36, 35), (36, 26), (36, 36), (36, 37), (36, 27), (35, 35),

(35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35, 25), (45, 35), (45, 44), (45, 45), (16, 26), (24, 35), (24, 34),
(24, 25), (37, 47), (37, 37), (37, 38), (37, 48), (47, 37), (47, 47), (47, 48), (47, 46), (38, 47), (38, 48), (38, 37)

, (38, 49), (38, 28), (38, 39), (48, 38), (48, 48), (48, 49), (46, 47), (46, 46), (12, 11), (12, 21), (12, 23), (12,
22), (12, 13), (49, 48), (49, 59), (49, 50), (59, 69), (69, 69), (69, 79), (79, 80), (79, 78), (79, 79), (79, 90), (80,
79), (78, 79), (90, 89), (89, 99), (99, 99), (99, 109), (109, 110), (109, 109), (109, 100), (110, 100), (100, 109),

(27, 36), (27, 27), (27, 38), (28, 28), (28, 38), (39, 50), (39, 40), (39, 39), (50, 39), (50, 40), (50, 50), (40, 49),
(40, 39), (40, 50)]

number of edges: 166
episode is: 50
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61]

number of nodes: 60
edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31, 41), (31, 22), (31,
32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42),

(32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40), (41, 32), (23, 22), (23, 23),
(23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44)

, (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44,
33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34,
25), (13, 13), (13, 14), (13, 23), (13, 12), (13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13),

(14, 23), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27),
(26, 35), (26, 17), (25, 26), (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (36, 35), (36, 26)

, (36, 36), (36, 37), (36, 27), (36, 46), (36, 47), (36, 45), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35,
44), (35, 25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16,
27), (16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33),

(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (47, 37), (47, 47), (47, 48), (47, 46),
(47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38, 38), (38, 27)

, (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (46, 47), (46, 46), (46, 37), (46, 45), (46,
36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12), (49, 48), (49, 59), (49, 50), (49, 39), (49,
49), (49, 60), (59, 69), (59, 59), (59, 48), (59, 50), (59, 60), (59, 49), (59, 58), (69, 69), (69, 79), (69, 78),

(69, 80), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (80, 79), (80, 69), (80, 80), (80, 90), (78, 79), (78, 78),
(78, 68), (78, 69), (78, 89), (90, 89), (90, 79), (90, 90), (89, 99), (89, 79), (99, 99), (99, 109), (109, 110), (109,
109), (109, 100), (110, 100), (100, 109), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18), (27,

16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (39, 50), (39, 40), (39,
39), (39, 29), (39, 38), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59), (50, 60), (50, 51), (40, 49), (40, 39),

(40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40, 31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28),
(30, 29), (30, 40), (30, 31), (30, 30), (30, 20), (30, 39), (51, 40), (57, 57), (57, 68), (57, 47), (57, 58), (57, 48)

, (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28), (19, 19), (19, 18), (19, 30), (19, 29), (58,
48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67), (68, 69), (68, 78), (68, 79), (17, 17), (17, 18), (17,
28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (20, 19), (67, 67), (67, 58),

(70, 71), (70, 70), (70, 60), (70, 69), (71, 71), (71, 70), (61, 70)]
number of edges: 336
episode: 100
nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61, 88, 87, 96, 106, 105, 104, 114, 115, 81, 77, 97, 107, 86, 98, 108, 95, 85, 94, 103]

number of nodes: 79
edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (21, 20), (21, 30), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31,
41), (31, 22), (31, 32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (42, 33),

(32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40),
(41, 32), (41, 42), (41, 50), (41, 30), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14)

, (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33,
23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34,
33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34, 25), (34, 23), (13, 13), (13, 14), (13, 23), (13, 12),

(13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13), (14, 23), (15, 15), (15, 26), (15, 25), (15, 14),
(15, 16), (15, 24), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27), (26, 35), (26, 17), (26, 15), (25, 26)

, (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (25, 14), (36, 35), (36, 26), (36, 36), (36,
37), (36, 27), (36, 46), (36, 47), (36, 45), (36, 25), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35,
25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16, 27),

(16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33), (24, 13),
(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (37, 26), (47, 37), (47, 47), (47, 48)

, (47, 46), (47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38,
38), (38, 27), (38, 29), (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (48, 37), (48, 39), (46,
47), (46, 46), (46, 37), (46, 45), (46, 36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12),

(49, 48), (49, 59), (49, 50), (49, 39), (49, 49), (49, 60), (49, 58), (49, 40), (49, 38), (59, 69), (59, 59), (59, 48),
(59, 50), (59, 60), (59, 49), (59, 58), (59, 68), (59, 70), (69, 69), (69, 79), (69, 78), (69, 80), (69, 70), (69, 68)

, (69, 59), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (79, 88), (79, 89), (79, 69), (80, 79), (80, 69), (80,
80), (80, 90), (80, 89), (80, 81), (80, 70), (80, 71), (78, 79), (78, 78), (78, 68), (78, 69), (78, 89), (78, 87), (78,
67), (78, 77), (78, 88), (90, 89), (90, 79), (90, 90), (90, 80), (89, 99), (89, 79), (89, 80), (89, 89), (89, 88),

(89, 90), (89, 78), (89, 98), (99, 99), (99, 109), (99, 88), (99, 89), (99, 98), (99, 100), (109, 110), (109, 109),
(109, 100), (110, 100), (100, 109), (100, 99), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18),

26

Under review as a conference paper at ICLR 2022

(27, 16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (28, 17), (39, 50),
(39, 40), (39, 39), (39, 29), (39, 38), (39, 49), (39, 48), (39, 30), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59)

, (50, 60), (50, 51), (50, 61), (50, 41), (40, 49), (40, 39), (40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40,
31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28), (29, 18), (29, 40), (29, 38), (29, 20), (30, 29), (30,
40), (30, 31), (30, 30), (30, 20), (30, 39), (30, 19), (30, 21), (51, 40), (51, 51), (51, 60), (51, 50), (57, 57),

(57, 68), (57, 47), (57, 58), (57, 48), (57, 67), (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28),
(19, 19), (19, 18), (19, 30), (19, 29), (19, 20), (58, 48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67)

, (58, 69), (58, 68), (68, 69), (68, 78), (68, 79), (68, 68), (68, 57), (68, 67), (68, 77), (68, 58), (17, 17), (17,
18), (17, 28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (60, 51), (60, 69), (60,
71), (20, 19), (20, 30), (20, 20), (20, 21), (20, 29), (67, 67), (67, 58), (67, 68), (67, 78), (67, 77), (67, 57),

(70, 71), (70, 70), (70, 60), (70, 69), (70, 79), (70, 80), (70, 59), (71, 71), (71, 70), (71, 80), (61, 70), (61, 61),
(61, 50), (61, 60), (88, 87), (88, 79), (88, 89), (88, 88), (88, 99), (88, 98), (88, 78), (88, 97), (87, 78), (87, 88)

, (87, 96), (87, 87), (87, 97), (87, 77), (87, 86), (96, 106), (96, 97), (96, 87), (96, 86), (96, 96), (96, 95), (106,
105), (106, 107), (106, 96), (105, 105), (105, 104), (105, 114), (105, 115), (104, 114), (104, 104), (104, 105), (114,
114), (114, 104), (114, 105), (115, 105), (81, 80), (77, 77), (77, 67), (77, 68), (77, 88), (77, 78), (97, 96), (97,
106), (97, 107), (97, 87), (107, 96), (107, 106), (107, 107), (107, 108), (86, 96), (86, 86), (98, 99), (98, 89), (98,
98), (95, 95), (95, 85), (95, 94), (85, 85), (85, 95), (94, 103), (103, 103)]

number of edges: 486
==================== Hindsight Experience Replay (HER) ====================
episode is: 10
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27]
number of nodes: 29
edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (21, 21), (21, 31), (21, 22), (31, 31), (31, 41), (31,

21), (31, 42), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (32, 31), (32,
32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (23, 22), (23, 13), (23, 14), (23, 33), (43, 32), (43, 43),

(43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (44, 44), (44, 33), (44, 43),
(44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (35, 45), (35, 46), (35, 35), (35, 34)

, (35, 25), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (36,
36), (36, 37), (36, 47), (36, 26), (36, 46), (37, 47), (37, 37), (37, 36), (37, 48), (47, 47), (47, 37), (47, 36), (47,
46), (13, 13), (13, 12), (13, 14), (12, 13), (12, 11), (12, 12), (12, 23), (14, 14), (14, 13), (14, 15), (15, 15),

(15, 16), (15, 26), (15, 25), (16, 16), (16, 17), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (25, 24), (25, 36),
(25, 26), (24, 15), (48, 37), (11, 12), (11, 11), (27, 27)]

number of edges: 112
episode is: 50
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61]
number of nodes: 55
edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (21, 21), (21, 31), (21, 22), (21,

11), (21, 12), (21, 32), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (41, 42), (41, 41), (41, 32), (41, 31), (42,
41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31), (32, 32), (32, 42), (32, 33), (32, 43), (32, 23),

(32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33), (23, 34), (23, 24), (23, 23), (23, 12), (43, 32),
(43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (33, 23), (33, 22)

, (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34,
34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35, 46), (35, 35), (35, 34), (35, 25), (35, 44), (35,
36), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37),

(46, 47), (36, 36), (36, 37), (36, 47), (36, 26), (36, 46), (36, 45), (36, 35), (36, 27), (37, 47), (37, 37), (37, 36),
(37, 48), (37, 46), (37, 27), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13)

, (13, 12), (13, 14), (13, 22), (13, 23), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14,
13), (14, 15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (16, 16), (16, 17), (16,
15), (16, 26), (17, 17), (17, 18), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (26, 15), (26, 16), (25, 24),

(25, 36), (25, 26), (25, 16), (25, 15), (25, 14), (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33),
(24, 23), (24, 34), (48, 37), (48, 47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (11, 12), (11, 11), (11, 21)

, (27, 27), (27, 28), (27, 38), (27, 37), (18, 18), (18, 19), (19, 19), (19, 20), (20, 20), (20, 19), (20, 30), (58,
57), (58, 69), (58, 58), (58, 67), (58, 59), (58, 48), (57, 48), (57, 57), (57, 58), (57, 67), (49, 39), (49, 60), (49,
50), (49, 59), (49, 49), (39, 49), (39, 29), (39, 39), (60, 49), (60, 50), (60, 70), (50, 60), (50, 49), (50, 40),

(59, 49), (59, 59), (59, 69), (59, 58), (59, 60), (40, 49), (38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (28, 29),
(28, 38), (29, 29), (29, 30), (29, 39), (30, 30), (30, 20), (30, 29), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59)

, (70, 70), (70, 80), (70, 61), (80, 80), (80, 90), (90, 90), (90, 101), (101, 101), (101, 100), (100, 101), (100, 100)
, (100, 90), (67, 68), (67, 67), (67, 77), (68, 58), (68, 69), (77, 77), (77, 78)]

number of edges: 255
episode: 100
nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61, 88, 87, 97,
96, 106, 117, 107, 71, 79, 89, 86, 85, 95, 51, 99, 110]

number of nodes: 71
edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (22, 31), (21, 21), (21, 31), (21,

22), (21, 11), (21, 12), (21, 32), (21, 20), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (31, 30), (31, 40), (31,
22), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31),

(32, 32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33),
(23, 34), (23, 24), (23, 23), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44)

, (33, 32), (33, 43), (33, 34), (33, 23), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44,
35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35,
46), (35, 35), (35, 34), (35, 25), (35, 44), (35, 36), (35, 24), (35, 26), (45, 46), (45, 45), (45, 35), (45, 44),

(45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (46, 47), (36, 36), (36, 37), (36, 47), (36, 26),
(36, 46), (36, 45), (36, 35), (36, 27), (36, 25), (37, 47), (37, 37), (37, 36), (37, 48), (37, 46), (37, 27), (37, 38)

, (37, 26), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13), (13, 12), (13,
14), (13, 22), (13, 23), (13, 24), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14, 13), (14,
15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (15, 24), (16, 16), (16, 17),

(16, 15), (16, 26), (16, 27), (17, 17), (17, 18), (17, 16), (17, 28), (17, 27), (17, 26), (26, 25), (26, 26), (26, 37),
(26, 36), (26, 27), (26, 15), (26, 16), (26, 35), (26, 17), (25, 24), (25, 36), (25, 26), (25, 16), (25, 15), (25, 14)

, (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33), (24, 23), (24, 34), (24, 14), (48, 37), (48,

27

Under review as a conference paper at ICLR 2022

47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (48, 39), (48, 57), (11, 12), (11, 11), (11, 21), (27, 27), (27,
28), (27, 38), (27, 37), (27, 18), (27, 26), (27, 17), (18, 18), (18, 19), (18, 17), (19, 19), (19, 20), (19, 29),

(19, 18), (19, 28), (20, 20), (20, 19), (20, 30), (20, 29), (20, 21), (58, 57), (58, 69), (58, 58), (58, 67), (58, 59),
(58, 48), (58, 68), (58, 49), (57, 48), (57, 57), (57, 58), (57, 67), (57, 68), (49, 39), (49, 60), (49, 50), (49, 59)

, (49, 49), (49, 58), (49, 48), (39, 49), (39, 29), (39, 39), (39, 38), (39, 30), (39, 40), (60, 49), (60, 50), (60,
70), (60, 60), (60, 69), (60, 59), (60, 61), (50, 60), (50, 49), (50, 40), (50, 61), (50, 50), (50, 51), (59, 49), (59,
59), (59, 69), (59, 58), (59, 60), (59, 68), (40, 49), (40, 40), (40, 39), (40, 29), (40, 30), (40, 31), (40, 50),

(38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (38, 37), (38, 29), (38, 49), (28, 29), (28, 38), (28, 28), (28, 39),
(28, 18), (28, 19), (29, 29), (29, 30), (29, 39), (29, 19), (29, 28), (29, 38), (29, 40), (30, 30), (30, 20), (30, 29)

, (30, 31), (30, 40), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59), (69, 78), (69, 80), (69, 79), (70, 70), (70,
80), (70, 61), (70, 71), (70, 60), (80, 80), (80, 90), (80, 79), (80, 70), (80, 69), (80, 89), (90, 90), (90, 101),
(90, 79), (90, 89), (101, 101), (101, 100), (100, 101), (100, 100), (100, 90), (100, 110), (67, 68), (67, 67), (67, 77)
, (67, 57), (68, 58), (68, 69), (68, 68), (68, 67), (68, 78), (77, 77), (77, 78), (77, 67), (77, 87), (78, 88), (78,
77), (78, 68), (78, 69), (61, 61), (61, 60), (61, 50), (61, 70), (88, 87), (87, 97), (87, 86), (97, 96), (96, 106),
(106, 117), (106, 107), (117, 106), (107, 107), (71, 71), (71, 70), (79, 79), (79, 68), (79, 80), (79, 69), (79, 78),
(89, 90), (89, 99), (86, 85), (85, 95), (51, 60), (99, 99), (99, 100)]

number of edges: 370

28

