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Abstract
Synthetic image detectors (SIDs) are a key defense against the risks posed by
the growing realism of images from text-to-image (T2I) models. Red teaming
improves SID’s effectiveness by identifying and exploiting their failure modes via
misclassified synthetic images. However, existing red-teaming solutions (i) require
white-box access to SIDs, which is infeasible for proprietary state-of-the-art detec-
tors, and (ii) generate image-specific attacks through expensive online optimization.
To address these limitations, we propose PolyJuice, the first black-box, image-
agnostic red-teaming method for SIDs, based on an observed distribution shift in
the T2I latent space between samples correctly and incorrectly classified by the
SID. PolyJuice generates attacks by (i) identifying the direction of this shift through
a lightweight offline process that only requires black-box access to the SID, and (ii)
exploiting this direction by universally steering all generated images towards the
SID’s failure modes. PolyJuice-steered T2I models are significantly more effective
at deceiving SIDs (up to 84%) compared to their unsteered counterparts. We also
show that the steering directions can be estimated efficiently at lower resolutions
and transferred to higher resolutions using simple interpolation, reducing compu-
tational overhead. Finally, tuning SID models on PolyJuice-augmented datasets
notably enhances the performance of the detectors (up to 30%).
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Figure 1: (a) PolyJuice steers text-to-image (T2I) models to generate images that deceive a synthetic image
detection (SID) model. (b) There exists a clearly observable shift between the distribution of the samples
predicted as real versus those identified as fake, in the latent space of T2I models.

1 Introduction

Importance of synthetic image detection (SID) and red teaming. Creating artificial content
has never been easier. In recent years, rapid advances in text-to-image (T2I) generative models
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[18, 51, 52, 54, 44, 19, 6] have significantly blurred the line between real and fake visual media. To
reinforce this line, it is necessary to improve the primary defense: synthetic image detection (SID)
or deepfake detection (DFD) models [12, 47, 33, 63, 20, 56, 60]. One tried-and-true method for
improving the robustness of critical machine learning systems is red teaming: simulating attacks to
discover failure modes. For example, red teaming is extensively used to expose vulnerabilities in
biometric recognition systems [25, 70, 31, 38], and in large-language models (LLM) [2, 36, 17, 49].
Similarly, these attacks can help in improving SID models by discovering their blind spots.

Red teaming as a way to improve SIDs. An ideal red teaming for SID needs to have two features:
(i) Augmentation: Fake detection datasets have not kept up with the rapidly improving field of image
generation [7]. To help improve these datasets, red teaming should discover a distribution of synthetic
images capable of deceiving SID models. These images can be used to augment datasets with more
challenging examples, helping to improve both evaluation and detection. (ii) Black-Box Attacks:
State-of-the-art SID methods are mostly proprietary [7] and provide limited access through APIs,
making white-box attacks infeasible. Therefore, a practical red teaming method for SID must focus
on black-box attacks that can be performed with model-provided responses only.

Existing red-teaming methods and their limitations. Recent years have seen the emergence of a
family of attacks known as Unrestricted Adversarial (UA) attacks, that utilize powerful generative
priors to directly create attack images capable of misleading a classifier [57]. However, existing
UA attacks share some common limitations: (L1) They perform white-box attacks: Prior UA
attacks [65, 13, 9] need access to the weights or gradients of the classifier to guide or modify the
result of the generative model. These attacks can only be adapted to black-box detectors through the
unreliable method of transferability from white-box settings. (L2) They perform image-specific
attacks: Existing UA attacks need to optimize a per-image perturbation or direction in the latent
space of generative models, which adds a considerable computational overhead at inference time.
Further, the optimization cost can grow exponentially with the image resolution.

In this paper, we present PolyJuice, a black-box method for generating UA attacks against SID
models. For a given T2I generator and a target SID model, PolyJuice steers the T2I generative process
to discover images that successfully deceive the detector, as shown in Fig. 1a. PolyJuice identifies
the steering direction from a set of generated images, by characterizing the subspace where the
statistical dependence between their T2I latents and their SID-predicted realness is maximal. Finding
these directions is motivated by the key observation that there exists a distribution shift between the
predicted real and fake samples in the T2I latent space. Fig. 1b illustrates this shift by projecting the
T2I latents onto the 2D subspace found using supervised principal component analysis (SPCA) [5].

Finding the steering subspaces does not require access to the weights of the target SID models
but only their predicted hard labels, thereby making a black-box attack feasible (addresses L1).
We compute these subspaces just once over a set of generated images and their corresponding SID
predictions and universally apply them at inference time, thus bypassing the overhead of computing
image-specific directions (addresses L2). The universal applicability of PolyJuice also implies that
the steered images and the set of direction-finding images can be heterogeneous. For example, the
directions found from a set including animal and common object images can steer human images
(see Fig. 1a). In addition, we find that PolyJuice directions at lower resolutions remain valid even at
higher resolutions, avoiding the costs associated with 1) generating the direction-finding image set in
a higher resolution, and 2) finding the subspaces in higher-dimensional space.

Contributions.
• We introduce PolyJuice, the first (a) black-box and (b) distribution-based unrestricted adver-

sarial attack on synthetic image detectors, which enables computationally efficient red teaming
on commercial and proprietary models, even with API-only access.

• PolyJuice significantly enhances the success rate of a T2I attacker in deceiving a target SID
model, even when it is specifically tuned on images from the very same T2I model.

• PolyJuice enables efficient attacks for high-resolution images as PolyJuice directions are
transferable across image resolutions.

• We achieve the underlying objective of red teaming, by using PolyJuice-steered samples to
reduce the false negative rate of SID models. The images generated for the development of
PolyJuice are to be released for the benefit of future research.
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2 The Universal Unrestricted Attack on Synthetic Image Detector Problem

Notation. Scalars are denoted by lowercase letters (e.g., λ, τ ). Deterministic vectors and matrices
are represented by boldface lowercase and uppercase letters, respectively (e.g., x, z for vectors, and
H , Θ for matrices). The element in row i and column j of matrix M is denoted by either (M)ij
or mij . We use In (or I) to denote the n× n identity matrix. Likewise, 1n and 0n represent n× 1
vectors of ones and zeros, respectively. For a square matrix K, the trace operator is denoted as
Tr {K}. Sets and vector spaces are represented using calligraphic letters (e.g., X , Z).

Problem Formulation. Let C denote a set of captions obtained from the distribution of textual
descriptions p(c), serving as inputs to a T2I generative model G. Given a latent vector z ∈ Z
from the distribution of latents p(z) and a textual prompt c ∈ C, the T2I model generates an image
following G : Z × C → X , where X is the space of images.

For obtaining P (fake | x) from the perspective of an SID1, we assume access to a black-box detector
model defined as f : X → [0, 1], where, given an image x ∈ X and a classification threshold
τ ∈ (0, 1), the SID labels x as real if f(x) < τ , and fake or synthetic otherwise.

Let there be a mapping function h within the T2I latent space parameterized by Θ, defined as

hΘ : Z → Z. (1)

The primary goal of our UA attack is to find the parameters of the mapping function hΘ such that
latents mapped with hΘ generate images that are consistently misclassified by the SID model. This
transformation of latents within the latent space is typically described as steering. Formally, we frame
the attack as the following optimization problem:

Problem 1. Unrestricted Adversarial Attack

max
Θ

Ez∼p(z), c∼p(c)

[
1{f(G(hΘ(z), c)) < τ}

]
,

where 1{·} denotes the indicator function, returning 1 when its argument is true and 0 otherwise.

A practical solution to Prob. 1 requires two underlying constraints: (C1) Black-box SID constraint:
the SID model must provide thresholded predictions over f(x) only, without any access to internal
information (e.g., gradients, model weights), reflecting the settings of state-of-the-art proprietary
SID models, and (C2) Universal mapping constraint: the mapping function hΘ must generalize
across multiple images and prompts, avoiding gradient-based image-specific optimization that are
computationally expensive. Solving Prob. 1 thus uncovers systematic vulnerabilities in SID models,
enabling the creation of challenging adversarial examples to enhance their robustness.

3 PolyJuice: An Approach to the Universal Unrestricted Attack Problem

Inapplicable Steering Approaches. T2I models can be steered using their learned text conditions
to modify certain attributes, such as age, hair color, style, etc. [21, 22, 68]. However, these methods
are inapplicable for an abstract property like realness, which is unlikely to be explicitly introduced in
the T2I training data. Prior methods perform steering for novel concepts by relying on gradients from
an external classifier (i.e., classifier guidance [18]). This approach can be extended to deceive SID
models by using gradients obtained from the target detector during the generation process. However,
computing gradients requires white-box access to the SID, violating the black-box constraint (C1).

Black-Box Alternative. Even though the T2I model has not learned realness as a semantic property
to condition on, we find that the change in SID-predicted realness can be clearly identified as a
distribution shift in the T2I model’s latent space, as shown in Fig. 1b. This shift can be identified
using only hard labels from the target SID model, bypassing the need for white-box access (satisfies
C1). In contrast to image-specific mappings, the identified shift direction is universally applicable
to arbitrary images (satisfies C2). Our observations hint at the existence of a potential black-box
method for performing universal attacks on SID models, consequently motivating PolyJuice.

1We use SID to abbreviate both Synthetic Image Detection and Synthetic Image Detector.
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Figure 2: Overview of PolyJuice: At each inference step t, PolyJuice manipulates the T2I latent
using pre-computed direction δt between predicted real and fake in order to deceive the target SID.

3.1 Discovering the Universal Realness Shifts in Text-to-Image Latent Space

To discover the universal shift, PolyJuice finds the subspace in the T2I latent space that has maximum
statistical dependence on the label change of samples. Let Y = [y(1),y(2), · · · ,y(n)]⊤ be the matrix
of labels corresponding to the matrix of n latents Z = [z(1), z(2), · · · , z(n)]⊤ where y(i) ∈ RdY

and dY is the dimension of label space. There exists an orthogonal matrix U that transforms Z into a
subspace where the variance of the labeled data is maximized, as determined by supervised principal
component analysis (SPCA) [5]. SPCA captures the dependence between the mapped samples, i.e.,
U⊤Z, and the corresponding labels Y , using Hilbert-Schmidt Independence Criterion (HSIC) [24]
as the dependence metric. The empirical version of HSIC is defined as

HSIC = Tr {HKZZHKY Y } , (2)

where H = In − 1
n 1n1

⊤
n is a centering matrix, KZZ is a kernel matrix of the mapped data that is

formulated as KZZ = Z⊤UU⊤Z in case of a linear kernel, and KY Y = Y ⊤Y is a kernel matrix
of labels. Therefore, U can be calculated as

argmax
U

Tr
{
U⊤ZHKY Y HZ⊤U

}
,

s.t. U⊤U = I. (3)

The optimal solution for U can be obtained in closed-form by finding the eigenvectors corresponding
to the d-largest eigenvalues of A :=ZHKY Y HZ⊤ [43], where d is the dimensionality of the
subspace. Here, since we only need a direction vector, we take a convex combination of the d
eigenvectors weighted by their corresponding eigenvalues {σk}d−1

k=0 as

δ =

d−1∑
k=0

σk Uk. (4)

In case of time-varying T2I models such as diffusion and flow-matching models, the latent space is
a time-indexed collection {Zt}T−1

t=0 , that we formulate as a single latent space Z = ⊕T−1
t=0 Zt. From

a clean sample zT ∈ ZT , we can compute zt ∈ Zt for any timestep t as zt = atzT + btϵ, where
ϵ ∼ N (0, I) and (at, bt) constitute the variance schedule of the T2I model. By computing a steering
direction δt as defined in Eq. (4) within each Zt, we obtain a set of steering directions

∆ = {δ0, δ1, . . . , δT−1}. (5)

To solve Prob. 1, we use the steering directions δt ∈ ∆ to shift the latents in the direction of maximal
change between true-positive (TP) and false-negative (FN) samples within each Zt. Given a set of
generated images and predicted labels (0: real, 1: fake), for each timestep t, we solve Eq. (3) and
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use Eq. (4) to compute δt. Therefore, the mapping function in Prob. 1 becomes a set of time-varying
mappings hΘ = {hδt

}T−1
t=1 , with Θ = ∆ and each hδt

given by

hδt(z
′
t) = z′

t + λtδt , t = 1, . . . , T − 1 (6)
where z′

t = hδt−1(z
′
t−1) + vt given the T2I estimated velocity vt, and λt ∈ [0,∞) controls the

steering strength at each time step. As shown in Fig. 2, at each sampling step, PolyJuice uses δt to
steer the latent originally updated by vt, to find an attack image that is misclassified as real by the
target SID model. These attack samples help to improve the detector by finding its semantic and
non-semantic failure modes, as corroborated by our results in § 4.3.

3.2 Transferability of PolyJuice Directions from Low to High Image Resolution

Calculating latent directions separately for each desired image resolution incurs computational costs
due to the requirement of creating new datasets, adding the noise corresponding to each timestep,
and recomputing steering directions. To bypass these costs, we propose resolution transferability,
which involves computing steering directions once at a base resolution (e.g., 256×256), followed by
upscaling them using interpolation and applying them to higher resolution images (e.g., 1024×1024).

Formally, let δt ∈ RC×H×W represent the steering direction vector at timestep t, calculated at a
base resolution H ×W with channel dimension C. When applying this direction at a higher target
resolution H ′ ×W ′, we first upscale the direction via interpolation as follows:

δ′t = Interp(δt;H ′,W ′), (7)
where Interp(·) denotes spatial interpolation. The upscaled directions δ′t ∈ RC×H′×W ′

are then
applied to the corresponding latents at the higher resolution.

The key insight behind resolution transferability stems from the fact that the KL-regularized autoen-
coders [52] used by recent T2I models focus on perceptual compression and are thus resolution-
invariant. T2I latents across different resolutions are likely to maintain similar spatial properties and
semantic structures, which makes the computed direction vectors transferable between resolutions to
some extent. By employing resolution transferability, PolyJuice avoids the significant computational
overhead associated with the generation and preprocessing of a high-resolution synthetic image
dataset, i.e., steps that are needed before finding attack directions.

4 Experimental Evaluation

We evaluate the effectiveness of PolyJuice across varying combinations of T2I and SID models. For
T2I generation, we utilize SDv3.5 [19], FLUX[dev] [6], and FLUX[sch] [6], at three image resolutions,
256×256, 512×512, and 1024×1024, respectively. As the target synthetic image detector, we employ
Universal Fake Detector (UFD) [47] and RINE [33]—two recent SID methods trained on common
objects. For real images and text prompts, we use the Common Objects in Context (COCO) dataset
[39], which contains captioned images of common objects. Although there are alternative T2I datasets
(e.g., LAION 5B [55]), these datasets contain significant amounts of digitally created content.

Experiment Setting. We strictly assume black-box access to both UFD and RINE; the weights and
gradients remain hidden, and querying the SIDs with an image only returns a hard label Y = 1 (fake)
or Y = 0 (real). Each detector predicts a confidence score and then uses a threshold τ to provide
the label Y . For RINE, we set this threshold to 0.5, following the same settings used by Koutlis and
Papadopoulos [33]. For UFD, we follow the calibration approach of Ojha et al. [47] to adjust the
threshold using real images from the COCO training set and a mixed set of generated images from all
three T2I models. For each pair of T2I generator and SID model, the set of directions ∆ is calculated
from 20K true-positive (TP) and 20K false-negative (FN) examples generated from COCO training
captions. For evaluation, we generate 1000 images from text descriptions of the COCO validation
set; these captions are also used to perform the attack using PolyJuice. As our primary evaluation
metric, we adopt success rate (i.e. false negative rate), which is defined as the proportion of fake
images the SID erroneously detects as real.

4.1 How Successful is PolyJuice in Attacking Synthetic Image Detectors?

Tab. 1 compares PolyJuice-steered T2I models against unsteered baselines in terms of their ability to
deceive SID models. We observe that, among the three unsteered T2I generators, SDv3.5 has the
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Figure 3: Unsteered vs. PolyJuice-steered T2I attacks against UFD. Although UFD detects the
unsteered generated images as fake, PolyJuice-disguised samples successfully deceive the detector.

Table 1: Comparison of PolyJuice and baselines w.r.t. success rate (%) on COCO validation set.

T2I Model
UFD [47] RINE [33]

No Steering PolyJuice (ours) No Steering PolyJuice (ours)

25
6×

25
6 SDv3.5 12.8 80.6 (+67) 15.3 99.7 (+84)

FLUX[dev] 67.6 96.3 (+28) 52.4 81.2 (+28)
FLUX[sch] 61.7 83.4 (+21) 45.4 73.8 (+28)

51
2×

51
2 SDv3.5 30.5 85.0 (+54) 26.7 99.6 (+72)

FLUX[dev] 84.0 98.9 (+14) 77.2 96.7 (+19)
FLUX[sch] 72.7 85.1 (+12) 62.9 84.1 (+21)

10
24
×

10
24 SDv3.5 59.3 93.3 (+34) 51.0 99.8 (+48)

FLUX[dev] 75.6 98.4 (+22) 82.4 94.9 (+12)
FLUX[sch] 72.1 84.0 (+11) 69.8 95.6 (+25)

AVG ± STD 59.6 ± 21.8 89.4 ± 6.8 53.7 ± 21.1 91.7 ± 9.0

lowest success rate—suggesting that UFD and RINE are quite effective at detecting SDv3.5-generated
fakes, while FLUX[dev] and FLUX[sch]-generated images are harder to detect. However, by steering
the image generation process of each T2I model with PolyJuice, the success rate in deceiving the SID
models is significantly boosted, even in the case of the easily-detected SDv3.5. To perform attacks for
512 and 1024 resolutions, we compute ∆ from 256×256 synthetic images, and transfer them through
interpolation (Eq. (7)). Although RINE is more robust than UFD against unsteered T2I models,
we find that both UFD and RINE are similarly vulnerable against PolyJuice-steered attacks (see
Tab. 1 last row for avg. ± std.). From the perspective of the T2I generators, FLUX[dev] consistently
outperforms FLUX[sch], potentially due to having more inference steps (50 vs. 4) to apply PolyJuice.
Fig. 3 shows some qualitative examples corresponding to Tab. 1, where the unsteered images are
detected as fake. We observe that, regardless of whether the original image looks highly realistic or
obviously synthetic, PolyJuice is able to fool the target detector, demonstrating its effectiveness.

Takeaway. PolyJuice boosts attack success rate of T2I models against SIDs by up to 84%.

4.2 How Effective is PolyJuice When Applied on a T2I Model-Specific Detector?

Table 2: PolyJuice against T2I-specific SIDs at 256×256.

Model
UFD [47] RINE[33]

No Steering PolyJuice No Steering PolyJuice

SDv3.5 18.3 90.8 (+72) 8.0 64.8 (+52)
FLUX[dev] 33.7 82.1 (+48) 21.8 86.6 (+64)
FLUX[sch] 40.0 64.9 (+24) 20.5 29.3 (+8)

Motivation. We aim to investigate the ex-
treme scenario where the target SID model
is tuned using images generated by the very
same T2I model employed in the attack.

For each T2I model G, we first calibrate the
thresholds for both UFD and RINE using a
set of real images from COCO and a set of generated images from G. The goal of the calibration
is to improve the overall accuracy of the detector in distinguishing real images from fake images
generated by a specific T2I model. Next, we recompute the set ∆ by obtaining a new set of hard
labels from the calibrated models. We then evaluate PolyJuice on the updated SID models. Tab. 2
demonstrates PolyJuice’s performance against the tuned SID models. Compared to Tab. 1, we observe
that finding a new threshold significantly improves the detection performance in all cases except for
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Figure 4: Estimated clean images at various timesteps for FLUX[dev], where bottom and top rows
depict unsteered and PolyJuice-steered generation, respectively.

UFD against SDv3.5. Both UFD and RINE significantly improve their detection of fake images from
FLUX[dev] and FLUX[sch] under the new settings. In addition, RINE demonstrates an overall stronger
detection capability compared to UFD. Against the improved detectors, PolyJuice still notably boosts
the success rate, as much as 72% (in the case of SDv3.5). In this extreme case, we find that FLUX[sch]
shows the least success among the three T2I models. Our combined observations from Tab. 2 and
§ 4.1 suggest that FLUX[sch] has limited steerability, potentially due to fewer inference steps.

Takeaway. Even in the extreme case when the target SID model is calibrated on a specific T2I
model G, PolyJuice can still improve the FNR up to 72% while using G for generating its attacks.

4.3 How Effective is PolyJuice in Reducing False Negative Rate of Existing SIDs?

Table 3: Comparison of SID models’ FNR before and
after PolyJuice-aided calibration.

T2I Model
UFD [47] RINE [33]

Pre-Cal. -Cal. Pre-Cal. -Cal.

25
6 SDv3.5 13.4 7.5 (-5) 15.1 3.8 (-11)

FLUX[dev] 69.2 47.0 (-22) 52.0 21.8 (-30)
FLUX[sch] 64.3 43.7 (-20) 39.6 18.4 (-21)

51
2 SDv3.5 31.1 16.1 (-15) 17.8 4.7 (-13)

FLUX[dev] 86.2 70.3 (-15) 69.4 41.4 (-28)
FLUX[sch] 71.8 55.2 (-16) 50.9 25.4 (-25)

To observe the effectiveness of PolyJuice
in improving target SID models, we first
attack the target detectors with PolyJuice-
steered T2I models. Next, we calibrate
each SID using a combination of (i) real
images from COCO, (ii) regular synthetic
images from a T2I model (i.e. unsteered
T2I models), and (iii) PolyJuice-steered
successful attack images. In Tab. 3, we
compare the pre- and post-calibration SID models (Pre-Cal. and -Cal.) on a set of synthetic COCO
validation images at two different resolutions. We find that after PolyJuice-aided calibration, both
UFD and RINE show significant improvements in detecting regular (unsteered) generated images.

Takeaway. Calibrating SID models using PolyJuice reduces their vulnerabilities by up to 30%.

4.4 How Transferable are the Directions from Lower to Higher Resolutions?

Table 4: Resolution transferability of PolyJuice on 512×512.

Model
RINE[33]

No Steering Original Transferred
SDv3.5 26.7 77.6 99.6
FLUX[dev] 77.2 95.7 96.7
FLUX[sch] 62.9 79.9 84.1

We evaluate the transferability (§ 3.2)
of low-resolution 256×256 directions by
comparing their attack performance against
attacks generated by 512×512 directions,
as shown in Tab. 4. Both the transferred
and original directions enable PolyJuice to
significantly improve the FNR over the un-
steered baseline. Further, PolyJuice attacks
using transferred low-resolution directions achieve a comparable or higher FNR than attacks with
original high-resolution directions. This result suggests that the error in SPCA-discovered directions
is proportional to the dimensionality of its input space due to the curse of dimensionality [32].

Takeaway. PolyJuice directions transferred from lower resolutions achieve success rates compa-
rable to or better than original high-resolution directions, while being less expensive to find.

7



4.5 How Does PolyJuice Modify the Image Generation Process?

Figure 5: (left) Unsteered (right) PolyJuice-
steered samples projected on 2D subspace.

To better understand how PolyJuice works, in Figs. 4
and 5, we illustrate the effect of the steering direction,
δt, in the T2I image space and the projected latent
space, respectively. In Fig. 4, we visualize the esti-
mated clean images at different timesteps. PolyJuice
steers the latent towards the blind spot of the target
SID (at the second image), resulting in a successful
attack (top) that slightly differs from the unsteered
counterpart (bottom) while maintaining the semantics
of the image. In Fig. 5, we provide an SPCA-based
2D visualization of the update directions of the latents
(colored by angle), where (left) and (right) depict unsteered and PolyJuice-steered, correspondingly.
We observe that a majority of PolyJuice-steered updates are aligned along a common direction—the
direction that leads to deceiving the SID. See Appendix for more details.

4.6 How Does PolyJuice Affect the Spectral Fingerprint of the T2I Models?

(a) Real Samples (b) TP Samples (c) FN Samples (d) PolyJuice Attacks

Figure 6: Average Frequency Spectra of COCO images and generated counterparts.

Prior work [47, 12] uncovers the existence of fingerprints left by T2I models through spectral analysis
on the synthetic and real images. In Fig. 6, we present a similar approach on (a) the set of real images,
(b) the SDv3.5-generated images correctly detected by UFD (TP), (c) generated images misclassified
by UFD (FN), and (d) successful PolyJuice attacks. First, we observe that there is a clearly noticeable
difference between the real images and the unsteered SDv3.5-generated images (TP + FN), which is
the fingerprint of SDv3.5. However, it can be seen that PolyJuice obfuscates this fingerprint, as the
residuals of PolyJuice-steered images (Fig. 6d) appear closer to the real image spectrum (Fig. 6a).
We provide implementation details and spectral analysis for other T2I models in the Appendix.

Takeaway. PolyJuice disguises the fingerprints left by T2I models in the frequency domain.

4.7 How Do PolyJuice Attacks Appear to the Eyes of the Target SID?

No Steering

PolyJuice

Figure 7: CLIP’s embedding space.

In Fig. 7, we provide a 2D visualization of PolyJuice-steered at-
tacks and unsteered samples from SDv3.5 in the embedding space
of CLIP ViT-L/14 [50] using SPCA dimensionality reduction. We
illustrate the prediction landscape of the target SID using a kernel
density estimate, where darker areas denote input regions with
high density of predicted realness. From Fig. 7, we observe that
there is a region of perceived realness in the SID’s input space
that remains unexplored by the unsteered T2I model. PolyJuice
is able to identify this region and exploit it to deceive the SID.

Takeaway. PolyJuice steers samples into failure regions missed by standard T2I generation.
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Figure 8: Attacks generated by PolyJuice-steered FLUX[sch] model that were able to deceive RINE.

5 Does PolyJuice Conserve Image Quality?

As the goal of red teaming is to discover and mitigate the failure modes, finding attacks that are
unrealistic (e.g., cartoonish features that fool the SID) is also important, since it reveals the failure
mode of the target SID. An ideal SID must trivially detect these unrealistic images as fake. However,
it is still important to generate attacks that are prompt faithful, and of reasonable image quality.

Table 5: Image quality comparison for images generated by unsteered FLUX[sch] and PolyJuice,
evaluated using various distribution-based metrics.

Method FID ↓ cFID ↓ Prec. ↑ Rec. ↑ Den. ↑ Cvg. ↑
Unsteered 17.65 17.81 0.495 0.485 0.585 0.801
PolyJuice 17.23 17.41 0.485 0.498 0.764 0.794

Distribution-level image quality. We compare an unsteered FLUX[sch] and a PolyJuice-steered
FLUX[sch] against the RINE detector, at 256× 256 image resolution. We use a randomly sampled
set of 50K real images from the COCO dataset, and the same number of images from unsteered and
PolyJuice-steered FLUX[sch] respectively, and present our findings in Tab. 5. First, we compute both
classical FID [26] and CleanFID [48], and find a similar trend: the FID w.r.t. real COCO images
overall remains quite similar between both methods, suggesting similar quality (also validated by
similar Precision (Prec.) and Recall (Rec.) scores [34]). These metrics suggest that PolyJuice
conserves image quality, which rules out the possibility of PolyJuice deceiving SIDs by causing
image degradations. Further, when comparing density and coverage [45], we notice that PolyJuice
has a negligible effect on Coverage (Cov.), but yields a significantly improved Density (Den.) score.
This suggests that PolyJuice-steered images are more likely to reside in neighborhoods that are
densely packed with real data points—which is aligned with the goals of red teaming. We show a few
qualitative examples of attacks generated with PolyJuice-steered FLUX[sch] in Fig. 8; more examples
are shown in § B.

Table 6: Image-level quality and prompt faithfulness assessment of PolyJuice vs. unsteered FLUX[dev] using
CLIP-based scores.

UFD RINE
SR CLIP-IQA CLIP Score SR CLIP-IQA CLIP Score

Res Unst. PolyJ. Unst. PolyJ. Unst. PolyJ. Unst. PolyJ. Unst. PolyJ. Unst. PolyJ.
256 67.6 96.3 0.8427 0.8410 30.57 30.45 52.4 81.2 0.8427 0.8457 30.57 30.52
512 84.0 98.9 0.8535 0.8487 30.92 30.94 77.2 96.7 0.8535 0.8526 30.92 30.84
1024 75.6 98.4 0.8657 0.8633 30.86 30.91 82.4 94.9 0.8657 0.8503 30.86 30.69

Image-level quality and prompt faithfulness. To measure per-image quality, we use the CLIP IQA
score [62]; for evaluating prompt faithfulness, we compute the CLIP alignment score between the
generated attacks and the input prompts and present the results in Tab. 6. We find that the CLIP scores
and CLIP-IQA scores are comparable to those of the unsteered models, suggesting that PolyJuice is
not trivially evading detection by degrading the images.

9



6 Related Work

Finding Directions from Images. Some prior work [30, 67] aim to identify latent space directions
corresponding to specific visual attributes. Similar to PolyJuice, Zhang et al. [67] also find directions
from a set of images. But unlike PolyJuice, these directions are found in the CLIP’s embedding space,
with the motivation of addressing biases in T2I generation. More similar to our application, Jain
et al. [30] use linear SVM to find a hyperplane that best separates correct from incorrect samples in
CLIP latent space, allowing them to find the direction of failure modes. However, Jain et al. [30] aim
to interpret failure modes as text prompts in the CLIP’s embedding space, while PolyJuice focuses
on generating black-box attacks on synthetic image detectors, by steering the latent space of a T2I
generative model.

Unrestricted Adversarial (UA) attacks [57] on image classifiers directly use generative models to
create attack images, in contrast to classical adversarial attacks that find a low-norm perturbation
on clean images. Some early UA approaches [57, 69, 35, 28] involved finding attack directions in
the latent space of generative adversarial networks (GANs) [23]. Recent generative models, such as
diffusion models and flow matching models [27, 58, 40, 42] have also been employed for performing
more sophisticated UA attacks [11, 65, 13, 9, 37, 10].

Diffusion-Based UA Attacks. Diffusion models are well known to be conditioned at inference time
with gradients of arbitrary functions, an approach known as guidance [3]. To our knowledge, Xue
et al. [65] first repurposed guidance for adversarial attacks by formulating a framework for projected
gradient descent over the iterative denoising steps of diffusion models (DiffPGD). A concurrent work,
AdvDiff [13], performs a two-fold attack: by both guiding the diffusion trajectory with adversarial
guidance, and optimizing the initial noise prior with the adversarial gradient until a successful attack
is discovered. While DiffPGD and AdvDiff apply the adversarial gradient over several timesteps, an
alternative approach, DiffAttack [9], optimizes the diffusion latent only at one particular timestep,
while also exploiting attention maps in the model architecture to preserve realness and structure.

Research Gap. Despite their differences, we note that DiffPGD, AdvDiff, and DiffAttack all
share a common feature: at inference time, they compute a image-specific adversarial gradient
∇xtLattack(x̂T ;θ), where xt is a noisy sample at a timestep t, x̂T is a predicted clean image, and
Lattack is an adversarial objective on some classifier θ. All these attacks would need complete access
to the weights and gradients of an SID model, making them white-box attacks. In contrast, PolyJuice
pre-computes a general attack direction from a distribution of images, even with only hard label
access. We also note that computing the gradient∇xt

Lattack(x̂0;θ) can be computationally intractable
for large, billion-parameter T2I models and high-resolution images; PolyJuice bypasses this problem
by (i) being a gradient-free, black-box method (§ 3) and (ii) using resolution transferability (§ 3.2).

7 Concluding Remarks

In this paper, we present PolyJuice, a universal black-box red-teaming method for performing
unrestricted adversarial (UA) attacks on synthetic image detectors (SID). To keep up with rapid
advances in text-to-image (T2I) generative models, PolyJuice performs the critical task of reinforcing
SID models with new attacks and augmented data. Due to its black-box nature, PolyJuice is able
to perform attacks on proprietary and commercial detectors that lead the field of deepfake and
synthetic image detection. Moreover, PolyJuice is a brew once, break many approach: it computes a
distribution-based (in contrast to image-specific) attack that is universally applicable over arbitrary
images and different resolutions, enabling computationally efficient UA attacks.

Limitations & Future Directions. PolyJuice is based on a linear dependency between predicted
realness and the T2I latents; in some cases, this dependency may be nonlinear. We can use a nonlinear
kernel in Eq. (3) to discover this dependency; however, this comes with the added complexity of
learning a nonlinear decoder or solving a pre-image problem to map the nonlinear embedding space
back to Z . In addition, PolyJuice requires a limited hyperparameter search for appropriate values of
λt, the details of which are expanded in the Appendix.

Ethical Considerations. While adversarial generation is essential for evaluating and improving
detector models’ robustness, it can also be misused. PolyJuice is intended solely for responsible
red teaming, and we strongly oppose its use for malicious purposes. Please refer to § D for defense
mechanisms against malicious usage of PolyJuice.
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Appendix

In our main paper, we propose PolyJuice for performing unrestricted adversarial attacks on synthetic
image detectors. Here, we provide some additional details to support our main results. The appendix
section is structured as follows:

1. Implementation Details in § A

(a) Threat Model in § A.1
(b) T2I Model Settings in § A.2
(c) Computing Steering Directions in § A.3
(d) Hyperparameter Search for λt in § A.4
(e) Calibrating the Confidence Threshold of an SID in § A.5
(f) Implementation of Spectral Fingerprint Analysis in § A.6
(g) Implementation of Projected Steering Directions in § A.7
(h) More Visualizations on the Effect of PolyJuice in Image Generation Process in § A.8

2. Qualitative Analysis of Generated Attacks in § B

(a) Common Patterns in Successful Attacks in § B.1

3. Additional Results in § C

(a) Spectral Fingerprint Analysis in § C.1
(b) Realness Shift in T2I Latent Space in § C.2
(c) Additional image-space visualizations on the effect of PolyJuice§ C.3
(d) Validating whether PolyJuice is applicable on diverse prompts in § C.4
(e) Evaluating PolyJuice on additional SID models in § C.5

4. Comparing PolyJuice against a Diffusion-based Transferred Attack in § C.6

5. Potential Defense Mechanisms against PolyJuice in § D

A Implementation Details

A.1 Threat Model

• Attacker’s Goal. Given a text prompt c and a latent z, the attacker aims to generate synthetic
images using a text-to-image (T2I) generative model G : Z × C → X that deceive a target
synthetic image detector (SID) f : X → [0, 1] into being misclassified as real (class 0).

• Attacker’s Capability.
– Black-box access to the SID: The attacker can only query the SID and observe hard

labels Y (real/fake), without access to model weights or gradients.
– Full access to the T2I generative model: The attacker can manipulate the latent space
Z and control the generation process of the T2I model.

– Sufficient number of queries: The attacker can generate a dataset of im-
age–latent–label triplets to analyze the SID’s behavior in response to various inputs.

• Attack Scenario.
1. The attacker queries the black-box SID with fake images and obtains hard labels,

constructing a dataset of TP and FN samples.
2. The attacker pre-computes steering directions in the T2I latent space that correlate with

an increased probability of being misclassified as real by the SID (Eq. (3)).
3. At test time, the attacker applies this universal direction to arbitrary prompts, producing

images that evade detection by the SID (Eq. (6)).

A.2 T2I Model Settings

We provide the generation settings for SDv3.5, FLUX[dev], and FLUX[sch] in Tab. 7. All models are
available on Huggingface Models [29] with the corresponding Model ID provided in Tab. 7.
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Table 7: Settings for T2I Models.
Model Model ID Num Steps Guidance Scale Max Seq. Length
SDv3.5 stabilityai/stable-diffusion-3.5-large 28 3.5 256
FLUX[dev] black-forest-labs/FLUX.1-dev 50 3.5 512
FLUX[sch] black-forest-labs/FLUX.1-schnell 4 0 256

A.3 Computing Steering Directions

In Algorithm 1, we provide a pseudocode for calculating the steering direction δt at a given timestep
t. Algorithm 1 requires precomputed T2I latents Zt ∈ RN×dZ , where N is the number of generated
images and dZ is the dimensionality of the T2I latent space. For efficient calculation of the top-k
eigenvalues and corresponding eigenvectors, we use the LOBPCG algorithm [59].

Algorithm 1 Compute Steering Direction at Timestep t

Require: Zt ∈ RN×dZ , Y ∈ RN×2 (one-hot SID predicted labels)
1: Zt ← Zt −MEAN(Zt, dim = 0) ▷ Center the data
2: C ← Z⊤

t · Y ▷ Cross-covariance
3: A← C ·C⊤ ▷ Kernel matrix in Eq. (3)
4: (σ,U)← LOBPCG(A, k = 2) ▷ Top-2 eigenpairs
5: δt ← σ0 ·U0 + σ1 ·U1 ▷ Weighted steering direction in Eq. (4)
6: return δt

A.4 Hyperparameter Search for λt

In Eq. (6), PolyJuice steers a T2I latent Zt using the steering direction δt and a magnitude coefficient
λt ∈ [0,∞). In all steering approaches, finding the correct magnitude for adding the steering direction
to the normal flow requires a hyperparameter search [3, 46, 22], and PolyJuice is no exception. As a
result, there is a need for finding an optimal λt.

To efficiently limit the search space for the set {λt}T−1
t=0 , we consider λt = λ · 1{a ≤ t ≤ b}, that

is, we only apply the steering directions δt at a constant magnitude λ over some continuous interval
[a, b] ⊆ [0, T ). We then use a simple hyperparameter search based on the Optuna framework[1] to
find (λ, a, b). For any text caption c ∈ C, we define a budget, or the maximum number of attempts
that a T2I model can make to deceive an SID. We find that PolyJuice can find a majority of the
successful attacks within few attempts (e.g. 10), as we show in Fig. 9. Further, for all captions, we
generate all attacks with the same random seed (0) for determinism.

0 50 100 150 200
0

10

20

30

40

50

0 50 100 150 200

RINE UFD

P
er

ce
n
ta

ge
 o

f 
S
u
cc

es
se

s

Num. Attempts

Figure 9: Number of attempts to find successful attacks using FLUX[dev].
We also analyze the hyperparameters corresponding to successful attacks as heatmaps. From Fig. 10,
we observe that there is a negative correlation between the constant magnitude coefficient λ and the
length of the continuous interval [a, b] over which PolyJuice is applied. For higher values of λ, the
steering direction δt is applied to only a few steps, while for smaller values, the steering is done on a
large number of steps.
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Figure 10: Heatmap showing λ and corresponding range (b− a) for FLUX[dev].

Figure 11: Heatmap showing λ and PolyJuice steering steps for FLUX[dev].

Previously, Esser et al. [19] show that intermediate timesteps are more important in the image
generation process of flow matching-based T2I models. This finding is supported by Fig. 11, which
depicts that PolyJuice-steering overall prefers intermediate steps and smaller coefficients.

A.5 Calibrating the Confidence Threshold of an SID

For calibrating the threshold τ of SID models, we follow the algorithm used by Ojha et al. [47]. As
shown in Algorithm 2, the algorithm requires the same number of real and fake samples and their
corresponding predicted confidence scores as the input and return the value of the best threshold τbest
that maximizes the accuracy. In practice, for real images, we use a set of images from the training
split of COCO, while the fake images are generated by T2I models.

In Tab. 1, we calibrate UFD using 20K real images and 20K generated images mixed from all the T2I
models. For each T2I-SID pair in Tab. 2, we calibrate the SIDs ( -Cal. in Tab. 2) using the following
setting. For n successful PolyJuice attacks (n < 1000), we use 2n real images, n synthetic images
generated by the unsteered T2I models, and n PolyJuice-steered images.

A.6 Implementation of Spectral Fingerprint Analysis

Given a generated image x(i), we assume that the high-frequency details in x(i) are a sum of (i) a
deterministic component arising from the generative model, i.e. the fingerprint F , and (ii) a random
component w(i) ∼ N (0, I) [12].

For each group of images, we first apply a denoising filter and estimate a noise residual by computing
the difference from the original image. Then we visualize the average residuals in the frequency
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Algorithm 2 Find the Best Threshold τ for SIDs (from [47])

Require: Ground truth labels ytrue, SID predicted scores ypred ▷ where, |ytrue = 0| = |ytrue = 1|
1: indices← ARGSORT(ytrue)
2: ytrue, ypred ← ytrue[indices], ypred[indices] ▷ Sort ytrue and ypred according to ytrue
3: N ← LEN(ytrue)
4: if max(ypred[0 : ⌊N/2⌋]) ≤ min(ypred[⌊N/2⌋ : N ]) then ▷ Perfectly separable real and fake
5: return 1

2 (max(ypred[0 : ⌊N/2⌋]) + min(ypred[⌊N/2⌋ : N ]))
6: end if
7: best_acc, τbest ← 0, 0
8: for all τ ∈ ypred do ▷ Greedily test each ypred as a threshold
9: temp← ypred

10: for i = 0 to N − 1 do
11: temp[i]← 1

{
temp[i] ≥ τ

}
12: end for
13: acc← 1

N

∑N−1
i=0 1

{
temp[i] = ytrue[i]

}
14: if acc ≥ best_acc then
15: τbest ← τ
16: best_acc← acc
17: end if
18: end for
19: return τbest

domain, as shown in Figs. 6 and 20. The algorithm for computing spectral fingerprints is provided in
Algorithm 3.

Algorithm 3 Computing Spectral Fingerprint of Images

Require: A set of images X
1: Xdenoised ← NL-Mean(X) ▷ Denoise the images
2: XResidual ← X −Xdenoised ▷ Compute the residuals
3: F ← FFT(XResidual) ▷ Perform Fast Fourier Transform
4: S ← ∥FFT_SHIFT(F )∥ ▷ Shift the zero-frequency component to the center of the spectrum
5: Slog ← log(1 + S)
6: return Slog

A.7 Implementation of Projected Steering Directions

Fig. 5 shows the update directions of PolyJuice-steered T2I models in a projected subspace. For a
given timestep t, we first solve the eigenvalue problem associated with Eq. (3), to obtain an orthogonal
projection matrix Ut. The PolyJuice-steering direction at the current timestep, δt is computed from a
convex combination over the columns of Ut, as described by Eq. (4).

Next, for each latent zt, we map the latent to the subspace by computing U⊤
t zt. We also consider

the latent at the next timestep t + 1 and similarly project it as U⊤
t zt+1. Subsequently, the update

vector to the next step can be defined as ut = U⊤
t (zt+1 − zt).

For both unsteered and PolyJuice-steered T2I latents, we plot the unit update direction ût, positioned
at the corresponding mapped points U⊤

t zt.

A.8 Experiments Compute Resources

For all experimental steps—including dataset generation, direction computation, and attacks—we
used eight NVIDIA RTX A6000 GPUs, each with 48 GB of memory. The primary computational
bottleneck arises from the memory requirements of the T2I models during image generation; PolyJuice
itself adds negligible overhead. For the highest image resolution considered in this paper, image
generation consumed approximately 75% of GPU memory, equivalent to 36 GB.
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B Qualitative Analysis of Generated Attacks

We provide some additional qualitative examples of successful attacks from PolyJuice-steered T2I
models in Figs. 12 to 17. In general, most of the images look realistic, even though we do not
explicitly enforce any realism constraint. However, we notice that there are some characteristics of
PolyJuice-generated attacks against specific SID models, which we discuss later in § B.1.

Figure 12: Attacks generated by PolyJuice-steered FLUX[dev] model that were able to deceive RINE.

Figure 13: Attacks generated by PolyJuice-steered SDv3.5 model that were able to deceive UFD.
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Figure 14: Attacks generated by PolyJuice-steered SDv3.5 model that were able to deceive RINE.

Figure 15: Attacks generated by PolyJuice-steered FLUX[sch] model that were able to deceive UFD.
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Figure 16: Attacks generated by PolyJuice-steered FLUX[sch] model that were able to deceive RINE.

Figure 17: Attacks generated by PolyJuice-steered FLUX[dev] model that were able to deceive UFD.
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B.1 Common Patterns in Successful Attacks

A park bench that has a teddy 
bear on it.

A kite sitting in the middle of a 
large body of water.

Two women in a room with 
one of them holding a cake.

A replica of a bear and her cub 
in a glass case in an exhibit.

Figure 18: (Top) Unsteered T2I-generated images that RINE correctly detects as fake. (Bottom)
PolyJuice-steered images that successfully deceive RINE as real.

Common Patterns in Successful Attacks on RINE. In successful attacks against RINE, we
observe that the generated images often exhibit low brightness. In Fig. 18, we show some images
generated by unsteered (top) and PolyJuice-steered (bottom) T2I models, using captions from the
COCO validation set. Further, the unsteered and steered images share the same random initial latent
(i.e. they are all generated with the random seed 0). Although RINE successfully detects the unsteered
images as fake, it is deceived by the relatively darker PolyJuice-steered images. This suggests a
vulnerability of RINE to synthetic images that appear underexposed or have low brightness levels.

A couple of birds are standing 
on a branch.

A kite sitting in the middle of a 
large body of water.

Wild animals standing in a  
forest next to a river.

Two men sitting next to each 
other on a wooden bench.

Figure 19: (Top) Unsteered T2I-generated images that UFD correctly detects as fake. (Bottom)
PolyJuice-steered images that successfully deceive UFD as real.

Common Patterns in Successful Attacks on UFD. In successful attacks against UFD, we observe
that the generated images often exhibit warm colors. Fig. 19 shows some examples unsteered images
(top) that UFD detects as fake, and the corresponding PolyJuice-steered images (bottom) that fools the
detector. Even on obviously fake images, such as the third column in Fig. 19 (cartoon of wild animals,
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generated by SDv3.5), PolyJuice produces an image with a warmer tone that UFD cannot detect as
fake. This suggests a vulnerability of UFD to synthetic images with warm color temperatures.

C Additional Results

C.1 Spectral Fingerprint Analysis

(a) Real Samples (b) TP Samples (c) FN Samples (d) PolyJuice Attacks

(e) Real Samples (f) TP Samples (g) FN Samples (h) PolyJuice Attacks

Figure 20: More results on Average Frequency Spectra of COCO images and generated counterparts
where 1st and 2nd rows correspond to samples from FLUX[dev] and FLUX[sch], respectively.

Fig. 6 in the main paper illustrates the spectral fingerprints of real, unsteered, and PolyJuice-steered
samples generated by SDv3.5. Here, we extend the analysis to the other two T2I models, FLUX[dev]
and FLUX[sch]. The first and second rows of Fig. 20 show the spectral fingerprints of samples
generated by FLUX[dev] and FLUX[sch], respectively. We observe that PolyJuice-steered attacks
effectively obscure the characteristic frequency patterns of their underlying T2I models, producing
spectra that more closely resemble those of real images compared to unsteered attacks.

C.2 Realness Shift in T2I Latent Space

(a) (b) (c) (d)

Figure 21: More visualizations of the distribution shift in the T2I model’s latent space.

In Fig. 1b of the main paper, we showed the realness shift in the latent space of T2I model for one
timestep. In Fig. 21, we show the shift for four timesteps. We observe that there exists a clear shift
between the predicted real and fake samples. However, the degree of linear separability of these
distributions is not constant across different timesteps.
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C.3 More Visualizations on the Effect of PolyJuice in Image Generation Process

In Fig. 22, we show additional image-space visualizations of the effect of PolyJuice, by estimating
the clean image at various timesteps. As noted in § A.4, we only apply PolyJuice over a continuous
interval of inference steps [a, b] ⊆ [0, T ), as can be seen from the figure. In both Figs. 22a and 22b,
the original unsteered T2I image generation process (bottom rows) produces an image that is detected
by the SID as fake. PolyJuice steers the T2I to generate images that deceive the detectors (top rows).
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(a) Intermediate steps for “A replica of a bear and her cub in a glass case in an exhibit.”
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(b) Intermediate steps for “Two men sitting next to each other on a wooden bench.”

Figure 22: Visualizing the effect of PolyJuice on the image generation process. (Top) Image that
successfully deceives RINE. (bottom) Image that successfully deceives UFD.

C.4 Validity of PolyJuice Across Diverse Prompts

Validity Across Diverse Prompt Categories: To determine whether the effects of PolyJuice are
applicable across a variety of categories of generated content, we inspect the COCO validation
prompts associated with the attacks generated by PolyJuice and categorize the attacks according
to available meta-labels. Tab. 8 shows the fraction of successful attacks per prompt category. We
observe that PolyJuice generally improves the success rate across all categories, demonstrating that
the discovered direction is universally valid across diverse prompts and image categories.

Validity Across Prompts Beyond COCO: We also evaluate PolyJuice attacks (directions learned
from COCO) on a subset of text prompts from the PartiPrompts dataset [66], and present the results
in Tab. 9. The results demonstrate the generalizability of the PolyJuice attacks to text prompts outside
COCO.
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Table 8: Success rate per prompt category in unsteered vs. PolyJuice (on COCO).
UFD RINE

Unsteered PolyJuice Unsteered PolyJuice
Person 13.7 69.5 16.1 83.5
Animal 12.5 70.8 9.3 90.7
Food 14.4 58.1 11.3 88.8
Vehicle 10.0 73.5 20.1 79.5
Furniture 18.2 66.1 17.3 82.6

Table 9: Attack success rate (%) of PolyJuice on text descriptions from the PartiPrompts dataset.
T2I Detector Unsteered PolyJuice (ours)

SD3.5 UFD 13 75 (+62)
RINE 8 100 (+92)

FLUX[dev]
UFD 78 96 (+18)
RINE 42 86 (+44)

FLUX[sch]
UFD 61 84 (+23)
RINE 31 56 (+25)

C.5 Additional SID Detectors

We use PolyJuice-steered SDv3.5 against four additional SID models: NPR[61], FatFormer[41],
DRCT [8], and CoDE[4], for further evaluating the effectiveness of PolyJuice. The additional results
are shown in Tab. 10. These results show the effectiveness of PolyJuice in improving the success rate
of the attacks by 56.7% on CoDE, 75% on DRCT, 82% on NPR, and 56% on FatFormer.

Table 10: SR (%) of unsteered SD3.5 samples vs. PolyJuice.
Detector Unsteered SD3.5 PolyJuice-Steered SD3.5
UFD 12.8 80.6 (+68)
RINE 15.3 99.7 (+84)
CoDE (linear) 43.3 100.0 (+56)
DRCT (UFD) 25.3 100.0 (+74)
NPR 6.0 87.6 (+81)
FatFormer 5.5 62.1 (+56)

C.6 Comparison against Transferred Attacks From Diffusion-based White Box Methods

Transferred Attacks are an existing approach of attacking black-box models with white-box methods.
First, we consider the RINE model as our target black-box model, and train a surrogate detector
(a standard ResNet-50 model) to match its responses. We then extend DiffPGD [65] to FLUX[dev]
and SDv3.5, and subsequently perform white-box attacks on the surrogate (the attacks have a 100%
success rate). The successful attacks are then ‘transferred’ to the true black-box detector (RINE).
From Tab. 11, we observe that PolyJuice has a better attack success rate than the transfer methods.

Table 11: SR(%) of PolyJuice vs. regular (xn) and realistic (xn
0 ) attack from transferred DiffPGDt.

FLUX[dev] SD3.5
Unsteered 52.4 15.3
DiffPGDt (xn) 57.2 23.5
DiffPGDt (xn

0 ) 70.1 32.1
PolyJuice (ours) 81.2 99.7
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D Potential Defense Mechanisms Against PolyJuice

One possible defense strategy against malicious usage of PolyJuice is collapsing the FN and TP
clusters of the data. PolyJuice finds a subspace that is orthogonal to the direction of shift between these
two clusters, while preserving the information of the target attribute (i.e., real vs. fake). Approaches
from invariant representation learning [53, 64] and fairness [14–16] can be adopted for this purpose.
As an example, in the notation of U-FaTE [15], the target Y would be real vs. fake label, while the
attribute to be removed, S, would be TP vs. FN.

Additionally, we advocate for detector owners to proactively use PolyJuice to generate challenging
attack samples and integrate them into their training or fine-tuning data in order to make it robust to
malicious usage of PolyJuice.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We support our claims with our extensive experimental results in § 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations and also future directions for improvement in § 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No theoretical result.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the implementation details necessary to reproduce the experi-
ments in our paper, in the supplementary. Further, we aim to release the code and data upon
acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Although the question is ambiguous to us, we interpret the question as “whether
the paper is submitting all code and data as part of supplemental material, at the time of
submission”, as opposed to “whether the paper will fully release all code and data in the
future”.
All the text-to-image generative models we use in this paper (SDv3.5, FLUX[dev], FLUX[sch])
are publicly available, and so are the text captions we use in image generation (adopted from
MS-COCO). We also include pseudo-code and detailed instructions to reproduce the main
results in the supplementary material.
The data used in this paper involves a large number of generated images, that may inherit
the biases associated with generative models. Further, PolyJuice is a red-teaming method
that may have some potential for misuse (as noted in § 7. As such, we aim to release the full
code and dataset at a later time, after an extensive internal audit to address ethical concerns.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the necessary details in the experiments section (§ 4), and also
provide additional implementation details in the supplementary material.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment statistical significance
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Justification: We provide the average and standard deviation of our results, computed
over multiple text-to-image generative models (SDv3.5, FLUX[dev], FLUX[sch]) and image
resolutions (256× 256, 512× 512, 1024× 1024), in Tab. 1.
However, our results depend on generating high-resolution images from large text-to-image
generative models. As the experiments are computationally expensive, it is infeasible for us
to report error bars for every result cell in the table. To report unbiased and reproducible
results, we choose the random seed 0 for all generation tasks.
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the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide compute information in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To our knowledge, we abide by all the guidelines presented in the NeurIPS
Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss positive societal impacts throughout the paper, and also discuss
potential negative societal impacts in the concluding remarks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We do not scrape any data from the internet, but use a well-established and
audited dataset (COCO). As noted earlier in the checklist (item 5: open access), all materials
related to PolyJuice (model, data, code) will be extensively audited for safety prior to release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We attribute original owners and respect their license, wherever applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: At the moment of submission we are not releasing any new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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