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Abstract
The eXtreme Multi-label text Classification
(XMC) problem concerns finding most relevant
labels for an input text instance from a large
label set. However, the XMC setup faces two
challenges: (1) it is not generalizable to predict
unseen labels in dynamic environments, and
(2) it requires a large amount of supervised
(instance, label) pairs, which can be difficult
to obtain for emerging domains. In this paper,
we consider a more practical scenario called
Extreme Zero-Shot XMC (EZ-XMC), in
which no supervision is needed and merely
raw text of instances and labels are accessible.
Few-Shot XMC (FS-XMC), an extension to
EZ-XMC with limited supervision is also
investigated. To learn the semantic embeddings
of instances and labels with raw text, we
propose to pre-train Transformer-based en-
coders with self-supervised contrastive losses.
Specifically, we develop a pre-training method
MACLR, which thoroughly leverages the raw
text with techniques including Multi-scale
Adaptive Clustering, Label Regularization,
and self-training with pseudo positive pairs.
Experimental results on four public EZ-XMC
datasets demonstrate that MACLR achieves
superior performance compared to all other
leading baseline methods, in particular
with approximately 5-10% improvement in
precision and recall on average. Moreover,
we show that our pre-trained encoder can be
further improved on FS-XMC when there
are a limited number of ground-truth positive
pairs in training. Our code is available at
https://github.com/amzn/pecos/
tree/mainline/examples/MACLR.

1 Introduction

The eXtreme Multi-label text Classification (XMC)
problem aims at tagging a text input with most rele-
vant subset of labels from an extremely large output
space. Many web-related applications can be for-
mulated as an XMC task with encouraging results,
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such as finding the best matching products from a
large catalog in e-commerce systems (Medini et al.,
2019; Chang et al., 2021), auto-completing queries
given its prefix on search engines (Yadav et al.,
2021), predicting search keywords for dynamic ad-
vertising (Prabhu et al., 2018; Chang et al., 2020b),
tagging categories of Wikipedia articles from a
large label taxonomy (Dekel and Shamir, 2010;
Chalkidis et al., 2019), to name just a few.

The current XMC setup is built on full label
coverage and full supervision, where full label cov-
erage means labels to be predicted have appeared in
the training set and full supervision indicates it re-
quires a significant number of annotated (instance,
label) pairs. In detail, it is assumed that an XMC
algorithm has access to raw text of instances and
labels, together with their corresponding relations
during training, as shown in Figure 1.

However, there are several limitations of this
XMC setting. First of all, due to the assumption
of full label coverage, it is typical in XMC ap-
proaches to simply treat labels as IDs for classifi-
cation and thus they are restricted to making pre-
dictions within observed labels. This assumption is
unrealistic since the label set usually keeps growing
over time, e.g., newly added websites or products
which are absent during training yet crucial for ap-
plications such as recommendation and advertising.
Besides, collecting labeled pairs is time-consuming,
expensive and sometimes infeasible, for example,
launching an e-commerce system in the emerging
locale, where no user behavioral signals are ava-
iable. In spite of these constraints, most existing
methods (Dahiya et al., 2021b; You et al., 2019;
Mittal et al., 2021; Dahiya et al., 2021a) followed
this XMC setup. It can be seen in Figure 2 that
Astec (Dahiya et al., 2021b), one of the state-of-the-
art extreme classifiers, is incapable of handling the
scenario without supervision, which leads to zero
performance in both Precision@5 and Recall@100.
Moreover, the increasing trend in Astec’s perfor-
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Figure 1: Four different settings in XMC. Four essential components are considered: instances (raw text), labels (raw
text), supervision (positive pairs), and label coverage. In detail, we divide label coverage into 3 groups: full, partial,
and none. * in FS-XMC emphasizes that only a limited amount of supervision is available. We can see that EZ-XMC
is the most general and practical setting, where no supervision and label coverage is required.

mance along with the label ratio suggests that it
depends highly on the supervision level and is hard
to generalize to unseen labels. This motivates us to
investigate how to design an effective XMC model
with zero supervision.

0 1 10 100
Label coverage ratio (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pr
ec

isi
on

@
5

MACLR
Astec
ZestXML

(a) Precision@5.

0 1 10 100
Label coverage ratio (%)

0

10

20

30

40

50

60

70

Re
ca

ll@
10

0

MACLR
Astec
ZestXML

(b) Recall@100.

Figure 2: Performance of three representative XMC
methods on LF-Amazon-131K at different ratios of label
coverage. A subset covering [0, 1, 5, 10, 25, 50, 100](%)
of the whole label set is sampled for fine-tuning.

In this paper, we consider an essential yet under-
explored XMC setting, called Extreme Zero-shot
XMC (EZ-XMC). As depicted in Figure 1, we can
access raw text of both instances and labels but
do not know their corresponding relations in EZ-
XMC. Moreover, we do not make any assumption
on the label coverage, so the labels in the testing
set may or may not appear in the training stage.
An extension to EZ-XMC with a limited number
of training pairs, Few-shot XMC (FS-XMC), is
also taken into account in our paper. Either EZ-
XMC or FS-XMC occurs frequently in the real
world since informative and abundant (instance,
label) pairs are never easy to obtain. Also, it is
more practical and worthwhile to reduce labor for
manual annotation by solving problems under EZ-
XMC. Note that generalized zero-shot XMC (GZ-
XMC) proposed in a recent work (Gupta et al.,
2021) can be regarded as a special case of EZ-

XMC. GZ-XMC allows that the set of test labels
is not completely overlapped with training labels
but still requires supervision from positive pairs, as
shown in Figure 1. From Figure 2, we can observe
that ZestXML (Gupta et al., 2021) designed for
GZ-XMC also suffers the issue of no supervision.

A natural question then arises: how should we
deal with EZ-XMC problems? Despite the name,
EZ-XMC is barely easy to tackle. Fortunately, al-
though dedicated supervision signals are lacking,
raw text of instances and labels, e.g., product de-
scriptions and categories, are still accessible in EZ-
XMC. Thus it is of vital importance to effectively
leverage self-information of these data to train a
model for classification. To overcome challenges
encountered in EZ-XMC, we turn to solving the
problem from a different perspective without learn-
ing classifiers explicitly. In particular, XMC can be
cast into a problem which learns a sentence encoder
E to map instances and labels into dense embed-
dings, and predictions are made through approxi-
mate nearest neighbor search algorithms in the la-
tent space (Shrivastava and Li, 2014). Motivated by
recent progresses in self-supervised learning (Gao
et al., 2021; Chen et al., 2020; He et al., 2020b;
Devlin et al., 2019), we propose MACLR (Multi-
scale Adaptive Clustering & Label Regularization),
a two-stage pre-training procedure with those un-
paired raw data to obtain a sentence encoder E
under EZ-XMC. As to FS-XMC, fine-tuning the
encoder on a few paired data is sufficient for the
performance boost. Figure 2 demonstrates that
MACLR achieves superior performance when no
supervision is available and achieves much higher
recall than Astec and ZestXML by a large margin,



even under the higher label coverage ratio.
Our main contributions are summarized below:
• We propose an essential Extreme Zero-Shot

XMC (EZ-XMC) setting without any as-
sumptions on supervision and label coverage,
which has not been explored in previous work
and is more practical in real applications.

• We leverage unlabeled data to pretrain the
sentence encoder E with improved Inverse
Cloze Task in Stage I of MACLR. In particu-
lar, multi-scale adaptive clustering and label
regularization are proposed to utilize raw text
thoroughly. In Stage II, we further self-train
the encoder with pseudo positive pairs con-
structed from E in Stage I as well as TF-IDF
model with complementary information.

• Comprehensive experiments are conducted on
four public benchmark EZ-XMC datasets. Re-
sults demonstrate that our pre-trained encoder
can outperform existing unsupervised baseline
methods notably. As an example, MACLR
achieves Recall@100 of 54.99%, nearly the
same level as Astec (one of the SOTA XMC
methods) (Dahiya et al., 2021b) trained with a
supervised subset covering around 70% labels
on LF-Amazon-131K.

• MACLR can also achieve comparable or even
better performance under the few-shot setting
than those models heavily dependent on super-
vised information. For example, MACLR is
better than the SOTA ZestXML (Gupta et al.,
2021) in Recall@100 over 20% (57.55% v.s.
32.69%) when fine-tuned on the subset cover-
ing 1% labels of LF-Amazon-131K.

2 Related Work

Extreme multi-label classification Various ex-
treme classifiers have been proposed to address
the large output space challenge of XMC prob-
lems. We can broadly categorize them into
two groups: partitioned-based models with lin-
ear classifiers (Prabhu et al., 2018; Prabhu and
Varma, 2014; Yu et al., 2020) that partition la-
bels with hierarchical trees, leading to sub-linear
inference time complexity, and embedding-based
methods (Bhatia et al., 2015; Jain et al., 2019;
Guo et al., 2019) that learn a classifier for each
label and leverage approximated nearest neigh-
bor (Malkov and Yashunin, 2018; Guo et al.,
2016) to index labels in the large output space.
There are also deep learning models such as Atten-

tionXML (You et al., 2019), Astec (Dahiya et al.,
2021b), SiameseXML (Dahiya et al., 2021a), and
XR-Transformer (Zhang et al., 2021) that further
improve the accuracy of those linear counterparts
with various advanced encoder architectures. Nev-
ertheless, none of those XMC methods can handle
the EZ-XMC setup: they not only suffer from the
lack of supervised signals, but also fail to general-
ize to unseen cold-start labels in the test set. The
only exception is ZestXML (Gupta et al., 2021), a
recently proposed XMC method that was designed
to address the generalized zero-shot XMC (GZ-
XMC) problem where a number of labels for pre-
diction are absent during training. While ZestXML
partially resolves the generalization challenge of
cold-start labels, just like those conventional XMC
models, it still depends heavily on a large number
of training data with positive (instance, label) pairs.

Self-supervised learning techniques The past
few years have witnessed great promise in self-
supervised learning (Lan et al., 2020; Chen et al.,
2020; He et al., 2020b; Devlin et al., 2019; Khosla
et al., 2020; Gao et al., 2021), where a pre-training
task is defined using only data’s self-information.
Learned representations from the pre-training task
can be then leveraged in a wide range of down-
stream tasks in various domains, such as image
classification (Chen et al., 2020; He et al., 2020b)
and object detection (Li et al., 2020) in com-
puter vision, and open-domain question answer-
ing (Lee et al., 2019; Guu et al., 2020) in natural
language processing. Specifically, we focus on con-
trastive approaches for Sentence-BERT (Reimers
and Gurevych, 2019) models in this paper, where
the intuition is to pull semantically close neighbors
together and push apart non-neighbors via noise
contrastive estimation or N-pair losses. Various
effective pre-training tasks such as Inverse Cloze
Task (ICT) (Lee et al., 2019) and SimCSE (Gao
et al., 2021) have been shown to improve the per-
formance of Sentence-BERT models.

3 Problem Formulation

In this section, we present the problem formulation
of EZ-XMC. With X and Y denoting the set of
instances and labels respectively, the general XMC
problem can be viewed as learning a scoring func-
tion f : X × Y → R. f(·, ·) maps an (instance,
label) pair (x, y) to a similarity score, which is
used to make a prediction through approximate
nearest neighbor search algorithms. In previous set-



tings such as XMC and GZ-XMC, a considerable
amount of relevant (instance, label) pairs {(xi, yi)}
are available. On the contrary, in EZ-XMC, we
have no knowledge about corresponding relations
between instances and labels, but only their raw
text, as shown in Figure 1. In this case, existing
approaches that depend on the relevant pairs fail to
learn an effective scoring function, even with a few
paired data under FS-XMC.

Recent progresses in self-supervised learning
have shown that a generalized sentence encoder
can be learned through elaborately designed pre-
training tasks even without any supervision (Lee
et al., 2019; Chang et al., 2020a), and then adapted
to different downstream tasks directly or via slight
finetuning. On the other hand, the scoring func-
tion f can be modeled as f(x, y) = ⟨E(x), E(y)⟩,
where E is a sentence encoder producing seman-
tical dense embeddings, and ⟨·, ·⟩ is the similarity
measurement such as inner product and cosine sim-
ilarity. Without loss of generality, inner product
is adopted in the paper as the similarity metric be-
tween embeddings of instances and labels. Thus,
we formulate the problem as training an encoder
E with raw text of X and Y through a pre-training
task for EZ-XMC. As to the few-shot scenario FS-
XMC, we can fine-tune E for improvement.

4 Method

In this section, we introduce a two-stage pre-
training procedure, MACLR, to thoroughly lever-
age unpaired data with raw text for EZ-XMC.
Specifically, we present the general framework in
Section 4.1, and then dive into details of two stages,
pre-training with the improved Inverse Cloze Task
and self-training with pseudo positive pairs, in Sec-
tions 4.2 and 4.3 respectively. A complete algo-
rithm is presented in Algorithm 1 in Appendix 4.4.

4.1 Framework

The framework of our pre-training procedure is
shown in Figure 3. MACLR consists of two stages:

• Stage I: title-context pairs are constructed for
the Inverse Cloze Task, and the encoder E
is then trained on these pairs together with
two proposed techniques, multi-scale adaptive
clustering and label regularization.

• Stage II: More pseudo positive pairs are
crafted using different score functions mod-
eled by the encoder from Stage I and TF-IDF
respectively. E is further trained on additional

pairs to improve the encoding performance.
Details of each component in our pre-training
framework are discussed in the following sections.
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Figure 3: Framework of our pre-training procedure.

4.2 Stage I: Pre-training with improved ICT
Inverse Cloze Task (Lee et al., 2019) is a frequently
used pre-training task for the sentence encoder.
Specifically, for an instance x = {s1, . . . , sn}
consisting of n sentences, ICT randomly samples
a sentence to serve as the pseudo positive label
ŷ = si where i ∼ [1, n]. Then the rest of x is the
pseudo instance x̂ = {s1, . . . , si−1, si+1, . . . , sn}.
In XMC, due to the property that the label usu-
ally summarizes the instance with one short sen-
tence, which works similarly as the title s1, we
directly utilize (context, title) pairs in the form of
(x̂ = {s2, . . . , sn}, ŷ = s1). This construction
works as the analog of the ground truth (instance,
label) pairs and capture the semantics of a sentence.
With these pseudo pairs, the contrastive training
objective for a mini-batch of N pairs is as follows:

Lcontrastive = −
N∑
i=1

log
exp(E(x̂i) · E(ŷi))∑N
j=1 exp(E(x̂i) · E(ŷj))

(1)

Based on ICT, we also develop two techniques,
multi-scale adaptive clustering and label reguariza-
tion, to fully leverage the information of unpaired
instances and labels.

4.2.1 Multi-scale Adaptive Clustering
In the original ICT scheme, we can construct only
one positive pair for a particular instance. It is rela-
tively hard in contrastive learning without enough
positive examples, especially for extreme multi-
label classification where one instance might be
associated with more than one label, and a label
is also likely to point to several different instances
at the same time. Thus a question arises naturally:



is it possible to construct more positive pairs from
purely unpaired raw data to intergrate richer infor-
mation into the pre-training process? We solve it by
the unsupervised K-means clustering. In detail, we
divide pseudo (context, title) pairs from ICT into
K clusters through K-means based on the embed-
dings of all instances. Then if C(x̂i) = C(x̂j), i.e.,
x̂i and x̂j belong to the same cluster, (x̂i, ŷj) and
(x̂j , ŷi) are regarded as positive pairs besides origi-
nal ICT pairs. Furthermore, supervised contrastive
loss is adopted for training the encoder with a mini-
batch of N pairs based on the cluster assignment:

Lcluster =
N∑
i=1

−1

|PY(i)|
∑

p∈PY (i)

log
exp(E(x̂i) · E(ŷp))∑N
j=1 exp(E(x̂i) · E(ŷj))

(2)

Here, PY(i) = {p ∈ {1, . . . , N} : C(x̂i) =
C(x̂p)} is the set of indices of all positives for
x̂i in the batch, and |PY(i)| is its cardinality. Mini-
mizing Equation (2) pulls close the representations
of instances and their positive labels within the
same cluster and pushes away the representations
of those from different clusters.

Besides, since the ultimate goal is the minimiza-
tion of Equation (1), we propose a multi-scale ap-
proach with adaptive training, which guides the
encoder to learn the easier tasks with sufficient pos-
itive examples, and then master harder tasks grad-
ually. This approach allows the encoder to learn
from the coarse scale to the fine scale of clustering
assignment, and is similar to the idea of curriculum
learning (Bengio et al., 2009) to first focus on learn-
ing from a subset of simple examples, and expand-
ing to include the remaining harder samples. Our
adaptive training process can be conducted by mod-
ifying the cluster size to adjust the task difficulty
accordingly. To be specific, we initialize the cluster
assignment with the number of clusters K0, and
double the cluster size every T steps. The cluster
assignment is also updated every Tupdate steps along
with the training of E . Such a process lasts for half
of the total training steps Ttotal to take advantage of
positive examples from constructed clusters. The
obtained intermediate encoder from this adaptive
procedure is expected to satisfactorily capture the
semantics of a sentence and is ready to deal with
the optimization of Equation (1). Then for the rest
half of training steps, we turn to the hardest setting
treating each instance as one independent cluster,
which exactly falls into the contrastive training ob-
jective in Equation (1). Our multi-scale adaptive
clustering is illustrated in Figure 4.
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<latexit sha1_base64="8bH8Zf4PmNWszQ/D7q06FE5qVlE=">AAAB8HicbZDLSgMxFIbP1FutWutlJ0KwCK7KjIqXXcGNywr2Iu1QMmnahiaZIcmIZehTuHGhiFvfxK079/ocml4W2vpD4OP/zyHnnCDiTBvX/XBSc/MLi0vp5czK6lp2PbexWdFhrAgtk5CHqhZgTTmTtGyY4bQWKYpFwGk16F0M8+otVZqF8tr0I+oL3JGszQg21rppdLFJ7gbN42Yu7xbckdAseBPIF7PfX2+725+lZu690QpJLKg0hGOt654bGT/ByjDC6SDTiDWNMOnhDq1blFhQ7SejgQdo3zot1A6VfdKgkfu7I8FC674IbKXApquns6H5X1aPTfvMT5iMYkMlGX/UjjkyIRpuj1pMUWJ43wImitlZEelihYmxN8rYI3jTK89C5bDgnRSOrrx88RzGSsMO7MEBeHAKRbiEEpSBgIB7eIQnRzkPzrPzMi5NOZOeLfgj5/UHVVeUfA==</latexit>

x̂4
<latexit sha1_base64="8bH8Zf4PmNWszQ/D7q06FE5qVlE=">AAAB8HicbZDLSgMxFIbP1FutWutlJ0KwCK7KjIqXXcGNywr2Iu1QMmnahiaZIcmIZehTuHGhiFvfxK079/ocml4W2vpD4OP/zyHnnCDiTBvX/XBSc/MLi0vp5czK6lp2PbexWdFhrAgtk5CHqhZgTTmTtGyY4bQWKYpFwGk16F0M8+otVZqF8tr0I+oL3JGszQg21rppdLFJ7gbN42Yu7xbckdAseBPIF7PfX2+725+lZu690QpJLKg0hGOt654bGT/ByjDC6SDTiDWNMOnhDq1blFhQ7SejgQdo3zot1A6VfdKgkfu7I8FC674IbKXApquns6H5X1aPTfvMT5iMYkMlGX/UjjkyIRpuj1pMUWJ43wImitlZEelihYmxN8rYI3jTK89C5bDgnRSOrrx88RzGSsMO7MEBeHAKRbiEEpSBgIB7eIQnRzkPzrPzMi5NOZOeLfgj5/UHVVeUfA==</latexit>

x̂4

<latexit sha1_base64="tzH7B/DywA0p6UBpU/qZtweSnkE=">AAAB8HicbZDLSgMxFIbPeK31Vu3STbAIrspMBS+7ghuXFexF2qFk0kwbmmSGJCMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBzJk2rvvlLC2vrK6t5zbym1vbO7uFvf2GjhJFaJ1EPFKtAGvKmaR1wwynrVhRLAJOm8Hwcpw376jSLJI3Jo2pL3BfspARbKx12xlgk6WjrtctlNyyOxFaBG8GpWrx+73y0XytdQufnV5EEkGlIRxr3fbc2PgZVoYRTkf5TqJpjMkQ92nbosSCaj+bDDxCR9bpoTBS9kmDJu7vjgwLrVMR2EqBzUDPZ2Pzv6ydmPDcz5iME0MlmX4UJhyZCI23Rz2mKDE8tYCJYnZWRAZYYWLsjfL2CN78yovQqJS90/LJtVeqXsBUOTiAQzgGD86gCldQgzoQEHAPj/DkKOfBeXZepqVLzqynCH/kvP0AQC2UbQ==</latexit>

ŷ1
<latexit sha1_base64="tzH7B/DywA0p6UBpU/qZtweSnkE=">AAAB8HicbZDLSgMxFIbPeK31Vu3STbAIrspMBS+7ghuXFexF2qFk0kwbmmSGJCMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBzJk2rvvlLC2vrK6t5zbym1vbO7uFvf2GjhJFaJ1EPFKtAGvKmaR1wwynrVhRLAJOm8Hwcpw376jSLJI3Jo2pL3BfspARbKx12xlgk6WjrtctlNyyOxFaBG8GpWrx+73y0XytdQufnV5EEkGlIRxr3fbc2PgZVoYRTkf5TqJpjMkQ92nbosSCaj+bDDxCR9bpoTBS9kmDJu7vjgwLrVMR2EqBzUDPZ2Pzv6ydmPDcz5iME0MlmX4UJhyZCI23Rz2mKDE8tYCJYnZWRAZYYWLsjfL2CN78yovQqJS90/LJtVeqXsBUOTiAQzgGD86gCldQgzoQEHAPj/DkKOfBeXZepqVLzqynCH/kvP0AQC2UbQ==</latexit>

ŷ1
<latexit sha1_base64="nNfss/MlCOe1yEKTRmGTxQL24fI=">AAAB8HicbZDLSgMxFIYzXmu9Vbt0EyyCqzJTwcuu4MZlBXuRdiiZNNOGJpkhOSMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBLLgB1/1ylpZXVtfWcxv5za3tnd3C3n7DRImmrE4jEelWQAwTXLE6cBCsFWtGZCBYMxhejvPmHdOGR+oG0pj5kvQVDzklYK3bzoBAlo66lW6h5JbdifAieDMoVYvf75WP5mutW/js9CKaSKaACmJM23Nj8DOigVPBRvlOYlhM6JD0WduiIpIZP5sMPMJH1unhMNL2KcAT93dHRqQxqQxspSQwMPPZ2PwvaycQnvsZV3ECTNHpR2EiMER4vD3ucc0oiNQCoZrbWTEdEE0o2Bvl7RG8+ZUXoVEpe6flk2uvVL1AU+XQATpEx8hDZ6iKrlAN1RFFEt2jR/TkaOfBeXZepqVLzqyniP7IefsBQbGUbg==</latexit>

ŷ2
<latexit sha1_base64="nNfss/MlCOe1yEKTRmGTxQL24fI=">AAAB8HicbZDLSgMxFIYzXmu9Vbt0EyyCqzJTwcuu4MZlBXuRdiiZNNOGJpkhOSMMQ5/CjQtF3InP4cqlOx/DNzC9LLT1h8DH/59DzjlBLLgB1/1ylpZXVtfWcxv5za3tnd3C3n7DRImmrE4jEelWQAwTXLE6cBCsFWtGZCBYMxhejvPmHdOGR+oG0pj5kvQVDzklYK3bzoBAlo66lW6h5JbdifAieDMoVYvf75WP5mutW/js9CKaSKaACmJM23Nj8DOigVPBRvlOYlhM6JD0WduiIpIZP5sMPMJH1unhMNL2KcAT93dHRqQxqQxspSQwMPPZ2PwvaycQnvsZV3ECTNHpR2EiMER4vD3ucc0oiNQCoZrbWTEdEE0o2Bvl7RG8+ZUXoVEpe6flk2uvVL1AU+XQATpEx8hDZ6iKrlAN1RFFEt2jR/TkaOfBeXZepqVLzqyniP7IefsBQbGUbg==</latexit>

ŷ2
<latexit sha1_base64="FS6LfEPDBVLNIj6iEDcyMbAAcw4=">AAAB8HicbZDLSgMxFIYz9Vbrrdqlm2ARXJWZFrzsCm5cVrAXaYeSSdM2NMkMyRlhGPoUblwo4k58Dlcu3fkYvoHpZaGtPwQ+/v8ccs4JIsENuO6Xk1lZXVvfyG7mtrZ3dvfy+wcNE8aasjoNRahbATFMcMXqwEGwVqQZkYFgzWB0Ocmbd0wbHqobSCLmSzJQvM8pAWvddoYE0mTcrXTzRbfkToWXwZtDsVr4fi9/NF9r3fxnpxfSWDIFVBBj2p4bgZ8SDZwKNs51YsMiQkdkwNoWFZHM+Ol04DE+tk4P90NtnwI8dX93pEQak8jAVkoCQ7OYTcz/snYM/XM/5SqKgSk6+6gfCwwhnmyPe1wzCiKxQKjmdlZMh0QTCvZGOXsEb3HlZWiUS95pqXLtFasXaKYsOkRH6AR56AxV0RWqoTqiSKJ79IieHO08OM/Oy6w048x7CuiPnLcfQzWUbw==</latexit>

ŷ3
<latexit sha1_base64="FS6LfEPDBVLNIj6iEDcyMbAAcw4=">AAAB8HicbZDLSgMxFIYz9Vbrrdqlm2ARXJWZFrzsCm5cVrAXaYeSSdM2NMkMyRlhGPoUblwo4k58Dlcu3fkYvoHpZaGtPwQ+/v8ccs4JIsENuO6Xk1lZXVvfyG7mtrZ3dvfy+wcNE8aasjoNRahbATFMcMXqwEGwVqQZkYFgzWB0Ocmbd0wbHqobSCLmSzJQvM8pAWvddoYE0mTcrXTzRbfkToWXwZtDsVr4fi9/NF9r3fxnpxfSWDIFVBBj2p4bgZ8SDZwKNs51YsMiQkdkwNoWFZHM+Ol04DE+tk4P90NtnwI8dX93pEQak8jAVkoCQ7OYTcz/snYM/XM/5SqKgSk6+6gfCwwhnmyPe1wzCiKxQKjmdlZMh0QTCvZGOXsEb3HlZWiUS95pqXLtFasXaKYsOkRH6AR56AxV0RWqoTqiSKJ79IieHO08OM/Oy6w048x7CuiPnLcfQzWUbw==</latexit>

ŷ3
<latexit sha1_base64="1hpSomqG4oo3nRV2litKBoRdPwk=">AAAB8HicbZDLSgMxFIbP1Futt2qXboJFcFVmqnjZFdy4rGAv0g4lk6ZtaJIZkowwDH0KNy4UcSc+hyuX7nwM38D0stDWHwIf/38OOecEEWfauO6Xk1laXlldy67nNja3tnfyu3t1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh5Thv3FGlWShvTBJRX+C+ZD1GsLHWbXuATZqMOiedfNEtuROhRfBmUKwUvt/LH43Xaif/2e6GJBZUGsKx1i3PjYyfYmUY4XSUa8eaRpgMcZ+2LEosqPbTycAjdGidLuqFyj5p0MT93ZFioXUiAlspsBno+Wxs/pe1YtM791Mmo9hQSaYf9WKOTIjG26MuU5QYnljARDE7KyIDrDAx9kY5ewRvfuVFqJdL3mnp+NorVi5gqizswwEcgQdnUIErqEINCAi4h0d4cpTz4Dw7L9PSjDPrKcAfOW8/RLmUcA==</latexit>

ŷ4
<latexit sha1_base64="1hpSomqG4oo3nRV2litKBoRdPwk=">AAAB8HicbZDLSgMxFIbP1Futt2qXboJFcFVmqnjZFdy4rGAv0g4lk6ZtaJIZkowwDH0KNy4UcSc+hyuX7nwM38D0stDWHwIf/38OOecEEWfauO6Xk1laXlldy67nNja3tnfyu3t1HcaK0BoJeaiaAdaUM0lrhhlOm5GiWAScNoLh5Thv3FGlWShvTBJRX+C+ZD1GsLHWbXuATZqMOiedfNEtuROhRfBmUKwUvt/LH43Xaif/2e6GJBZUGsKx1i3PjYyfYmUY4XSUa8eaRpgMcZ+2LEosqPbTycAjdGidLuqFyj5p0MT93ZFioXUiAlspsBno+Wxs/pe1YtM791Mmo9hQSaYf9WKOTIjG26MuU5QYnljARDE7KyIDrDAx9kY5ewRvfuVFqJdL3mnp+NorVi5gqizswwEcgQdnUIErqEINCAi4h0d4cpTz4Dw7L9PSjDPrKcAfOW8/RLmUcA==</latexit>

ŷ4

(a) K=1 (b) K=2 (c) K=4

Positive

Negative

Figure 4: An example of multi-scale adaptive clustering.
Here different colors represent different clusters. (a) In
the beginning, there is only one cluster and {ŷj}4j=1 are
all positive labels for x̂1. (b) K is doubled to 2 and now
ŷ1 and ŷ3 are positive to x̂1. (c) Finally, K is equal to
4 where each instance itself is a cluster, and hence x̂1

only has one positive label ŷ1. The process is similar
for the rest of the instances.

4.2.2 Label Regularization
In addition to leveraging information from the in-
stance side, we also have access to the raw texts of
the whole label set and can utilize them to boost the
encoder’s performance from the label side (Mueller
et al., 2022; Müller et al., 2022). Intuitively, for a
randomly sampled label, with a high probability it
is an negative example to the instance of interest.
We can take advantage of this intuition to make the
embedding of the instance far from its irrelevant
labels. Instead of increasing the distance directly,
it is more stable and effective to adopt contrastive
losses. To avoid overfitting, we choose a new posi-
tive example for each instance instead of its corre-
sponding pseudo label from ICT which has been
used in Lcluster. More concretely, x̂+i is selected
exactly the same as x̂i, since the dropout layer
is placed in the standard training of Transformer-
based models and can be viewed as a minimal form
of data augmentation (Gao et al., 2021). By feeding
the same sentence to the encoder E , two embed-
dings with different dropout masks are obtained,
i.e., ĥi = E(x̂i, zi) and ĥ+i = E(x̂+i , z+i ) where z

represents a random mask for dropout. ĥi ̸= ĥ+i
due to the dropout noise, but they hold similar se-
mantics from the same sentence and thus can be
used as a positive pair for contrastive learning. The
procedure of label regularization is depicted in Fig-
ure 5. At each step, we sample M real labels from
the label set Y , and the reguarization term is com-
puted as follows:

Llabel =
N∑
i=1

− log
exp(ĥi · ĥ+

i )∑M
j=1 exp(ĥi · E(y−

j )) + exp(ĥi · ĥ+
i )
(3)

Through minimizing Llabel, the encoder learns to
pull the instance away from its irrelevant labels



and incorporate the dropout augmentation at the
same time. Together with Lcluster, we have the final
objective function for pre-training in the Stage I as

L = Lcluster + Llabel. (4)

Positive

Negative

<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i
<latexit sha1_base64="AuqLh9LOpZj6hTRl/qE4S7Xz2N4=">AAAB8HicbZDLSgMxFIbP1Futt3rZiRAsgqsyo+BlV3DjsoK9SDuUTJppQ5PMkGTEMvQp3LhQxK1v4tade30OTS8Lbf0h8PH/55BzThBzpo3rfjiZufmFxaXscm5ldW19I7+5VdVRogitkIhHqh5gTTmTtGKY4bQeK4pFwGkt6F0M89otVZpF8tr0Y+oL3JEsZAQba900u9ikd4MWa+ULbtEdCc2CN4FCaf37621v57Pcyr832xFJBJWGcKx1w3Nj46dYGUY4HeSaiaYxJj3coQ2LEguq/XQ08AAdWKeNwkjZJw0aub87Uiy07ovAVgpsuno6G5r/ZY3EhGd+ymScGCrJ+KMw4chEaLg9ajNFieF9C5goZmdFpIsVJsbeKGeP4E2vPAvVo6J3Ujy+8gqlcxgrC7uwD4fgwSmU4BLKUAECAu7hEZ4c5Tw4z87LuDTjTHq24Y+c1x+lq5Sx</latexit>

x̂i

<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>
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<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>
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<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>
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<latexit sha1_base64="6NNFGW9h2xS+IMOwNf7I+jVlYew=">AAAB7HicbZDLSsNAFIZPvNZ6q7rsZrAIIlgSBS+7ghuXFUxbbGOZTCft0MkkzkyEEPsMblwo4tYn8BF8Ane+jdPLQlt/GPj4/3OYc44fc6a0bX9bc/MLi0vLuZX86tr6xmZha7umokQS6pKIR7LhY0U5E9TVTHPaiCXFoc9p3e9fDPP6PZWKReJapzH1QtwVLGAEa2O5adu5PWwXSnbZHgnNgjOBUqV48HDzefdRbRe+Wp2IJCEVmnCsVNOxY+1lWGpGOB3kW4miMSZ93KVNgwKHVHnZaNgB2jNOBwWRNE9oNHJ/d2Q4VCoNfVMZYt1T09nQ/C9rJjo48zIm4kRTQcYfBQlHOkLDzVGHSUo0Tw1gIpmZFZEelphoc5+8OYIzvfIs1I7Kzkn5+MopVc5hrBwUYRf2wYFTqMAlVMEFAgwe4RleLGE9Wa/W27h0zpr07MAfWe8/jSWRgA==</latexit>
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<latexit sha1_base64="QndEjE+ftMbQHmW4+XEu0lAatjI=">AAAB7HicbZDLSgMxFIbP1Futt6rLboJFEMEyU8HLruDGZQWnLbZjyaSZNjSTGZOMMNQ+gxsXirj1CXwEn8Cdb2N6WWjrD4GP/z+HnHP8mDOlbfvbyiwsLi2vZFdza+sbm1v57Z2aihJJqEsiHsmGjxXlTFBXM81pI5YUhz6ndb9/Mcrr91QqFolrncbUC3FXsIARrI3lpu3y7VE7X7RL9lhoHpwpFCuFw4ebz7uPajv/1epEJAmp0IRjpZqOHWtvgKVmhNNhrpUoGmPSx13aNChwSJU3GA87RPvG6aAgkuYJjcbu744BDpVKQ99Uhlj31Gw2Mv/LmokOzrwBE3GiqSCTj4KEIx2h0eaowyQlmqcGMJHMzIpID0tMtLlPzhzBmV15HmrlknNSOr5yipVzmCgLBdiDA3DgFCpwCVVwgQCDR3iGF0tYT9ar9TYpzVjTnl34I+v9B46rkYE=</latexit>
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Figure 5: An illustration of label reguarization. (a)
shows that x̂i is expected to be far from sampled irrele-
vant labels {y−j }4j=1, while (b) indicates the identical x̂i

is added as a positive example for label regularization.
4.3 Stage II: Self-training with multi-viewed

pseudo pairs
After the pre-training procedure in Section 4.2, we
can obtain an intermediate encoder EI . But are
there any ways to further improve the encoder?
Inspired by self-training in semi-supervised learn-
ing (Yalniz et al., 2019; Xie et al., 2020; He et al.,
2020a; Zoph et al., 2020), EI can be leveraged
to make predictions on those unpaired training in-
stances themselves, to generate pseudo positive
pairs. These pseudo pairs are much better than ran-
dom guessing and can serve as a distinct view from
ICT pairs. On the other hand, similar pseudo pairs
can be constructed by other unsupervised meth-
ods such as TF-IDF, which provide different and
complementary information about the instance.

With multi-viewed pseudo positive pairs, we can
conduct further training on the encoder in State II
from a new perspective and self-improve EI . The
detailed process works as follows:

1) Compute the similarity score using EI for each
training instance xi, and select labels with top-
k maximum scores as its pseudo labels;

2) Generate labels similarly with TF-IDF, except
that E(x) and E(y) are replaced with their TF-
IDF vectors;

3) Mix pseudo positive pairs from 1) and 2) to-
gether, and train EI on them with Equation (2).

4.4 MACLR Algorithm
The whole pre-training procedure of MACLR is
shown in Algorithm 1. Note that for FS-XMC, we
simply fine-tune the encoder E from MACLR on
available positive pairs for several steps by mini-
mizing the original contrastive loss in Equation (1).

Algorithm 1 Pre-training procedure of MACLR

Input: Raw text of instances and labels (X ,Y),
the sentence encoder E , batch size N and M ,
training step parameters TK , Tupdate and Ttotal,
initial cluster size K0, # of top candidates k

Output: A pre-trained sentence encoder E
▷ Stage I: Pre-training with the improved ICT

1: Construct ICT (context, title) pairs from raw
texts in X

2: Feed the context for each pair into the encoder
E and cluster them into K = K0 clusters via
k-means

3: for t = 1, . . . , Ttotal do
4: Sample a mini-batch of pseudo pairs of

size N and a mini-batch of real labels of size
M

5: Compute the loss: L = Lcluster + Llabel
6: Train the encoder by minimizing L
7: if t mod TK = 0 and t < Ttotal/2 then
8: K = K ∗ 2
9: end if

10: if t mod Tupdate = 0 and t < Ttotal/2 then
11: Feed raw texts of X again into E , and

update current cluster assignment via k-means
with the cluster number K

12: end if
13: if t ≥ Ttotal/2 then
14: Treat each instance as an independent

cluster
15: end if
16: end for

▷ Stage II: Self-training with multi-viewed
pseudo pairs

17: Construct pseudo pairs (Xpseu,Ypseu) by select-
ing top-k candidate labels with the similarity
metric on the encoder E and TF-IDF respec-
tively

18: Train the encoder E for Ttotal steps by minimiz-
ing Equation (2)

5 Experimental Results

5.1 Experimental Settings

Datasets We evaluate our proposed MACLR on
4 public XMC benchmark datasets (Bhatia et al.,
2016; Gupta et al., 2021) where raw text of in-
stances and labels are available. These datasets
are derived from real-world applications, ranging
from item-to-item recommendation (LF-Amazon-
131K, LF-Amazon-1M), to Wikipedia articles cat-
egory/title tagging (LF-WikiSeeAlso-320K, LF-



Wikipedia-500K). Detailed dataset statistics are
presented in Table 5 in Appendix A.

Evaluation Protocol We consider two evalua-
tion setups: Extreme Zero-shot Learning of XMC
(EZ-XMC) and Few-shot Learning of XMC (FS-
XMC). EZ-XMC is a fully unsupervised learning
setup where no positive (instance, label) pairs are
available. The only available information is the
raw text of training instances and the whole label
set. FS-XMC is a semi-supervised learning setup
where only very few positive (instance, label) pairs
in the training set are available. Regardless of the
learning procedure, all models are evaluated on the
same test set for fair comparison.

We evaluate the models’ performance with pre-
cision@k (P@k, k ∈ {1, 3, 5}) and recall@k
(R@k, k ∈ {1, 3, 5, 10, 100}), which are two
commonly-used evaluation metrics in the XMC
literature (Reddi et al., 2019; Chang et al., 2021).

Baseline Methods For EZ-XMC, we compare
our method with the following unsupervised learn-
ing algorithms: TF-IDF, XR-Linear, GloVe, Sent-
BERT, MPNet, SimCSE and ICT. Note that Sent-
BERT and MPNet are pre-trained on external multi-
task learning datasets with extra supervision. In
contrast, SimCSE and ICT are fully unsupervised
pre-rained Siamese-Transformers on the specific
XMC dataset only. Detailed description of each
method can be found in Appendix A.

For FS-XMC, as few-shot (instance, la-
bel) pairs are available, we additionally com-
pare fine-tuned MACLR with competitive XMC
approaches, including Astec (Dahiya et al.,
2021b), SiameseXML (Dahiya et al., 2021a), and
ZestXML (Gupta et al., 2021). ZestXML is the
leading XMC method that improves performance
on few-shot labels. We also take into account Sent-
BERT (Reimers and Gurevych, 2019) with further
fine-tuning to demonstrate the effectiveness of our
pre-training procedure.

5.2 Zero-Shot Learning
In this section, we focus on extreme zero-shot learn-
ing (EZ-XMC), where no real positive (instance,
label) pairs are accessible. Table 1 presents detailed
performance of precision and recall on all four
datasets. Our proposed MACLR consistently out-
performs all comparing baselines by a large margin
on all four datasets. Compared to the leading sparse
method TF-IDF, MACLR has an average of 5.3%
and 9.1% absolute improvement in Precision@1

Table 1: Extreme Zero-shot Learning (EZ-XMC) com-
parison of different unsupervised methods.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

TF-IDF 12.38 11.50 9.14 6.91 18.14 23.21 29.32 45.04
XR-Linear 7.56 7.84 7.30 4.05 12.11 18.32 29.17 40.39
GloVe 3.67 2.78 2.15 2.05 4.33 5.44 7.23 14.17
SentBERT 1.86 1.44 1.14 1.01 2.22 2.88 4.01 10.18
MPNet 13.94 11.41 8.82 7.82 18.08 22.58 27.91 43.39
SimCSE 10.13 8.61 6.69 5.61 13.39 16.84 21.27 35.81
ICT 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
MACLR (ours) 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

LF-WikiSeeAlso-320K

TF-IDF 10.71 8.90 7.15 5.92 13.03 16.48 21.60 42.55
XR-Linear 4.73 4.27 3.90 2.23 5.83 8.64 14.18 36.93
GloVe 3.86 2.76 2.21 2.12 4.11 5.22 6.95 15.33
SentBERT 1.71 1.27 1.06 1.08 2.16 2.90 4.17 10.76
MPNet 13.75 11.93 9.58 8.14 17.77 22.21 28.11 45.91
SimCSE 9.03 6.64 5.22 4.99 9.89 12.34 15.93 30.11
ICT 10.76 10.05 8.12 6.12 14.32 18.05 23.01 39.77
MACLR (ours) 16.31 13.53 10.78 9.71 20.39 25.37 32.05 53.83

LF-Wikipedia-500K

TF-IDF 20.30 12.98 9.96 7.25 12.91 15.98 20.31 38.16
XR-Linear 10.67 8.77 7.61 3.69 8.58 12.11 19.80 31.02
GloVe 2.19 1.52 1.23 0.85 1.66 2.18 3.10 8.52
SentBERT 0.17 0.15 0.13 0.05 0.13 0.18 0.30 1.29
MPNet 22.46 12.87 9.49 8.74 14.07 16.76 20.64 34.72
SimCSE 14.32 6.84 4.55 4.24 8.03 11.26 14.35 27.68
ICT 17.74 9.67 7.06 7.35 11.60 13.84 17.19 31.08
MACLR (ours) 28.44 17.75 13.53 10.40 18.16 22.38 28.52 50.09

LF-Amazon-1M

TF-IDF 7.68 9.20 7.23 5.61 19.30 24.92 31.76 51.79
XR-Linear 5.19 5.48 5.26 3.63 11.30 17.94 31.18 43.79
GloVe 4.05 4.07 3.07 2.91 8.42 10.44 12.90 21.18
SentBERT 2.82 2.87 2.13 2.03 5.91 7.21 8.80 14.22
MPNet 8.29 8.87 6.80 6.04 18.64 23.51 29.35 46.15
SimCSE 3.33 3.69 2.74 2.38 7.66 9.38 11.43 18.54
ICT 8.66 9.26 7.13 6.30 19.45 24.60 30.73 48.42
MACLR (ours) 9.58 10.41 8.03 7.38 22.01 27.72 34.48 55.23

and Recall@100, respectively. Compared to the
leading neural model MPNet, MACLR has an av-
erage of 3.5% and 10.9% absolute improvement in
Precision@1 and Recall@100, respectively.

Speaking of sparse lexical matching approaches,
TF-IDF remains a tough-to-beat unsupervised base-
line. Specifically, TF-IDF performs better than
many BERT variants (e.g., SentBERT, SimCSE,
ICT), which is aligned with the finding in recent
zero-shot dense retrieval literature (Thakur et al.,
2021; Izacard et al., 2022). It suggests the impor-
tance of designing proper self-supervised learning
tasks for Transformer models in unsupervised EZ-
XMC setup. Note that XR-Linear is based on TF-
IDF vectors whereas the noise from pseudo pairs
makes it even inferior to the original TF-IDF.

As for pre-trained SentBERT models, on the
other hand, only MPNet shows comparable perfor-
mance with TF-IDF. MPNet remains competitive
because it was trained on a large supervised cor-
pus (out-of-domain) to learn semantics between
paraphrasing sentences. Thus, MPNet should be
viewed as a multi-task learning baseline with ex-



Table 2: Results of FS-XMC where the training subset
covers 1% labels from the whole set.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 1.53 0.57 0.36 0.67 0.75 0.78 0.81 0.92
Astec 0.94 0.44 0.29 0.55 0.78 0.84 0.91 1.13
SiameseXML 1.45 0.56 0.35 0.84 0.96 1.00 1.03 1.16
ZestXML 10.10 9.19 7.34 5.63 14.46 18.61 23.73 32.69
SentBERT 12.64 9.82 7.80 6.97 15.34 19.74 25.33 43.53
MPNet 14.78 11.55 8.97 8.28 18.24 22.84 28.54 45.89
MACLR (ours) 18.74 16.07 12.52 10.73 25.44 31.89 39.17 57.55

LF-WikiSeeAlso-320K

XR-Linear 1.24 0.57 0.37 0.42 0.58 0.63 0.68 0.76
Astec 1.25 0.60 0.41 0.69 0.98 1.11 1.27 1.56
SiameseXML 1.81 0.75 0.48 1.03 1.26 1.33 1.41 1.67
ZestXML 8.74 6.78 5.41 4.68 9.70 12.21 15.73 24.98
SentBERT 16.30 12.62 10.08 9.30 18.92 23.78 30.40 52.92
MPNet 17.14 12.64 9.96 9.97 18.98 23.45 29.67 50.75
MACLR (ours) 19.09 14.57 11.53 11.39 22.34 27.63 34.81 57.92

LF-Wikipedia-500K

XR-Linear 2.95 1.19 0.75 0.62 0.74 0.76 0.79 0.84
Astec 2.85 1.16 0.73 1.46 1.75 1.84 1.92 2.08
SiameseXML 2.72 1.15 0.73 1.39 1.73 1.84 1.93 2.09
ZestXML 23.86 14.97 11.31 7.19 13.00 16.03 20.13 29.95
SentBERT 32.09 20.50 15.78 10.94 19.46 24.12 30.94 55.94
MPNet 34.58 22.02 16.86 11.96 21.32 26.30 33.53 57.78
MACLR (ours) 44.27 28.46 21.83 15.14 27.04 33.33 42.03 67.95

LF-Amazon-1M

XR-Linear 0.51 0.20 0.12 0.36 0.42 0.43 0.45 0.49
Astec 0.49 0.59 0.12 0.34 0.40 0.42 0.44 0.49
SiameseXML 0.60 0.73 0.15 0.41 0.46 0.48 0.49 0.53
ZestXML 5.07 5.89 4.38 3.68 12.31 15.04 17.80 22.51
SentBERT 6.56 6.93 5.68 4.35 18.29 24.72 28.69 48.52
MPNet 8.87 10.34 7.56 6.78 20.11 26.14 31.98 50.48
MACLR (ours) 10.37 11.23 8.58 7.57 23.55 29.60 36.71 56.44

tra supervision. However, MACLR is significantly
better than MPNet with an average improvement
of 3.5% in P@1 and over 10% in R@100. Fur-
thermore, MACLR also outperforms its counter-
parts which are trained with effective pre-training
tasks such as SimCSE and ICT on the target
dataset, showing the effectiveness of pre-training
strategies like multi-scale adaptive clustering in
MACLR. Overall, results in Table 1 demonstrates
that MACLR is capable to learn informative embed-
dings and to make useful predictions even with no
supervision. We will investigate each component
in MACLR in Section 5.4 thoroughly.

5.3 Few-Shot Learning

We further conduct few-shot learning (FS-XMC)
experiments in which different learning algorithms
can access a limited number of positive (instance,
label) pairs. To simulate the scenario of few-shot
learning, we first manually sample a small ratio
of labels, then collect all their positive instances
from the training set as the final subset of positive
(instance, label) pairs for model training. Results
of FS-XMC methods fine-tuned with 1% and 5%
labels are shown in Tables 2 and 3 respectively.

Our proposed MACLR outperforms all other

Table 3: Results of FS-XMC where the training subset
covers 5% labels from the whole set.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 5.09 2.09 1.32 2.36 2.86 3.02 3.18 3.74
Astec 3.94 1.92 1.26 2.31 3.34 3.66 4.00 4.96
SiameseXML 5.36 2.23 1.41 3.15 3.89 4.08 4.27 4.82
ZestXML 12.33 10.99 8.71 6.84 17.19 21.97 28.10 46.49
SentBERT 15.47 12.24 9.64 8.63 19.23 24.40 30.82 49.22
MPNet 15.03 11.88 9.28 8.47 18.74 23.69 29.93 48.84
MACLR (ours) 19.56 16.19 12.64 11.15 25.65 32.18 39.63 58.45

LF-WikiSeeAlso-320K

XR-Linear 4.69 2.20 1.46 1.82 2.41 2.63 2.82 3.42
Astec 5.90 2.80 1.86 3.26 4.49 4.95 5.49 6.83
SiameseXML 6.83 3.15 2.06 3.88 5.15 5.56 6.02 7.09
ZestXML 10.06 8.11 6.60 5.33 11.49 14.74 19.57 40.46
SentBERT 18.47 14.19 11.29 10.82 21.55 26.77 33.92 57.02
MPNet 18.59 13.99 11.08 10.89 21.12 26.10 32.82 54.70
MACLR (ours) 20.99 15.57 12.26 12.59 23.94 29.41 36.78 59.81

LF-Wikipedia-500K

XR-Linear 11.80 5.30 3.39 2.76 3.47 3.65 3.82 4.09
Astec 11.23 5.27 3.48 5.46 7.47 8.16 8.90 10.35
SiameseXML 12.44 5.69 3.79 6.05 7.98 8.62 9.22 10.40
ZestXML 27.31 17.31 13.09 8.28 15.13 18.64 23.30 36.50
SentBERT 41.06 26.35 20.25 14.17 25.34 31.32 39.77 66.24
MPNet 42.81 28.07 21.66 14.67 26.81 33.24 42.28 67.76
MACLR (ours) 47.25 30.57 23.54 16.20 29.01 35.81 45.13 71.35

LF-Amazon-1M

XR-Linear 2.11 0.84 0.53 1.45 1.74 1.81 1.88 2.04
Astec 2.22 2.56 0.71 1.54 1.91 2.03 2.16 2.41
SiameseXML 2.60 3.01 1.06 1.81 2.20 2.30 2.41 2.60
ZestXML 7.17 8.35 6.36 5.18 17.49 21.88 26.80 36.51
SentBERT 8.89 10.02 7.93 7.00 21.58 27.35 33.98 54.28
MPNet 9.25 10.41 8.00 7.11 21.87 27.64 34.61 54.72
MACLR (ours) 10.60 11.47 8.80 7.89 24.14 30.44 37.95 58.45

baselines significantly, including variants of
Siamese-Transformer models (e.g., SentBERT, MP-
Net) and major competitive XMC methods (e.g.,
XR-Linear, Astec and SiameseXML), on all four
datasets.

Note that SiameseXML is the state-of-the-art
XMC method under the full supervision setup of
XMC. Here, we again witness that existing XMC
methods heavily rely on the supervision level as
well as the full-coverage of label space for test
set. MACLR, in contrast, still performs robustly
under FS-XMC, which enjoy larger applicability
to emerging domains with many cold-start labels.

Crucially, even ZestXML tailored to address
the challenging scenario of unseen labels cannot
match the performance of MACLR. In particular,
when focusing on the few-shot scenario with only
1% sampled labels, MACLR achieves 18.74% in
P@1, improving the performance of Astec with
0.94% and ZestXML with 10.10% significantly.
Besides, MACLR outperforms all Sentence-BERT
counterparts, validating the effectiveness of our
pre-training procedure. As to fine-tuning on the
subset with 5% labels, performance of all methods
are improved as expected with more supervision.



The relative rank among these methods remains
the same, with MACLR still performing the best in
terms of precision and recall on all four datasets.

5.4 Ablation Study

In this part, we conduct an ablation study to investi-
gate each component in our pre-training procedure,
including multi-scale adaptive clustering, label reg-
ularization, and self-training with pseudo positive
pairs constructed from the encoder or TF-IDF. We
add a component once a time on LF-Amazon-131K
to observe its independent influence on the model
performance. Table 4 presents detailed perfor-
mance on seven different configurations.

Table 4: Ablation study on LF-Amazon-131K.

Index
Ablation Configuration Precision Recall

MAC * LR * E † TFIDF † @1 @3 @5 @1 @3 @5 @10 @100

1 No No No No 13.82 11.41 8.90 7.76 18.09 22.80 28.94 47.40
2 Yes No No No 15.79 13.16 10.22 8.85 20.90 26.27 32.61 49.83
3 No Yes No No 16.02 13.29 10.28 9.04 21.27 26.51 32.97 50.34
4 Yes Yes No No 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45

5 Yes Yes Yes No 17.01 14.75 11.41 9.72 23.33 29.04 35.20 53.55
6 Yes Yes No Yes 16.51 14.12 10.92 9.52 22.43 28.02 34.64 52.78
7 Yes Yes Yes Yes 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99

* MAC represents adaptive clustering while LR stands for label regularization.
† Pseudo positive pairs are constructed from E or TFIDF.

For two techniques multi-scale adaptive cluster-
ing and label regularization during the Stage I, they
can improve the performance of the encoder sep-
arately, as shown in the performance gain of the
index 2 and 3 over the index 1. When combined,
they can further improve the accuracy of the model,
from 8.90% to 10.65% in P@5 and from 47.40%
to 51.45% in R@100. As to the second stage, we
explore the impact of self-training with pseudo pos-
itive pairs either from the encoder itself or TF-IDF.
We can see from Table 4 that pairs from both E
and TF-IDF contribute to the precision and recall
gain over the index 5. It further validates that the
encoder and TF-IDF provides complementary per-
spective when constructing pseudo positive pairs.

6 Conclusions

This paper is the first to investigate the problem
of Extreme zero-shot XMC without any supervi-
sion. We develop a two-stage pre-training proce-
dure MACLR to train a Sentence-BERT style en-
coder on pseudo (context, title) pairs constructed
from raw text. We demonstrate that techniques
including multi-scale adaptive clustering, label reg-
ularization and self-training contribute to the perfor-
mance gain of the pre-trained encoder. In particular,
MACLR outperforms all unsupervised baselines
significantly when there are no (instance, label)

pairs provided. It also offers leading accuracy in
both precision and recall after fine-tuning on a lim-
ited number of paired data. One limitation is rel-
ative low accuracy of top candidates and a future
direction could be adding a ranker model after the
encoder to improve performance on head labels.
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References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML 2009, Montreal,
Quebec, Canada, June 14-18, 2009, volume 382 of
ACM International Conference Proceeding Series,
pages 41–48. ACM.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal,
Y. Prabhu, and M. Varma. 2016. The extreme classi-
fication repository: Multi-label datasets and code.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik
Varma, and Prateek Jain. 2015. Sparse local embed-
dings for extreme multi-label classification. In Ad-
vances in Neural Information Processing Systems 28:
Annual Conference on Neural Information Process-
ing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, pages 730–738.

Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos
Malakasiotis, and Ion Androutsopoulos. 2019. Large-
scale multi-label text classification on EU legislation.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 6314–
6322, Florence, Italy. Association for Computational
Linguistics.

https://doi.org/10.1145/1553374.1553380
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://proceedings.neurips.cc/paper/2015/hash/35051070e572e47d2c26c241ab88307f-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/35051070e572e47d2c26c241ab88307f-Abstract.html
https://aclanthology.org/P19-1636
https://aclanthology.org/P19-1636


Wei-Cheng Chang, Daniel Jiang, Hsiang-Fu Yu,
Choon Hui Teo, Jiong Zhang, Kai Zhong, Kedarnath
Kolluri, Qie Hu, Nikhil Shandilya, Vyacheslav Iev-
grafov, et al. 2021. Extreme multi-label learning for
semantic matching in product search. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 2643–2651.

Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yim-
ing Yang, and Sanjiv Kumar. 2020a. Pre-training
tasks for embedding-based large-scale retrieval. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yim-
ing Yang, and Inderjit S. Dhillon. 2020b. Taming
pretrained transformers for extreme multi-label text
classification. In KDD ’20: The 26th ACM SIGKDD
Conference on Knowledge Discovery and Data Min-
ing, Virtual Event, CA, USA, August 23-27, 2020,
pages 3163–3171. ACM.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 1597–1607. PMLR.

Kunal Dahiya, Ananye Agarwal, Deepak Saini, K Gu-
ruraj, Jian Jiao, Amit Singh, Sumeet Agarwal, Pu-
rushottam Kar, and Manik Varma. 2021a. Siame-
seXML: Siamese networks meet extreme classifiers
with 100m labels. In International Conference on
Machine Learning, pages 2330–2340. PMLR.

Kunal Dahiya, Deepak Saini, Anshul Mittal, Ankush
Shaw, Kushal Dave, Akshay Soni, Himanshu Jain,
Sumeet Agarwal, and Manik Varma. 2021b. Deep-
XML: A deep extreme multi-label learning frame-
work applied to short text documents. In Proceedings
of the 14th ACM International Conference on Web
Search and Data Mining, pages 31–39.

Ofer Dekel and Ohad Shamir. 2010. Multiclass-
multilabel classification with more classes than exam-
ples. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics,
pages 137–144. JMLR Workshop and Conference
Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence

embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Chuan Guo, Ali Mousavi, Xiang Wu, Daniel Niels
Holtmann-Rice, Satyen Kale, Sashank J. Reddi, and
Sanjiv Kumar. 2019. Breaking the glass ceiling for
embedding-based classifiers for large output spaces.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 4944–
4954.

Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and
David Simcha. 2016. Quantization based fast inner
product search. In Proceedings of the 19th Inter-
national Conference on Artificial Intelligence and
Statistics, AISTATS 2016, Cadiz, Spain, May 9-11,
2016, volume 51 of JMLR Workshop and Conference
Proceedings, pages 482–490. JMLR.org.

Nilesh Gupta, Sakina Bohra, Yashoteja Prabhu, Saurabh
Purohit, and Manik Varma. 2021. Generalized zero-
shot extreme multi-label learning. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 527–535.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2020a. Revisiting self-training for neural
sequence generation. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross B. Girshick. 2020b. Momentum contrast for
unsupervised visual representation learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 9726–9735. IEEE.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2022. Contrastive pre-training
for zero-shot information retrieval.

Himanshu Jain, Venkatesh Balasubramanian, Bhanu
Chunduri, and Manik Varma. 2019. Slice: Scal-
able linear extreme classifiers trained on 100 mil-
lion labels for related searches. In Proceedings of
the Twelfth ACM International Conference on Web
Search and Data Mining, WSDM 2019, Melbourne,
VIC, Australia, February 11-15, 2019, pages 528–
536. ACM.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

https://openreview.net/forum?id=rkg-mA4FDr
https://openreview.net/forum?id=rkg-mA4FDr
https://dl.acm.org/doi/10.1145/3394486.3403368
https://dl.acm.org/doi/10.1145/3394486.3403368
https://dl.acm.org/doi/10.1145/3394486.3403368
http://proceedings.mlr.press/v119/chen20j.html
http://proceedings.mlr.press/v119/chen20j.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper/2019/hash/78f7d96ea21ccae89a7b581295f34135-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/78f7d96ea21ccae89a7b581295f34135-Abstract.html
http://proceedings.mlr.press/v51/guo16a.html
http://proceedings.mlr.press/v51/guo16a.html
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://openreview.net/forum?id=SJgdnAVKDH
https://openreview.net/forum?id=SJgdnAVKDH
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://openreview.net/forum?id=c7S4WIlmu5
https://openreview.net/forum?id=c7S4WIlmu5
https://doi.org/10.1145/3289600.3290979
https://doi.org/10.1145/3289600.3290979
https://doi.org/10.1145/3289600.3290979
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html


Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 6086–6096, Florence, Italy.
Association for Computational Linguistics.

Yandong Li, Di Huang, Danfeng Qin, Liqiang Wang,
and Boqing Gong. 2020. Improving object detec-
tion with selective self-supervised self-training. In
European Conference on Computer Vision, pages
589–607. Springer.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(4):824–836.

Tharun Medini, Qixuan Huang, Yiqiu Wang, Vijai Mo-
han, and Anshumali Shrivastava. 2019. Extreme
classification in log memory using count-min sketch:
A case study of amazon search with 50m products.
In Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13244–
13254.

Anshul Mittal, Noveen Sachdeva, Sheshansh Agrawal,
Sumeet Agarwal, Purushottam Kar, and Manik
Varma. 2021. ECLARE: Extreme classification with
label graph correlations. In Proceedings of the Web
Conference 2021, pages 3721–3732.

Aaron Mueller, Jason Krone, Salvatore Romeo, Saab
Mansour, Elman Mansimov, Yi Zhang, and Dan Roth.
2022. Label semantic aware pre-training for few-shot
text classification. arXiv preprint arXiv:2204.07128.

Thomas Müller, Guillermo Pérez-Torró, and Marc
Franco-Salvador. 2022. Few-shot learning with
siamese networks and label tuning. arXiv preprint
arXiv:2203.14655.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul
Agrawal, and Manik Varma. 2018. Parabel: Par-
titioned label trees for extreme classification with
application to dynamic search advertising. In Pro-
ceedings of the 2018 World Wide Web Conference on

World Wide Web, WWW 2018, Lyon, France, April
23-27, 2018, pages 993–1002. ACM.

Yashoteja Prabhu and Manik Varma. 2014. Fastxml: a
fast, accurate and stable tree-classifier for extreme
multi-label learning. In The 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’14, New York, NY, USA -
August 24 - 27, 2014, pages 263–272. ACM.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Sashank J. Reddi, Satyen Kale, Felix X. Yu,
Daniel Niels Holtmann-Rice, Jiecao Chen, and San-
jiv Kumar. 2019. Stochastic negative mining for
learning with large output spaces. In The 22nd In-
ternational Conference on Artificial Intelligence and
Statistics, AISTATS 2019, 16-18 April 2019, Naha,
Okinawa, Japan, volume 89 of Proceedings of Ma-
chine Learning Research, pages 1940–1949. PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Anshumali Shrivastava and Ping Li. 2014. Asymmet-
ric LSH (ALSH) for sublinear time maximum inner
product search (MIPS). In Advances in Neural Infor-
mation Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, De-
cember 8-13 2014, Montreal, Quebec, Canada, pages
2321–2329.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2020. MPNet: Masked and permuted pre-
training for language understanding. In Advances in
Neural Information Processing Systems.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Qizhe Xie, Minh-Thang Luong, Eduard H. Hovy, and
Quoc V. Le. 2020. Self-training with noisy student
improves imagenet classification. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020, pages 10684–10695. IEEE.

Nishant Yadav, Rajat Sen, Daniel N. Hill, Arya Mazum-
dar, and Inderjit S. Dhillon. 2021. Session-aware
query auto-completion using extreme multi-label
ranking. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining,
KDD ’21, page 3835–3844, New York, NY, USA.
Association for Computing Machinery.

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://aclanthology.org/P19-1612
https://aclanthology.org/P19-1612
https://proceedings.neurips.cc/paper/2019/hash/69cd21a0e0b7d5f05dc88a0be36950c7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/69cd21a0e0b7d5f05dc88a0be36950c7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/69cd21a0e0b7d5f05dc88a0be36950c7-Abstract.html
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/2623330.2623651
https://doi.org/10.1145/2623330.2623651
https://doi.org/10.1145/2623330.2623651
http://proceedings.mlr.press/v89/reddi19a.html
http://proceedings.mlr.press/v89/reddi19a.html
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://aclanthology.org/D19-1410
https://proceedings.neurips.cc/paper/2014/hash/310ce61c90f3a46e340ee8257bc70e93-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/310ce61c90f3a46e340ee8257bc70e93-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/310ce61c90f3a46e340ee8257bc70e93-Abstract.html
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1109/CVPR42600.2020.01070
https://doi.org/10.1145/3447548.3467087
https://doi.org/10.1145/3447548.3467087
https://doi.org/10.1145/3447548.3467087


I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri,
and Dhruv Mahajan. 2019. Billion-scale semi-
supervised learning for image classification. arXiv
preprint arXiv:1905.00546.

Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai,
Hiroshi Mamitsuka, and Shanfeng Zhu. 2019. At-
tentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text
classification. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 5812–5822.

Hsiang-Fu Yu, Kai Zhong, Jiong Zhang, Wei-Cheng
Chang, and Inderjit S Dhillon. 2020. PECOS: Pre-
diction for enormous and correlated output spaces.
Journal of Machine Learning Research.

Jiong Zhang, Wei-cheng Chang, Hsiang-fu Yu, and In-
derjit S Dhillon. 2021. Fast multi-resolution trans-
former fine-tuning for extreme multi-label text classi-
fication. In Advances in Neural Information Process-
ing Systems.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui,
Hanxiao Liu, Ekin Dogus Cubuk, and Quoc Le. 2020.
Rethinking pre-training and self-training. Advances
in neural information processing systems, 33:3833–
3845.

A Implementation Details

Datasets and Source Codes Statistics of four
datasets are presented in Table 5. All XMC datasets
used in the paper are available in the Extreme Clas-
sification Repository (Bhatia et al., 2016)1, except
for LF-Amazon-1M, which is available from the
ZestXML paper (Gupta et al., 2021)2. Besides,
sources code can be accessed in this link.

Table 5: Dataset statistics. Ntrain, Ntest and Nlabel are
the number of training points, test points, and labels
respectively. DBoW is the dimensionality of Bag-of-
Words (BoW) features.

Dataset Ntrain Ntest Nlabel DBoW

LF-Amazon-131K 294,805 134,835 131,073 80,000
LF-WikiSeeAlso-320K 693,082 177,515 312,330 80,000
LF-Wikipedia-500K 1,813,391 783,743 501,070 500,000
LF-Amazon-1M 914,179 1,465,767 960,106 1,000,000

Compared Baselines of EZ-XMC Here we pro-
vide detailed description of each baseline method
under the EZ-XMC setting.

1http://manikvarma.org/downloads/XC/
XMLRepository.html

2https://github.com/nilesh2797/zestxml

• TF-IDF (Rajaraman and Ullman, 2011), which
represents instances and labels by sparse TF-IDF
features and retrieves top labels for each instance
based on the similarity of TF-IDF features;

• XR-Linear (Yu et al., 2020), a hierarchical linear
model trained with pseudo positive pairs con-
structed from TF-IDF;

• GloVe (Pennington et al., 2014), which adopts
dense average word embeddings with the dimen-
sion of 300 trained on co-occurrence statistics to
measure similarity between instances and labels;

• Sentence-BERT (SentBERT) (Devlin et al., 2019;
Reimers and Gurevych, 2019), a sentence en-
coder modeled as a Siamese-Transformer to de-
rive semantically meaningful embeddings for in-
stances and labels;

• Paraphrase MPNet (MPNet) (Song et al., 2020),
another Sentence-BERT model originally de-
signed for searching sentence paraphrases;

• SimCSE (Gao et al., 2021), a Siamese-
Transformer pre-trained with the contrastive ob-
jective using dropout noise as augmentation;

• ICT (Lee et al., 2019), another Siamese-
Transformer pre-trained with the contrastive ob-
jective using (context, title) pairs.

Evaluation Metrics As mentioned before, we
adopt precision and recall as our evaluation metrics.
In detail, P@k and R@k are defined as follows:

P@k =
1

k

∑
i∈rankk(y

′)

yi, R@k =
1∑
l yl

∑
i∈rankk(y

′)

yi.

(5)

y ∈ {0, 1}L and y′ ∈ RL are the ground truth
vector and the prediction vector respectively. rankk
returns the indices of the top-k highest elements.

Hyper-parameters We use a Siamese Trans-
former model to embed both instances and labels.
The encoder consists of a 12 layers BERT-base
model, topped with a linear head projecting hidden
state of the [CLS] token into a 512-dimensional
embedding. The sequence length of the instance
and the label is set to be 288 and 64 respectively.
We pre-train the model on eight V100 GPUs for
100,000 steps with an Adam optimizer and batch
size of 32 per GPU in both Stage I and Stage II.
This pre-training process takes about 1 day. We
adopt an initial learning rate 1 × 10−5 with the
warm-up ratio 0.1, followed by a linear learning
rate decay. For fine-tuning, the learning rate of
Adam is set to 5× 10−6 with 2000 training steps
for the 1% label ratio and 10K training steps for
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Table 6: Mean and variance of MACLR performance of four independent runs under EZ-XMC on LF-Amazon-131K.

Method
Precision Recall

@1 @5 @10 @1 @3 @5 @10 @100

MACLR 17.64 ± 0.11 15.24 ± 0.01 11.81 ± 0.01 10.11 ± 0.04 24.13 ± 0.04 30.14 ± 0.04 37.13 ± 0.03 54.88 ± 0.01

the 5% label ratio. In the Stage I, we use the initial
cluster size K0 = 2048 and set TK = 10000 and
Tupdate = 5000. In Stage II, top 3 ranked labels
from predictions of the encoder and TF-IDF are se-
lected to constitute the pseudo set for self-training.

For hyper-parameters of all baselines, we follow
their default setups. All experiments are conducted
on the AWS p3dn.24xlarge instance, consisting of
96 Intenl Xeon CPUs with 768 GB of RAM and 8
Nvidia V100 GPUs with 32 GB of memory each. It
takes about half a day to complete the pre-training
procedure of MACLR.

We present error bars of four independent runs to
validate our MACLR results are statistically signifi-
cant under EZ-XMC in Table 6. It can be observed
that the variance is small, showing that our method
can produce similar results with different random
seeds, and MACLR is statically better than other
baselines compared with results in Table 1. There-
fore, we run each method for four times and report
the best performance in the main paper.

B Hyperparameter Study

We provide details of hyperparameter tuning pro-
cess. For hyperparameters in the Stage I includ-
ing TK , Tupdate, and K0, we choose them from
the following ranges: TK ∈ [5000, 10000, 25000],
Tupdate ∈ [1000, 5000, 10000], and K0 ∈
[1024, 2048, 4096]. Instead of grid search for all
possible combinations (in total 33 = 27), we tried
to investigate the impact of different hyperparam-
eters first and then determined the value. Specif-
ically, we choose the median setting of (TK =
10000, Tupdate = 5000,K0 = 2048) as the base-
line, and for each hyperparameter to be evaluated,
we fix the remaining two and observe the perfor-
mance. Experimental results can be found in Table
7, 8 and 9. We summarize our findings below:

• With Tupdate = 5000,K0 = 2048, TK =
10000 performs the best. We assume that
when TK is smaller as 5000, the training steps
are not sufficient to obtain satisfactory repre-
sentations under the current cluster size; and
when TK is larger as 25000, the algorithm
spends too much time on one cluster size and

fails to explore different scenarios based on
curriculum learning.

• With TK = 10000,K0 = 2048, Tupdate =
1000 outperforms the other two values. It is
expected since the cluster assignment would
be more accurate and the learned embeddings
would be better accordingly.

• With TK = 10000, Tupdate = 5000,K0 =
2048 is the best among three values. We hy-
pothesize the trajectory of K0 = 2048 gives
the appropriate curriculum learning process.

Based on these observations, the best setting should
be (TK = 10000, Tupdate = 1000,K0 = 2048).
However, we can see that Tupdate = 1000 is only
slightly better than Tupdate = 5000 and considering
the cost of updating cluster assignment, we select
Tupdate = 5000 instead.

Table 7: Impact of TK with fixed Tupdate = 5000 and
K0 = 2048 on LF-Amazon-131K.

Hyperparameter
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

TK = 5000 15.35 12.78 9.67 8.22 20.56 26.20 33.03 50.24
TK = 10000 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45
TK = 25000 14.46 12.05 9.24 7.68 19.96 25.78 32.64 49.16

Table 8: Impact of Tupdate with fixed TK = 10000 and
K0 = 2048 on LF-Amazon-131K.

Hyperparameter
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

Tupdate = 1000 16.61 13.82 10.90 9.63 21.72 27.35 34.32 51.82
Tupdate = 5000 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45
Tupdate = 10000 15.26 12.66 9.72 8.42 20.59 26.14 32.98 50.04

Table 9: Impact of K0 with fixed Tupdate = 5000 and
TK = 10000 on LF-Amazon-131K.

Hyperparameter
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

K0 = 1024 15.82 13.03 9.94 8.74 20.85 26.40 33.06 50.28
K0 = 2048 16.37 13.71 10.65 9.29 21.63 27.03 33.93 51.45
K0 = 4096 15.98 13.24 10.05 8.87 21.14 26.69 33.36 50.62

For the hyperparameter k in the Stage II, we
use the previous setting (TK = 10000, Tupdate =
5000,K0 = 2048) for pretraining in the stage I,
and tune k from [1, 3, 5]. Results are shown in



Table 10 in the paper. It can be observed that k = 3
leads to the best performance. This is due to the fact
that k = 1 did not introduce a sufficient number
of meaningful pseudo (instance, label) pairs while
k = 5 was likely to add to the noise of the training
set with irrelevant (instance, label) pairs.

Table 10: Impact of the number of pseudo labels k on
LF-Amazon-131K.

Hyperparameter
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

k = 1 17.15 14.92 11.38 9.72 23.76 29.55 36.68 54.46
k = 3 18.13 15.42 11.93 10.35 24.45 30.43 37.28 54.99
k = 5 16.74 14.06 10.93 9.48 23.51 29.12 36.19 53.98

Therefore, the default hyperparameter choice of
MACLR is determined as (TK = 10000, Tupdate =
5000,K0 = 2048, k = 3), which is tuned on
LF-Amazon-131K. Moreover, as we can see that
MACLR is not very sensitive to the choice of hy-
perparameters and performs better than all the base-
lines, we assume that this configuration would per-
form similarly on other datasets and use it without
further tuning.

C Additional Experiments on FS-XMC

Table 11: Results of FS-XMC where the training subset
covers 1% positive pairs from the whole set.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 5.37 2.66 1.68 2.81 3.92 4.09 4.26 4.99
Astec 3.29 2.04 1.41 1.93 3.33 3.77 4.06 5.06
SiameseXML 7.14 3.74 2.41 4.22 6.17 6.55 6.95 8.09
ZestXML 12.91 11.31 8.91 7.20 17.69 22.51 28.27 42.40
SentBERT 15.08 11.81 9.06 8.38 18.42 22.89 28.62 46.38
MPNet 15.26 12.30 9.42 8.56 19.35 23.98 29.91 48.06
MACLR (ours) 18.92 16.17 12.62 10.98 25.64 32.16 39.46 58.24

LF-WikiSeeAlso-320K

XR-Linear 6.97 3.43 2.31 3.74 5.02 5.44 5.84 6.87
Astec 5.58 3.35 2.48 3.22 5.43 6.51 7.95 11.76
SiameseXML 9.87 5.22 3.59 5.84 8.57 9.53 10.60 13.04
ZestXML 10.40 8.18 6.49 5.57 11.65 14.52 18.81 33.20
SentBERT 18.85 14.23 11.22 11.16 21.77 26.94 33.78 55.88
MPNet 18.04 13.27 10.44 10.51 19.99 24.62 30.86 52.52
MACLR (ours) 20.49 15.50 12.24 12.34 23.88 29.43 36.76 59.82

In this section, we present additional exper-
imental results for the setting of FS-XMC on
LF-Amazon-131K and LF-WikiSeeAlso-320K. In-
stead of sampling a few-shot subset by the label
coverage ratio, we turn to sampling based on the
pair ratio. Specifically, suppose a training set
Dtrain = {(xi, yi)} has |Dtrain| positive pairs. Each
time we randomly sample a small ratio of δ (1% or
5% in our paper) pairs from the total set to consti-
tute the few-shot subset. Each subset has δ|Dtrain|
pairs for fine-tuning. Detailed results of δ = 1%

Table 12: Results of FS-XMC where the training subset
covers 5% positive pairs from the whole set.

Method
Precision Recall

@1 @3 @5 @1 @3 @5 @10 @100

LF-Amazon-131K

XR-Linear 11.20 5.82 3.80 5.98 8.56 9.18 9.80 12.79
Astec 10.71 6.50 4.52 6.12 10.23 11.67 13.35 18.15
SiameseXML 11.88 8.72 5.93 8.50 13.68 15.23 16.80 20.28
ZestXML 12.86 11.28 8.91 7.10 17.62 22.43 28.42 49.41
SentBERT 16.94 13.59 10.52 9.55 21.23 26.55 33.14 51.81
MPNet 17.48 13.58 10.61 9.95 21.38 26.83 33.60 52.31
MACLR (ours) 19.75 16.45 12.87 11.18 25.99 32.70 40.38 59.82

LF-WikiSeeAlso-320K

XR-Linear 13.13 6.88 4.70 7.00 9.64 10.54 11.49 14.20
Astec 15.61 8.73 6.23 8.77 13.17 15.02 17.36 24.30
SiameseXML 16.51 9.68 6.96 9.40 14.78 16.97 19.48 25.26
ZestXML 17.68 8.51 6.85 10.63 12.01 15.20 20.08 43.10
SentBERT 20.12 15.01 11.87 12.05 23.01 28.40 35.52 58.41
MPNet 19.88 14.90 11.76 11.85 22.75 27.96 35.03 57.26
MACLR (ours) 21.80 16.61 13.12 13.27 25.74 31.59 39.25 62.13

and δ = 5% are presented in Table 11 and 12 re-
spectively. MACLR is still the best-performing
method and outperforms all other baselines signifi-
cantly in precision and recall.


