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ABSTRACT

Offline evaluation of LLMs is crucial in understanding their capacities, though
current methods remain underexplored in existing research. In this work, we fo-
cus on the offline evaluation of the chain-of-thought capabilities and show how
to optimize LLMs based on the proposed evaluation method. To enable offline
feedback with rich knowledge and reasoning paths, we use knowledge graphs
(KGs) (e.g., Wikidata5M) to provide feedback on the generated chain of thoughts.
Due to the heterogeneity between LLM reasoning and KG structures, direct inter-
action and feedback from knowledge graphs on LLM behavior are challenging,
as they require accurate entity linking and grounding of LLM-generated chains of
thought in the KG. To address the above challenge, we propose an offline chain-of-
thought evaluation framework, OCEAN, which models chain-of-thought reasoning
in LLMs as a Markov Decision Process (MDP), and evaluate the policy’s align-
ment with KG preference modeling. To overcome the reasoning heterogeneity and
grounding problems, we leverage on-policy KG exploration and reinforcement
learning to model a KG policy that generates token-level likelihood distributions
for LLM-generated chain-of-thought reasoning paths, simulating KG reasoning
preference. Then we incorporate the knowledge-graph feedback on the validity
and alignment of the generated reasoning paths into inverse propensity scores and
propose KG-IPS estimator. Theoretically, we prove the unbiasedness of the pro-
posed KG-IPS estimator and provide a lower bound on its variance. With the
off-policy evaluated value function, we can directly enable off-policy optimiza-
tion to further enhance chain-of-thought alignment. Our empirical study shows
that OCEAN can be efficiently optimized for generating chain-of-thought reason-
ing paths with higher estimated values without affecting LLMs’ general abilities
in downstream tasks or their internal knowledge.

1 INTRODUCTION

Offline policy evaluation aims to estimate a target policy model’s performance with only collected
data, without requiring direct interactions between the target policy and realistic environments. Pre-
vious offline evaluation methods focus on decision-making policies in recommender systems (Li
et al., 2011), healthcare (Bang & Robins, 2005), and other scenarios where online experimentation
is costly (Thomas et al., 2015; Bhargava et al., 2024), risky, and impractical (Yu et al., 2021). Re-
cent studies in LLMs leverage human feedback to align models’ behaviors with human preferences
in single-turn generation (Ouyang et al., 2022; Rafailov et al., 2024) and multi-step reasoning tasks
(Joshi et al., 2024). In addition, complicated LLM agentic frameworks, involving multi-agent col-
laboration, orchestration, and cooperation, rely heavily on efficient (Roucher et al., 2025; Wu et al.,
2023a), robust (Masterman et al., 2024; Nguyen et al., 2024a), and proactive (Yao et al., 2023; Xia
et al., 2025; Ma et al., 2023) chain-of-thought reasoning abilities, which need to be finetuned offline
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(Putta et al., 2024) before deploying them online. Due to the high cost of deploying LLMs online
and interacting with human feedback, Bhargava et al. (2024) further enables offline evaluation of
LLMs from logged human feedback to align LLMs’ response generation.

However, considering annotators may not have comprehensive knowledge in various types of knowl-
edge backgrounds, human feedback on chain-of-thought reasoning (Joshi et al., 2024) can be more
challenging to collect. In addition, since chain-of-thought reasoning involves a sequential decision-
making process, the volume of collected human feedback may increase exponentially. Due to such
challenges, conventional reinforcement learning from human feedback (RLHF) methods (Ouyang
et al., 2022; Bai et al., 2022a) can suffer from training inefficiencies and scalability issues.

Motivated by recent works in using knowledge graphs (KGs) as side information for prompt engi-
neering (Wang et al., 2024c; Xia et al., 2024b), self-correction (Zhao et al., 2023; Wang et al., 2023;
Li et al., 2024b; Wu et al., 2024b), evaluating chain-of-thought (Nguyen et al., 2024b), and model
fine-tuning (Wang et al., 2024b; Tang et al., 2024), we propose leveraging KGs as weak yet control-
lable knowledge reasoners to effectively measure the alignment between LLMs’ multi-step chain-
of-thought reasoning and multi-hop KG trajectories by inverse propensity scores (IPS) (Joachims
et al., 2017). Unlike the chain-of-thought evaluation method (Nguyen et al., 2024b), which depends
on accurate chain-of-thought grounding in specific KGs, we propose to verbalize KG trajectories
and develop a KG policy as a verbal reasoning mechanism over the graphs. This approach bridges
the gap between KG and LLM reasoning and generalizes the KG policy to various LLMs.

To enable controllable chain-of-thought alignment in LLMs, we principally track LLMs’ decision-
making process in generating chain-of-thought reasoning steps, by formulating the process as a
Markov Decision Process (MDP) whose goal is to reach the correct final answer with minimal
knowledge exploration and exploitation Lissandrini et al. (2020b;a); Wu et al. (2024a). Then, we
propose offline chain-of-thought evaluation and alignment, OCEAN, which evaluates the generated
chain of thoughts from off-policy LLMs through collected offline data samples with feedback from
a KG. The improved Knowledge Graph - Inverse Propensity Scores (KG-IPS) approach considers
the effects of feedback from the KG policy that aligns the model’s chain-of-thought generation
and the behavior policy, which prevents model degeneration. We prove that the KG-IPS estimator
provides an unbiased estimate of the target policy, with a lower bound for the variance, and establish
confidence intervals using sub-Gaussian concentration inequalities. To enable direct optimization of
LLM policies, we leverage the proposed KG-IPS policy evaluation approach for LLM fine-tuning by
directly maximizing estimated policy values through gradient descent. Then we empirically evaluate
the optimized LLM policy on three types of chain-of-thought reasoning tasks, and demonstrate the
effectiveness of the proposed policy optimization method, without affecting LLMs’ generalizability
or generation quality. We summarize our contributions as follows:

• We propose an offline evaluation framework, OCEAN, which bridges the heterogeneity be-
tween LLM and KG reasoning, for effective evaluations of chain-of-thought.

• With the evaluation framework, we further develop a direct policy optimization method
which enables efficient alignment with automatic feedback from the KG.

• To facilitate the evaluation and optimization, we model the KG preference and derive feed-
back by developing a policy which verbalizes KG trajectories.

• We provide a theoretical analysis of the unbiasedness and establish a lower bound for the
variance of our KG-IPS estimator.

• Through comprehensive experiments, we demonstrate OCEAN’s effectiveness in aligning
LLMs’ chain-of-thought reasoning through direct optimization of the estimated policy
value. OCEAN also achieves better performance on various downstream tasks without af-
fecting LLMs’ generalizability.

2 RELATED WORK

Offline Policy Evaluation Offline policy evaluation (OPE) is essential when online policy learning
is risky and impractical (Levine et al., 2020). OPE has been applied to various practical applica-
tions, including evaluating the recommender system’s behavior with offline collected user feedback
(Gilotte et al., 2018; Jeunen, 2019). Recent work (Gao et al., 2024) also develops an OPE estima-
tor for LLM evaluation based on human feedback. Different from previous works, we study and
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formulate chain-of-thought generation in LLM as an MDP and use knowledge graph reasoning as
automatic feedback to develop a KG-IPS policy value estimator.

LLM Alignment Reinforcement Learning from Human Feedback (RLHF) has been the dominant
approach, optimizing LLMs using human-annotated data to align model behavior with user prefer-
ences (Ouyang et al., 2022; Bai et al., 2022a). DPO (Rafailov et al., 2024) and RRHF (Yuan et al.,
2023) are proposed to reduce the training instability of RLHF. Wu et al. (2023b) utilizes varying
densities of human feedback to offer fine-grained rewards for RL finetuning, and Sun et al. (2024a)
focuses on aligning LLMs with reward models driven by human-defined principles. To address
RLHF’s limitations such as heavy reliance on human input, alternative approaches like Reinforce-
ment Learning from AI Feedback (RLAIF) (Bai et al., 2022b; Lee et al., 2023; Liu et al., 2023)
and self-alignment methods (Sun et al., 2024b) have been proposed, using AI-generated feedback to
scale and automate alignment. Despite advancements, a key challenge remains in aligning LLMs’
internal knowledge with their reasoning, resulting in flawed reasoning even after factual errors are
corrected. Our approach focuses on improving chain-of-thought alignment by modeling reasoning
paths as an MDP and using KGs to ensure both factual accuracy and human-like reasoning.

Chain-of-thought Reasoning Chain-of-thought prompting has been widely applied to elicit the
strong reasoning abilities of LLMs (Wei et al., 2022; Chu et al., 2023; Xia et al., 2024a). By decom-
posing a complex problem into a sequence of intermediate sub-tasks, LLMs can focus on important
details and solve the problem step by step (Huang & Chang, 2023; Yu et al., 2023). Despite the
remarkable performance improvements, recent studies have found that LLMs often generate un-
faithful chain-of-thought reasoning paths that contain factually incorrect rationales (Turpin et al.,
2023; Lanham et al., 2023). To address this, a number of works leverage LLMs’ self-evaluation
abilities to verify and refine each reasoning step (Ling et al., 2023; Madaan et al., 2023). As the
factual errors in the generated chain-of-thought may also be caused by the limited or outdated para-
metric knowledge of LLMs, recent methods incorporate external knowledge sources to further edit
unfaithful content in the reasoning path (Zhao et al., 2023; Wang et al., 2023; Li et al., 2024b;
Wang et al., 2024d;a). While these methods focus on knowledge augmentation and editing through
prompts, our method, in comparison, directly aligns LLM internal knowledge with faithful and
factual chain-of-thought, which avoids potential knowledge conflicts between parametric and non-
parametric knowledge when generating reasoning paths.

3 PRELIMINARY

We first provide the formulation of chain-of-thought reasoning in LLMs as an MDP. Then we discuss
conventional knowledge graph reasoning, as an alternative to free-form generation by verbalizing
structured knowledge graph reasoning paths into natural language, which is more statistically con-
trollable and generates faithful reasoning paths to the knowledge graph.

3.1 PROBLEM FORMULATION: CHAIN-OF-THOUGHT AS AN MDP

Given the prompt instruction q, chain-of-thought reasoning process in a causal language model πθ

includes the generation of a trajectory of reasoning steps c = (c1, c2, . . . , cT ), before the final
answer prediction y,

ct ∼ πθ(· | q, c<t) c<t = (c1, . . . , ct−1), y ∼ πθ(·|q) = πθ(y|q, c)
T∏

t=1

πθ(ct|q, c<t),

where each reasoning step ct comprises a sequence of tokens and the number of reasoning step T is
determined by the model’s generation. Controllable chain-of-thought generation can be challenging
due to its nature in autoregressive sequential sampling (Lin et al., 2020), which produces a high-
dimensional action space in sampling a reasoning step πθ(ct|q) containing multiple tokens.

Chain-of-thought reasoning can be viewed as a Markov Decision Process (MDP) (Sutton, 2018):
starting with the instruction prompt q, the LLM sequentially decides and generates the next-step
reasoning path ct that navigates until it arrives at a target final answer y. Given the LLM policy πθ,
at time step t, each state st ∈ S comprises of the instruction prompt q and previously generated
reasoning paths (ci)

t−1
i=0 . The action space {1, . . . , |V|}Nt in LLMs is a sequence of Nt tokens as
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a knowledge graph entity or relation identified on a single thought, sampled from an identical and
finite vocabulary set V . The LLM policy πθ samples next-step thought based on current state as at ∼
πθ(· | st), which is a sub-sequence in the reasoning path at ⊆ ct identified on the knowledge graph.
The surrounding context ct \at other than the knowledge graph entity or relation is deterministically
generated by LLMs. The transition in chain-of-thought is concatenating each reasoning path to the
current state as st+1 = [st, ct]. Then the reward function is to evaluate each thought given the state
as rt = r(st, ct). Although such formulation of chain-of-thought enables direct LLM on-policy
optimization via reinforcement learning, direct interaction with knowledge graphs to collect per-
step reward in LLMs can be practically challenging and require a large effort of engineering due to
the discrepancy between the unstructured generation of LLMs and structured knowledge graphs (Pan
et al., 2024). Therefore, we propose to offline evaluate and optimize the target policy aligning with
knowledge graph preference.

3.2 VERBALIZED KNOWLEDGE GRAPH REASONING

In contrast to chain-of-thought reasoning, conventional knowledge graph reasoning methods (Lin
et al., 2018; Saxena et al., 2020) sample a entity-relation pair (rt, et) at step t from a subset of the
graph G = (E ,V) consisting of the outgoing edges of current entity et−1,

(rt, et) ∈ {(r′, e′)|(et−1, r
′, e′) ∈ G} , (1)

where the transition feasibility of the entity et−1 to all the outgoing edges is entirely determined
by G. Knowledge graph reasoning starts with a triplet (e0, r1, e1) and produces a chain of triplets
h = (e0, r1, e1, . . . , rT , eT ) by sampling from a policy µ,

(rt, et) ∼ µ ((rt, et)|e0, r1, e1, . . . , rt−1, et−1) , (2)
where the goal of such knowledge graph exploration is to arrive at the correct answer entity at the
end of the search step T . By knowledge graph exploration, we can collect a set of trajectories
H = {hk}Kk=1, which are used to estimate a parametric probabilistic policy µϕ as a proxy to model
the preference of the knowledge graph.

To align the action space between the knowledge graph preference policy µϕ and the target policy
πθ, we leverage a small language model as the backbone of µϕ and fine-tune the model on verbal-
ized trajectories as natural language contexts. Inspired by existing efforts in verbalizing structured
knowledge graphs into natural language query (Seyler et al., 2017) and context (Agarwal et al.,
2020; Wang et al., 2022a), we leverage the GPT-4 (Achiam et al., 2023) model f to verbalize each
chain of triplets h into a chain-of-thoughts c = f(h). The verbalized knowledge-graph trajectories
are used to model knowledge graph preference in Section 4.2.

4 OCEAN: OFFLINE CHAIN-OF-THOUGHT EVALUATION AND ALIGNMENT

We propose an offline evaluation of the chain-of-thought generation process aligned with knowledge
graph preference. The off-policy estimator can be used for policy optimization that aligns LLMs
with more faithful reasoning paths from knowledge graphs (Lin et al., 2023). We develop a small
language model as a behavior policy that models the knowledge graph preference. In Figure 1, we
illustrate the workflow of our proposed framework OCEAN.

4.1 OFFLINE EVALUATION AND OPTIMIZATION

One of the most broadly used offline evaluation approaches is inverse propensity scores (Ionides,
2008; Dudı́k et al., 2011), which has been used for LLM-based offline policy evaluation for various
purposes (Bhargava et al., 2024; Dhawan et al., 2024; Wu et al., 2022). Given the offline logged
chain-of-thought trajectories D = {τi}Ni=1, where τi = (s

(i)
t , c

(i)
t , r

(i)
t , s

(i)
t+1)

Ti
t=0, we propose a KG-

IPS estimator considering two-folded weights of entity tokens in the knowledge graph preference
policy µϕ and of non-entity tokens in the base LLM policy π0 ,

V̂KG−IPS(θ) =
1

N

N∑
i=1

1

Ti

Ti∑
t=1

1

|c(i)t |

∑
v∈c

(i)
t

πθ(v|s(i)t )

λ(v|s(i)t )
log π0(v|s(i)t ), (3)
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(A Collection 1984–1989, performed by, Jane Siberry)
(Jane Siberry, was born in, Toronto)
(Toronto, has a, castle)
(castle, is named, Casa Loma)

Trajectory Verbalization
A Collection 1984–1989 was performed by Jane Siberry. Jane 
Siberry was born in Toronto. The castle in Toronto is named 
Casa Loma.

Policy Gradient 
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Policy Gradient
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Target Policy
(LLMs)

Base Policy
(Pretrained LLMs)

Preference Policy
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Gradient
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Initialized at 
time step 0

Figure 1: An illustration of our framework OCEAN. We illustrate the framework in three steps.
Step 1 samples trajectories from the Wikidata5M knowledge graph and verbalizes the reasoning
trajectories. With the collected trajectories, Step 2 trains a knowledge graph preference modeling,
which is fixed and used during chain-of-thought evaluation and optimization in Step 3 We highlight
the learnable models in red and the frozen models in gray.

where Ti is the CoT steps for trajectory i; |c(i)t | is the number of tokens within the reasoning step
c
(i)
t . The propensity ratio in equation 3 is πθ(v|s(i)t )/λ(v|s(i)t ), where λ(v|s(i)t ) = 1{v ∈ a

(i)
t } ·

µϕ(v|s(i)t ) + 1{v ∈ c
(i)
t \a

(i)
t } · π0(v|s(i)). In this formulation, the two probabilities are combined

to account for cases where µϕ(v | s(i)t ) might be undefined if those tokens are surrounding texts
that cannot be identified on the knowledge graph. Specifically, we replace the undefined probability
with the fallback probability π0(v | s(i)). We follow (Zhang et al., 2024) to use the log-likelihood
score of each token in the base policy π0 as the reward function. Establishing the unbiasedness of
the KG-IPS estimator is essential for reliable policy evaluation (Jiang & Li, 2016; Bhargava et al.,
2024). We formalize this in the following lemma:
Lemma 1. The KG-IPS estimator provides an unbiased estimate of the target policy πθ.

Intuitively, by re-weighting the token-level likelihoods from the target policy πθ with the behavior
policy µϕ (for entity tokens) and the base policy π0 (for non-entity tokens), we ensure that our
estimator compensates for the off-policy distribution, leading to an unbiased estimate of the true
value function. The detailed proof is provided in Appendix A.

The standard IPS estimator is known to have a high variance (Metelli et al., 2018) considering large
behavior discrepancies (πθ(v|s(i)t )/µϕ(v|s(i)t )) between the behavior policy µϕ and the target policy
πθ. In addition, by separately weighting the entity and non-entity tokens with µϕ and π0 respectively,
we avoid the increasing variance accumulated from the long chain-of-thought reasoning process
and maintain the LLM’s behaviors on non-entity tokens without model degeneration. To further
formalize our approach and illustrate the variance inherent in the KG-IPS estimator, we present the
following Lemma, which provides a lower bound on the variance,

Lemma 2. The variance of the KG-IPS estimator is lower bounded by Ω(M
2

n ), where M denotes
the maximum value of the weighted terms, and n is the number of samples. For a target policy πθ,
let the true value function be defined as V (θ) := E

[
πθ(e|st)
µϕ(e|st)rt

]
, where rt ∈ [0, 1] is the reward

associated with selecting entity e in state st and µ0 is the behavior policy under which the data is
collected. Applying the concentration inequality for sub-Gaussian variables, the KG-IPS estimator
satisfies the following confidence interval with probability at least 1− δ:∣∣∣V̂KG-IPS(θ)− V (θ)

∣∣∣ ≤ O
(
M

√
log(1/δ)/n

)
.

A detailed analysis of the variance and confidence interval can be found in Appendix B.

To further support our findings, we demonstrate that the optimal policy for the final reward is con-
sistent with the optimal policy for the entity-based knowledge graph reward, which means the non-
entity-based LLM reward can be considered as a regularization term that does not affect the optimal
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policy. See Appendix C for a complete analysis. In the end, we could directly optimize the target
policy by maximizing the estimated value function through policy gradient,

θ ← θ +∇θV̂KG−IPS(θ). (4)

4.2 KNOWLEDGE GRAPH PREFERENCE MODELING

To facilitate the evaluation and optimization, we model knowledge graph preference and derive
feedback by developing the behavior policy µϕ which verbalizes knowledge-graph trajectories. Ran-
domly sampled trajectories H from G in Section 3.2 contain samples that may not be transformed
into a chain of thoughts leading to a reasonable question-answering. Following conventional self-
consistent measurement (Wang et al., 2022b; Manakul et al., 2023), given a sampled trajectory h
and its verbalized chain of thoughts c, we prompt the GPT-4 model to propose a question q related
to the first entity e0 ∈ h whose answer should be exactly the last entity eT ∈ h, and query the
GPT-4 model with the proposed question,

q̂ ∼ f(q|e0, eT , c), ŷ ∼ f(y|q̂, c), R(h|c) = E [1 {eT = ŷ}] ,

where the reward of the trajectory is determined by the answer accuracy. We estimate the reward
function R(h|c) as the normalized question-answering accuracy (detailed in Appendix D). Then we
fine-tune the preference policy µϕ directly via policy gradient optimization,

∇ϕJ(ϕ) = ∇ϕ

K∑
k=1

|ck|−1∑
t=0

R(hk|ck) logµϕ(yk,t|qk, yk,<t),

where J(ϕ) denotes the overall objective function representing the expected cumulative reward of
the policy. Based on the distribution of relations (Figure 4b) and entities (Figure 4c) in the sampled
knowledge graph trajectories, we observe that the relation distribution is relatively more skewed
toward the most frequent relations. This suggests that the verbalized knowledge graph reasoning
policy is likely to focus on more frequent reasoning transitions, potentially enhancing its ability to
learn meaningful patterns. In contrast, the entity distribution shows a relatively short tail, which may
help mitigate the risk of overfitting to specific entities or knowledge biases.

5 EXPERIMENTS

In this section, we evaluate our proposed method, OCEAN, by conducting chain-of-thought align-
ment on four LLM backbone models and evaluating several downstream tasks. We show our
method’s effectiveness in chain-of-thought alignment and its generalizability in various tasks to
understand (i) whether the proposed optimization approach sufficiently aligns LLMs’ chain-of-
thought behaviors with higher estimated values on multi-hop question-answering tasks, (ii) how
the proposed method performs on knowledge-intensive question-answering tasks and (iii) whether
the post-alignment LLM generalizes on commonsense reasoning tasks.

5.1 IMPLEMENTATION DETAILS

Datasets. Following Zhang et al., we evaluate our approach on three aspects of question answering.
For knowledge-intensive reasoning, we use datasets that require deep domain understanding. ARC
(Clark et al., 2018) tests advanced reasoning with grade-school science questions, PubMedQA (Jin
et al., 2019) assesses biomedical reasoning from abstracts, and SciQA (Auer et al., 2023) challenges
models using the Open Research Knowledge Graph. For multi-hop reasoning, where models com-
bine multiple sources, we use HotpotQA (Yang et al., 2018) (reasoning across Wikipedia articles),
MuSiQue (Trivedi et al., 2022) (requiring 2-4 inference hops), and StrategyQA (Geva et al., 2021)
(testing implicit reasoning). For commonsense reasoning, we evaluate using three commonsenseQA
benchmarks (CSQA (Talmor et al., 2021), CSQA2 (Saha et al., 2018), and CSQA-COT1000 (Li
et al., 2024a)), along with OpenBookQA (Mihaylov et al., 2018) and WinoGrande (Sakaguchi
et al., 2021). These tasks test models’ general commonsense question-answering abilities.

Baselines. We experiment with four backbone LLMs: Gemma-2 (Team, 2024) with 2B model pa-
rameters, Llama-3 (AI@Meta, 2024) with 8B model parameters, Phi-3.5-mini (Abdin et al., 2024)
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with 3.8B model parameters, and Mistral-0.2 (Jiang et al., 2023) with 7B model parameters. We
use the instruction fine-tuned version of backbone LLMs for better instruction following abilities
in question-answering. For chain-of-thought alignment in OCEAN, we use the CWQ question-
answering dataset (Talmor & Berant, 2018) as the source data, in which the question-answering pairs
are developed from knowledge graphs. OCEAN only uses CWQ questions for the LLM to generate
chain-of-thought reasoning paths, which are further aligned using the knowledge graph preference
model, without directly supervised learning on the ground-truth answers. To compare with direct
supervised learning, we also enable instruction-tuning as a baseline (SFT), which is fine-tuned with
the question as instruction and the answer as the response.

5.2 MULTI-HOP QUESTION ANSWERING

We evaluate the chain-of-thought reasoning performance of OCEAN compared with base LLMs and
supervised fine-tuning (SFT), in three multi-hop question-answering tasks in Table 1. Comparing
SFT and Base LLMs, we observe similar knowledge inconsistency as in knowledge-intensive tasks.
Although SFT improves on MuSiQue with Gemma-2 and Mistral-0.2 backbones whose base mod-
els’ performance is relatively inferior on this task, such knowledge-inconsistent problems result in
worse performance on other downstream tasks.

Model Method HotpotQA MuSiQue StrategyQA

w/ ctx (%) w/o ctx (%) V̂ (θ) w/ ctx (%) V̂ (θ) w/ ctx (%) w/o ctx (%) V̂ (θ)

Llama-3
Base 32.78 33.54 -10.35 11.59 -9.90 77.73 59.53 -9.25
SFT 8.22 (-24.56) 16.49 (-17.05) -22.28 1.80 (-9.79) -17.09 66.52 (-11.21) 51.82 (-7.71) -15.17
OCEAN 33.38 (+0.6) 33.75 (+0.21) -8.10 11.67 (+0.08) -9.77 75.40 (-2.33) 59.83 (+0.3) -5.53

Gemma-2
Base 26.33 18.58 -31.88 5.84 -26.41 76.71 60.99 -14.06
SFT 29.75 (+3.42) 15.91 (-2.67) -46.92 12.53 (+6.69) -40.25 64.77 (-11.94) 51.97 (-9.02) -23.27
OCEAN 26.20 (-0.13) 19.70 (+1.12) -26.43 6.87 (+1.03) -22.15 74.24 (-2.47) 66.23 (+5.24) -13.52

Phi-3.5
Base 32.13 26.14 -19.49 11.85 -15.30 73.51 58.37 -13.87
SFT 21.99 (-10.14) 7.87 (-18.27) -44.57 6.01 (-5.84) -42.10 63.03 (-10.48) 50.95 (-7.42) -21.66
OCEAN 35.13 (+3.0) 26.23 (+0.09) -14.84 10.82 (-1.03) -13.47 72.20 (-1.31) 57.64 (-0.73) -12.25

Mistral-0.2
Base 26.82 28.13 -19.08 5.67 -6.40 79.33 58.22 -11.36
SFT 20.88 (-5.94) 14.49 (-13.64) -18.53 7.73 (+2.06) -12.24 52.40 (-26.93) 51.53 (-6.69) -15.39
OCEAN 27.24 (+0.42) 27.54 (-0.59) -3.12 5.15 (-0.52) -5.94 77.29 (-2.04) 56.62 (-1.6) -11.21

Table 1: Comparison results of OCEAN, base LLMs (Base), and supervised fine-tuning (SFT),
on three Multi-hop Question-answering tasks. We report with context (w/ ctx) and without con-
text (w/o ctx) answer results with the Exact Match (EM) metric on HotpotQA and the Accuracy
metric on StrategyQA. Performance on MuSiQue dataset is EM with context. We also use each
test/validation split for each dataset and report policy evaluation V̂ (θ) results. We highlight the best-
performed metric in bold font and the second-best underline for each task.

Since OCEAN is aligned to incorporate more knowledge-faithful chain-of-thought reasoning patterns
learned from knowledge graph reasoning policy without directly editing its internal knowledge,
OCEAN maintains its generalizability in adapting to downstream tasks. We observe that OCEAN
consistently improves on the policy estimated value V̂ (θ) through direct policy optimization pro-
posed in equation 4, which demonstrates the effectiveness of the developed optimization method.
Regarding the question-answering accuracy, OCEAN improves base LLMs, which achieves the best
performance on HotpotQA and StrategyQA without context.

5.3 KNOWLEDGE-INTENSIVE QUESTION ANSWERING

To understand the effectiveness of OCEAN in knowledge-intensive question-answering tasks, we
show performance comparison with base LLMs (Base) and supervised fine-tuning (SFT) in Ta-
ble 2. Comparing SFT and Base LLMs, we observe that directly aligning knowledge graphs with
LLMs may suffer from domain and knowledge inconsistency when downstream tasks require spe-
cific domain knowledge, conflicting with the knowledge graph in the fine-tuning stage. We also
observe that SFT achieves 4.85% and 0.55% average improvements on the PubMedQA dataset,
with and without context respectively, whereas it suffers from 29.60%, 8.35%, 13.6% average per-
formance decreases on the remaining tasks. Such significant discrepancies in SFT’s effects across
different downstream tasks further show the risk in direct knowledge editing in LLMs.
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Model Method ARC PubMedQA SciQA

w/o ctx (%) V̂ (θ) w/ ctx (%) w/o ctx (%) V̂ (θ) w/ ctx (%) w/o ctx (%) V̂ (θ)

Llama-3
Base 79.93 -10.38 63.60 58.60 -25.40 83.10 57.10 -22.91
SFT 61.87 (-18.06) -18.42 75.80 (+12.2) 58.00 (-0.6) -26.03 67.10 (-16.0) 35.80 (-21.3) -23.84
OCEAN 80.60 (+0.67) -12.45 66.00 (+2.4) 59.80 (+1.2) -9.37 83.20 (+0.1) 57.70 (+0.6) -16.63

Gemma-2
Base 65.89 -15.36 34.40 40.60 -24.61 76.50 47.10 -26.60
SFT 18.06 (-47.83) -25.22 35.60 (+1.2) 21.00 (-19.6) -26.55 79.80 (+3.3) 51.50 (+4.4) -36.61
OCEAN 63.21 (-2.68) -16.20 44.60 (+10.2) 41.60 (+1.0) -18.72 72.20 (-4.3) 47.50 (+0.4) -26.77

Phi-3.5
Base 87.29 -7.86 70.40 41.80 -28.48 83.50 58.90 -14.46
SFT 65.22 (-22.07) -9.02 62.40 (-8.0) 50.20 (+8.4) -28.40 76.90 (-6.6) 43.80 (-15.1) -14.62
OCEAN 87.63 (+0.34) -7.94 68.40 (-2.0) 47.60 (+5.8) -11.45 84.70 (+1.2) 63.50 (+4.6) -13.40

Mistral-0.2
Base 73.91 -9.99 51.60 36.20 -13.01 78.50 58.00 -11.77
SFT 43.48 (-30.43) -13.99 65.60 (+14.0) 50.20 (+14.0) -21.87 64.40 (-14.1) 35.50 (-22.5) -21.86
OCEAN 68.90 (-5.01) -10.89 52.60 (+1.0) 33.20 (-3.0) -12.42 79.10 (+0.6) 58.40 (+0.4) -12.00

Table 2: Comparison results of OCEAN, base LLMs (Base), and supervised fine-tuning (SFT), on
three Knowledge-intensive Question-answering tasks. We report answers with context (w/ ctx)
and without context (w/o ctx) on Exact Match (EM) metric on PubMedQA and SciQA. The EM
performance on ARC dataset is without context. We also use the test/validation split for each dataset
to report estimated policy values V̂ (θ). We highlight the best metric in bold font for each task.

With the enhancement of OCEAN, question-answering accuracy of knowledge-intensive tasks gener-
ally improved, while OCEAN fine-tuned LLMs achieving the best performance on all three datasets,
except for PubMedQA without context where SFT achieves better performance due to knowledge
transfer from knowledge graph dataset. We also observe consistent policy value improvement on
PubMedQA and SciQA, where the original policy values of base LLMs are relatively lower. For
tasks like ARC, which does not require additional reference knowledge from context and reason-
ing in an easier chain of thought, OCEAN still maintains comparable policy value to the base LLM,
which demonstrates the robustness and generalizability of the proposed method.

5.4 COMMONSENSE REASONING

Model Method CSQA CSQA-2 CSQA-COT1000 OpenBookQA Winogrande Average

Llama-3
Base 65.03 71.39 69.50 58.80 43.09 61.56
SFT 51.19 (-13.84) 57.06 (-14.33) 49.00 (-20.5) 63.20 (+4.4) 34.73 (-8.36) 51.04
OCEAN 65.03 (0.0) 68.60 (-2.79) 72.00 (+2.5) 60.40 (+1.6) 41.36 (-1.73) 61.48

Gemma-2
Base 57.99 62.57 63.50 51.80 49.64 57.10
SFT 14.66 (-43.33) 65.80 (+3.23) 15.00 (-48.5) 7.40 (-44.4) 50.04 (+0.4) 30.58
OCEAN 67.73 (+9.74) 63.56 (+0.99) 72.50 (+9.0) 57.20 (+5.4) 50.12 (+0.48) 62.22

Phi-3.5
Base 68.55 64.70 72.50 72.40 50.51 65.73
SFT 69.94 (+1.39) 61.47 (-3.23) 72.00 (-0.5) 69.40 (-3.0) 50.51 (0.0) 64.66
OCEAN 69.62 (+1.07) 62.77 (-1.93) 73.50 (+1.0) 71.20 (-1.2) 50.12 (-0.39) 65.44

Mistral-0.2
Base 61.18 68.48 65.00 64.00 46.25 60.98
SFT 35.87 (-25.31) 22.47 (-46.01) 33.00 (-32.0) 34.80 (-29.2) 29.12 (-17.13) 31.05
OCEAN 63.80 (+2.62) 69.19 (+0.71) 67.00 (+2.0) 62.60 (-1.4) 46.49 (+0.24) 61.82

Table 3: Comparison results of OCEAN, base LLMs (Base), and supervised fine-tuning (SFT), on
five Commonsense Reasoning tasks. We report the Exact Match (EM) metric on these tasks and
the average performance. We highlight the best method in bold font for each task and LLM.

Finally, to demonstrate OCEAN’s generalizability in preserving commonsense knowledge and pre-
venting knowledge catastrophic forgetting (Luo et al., 2023; Wu et al., 2025), we evaluate OCEAN
with base LLMs (Base) and supervised fine-tuning (SFT) on five commonsense reasoning tasks in
Table 3. Since such tasks do not require external domain knowledge, we only evaluate the accuracy
of the model’s generated answers. We observe that directly applying supervised fine-tuning (SFT)
using knowledge graphs significantly impacts large language models (LLMs), potentially leading to
catastrophic forgetting of commonsense knowledge. especially for the backbone LLMs of Gemma-
2 and Mistral-0.2. In contrast, we show that OCEAN achieves robust performance on commonsense
reasoning by leveraging off-policy evaluation and optimization from knowledge graph’s feedback.
OCEAN manages to maintain comparable performance of base LLMs (e.g., Llama-3 and Phi-3.5),
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which have strong zero-shot commmonsense reasoning abilities. In addition, we observe that for
base LLM with relatively lower performance (e.g., Gemma-2 and Mistral-0.2), OCEAN enables con-
sistent improvements. Therefore, OCEAN serves as a robust off-policy alignment paradigm to incor-
porating knowledge graph reasoning without affecting the generalizability of pretrained LLMs.

6 ANALYSIS

6.1 IN-CONTEXT LEARNING & INSTRUCTION TUNING

We conduct further analysis to compare the performance of both the base model and our proposed
model in the scenarios of In-Context Learning and instruction fine-tuning. Specifically, we conduct
this analysis using the Gemma-2 and Phi-3.5 models across three benchmark datasets: SST2 (Socher
et al., 2013) for sentiment classification, AgNews (Zhang et al., 2015) for topic classification, and
BoolQ (Clark et al., 2019) for reading comprehension. In the In-context Learning setup, we provide
the model with a single example for each task in the prompt. For the Instruction tuning experiments,
we apply LoRA (Hu et al., 2021) to the pre-trained model and fine-tune it on each dataset for 10
epochs. Throughout these experiments, the rank parameter in LoRA is fixed at 16, and we set α
in LoRA to 32 across all tasks. The results of the In-context Learning and Instruction Tuning are
presented in Table 4. Overall, we observe that the performance of the base model and our proposed
model is largely comparable across most scenarios, except in the AG News task with Gemma-2,
where OCEAN demonstrates greater performance after instruction tuning.

Model Method In-Context Learning Instruction-Tuning

SST2 BoolQ AG News Avg. SST2 BoolQ AG News Avg.

Gemma-2 Base 87.16 56.12 16.47 53.25 96.21 69.03 47.03 70.76
OCEAN 89.33 55.72 13.14 52.73 96.56 68.66 60.08 75.10

Phi-3.5 Base 41.28 60.06 31.89 44.41 96.44 68.13 86.43 83.67
OCEAN 40.48 59.11 32.37 43.98 96.44 68.81 86.24 83.83

Table 4: Performance Comparison of In-Context Learning and Instruction Tuning. All datasets
consist of classification tasks or true/false questions, so accuracy is used to evaluate the performance.
The performance of the base model and our proposed model is largely comparable.

6.2 EVALUATION OF GENERATION QUALITY POST ALIGNMENT
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Figure 2: Comparison results of base LLMs and OCEAN on three evaluation metrics, Self-BLEU,
Distinct-2, and AlignScore. Lower Self-BLEU scores and higher Distinct-2 scores indicate better
diversity of the generated text, while higher AlignScore indicates better faithfulness.

To further evaluate the generation quality of post-alignment LLMs, we use the Self-BLEU (Zhu et al.,
2018) and Distinct-2 (Li et al., 2015) scores to evaluate the diversity of the generation, concerning
the similarity between generated texts and the uniqueness of generated 2-gram phrases respectively.
In addition, AlignScore (Zha et al., 2023) is used to evaluate the faithfulness of the generated answer
given the question context. The results are presented in Figure 2, which show that post-alignment
LLMs achieve comparable or better performances in terms of generation diversity and faithfulness.
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This demonstrates that while OCEAN aligns chain-of-thought reasoning with KGs, we maintain the
text generation qualities of LLMs.

6.3 CASE STUDY

In the previous Section 5.2 and 5.3 we observe efficient chain-of-thought alignment with improve-
ment on the estimated policy value V̂ (θ). To further understand the effects of the alignment, we
choose backbone LLMs, Gemma-2 and Llama-3, with significant improvements on V̂ (θ), and per-
form a sample analysis by comparing the outputs of the base model and OCEAN on the same set
of questions. Our findings demonstrate that the application of our method enhances the precision
and conciseness of the chain of thought in the generated responses. Some illustrative examples are
provided in Figure 3. Specifically, in the first example, the base Llama-3 model incorrectly claims
that singing is not a primary action associated with playing the guitar, which leads to an erroneous
solution to the question. In contrast, our method enables the model to recognize that singing is a
common activity when playing the guitar, while also understanding that making music serves as a
broader term. In the second example, although both the base model and OCEAN on Gemma-2 pro-
vide reasonable answers to the question, our model demonstrates a more concise chain of thought,
streamlining the reasoning process and arriving at the solution with greater simplicity.

Base Llama-3: 
1. The question asks what people typically do while playing guitar. ...... 4. Playing the guitar typically involves plucking or strumming the 
strings to produce sound, which is a form of making music. 5. The other options don't make sense in the context of playing the guitar: ...... 
(C) Singing is an activity that can be done while playing guitar, but it's not the primary action people do while playing the instrument. ...... 
Therefore, the correct answer is (E) making music.

Q: What do people typically do while playing guitar? Choose the correct answer from the following choices. 
(A) cry (B) hear sounds (C) singing (D) arthritis (E) making music

OCEAN Llama-3: 
1. The question is asking about what people typically do while playing guitar. ...... 4. Singing is a common activity that people do while 
playing guitar, as it is a common way to accompany oneself while playing the instrument. 5. Making music is a broad term that encompasses 
a wide range of activities, including playing the guitar. 
Based on the above reasoning, the correct answer is: C) singing

Q: What is the height above or below sea level called?
Sample Answer: elevation
Base Gemma-2: 
1. What is sea level? Sea level is the average level of the ocean. 2. What is the height of something above or below sea level? This is the 
vertical distance of an object from sea level. 3. What is the term for this vertical distance? This is the height above or below sea level. Final 
Answer: The height above or below sea level is called **altitude**. 

OCEAN Gemma-2: 
Answer: Elevation. Reasoning: 1. Elevation is the height of a place above or below sea level. 

Redundant chain-of-thought

A more concise thinking process

Inaccurate Information

Wrong answer
Accurate Information

Correct Answer

Figure 3: Sample comparison between the base model and OCEAN on Llama-3 and Gemma-2. Our
method enables a more precise and concise chain of thought.

7 CONCLUSION

In this work, we propose OCEAN to address the challenge of offline chain-of-thought evaluation
and optimization of LLMs. By modeling the knowledge-graph preference and deriving feedback by
developing a policy that verbalizes knowledge-graph trajectories, we propose KG-IPS estimator to
estimate policy values in the alignment of reasoning paths with knowledge graphs. Theoretically, we
proved the unbiasedness of the KG-IPS estimator and provided a lower bound on its variance. Em-
pirically, our framework effectively optimizes chain-of-thought reasoning while maintaining LLMs’
general downstream task performance, offering a promising solution for enhancing reasoning ca-
pabilities in large language models. Our framework not only enhances chain-of-thought reasoning
but can also offer a potential offline evaluation mechanism for agentic frameworks, enabling the
safe assessment of autonomous decision-making processes. Future work could explore integrating
this approach into reinforcement learning and multi-agent systems to further validate its utility in
complex, dynamic environments.
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A MEAN ANALYSIS

To prove that the KG-IPS estimator is unbiased, we need to demonstrate that the expected value of
the IPS estimator equals the true expected reward under πθ.

Proof. The value function of policy πθ can be defined as:

V (πθ) = Eat∼π(·|st) [r(st, at)]

=
1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼πθ(·|s(i)t )

[
r(s

(i)
t , e)

]
where r(st, at) represent the reward obtained by taking action at under state st.

Given that our value function consists of two cases: the first case considers the reward derived from
the entity tokens under the knowledge graph preference policy µθ, and the second case focuses on
the reward derived from the non-entity tokens under the base LLM policy π0. We separately prove
the unbiasedness by showing that the expected value of either the entity-based or non-entity-based
estimators is equal to the true expected reward under their respective policies.

17

https://openreview.net/forum?id=EdIGMCHk4l
https://openreview.net/forum?id=EdIGMCHk4l
https://aclanthology.org/2023.acl-long.320


Published as a conference paper at ICLR 2025

The expected value of the entity tokens in the knowledge graph is:

E
[
V̂KG(θ)

]
=

1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼µϕ(·|s(i)t ),e∼P(e)

[
πθ(e|s(i)t )

µϕ(e|s(i)t )
log π0(e|s(i)t )

]

=
1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼µϕ(·|s(i)t )

[
πθ(e|s(i)t )

µϕ(e|s(i)t )
P(e = ŷ|s(i)t , e)

]

=
1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼πθ(·|s(i)t )

[
P(e = ŷ|s(i)t , e)

]
=

1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼πθ(·|s(i)t )

[
r(s

(i)
t , e)

]
= V (πθ)

For non-entity tokens, the proof is similar:

E
[
V̂base(θ)

]
=

1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼π0(·|s(i)t ),e∼P(e)

[
πθ(e|s(i)t )

π0(e|s(i)t )
log π0(e|s(i)t )

]

=
1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼π0(·|s(i)t )

[
πθ(e|s(i)t )

π0(e|s(i)t )
P(e = ŷ|s(i)t , e)

]

=
1

N

N∑
i=1

1

Ti|c(i)t |

Ti∑
t=1

E
e∼πθ(·|s(i)t )

[
P(e = ŷ|s(i)t , e)

]
= V (πθ)

This completes the proof.

B VARIANCE ANALYSIS

In this section, we derive a confidence bound from the confidence interval and calculate the lower
bound of the variance for the KG-IPS estimator.

Proof. Let M be the maximum value of πθ(e|st)
µϕ(e|st) ranging over all entity tokens e. This quantity M

represents the largest discrepancy between the target policy πθ and the behavior policy µϕ.

Since each reward rt lies in [0, 1], it is 1
4 -sub-Gaussian. Consequently, multiplying rt by a constant

factor of at most M produces a random variable of the form

Xt =
πθ(e|st)
µϕ(e|st)

rt,

that is (M
2

4 )-sub-Gaussian. Let V̂KG-IPS(θ) be the average of n i.i.d. samples {Xt}nt=1. From the
property of sub-Gaussian variables, if each Xt is (M

2

4 )-sub-Gaussian, then the average

V̂KG-IPS(θ) =
1

n

n∑
t=1

Xt

is (M
2

4n )-sub-Gaussian. In particular, this implies that the variance cannot be smaller than Ω(M
2

n ),
indicating an irreducible noise level of order M√

n
.

For any sub-Gaussian random variable X with variance σ2, the concentration inequality (Zhang &
Chen, 2020) holds: ∣∣∣X̂ − E[X]

∣∣∣ ≤ σ

√
2 log

(
1

δ

)
.

Plugging the variables above into the inequality, we get the following bound for the KG-IPS estima-
tor: ∣∣∣V̂KG-IPS(θ)− V (θ)

∣∣∣ ≤M

√
log(1/δ)

2n
= O(M

√
log(1/δ)/n),
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with probability at least 1− δ.

The variance of a sub-Gaussian random variable is close to its variance proxy, which means the lower
bound on the variance of the KG-IPS estimator is Ω(M

2

n ). In addition, by standard concentration
inequalities, we can get O(M

√
log(1/δ)/n) confidence intervals on our estimator for policy πθ.

C THEORETICAL ANALYSIS

The value function of policy πθ is defined as:

V πθ (st, at) = Eat∼π(·|st) [r(st, at)] .

Based on our settings, we optimize the target policy for entity tokens aligning with knowledge graph
preference. The reward function is formulated as:

rKG(st, at) =
∑
e∈at

πθ(e|st)
µϕ(e|st)

log π0(e|st), (5)

where µϕ is the knowledge graph preference policy.

To reduce variance, the logged rewards for non-entity tokens under the base LLM policy π0 are
incorporated as a regularization term in the reward function, formulated as:

rreg(st, at) =
∑

v∈ct\at

πθ(v|st)
π0(v|st)

log π0(v|st), (6)

where π0 is the base LLM policy. This helps mitigate disturbances, ensuring the LLM’s behavior on
non-entity tokens remains stable and preventing model degeneration.

The final reward is:
r(st, at) = rKG(st, at) + rreg(st, at), (7)

Since both rKG(st, at) and rreg(st, at) are reweightings of the log-based reward log π0(v|st), they
belong to the same equivalence class. By leveraging Lemma 2 from DPO (Rafailov et al., 2024), we
show that the optimal policy for the task-specific reward rϕ aligns with the optimal policy for the
final reward r. This implies that both rewards induce the same optimal policy.
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Figure 4: Sampling distributions of (a) trajectories in the knowledge graph that are verbalized as
multi-step QA tasks and successfully answered by the LLM itself, (b) relations, and (c) entities in
the knowledge graphs and their frequencies of the appearance in the trajectories sampled from the
Wikidata5M (Wang et al., 2021) knowledge graph.

D DETAILS OF KNOWLEDGE GRAPH PREFERENCE MODELING

The verbalized trajectories have in average 141.64 tokens with a standard deviation of 34.39. The
average trajectory length is 4.79 steps with a standard deviation of 0.56. For each trajectory, there
are in average 5.79 entities with a standard deviation of 0.56, and 4.11 relations with a standard

19



Published as a conference paper at ICLR 2025

deviation of 0.90. In Figure 4a, we present the probability distribution of sampled trajectories,
with respect to the number of correct answers generated per trajectory from ten differently sampled
questions associated with each trajectory. Based on such self-consistency measurement, we estimate
the reward function R(h|c) as the normalized question-answering accuracy.

Knowledge Graph Preference Model. The knowledge graph preference model is developed based
on the pre-trained GPT2-Medium model (Radford et al., 2019). We collected 6K question-answering
pairs from the Wikidata5M (Wang et al., 2021) knowledge graph based on the sampling strategy in
Section 4.2. The sampled knowledge graph trajectories are composed into natural language prefixed
by the corresponding questions by the GPT-4 model, which verbalizes the knowledge graph reason-
ing trajectories and aligns with generative language models’ behaviors. The model is then fine-tuned
with a base learning rate of 1e− 4 for 10 epochs with a linear learning scheduler.
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