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Abstract

For pre-training of MoE (Mixture-of-Experts) models, one of the main issues is unbalanced
expert loads, which may cause routing collapse or increased computational overhead. Exist-
ing methods contain the Loss-Controlled method and the Loss-Free method, where both the
unbalanced degrees at first several training steps are still high and decrease slowly. In this
work, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary
integer programming (BIP). The algorithm maintains an additional vector q on each MoE
layer that can help change the top-K order of s by solving a binary integer programming
with very small time costs. We implement the algorithm on two MoE language models:
16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models
comparing with the Loss-Controlled method and the Loss-Free method, our algorithm trains
models with the lowest perplexities, while saves at least 13% of pre-training time compared
with the Loss-Controlled method. Within our current knowledge, this is the first routing
algorithm that achieves maintaining load balance status on every expert in every MoE layer
from the first step to the last step during the whole pre-training process, while the trained
MoE models also perform well.

1 Introduction

MoE (Mixture-of-Experts) architectures allow LLMs (Large Language Models) become sparsity so that they
can have both large scale of parameters and much small resource costs. However, unbalanced expert loads
always happen in MoE LLM pre-training, especially when the number of experts is large. This problem will
lead to computation bottlenecks Lepikhin et al. (2021); Fedus et al. (2021) or routing collapse Shazeer et al.
(2017). Furthermore, the worst situation is that a MoE model finally degenerates to a dense model, but
with fewer activated parameters.
In order to balance the expert loads, many methods are proposed. One is using an auxiliary loss to encourage
balanced expert load Lepikhin et al. (2021); Fedus et al. (2021). A disadvantage is that it will introduces
undesired gradients that conflict with the language modeling objective, which will influence model perfor-
mance. The other way is auxiliary-loss-free load balancing strategy Wang et al. (2024), where authors add
an additional bias vector on routing scores to change their sort order, instead of computing auxiliary loss.
Neither of the two methods can guarantee expert load balancing in the first several steps of the pre-training
process, and it may cost thousands of training steps to change expert loads into balanced status Wang et al.
(2024).
In this paper, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer
programming (BIP). The algorithm can be set within each routing layer, which maintains an additional
vector q that can help change the top-K order of s. The key point is that we update values of q by solving a
specific form of binary integer programmings on each routing gate with very small time costs. For evaluation
experiments, we implement the algorithm on two MoE language models based on Minimind model series
Jingyaogong (2024): 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both
models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm train models
with lower perplexities, while save at least 13% of pre-training time. Within our current knowledge, this is
the first routing algorithm that achieves keeping load balance status on every expert and every MoE layer
from the first step to the last step during the whole pre-training process, while the trained MoE models also
perform well.
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2 Preliminary

2.1 Mixture-of-Expert Layers in LLMs.

In MoE layers, for each token experts are selected by a Top-K routing. Let ui denote the input of the i-th
token to an m-expert MoE layer, then output hi can be calculated as follows:

hi = ui +

m∑
j=1

gij FFNj (ui) ,

gij =

{
sij , sij ∈ Topk ({sit | 1 ≤ t ≤ m} , k) ,
0, otherwise,

sij = G
(
ui

T ej
)
.

Here G is a nonlinear gating function and ej is the centroid of the j-th expert.

2.2 Load Balancing Strategy with Auxiliary Loss (Loss-Controlled Method)

Auxiliary-loss methods have been used for control load balanceLepikhin et al. (2021); Fedus et al. (2021).
For a sequence with length n, its auxiliary loss is calculated by

LBalance = α

m∑
j=1

fjPj ,

fj =
m

kn

n∑
i=1

δij ,

Pj =
1

n

n∑
i=1

sij ,

where m is the total number of experts, k is the number of experts selected for each token, sij is the routing
score of Expert j for Token i, fj represents the fraction of tokens routed to Expert j. δij is 0 or 1 representing
whether Token i is for Expert j. Pj denotes the average gating scores of Expert j, and α is a hyper-parameter
controlling the strength of the auxiliary loss.

2.3 Auxiliary-Loss-Free Load Balancing Strategy

The other way to expert load balance is auxiliary-loss-free load balancing strategy Wang et al. (2024), which
first appears in DeepSeek-V3 DeepSeek-AI et al. (2024). Instead of computing loss functions, the authors
introduce a bias vector b on expert lists so that it can influence the determination of the top-K routing as
follows:

g′ij =

{
sij , sij + bj ∈ Topk({sit + bt|1 ≤ t ≤ m}, k),
0, otherwise.

3 Algorithm

The main result of this work is BIP-Based Balancing algorithm, whose details are described in Algorithm 1.
Like Loss-Free strategy, BIP-Based Balancing algorithm also does not need to compute auxiliary-loss, while
there is also an additional vector q that can help change the top-K order of s. The main difference is that
the value of q is computed by solving a binary integer programming, and we update values of q after each
calculation of a routing gate, instead of after each batch. Without loss of generality, all vectors mentioned
in algorithms are row vectors.
To explain why Algorithm 1 works, we first model the expert load balancing problem to the following binary
integer programming (BIP) problem:
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Algorithm 1 BIP-Based Balancing Algorithm for MoE Models
1: Input: MoE model θ, expert number m, topk number k and a small constant T .
2: Initialize qlj = 0 for each expert j in every MoE layer l;
3: for a batch {x,y} in the batch enumeration do
4: Set n be the token number of {x,y};
5: for each MoE layer l do
6: Compute the routing score matrix s ∈ Rn×m on the batch data {x,y} and all experts;
7: for t = 1, ..., T do
8: Set P = s− 1T

nql ∈ Rn×m;
9: Set pi = max(0, (k + 1)−th largest value of Pi), 1 ≤ i ≤ n for p ∈ Rn;

10: Set Q = sT − 1T
mp ∈ Rm×n;

11: Set qlj = max(0, (nk/m+ 1)−th largest value of Qj), 1 ≤ j ≤ m;
12: end for
13: For every token i and expert j, set

gij =

{
sij , sij − qlj ∈ Topk({sit − qlt|1 ≤ t ≤ m}, k),
0, otherwise.

14: Continue pre-training process on θ with the expert decision matrix g;
15: end for
16: end for
17: Output: trained model θ.

max

n∑
i=1

m∑
j=1

sijxij (BIP)

s.t.
m∑
j=1

xij ≤ k, ∀i ∈ [n] (1)

n∑
i=1

xij ≤
kn

m
, ∀j ∈ [m] (2)

xij ∈ {0, 1}, ∀i ∈ [n], ∀j ∈ [m].

Here, n is the number of tokens in one batch, m is the number of experts and k is the number of experts
selected by each routing decision. s is the routing score matrix. The binary decision variables xij determine
whether matching token i with expert j. Condition (1) holds since we can only match one token with k
experts. Condition (2) ensures the load balance of experts.
in order to solve (BIP), consider its linear programming relaxation version:

max

n∑
i=1

m∑
j=1

sijxij (P-LP)

s.t.
m∑
j=1

xij ≤ k, ∀i ∈ [n]

n∑
i=1

xij ≤
kn

m
, ∀j ∈ [m]

0 ≤ x ≤ 1.

The dual problem of (P-LP) is:
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min k

n∑
i=1

pi +
kn

m

m∑
j=1

qj +

n∑
i=1

m∑
j=1

rij (D-LP)

s.t. pi + qj + rij ≥ sij , ∀i ∈ [n], ∀j ∈ [m]

p ≥ 0, q ≥ 0, r ≥ 0,

where the decision variables are p ∈ Rn, q ∈ Rm and r ∈ Rn×m.

By primal-dual principle, we have the inequality (BIP)≤(P-LP)=(D-LP). In fact, the optimal solution x∗ of
(P-LP) has the following relationship between the optimal solution p∗, q∗ of (D-LP):

x∗
ij = 1 if and only if p∗i + q∗j < sij .

This result matches the line 13 in Algorithm 1, since we can change the inequality p∗i + q∗j < sij to the form
sij−q∗j > p∗i . Thus when i is fixed, there are exact m−k subscripts j satisfying sij−q∗j <= p∗i while the other
k subscripts j satisfy sij − q∗j > p∗i , which exactly match the subscripts of Topk({s∗ij − q∗j |1 ≤ j ≤ m}, k).

On solving (D-LP), we use the standard ADMM algorithm Boyd et al. (2010):

Algorithm 2 ADMM algorithm for (D-LP)
1: for t = 1, ..., T do
2: Set pt = argmaxpLλ(p, qt−1, rt−1,ut−1);
3: Set qt = argmaxqLλ(pt, q, rt−1,ut−1);
4: Set rt = argmaxrLλ(pt, qt, r,ut−1);
5: Update ut with the step parameter λ;
6: end for

Here Lλ(p, q, r,u) is the augmented Lagrangian function of (D-LP) and u is the dual vector variable in L.
In order to implement optimizations, first notice that when p, q are fixed, the optimal values of r and u are
r∗ij = max(sij − pi − qj , 0) and u∗ = 0. Then it is easy to verify that the line 2 and line 3 in Algorithm 2
imply the line 7 to line 12 part in Algorithm 1, by noticing that when q and i are fixed, in order to keep exact
k of {xij}1≤j≤m satisfying xij > 0, we only need to keep exact k of inequalities {pi + qj < sij}1≤j≤m hold.
That is, the best choice of pi is the (k + 1)-th largest value of {sij − qj}1≤j≤m. The analysis of optimizing
q when p is fixed is similar.

4 Experiments

4.1 Experimental Settings

Model Architectures, Training Settings and Hardware. The models we choose in the experiments are from
Minimind, a popular extremely-lightweight language model series Jingyaogong (2024). We train 2 models
on its MoE version during the experiments, one is with 16 experts and the other is with 64 experts. For the
MoE version of Minimind, the number of parameters in each expert is less than 20M, and the core function
of MoE gates are softmax. The datasets are also from Jingyaogong (2024), where we split the pre-training
dataset into a training set and a test set. In order to compare time cost efficiency between different routing
algorithms more intuitively, we do not shuffle the datasets (See also the mutations of blue and green lines in
Figure 1 and Figure 2). More information of models, settings and GPUs is listed in Table 1.
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Hyper parameters 16-expert model 64-expert model
Vocab size 6400 6400

Max Sequence Length 8192 8192
Attention heads 8 8

routing score function softmax softmax
MoE layers 8 8

Routed experts 4 8
Activated routed experts 16 64

Model size 0.3B 1.1B
GPUs RTX4090 ×1 L20 ×1

Table 1: Model architectures, training settings and hardware.

Baseline. We compare our BIP-Balancing algorithm with both Loss-Controlled and Loss-Free strategies,
especially in Loss-Controlled method since there are discussions show that on the softmax function the
Loss-Controlled method works better Su (2025). For the baseline, we set α = 0.1 for the Loss-Controlled
method which is the same value in the original Minimind model, and set u = 0.001 for the Loss-Free method
which is supported in Wang et al. (2024).
Measurements. We introduce two measurements, Average Maximum Violation (AvgMaxV io) and Supre-
mum Maximum Violation (SupMaxV io), to measure the balance degree of experts among the whole pre-
training process. AvgMaxV io is the average value of MaxV iobatchi

among all training batches:

AvgMaxV io =

∑
batchi∈Batches MaxV iobatchi

|Batches|
,

and SupMaxV io is the maximum value of MaxV iobatchi among all training batches:

SupMaxV io = max
batchi∈Batches

{MaxV iobatchi
}.

Here

MaxV iobatchi =
maxj Loadij

Load
− 1,

where Loadij represents the number of tokens matched to the j-th expert during the i-th batch pre-training,
and Load denotes the average number of tokens per expert in one batch. (MaxV iobatch is first introduced in
Wang et al. (2024).) The less AvgMaxV io is, the faster expert loads turn into balance states, which will lead
to smaller time costs of LLM training and higher computing resource utilization. On the other hand, when
SupMaxV io is small (for example, less than 0.2), then global training process can be seen as a balanced
status approximately. Moreover, we will also show AvgMaxV io of each layer in the models in Appendix A.
Besides, we also use Perplexity to measure the performances of pre-trained models, and Training time to
measure the efficiency of global training processes.

4.2 Main Results

Table 2 shows that on the 16-expert model, comparing with the Loss-Controlled method, the BIP-based
algorithm with 4 different iteration times all achieve lower perplexities. More precisely, the BIP-based
algorithm with T = 4 (which has lowest perplexity) only cost 86.83% training time of which the Loss-
Controlled method costs. This is due to the much lower values of AvgMaxV io and SupMaxV io (0.0602
versus 0.3852, and 0.1726 versus 1.5245). More details on the whole pre-training process are shown in
Figure 1, where the MaxV iobatchi

of Loss-Controlled method process has a large fluctuation, while the
BIP-based method help maintain a smooth state on MaxV iobatchi

of the whole pre-training process.
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Algorithm AvgMaxV io SupMaxV io Perplexity Training time/h
Loss-Controlled 0.3852 1.5245 12.4631 4.6126

Loss-Free 0.1275 1.7702 11.1311 4.3558
BIP, T = 2 0.0529 0.2019 11.2417 3.9547
BIP, T = 4 0.0602 0.1726 10.6856 4.0051
BIP, T = 8 0.0626 0.1727 10.7291 4.0623
BIP, T = 14 0.0547 0.1925 10.7408 4.177

Table 2: Evaluation results on training MoE models with m = 16 and k = 4.

Table 3 shows that on the 64-expert model, comparing with the Loss-Controlled method, the BIP-based
algorithm with T = 14 achieves lower perplexities, while perplexities of other 3 BIP-based algorithms with
different iteration times are almost the same. The BIP-based algorithm with T = 14 only cost 86.15% training
time of which the Loss-Controlled method costs. It’s important to emphasize that, unlike Loss-Controlled
and Loss-Free methods, the AvgMaxV io and SupMaxV io of BIP-Based algorithm do not increase fast
from the 16-expert model to the 64-expert one, which still remain at a low level. More details on the whole
pre-training process are shown in Figure 2. Notice that the separations among three colors of lines are more
obvious than the ones in Figure 1.

Algorithm AvgMaxV io SupMaxV io Perplexity Training time/h
Loss-Controlled 0.7158 2.3841 9.9956 23.7726

Loss-Free 0.3366 2.7121 10.2975 23.9557
BIP, T = 2 0.0513 0.5613 10.6916 20.4569
BIP, T = 4 0.0496 0.4107 10.1299 20.3046
BIP, T = 8 0.0441 0.2372 10.0677 20.4572
BIP, T = 14 0.0529 0.1946 9.9071 20.4799

Table 3: Evaluation results on training MoE models with m = 64 and k = 8.

Figure 1: The line graph of relationships between training steps and MaxV iobatchi by different methods
in the 16-expert model. The blue lines and dots represent trends of MaxV iobatchi

by the Loss-Controlled
method. The green lines and dots represent trends of MaxV iobatchi

by the Loss-Free method. The red lines
and dots represent trends of MaxV iobatchi

by the BIP-based method.
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Figure 2: The line graph of relationships between training steps and MaxV iobatchi
by different methods

in the 64-expert model. The blue lines and dots represent trends of MaxV iobatchi
by the Loss-Controlled

method. The green lines and dots represent trends of MaxV iobatchi
by the Loss-Free method. The red lines

and dots represent trends of MaxV iobatchi
by the BIP-based method.

The similar conclusions also hold for each layer in both two models. For more information on experimental
data and statistical charts, see Appendix A.

5 Discussion

5.1 Online Algorithm for Problem (BIP)

We can easily provide Algorithm 3, the online version of Algorithm 1 on one routing gate:

Algorithm 3 BIP-Based Balancing Algorithm for MoE Models (Online Version, on one gate)
1: Input: token number per batch n, expert number m, topk number k and a small constant T
2: Initialize q = 0m, Q = {Qj = ϕ, 1 ≤ j ≤ m}
3: for a token arrives at this routing gate do
4: Get routing scores {s1, ..., sm}
5: for j = 1, ...,m do
6: Set

gj =

{
sj , sj − qj ∈ Topk({sl − ql|1 ≤ l ≤ m}, k),
0, otherwise.

7: end for
8: for t = 1, ..., T do
9: Set p = max(0, (k + 1)−th largest value of {sl − ql|1 ≤ l ≤ m})

10: for j = 1, ...,m do
11: Set qj = max(0, (nk/m+ 1)−th largest value of {Qj ∪ {sj − p}})
12: end for
13: end for
14: Set Q = {Qj ∪ {sj − p}, 1 ≤ j ≤ m}
15: end for
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Algorithm 3 can be applied in recommendation systems. Consider a scenario that there are over one adver-
tisement slots on one webpage. If our aim is to maximize the sum of CTRs and restrict flows of the most
popular advertisement provider, then the problem turns to be (BIP). (In this problem, an expert can be
seen as a slot.) Furthermore, the approximation version of Algorithm 3 is a better choice for this model (see
Algorithm 4 in Section 5.2), since its space complexity has no relationship with the number of flows.
In fact, we notice that this scenario is a special case of multi-slots online matchings Lu et al. (2022) . The
online matching problem has been widely studied, but for its multi-slot version, there is only a few works Lu
et al. (2022). The difficulty is that it is non-trivial to extend existing methods to the multi-slots version with
diversity pursuit Zhang (2009); Yan et al. (2020). They either depend on closed-form computations Zhong
et al. (2015); Agrawal et al. (2018) or additional assumptions which fail to hold in more than one slots Lu
et al. (2021); Balseiro et al. (2021). We believe that our algorithms in this work will help on solving this
difficult problem.

5.2 Approximate Algorithm with Constant Space Complexity

For Algorithm 3 there are some issues with time and space complexities need to be discussed, especially on
maintaining the set array Q. For each Qj ∈ Q, we can use a heap to maintaining its (nk/m)-largest member.
Thus for each token, the time complexity of maintaining Q and q is only O(m log n), or O(log n) per expert
on parallel computing. However, we will need O(m ∗ (nk/m)) = O(nk) space to storage sets in Q, which
can be seen as a linear relationship with the token size (or the number of flows). Since in recommendation
situations, the scale of flows per day can be over millions, which will cost too much storage resources on
running Algorithm 3.
In order to fix this issue, we notice that if 0 < s < 1 holds, we can divide the internal [0, 1) into several
blocks. Instead of maintaining the set array, we only need to count numbers lying in each block. when we
update the vector q, we first find the block that (nk/m+1)-th largest number lies in, then use interpolation
to approximate its value. Algorithm 4 shows details. Notice that the space complexity of Algorithm 4 is
O(m), which has no relationship with the token number.

Algorithm 4 BIP-Based Balancing Algorithm for MoE Models (Online Approximation Version)
1: Input: token number n, expert number m, topk number k, constant b and T
2: Initialize q = 0m, Q = 0mb

3: for a token arrives at this routing gate do
4: Get routing scores {s1, ..., sm}
5: for j = 1, ...,m do
6: Set

gj =

{
sj , sj − qj ∈ Topk({sl − ql|1 ≤ l ≤ m}, k),
0, otherwise.

7: end for
8: for t = 1, ..., T do
9: Set p = max(0, (k + 1)−th largest value of {sl − ql|1 ≤ l ≤ m})

10: for j = 1, ...,m do
11: Set

Q′
jl =

{
Qjl + 1, sj − p ≥ 0 and l

b ≤ sj − p < l+1
b ,

Qjl, otherwise.
12: Set

qj =

{
interpolation between l

b and
l+1
b , ∃l, (nk/m+ 1)−th largest of Q ′

j is in [ lb ,
l+1
b ),

0, otherwise.

13: end for
14: end for
15: Set Q = Q′

16: end for

8
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6 Conclusion

In this work we provide BIP-Based Balancing, an expert load balancing algorithm based on binary integer
programming (BIP). The algorithm keep expert load balance by solving a specific form of binary integer
programmings with small time costs. The experimental results show BIP-based algorithm achieves keeping
load balance status on every expert and every MoE layer from the first step to the last step during the whole
pre-training process, while the trained MoE models also perform well. Finally, we discuss the potential
applications of BIP-based algorithm in the fields of recommendation system and online matching.
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A Other Tables and Graphics in Section 4.2

Algorithm Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8
Auxiliary Loss 0.8988 1.1607 1.1717 1.1726 1.1528 1.14 1.1403 1.1216

Loss Free 0.364 0.3044 0.3341 0.3556 0.3279 0.4681 0.4827 0.3693
BIP, T = 4 0.2024 0.1314 0.1722 0.2153 0.1584 0.1879 0.1998 0.2065

Table 4: AvgMaxV io on each layer in MoE models with m = 16 and k = 4 achieved by different routing
algorithms, for expert load balance evaluations.

Figure 3: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 1.

Figure 4: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 2.
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Figure 5: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 3.

Figure 6: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 4.
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Figure 7: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 5.

Figure 8: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 6.
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Figure 9: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 7.

Figure 10: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 8.
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Algorithm Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8
Auxiliary Loss 2.469 2.4456 2.4983 2.478 2.4586 2.3725 2.2958 2.177

Loss Free 1.5253 1.0639 1.0399 1.0587 1.036 1.1521 1.1314 1.1126
BIP, T = 14 0.1676 0.1138 0.1133 0.1109 0.1342 0.1356 0.2743 0.1888

Table 5: AvgMaxV io on each layer in MoE models with m = 64 and k = 8 achieved by different routing
algorithms, for expert load balance evaluations.

Figure 11: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 1.

Figure 12: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 2.
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Figure 13: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 3.

Figure 14: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 4.
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Figure 15: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 5.

Figure 16: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 6.
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Figure 17: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 7.

Figure 18: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 8.
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