
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Binary-Integer-Programming Based Algorithm for Expert Load Bal-
ancing in Mixture-of-Experts Models

Anonymous authors
Paper under double-blind review

Abstract

For pre-training of MoE (Mixture-of-Experts) models, one of the main issues is unbalanced
expert loads, which may cause routing collapse or increased computational overhead. Exist-
ing methods contain the Loss-Controlled method and the Loss-Free method, where both the
unbalanced degrees at first several training steps are still high and decrease slowly. In this
work, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary
integer programming (BIP). The algorithm maintains an additional vector q on each MoE
layer that can help change the top-K order of s by solving a binary integer programming
with very small time costs. We implement the algorithm on two MoE language models:
16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models
comparing with the Loss-Controlled method and the Loss-Free method, our algorithm trains
models with the lowest perplexities, while saves at least 13% of pre-training time compared
with the Loss-Controlled method. Within our current knowledge, this is the first routing
algorithm that achieves maintaining load balance status on every expert in every MoE layer
from the first step to the last step during the whole pre-training process, while the trained
MoE models also perform well.

1 Introduction

MoE (Mixture-of-Experts) architectures allow LLMs (Large Language Models) become sparsity so that they
can have both large scale of parameters and much small resource costs. However, unbalanced expert loads
always happen in MoE LLM pre-training, especially when the number of experts is large. This problem will
lead to computation bottlenecks Lepikhin et al. (2021); Fedus et al. (2021) or routing collapse Shazeer et al.
(2017). Furthermore, the worst situation is that a MoE model finally degenerates to a dense model, but
with fewer activated parameters.
In order to balance the expert loads, many methods are proposed. One is using an auxiliary loss to encourage
balanced expert load Lepikhin et al. (2021); Fedus et al. (2021). A disadvantage is that it will introduces
undesired gradients that conflict with the language modeling objective, which will influence model perfor-
mance. The other way is auxiliary-loss-free load balancing strategy Wang et al. (2024), where authors add
an additional bias vector on routing scores to change their sort order, instead of computing auxiliary loss.
Neither of the two methods can guarantee expert load balancing in the first several steps of the pre-training
process, and it may cost thousands of training steps to change expert loads into balanced status Wang et al.
(2024).
In this paper, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer
programming (BIP). The algorithm can be set within each routing layer, which maintains an additional
vector q that can help change the top-K order of s. The key point is that we update values of q by solving a
specific form of binary integer programmings on each routing gate with very small time costs. For evaluation
experiments, we implement the algorithm on two MoE language models based on Minimind model series
Jingyaogong (2024): 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both
models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm train models
with lower perplexities, while save at least 13% of pre-training time. Within our current knowledge, this is
the first routing algorithm that achieves keeping load balance status on every expert and every MoE layer
from the first step to the last step during the whole pre-training process, while the trained MoE models also
perform well.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 Preliminary

2.1 Mixture-of-Expert Layers in LLMs.

In MoE layers, for each token experts are selected by a Top-K routing. Let ui denote the input of the i-th
token to an m-expert MoE layer, then output hi can be calculated as follows:

hi = ui +

m∑
j=1

gij FFNj (ui) ,

gij =

{
sij , sij ∈ Topk ({sit | 1 ≤ t ≤ m} , k) ,
0, otherwise,

sij = G
(
ui

T ej
)
.

Here G is a nonlinear gating function and ej is the centroid of the j-th expert.

2.2 Load Balancing Strategy with Auxiliary Loss (Loss-Controlled Method)

Auxiliary-loss methods have been used for control load balanceLepikhin et al. (2021); Fedus et al. (2021).
For a sequence with length n, its auxiliary loss is calculated by

LBalance = α

m∑
j=1

fjPj ,

fj =
m

kn

n∑
i=1

δij ,

Pj =
1

n

n∑
i=1

sij ,

where m is the total number of experts, k is the number of experts selected for each token, sij is the routing
score of Expert j for Token i, fj represents the fraction of tokens routed to Expert j. δij is 0 or 1 representing
whether Token i is for Expert j. Pj denotes the average gating scores of Expert j, and α is a hyper-parameter
controlling the strength of the auxiliary loss.

2.3 Auxiliary-Loss-Free Load Balancing Strategy

The other way to expert load balance is auxiliary-loss-free load balancing strategy Wang et al. (2024), which
first appears in DeepSeek-V3 DeepSeek-AI et al. (2024). Instead of computing loss functions, the authors
introduce a bias vector b on expert lists so that it can influence the determination of the top-K routing as
follows:

g′ij =

{
sij , sij + bj ∈ Topk({sit + bt|1 ≤ t ≤ m}, k),
0, otherwise.

3 Algorithm

The main result of this work is BIP-Based Balancing algorithm, whose details are described in Algorithm 1.
Like Loss-Free strategy, BIP-Based Balancing algorithm also does not need to compute auxiliary-loss, while
there is also an additional vector q that can help change the top-K order of s. The main difference is that
the value of q is computed by solving a binary integer programming, and we update values of q after each
calculation of a routing gate, instead of after each batch. Without loss of generality, all vectors mentioned
in algorithms are row vectors.
To explain why Algorithm 1 works, we first model the expert load balancing problem to the following binary
integer programming (BIP) problem:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 BIP-Based Balancing Algorithm for MoE Models
1: Input: MoE model θ, expert number m, topk number k and a small constant T .
2: Initialize qlj = 0 for each expert j in every MoE layer l;
3: for a batch {x,y} in the batch enumeration do
4: Set n be the token number of {x,y};
5: for each MoE layer l do
6: Compute the routing score matrix s ∈ Rn×m on the batch data {x,y} and all experts;
7: for t = 1, ..., T do
8: Set P = s− 1T

nql ∈ Rn×m;
9: Set pi = max(0, (k + 1)−th largest value of Pi), 1 ≤ i ≤ n for p ∈ Rn;

10: Set Q = sT − 1T
mp ∈ Rm×n;

11: Set qlj = max(0, (nk/m+ 1)−th largest value of Qj), 1 ≤ j ≤ m;
12: end for
13: For every token i and expert j, set

gij =

{
sij , sij − qlj ∈ Topk({sit − qlt|1 ≤ t ≤ m}, k),
0, otherwise.

14: Continue pre-training process on θ with the expert decision matrix g;
15: end for
16: end for
17: Output: trained model θ.

max

n∑
i=1

m∑
j=1

sijxij (BIP)

s.t.
m∑
j=1

xij ≤ k, ∀i ∈ [n] (1)

n∑
i=1

xij ≤
kn

m
, ∀j ∈ [m] (2)

xij ∈ {0, 1}, ∀i ∈ [n], ∀j ∈ [m].

Here, n is the number of tokens in one batch, m is the number of experts and k is the number of experts
selected by each routing decision. s is the routing score matrix. The binary decision variables xij determine
whether matching token i with expert j. Condition (1) holds since we can only match one token with k
experts. Condition (2) ensures the load balance of experts.
in order to solve (BIP), consider its linear programming relaxation version:

max

n∑
i=1

m∑
j=1

sijxij (P-LP)

s.t.
m∑
j=1

xij ≤ k, ∀i ∈ [n]

n∑
i=1

xij ≤
kn

m
, ∀j ∈ [m]

0 ≤ x ≤ 1.

The dual problem of (P-LP) is:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

min k

n∑
i=1

pi +
kn

m

m∑
j=1

qj +

n∑
i=1

m∑
j=1

rij (D-LP)

s.t. pi + qj + rij ≥ sij , ∀i ∈ [n], ∀j ∈ [m]

p ≥ 0, q ≥ 0, r ≥ 0,

where the decision variables are p ∈ Rn, q ∈ Rm and r ∈ Rn×m.

By primal-dual principle, we have the inequality (BIP)≤(P-LP)=(D-LP). In fact, the optimal solution x∗ of
(P-LP) has the following relationship between the optimal solution p∗, q∗ of (D-LP):

x∗
ij = 1 if and only if p∗i + q∗j < sij .

This result matches the line 13 in Algorithm 1, since we can change the inequality p∗i + q∗j < sij to the form
sij−q∗j > p∗i . Thus when i is fixed, there are exact m−k subscripts j satisfying sij−q∗j <= p∗i while the other
k subscripts j satisfy sij − q∗j > p∗i , which exactly match the subscripts of Topk({s∗ij − q∗j |1 ≤ j ≤ m}, k).

On solving (D-LP), we use the standard ADMM algorithm Boyd et al. (2010):

Algorithm 2 ADMM algorithm for (D-LP)
1: for t = 1, ..., T do
2: Set pt = argmaxpLλ(p, qt−1, rt−1,ut−1);
3: Set qt = argmaxqLλ(pt, q, rt−1,ut−1);
4: Set rt = argmaxrLλ(pt, qt, r,ut−1);
5: Update ut with the step parameter λ;
6: end for

Here Lλ(p, q, r,u) is the augmented Lagrangian function of (D-LP) and u is the dual vector variable in L.
In order to implement optimizations, first notice that when p, q are fixed, the optimal values of r and u are
r∗ij = max(sij − pi − qj , 0) and u∗ = 0. Then it is easy to verify that the line 2 and line 3 in Algorithm 2
imply the line 7 to line 12 part in Algorithm 1, by noticing that when q and i are fixed, in order to keep exact
k of {xij}1≤j≤m satisfying xij > 0, we only need to keep exact k of inequalities {pi + qj < sij}1≤j≤m hold.
That is, the best choice of pi is the (k + 1)-th largest value of {sij − qj}1≤j≤m. The analysis of optimizing
q when p is fixed is similar.

4 Experiments

4.1 Experimental Settings

Model Architectures, Training Settings and Hardware. The models we choose in the experiments are from
Minimind, a popular extremely-lightweight language model series Jingyaogong (2024). We train 2 models
on its MoE version during the experiments, one is with 16 experts and the other is with 64 experts. For the
MoE version of Minimind, the number of parameters in each expert is less than 20M, and the core function
of MoE gates are softmax. The datasets are also from Jingyaogong (2024), where we split the pre-training
dataset into a training set and a test set. In order to compare time cost efficiency between different routing
algorithms more intuitively, we do not shuffle the datasets (See also the mutations of blue and green lines in
Figure 1 and Figure 2). More information of models, settings and GPUs is listed in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Hyper parameters 16-expert model 64-expert model
Vocab size 6400 6400

Max Sequence Length 8192 8192
Attention heads 8 8

routing score function softmax softmax
MoE layers 8 8

Routed experts 4 8
Activated routed experts 16 64

Model size 0.3B 1.1B
GPUs RTX4090 ×1 L20 ×1

Table 1: Model architectures, training settings and hardware.

Baseline. We compare our BIP-Balancing algorithm with both Loss-Controlled and Loss-Free strategies,
especially in Loss-Controlled method since there are discussions show that on the softmax function the
Loss-Controlled method works better Su (2025). For the baseline, we set α = 0.1 for the Loss-Controlled
method which is the same value in the original Minimind model, and set u = 0.001 for the Loss-Free method
which is supported in Wang et al. (2024).
Measurements. We introduce two measurements, Average Maximum Violation (AvgMaxV io) and Supre-
mum Maximum Violation (SupMaxV io), to measure the balance degree of experts among the whole pre-
training process. AvgMaxV io is the average value of MaxV iobatchi

among all training batches:

AvgMaxV io =

∑
batchi∈Batches MaxV iobatchi

|Batches|
,

and SupMaxV io is the maximum value of MaxV iobatchi among all training batches:

SupMaxV io = max
batchi∈Batches

{MaxV iobatchi
}.

Here

MaxV iobatchi =
maxj Loadij

Load
− 1,

where Loadij represents the number of tokens matched to the j-th expert during the i-th batch pre-training,
and Load denotes the average number of tokens per expert in one batch. (MaxV iobatch is first introduced in
Wang et al. (2024).) The less AvgMaxV io is, the faster expert loads turn into balance states, which will lead
to smaller time costs of LLM training and higher computing resource utilization. On the other hand, when
SupMaxV io is small (for example, less than 0.2), then global training process can be seen as a balanced
status approximately. Moreover, we will also show AvgMaxV io of each layer in the models in Appendix A.
Besides, we also use Perplexity to measure the performances of pre-trained models, and Training time to
measure the efficiency of global training processes.

4.2 Main Results

Table 2 shows that on the 16-expert model, comparing with the Loss-Controlled method, the BIP-based
algorithm with 4 different iteration times all achieve lower perplexities. More precisely, the BIP-based
algorithm with T = 4 (which has lowest perplexity) only cost 86.83% training time of which the Loss-
Controlled method costs. This is due to the much lower values of AvgMaxV io and SupMaxV io (0.0602
versus 0.3852, and 0.1726 versus 1.5245). More details on the whole pre-training process are shown in
Figure 1, where the MaxV iobatchi

of Loss-Controlled method process has a large fluctuation, while the
BIP-based method help maintain a smooth state on MaxV iobatchi

of the whole pre-training process.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm AvgMaxV io SupMaxV io Perplexity Training time/h
Loss-Controlled 0.3852 1.5245 12.4631 4.6126

Loss-Free 0.1275 1.7702 11.1311 4.3558
BIP, T = 2 0.0529 0.2019 11.2417 3.9547
BIP, T = 4 0.0602 0.1726 10.6856 4.0051
BIP, T = 8 0.0626 0.1727 10.7291 4.0623
BIP, T = 14 0.0547 0.1925 10.7408 4.177

Table 2: Evaluation results on training MoE models with m = 16 and k = 4.

Table 3 shows that on the 64-expert model, comparing with the Loss-Controlled method, the BIP-based
algorithm with T = 14 achieves lower perplexities, while perplexities of other 3 BIP-based algorithms with
different iteration times are almost the same. The BIP-based algorithm with T = 14 only cost 86.15% training
time of which the Loss-Controlled method costs. It’s important to emphasize that, unlike Loss-Controlled
and Loss-Free methods, the AvgMaxV io and SupMaxV io of BIP-Based algorithm do not increase fast
from the 16-expert model to the 64-expert one, which still remain at a low level. More details on the whole
pre-training process are shown in Figure 2. Notice that the separations among three colors of lines are more
obvious than the ones in Figure 1.

Algorithm AvgMaxV io SupMaxV io Perplexity Training time/h
Loss-Controlled 0.7158 2.3841 9.9956 23.7726

Loss-Free 0.3366 2.7121 10.2975 23.9557
BIP, T = 2 0.0513 0.5613 10.6916 20.4569
BIP, T = 4 0.0496 0.4107 10.1299 20.3046
BIP, T = 8 0.0441 0.2372 10.0677 20.4572
BIP, T = 14 0.0529 0.1946 9.9071 20.4799

Table 3: Evaluation results on training MoE models with m = 64 and k = 8.

Figure 1: The line graph of relationships between training steps and MaxV iobatchi by different methods
in the 16-expert model. The blue lines and dots represent trends of MaxV iobatchi

by the Loss-Controlled
method. The green lines and dots represent trends of MaxV iobatchi

by the Loss-Free method. The red lines
and dots represent trends of MaxV iobatchi

by the BIP-based method.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: The line graph of relationships between training steps and MaxV iobatchi
by different methods

in the 64-expert model. The blue lines and dots represent trends of MaxV iobatchi
by the Loss-Controlled

method. The green lines and dots represent trends of MaxV iobatchi
by the Loss-Free method. The red lines

and dots represent trends of MaxV iobatchi
by the BIP-based method.

The similar conclusions also hold for each layer in both two models. For more information on experimental
data and statistical charts, see Appendix A.

5 Discussion

5.1 Online Algorithm for Problem (BIP)

We can easily provide Algorithm 3, the online version of Algorithm 1 on one routing gate:

Algorithm 3 BIP-Based Balancing Algorithm for MoE Models (Online Version, on one gate)
1: Input: token number per batch n, expert number m, topk number k and a small constant T
2: Initialize q = 0m, Q = {Qj = ϕ, 1 ≤ j ≤ m}
3: for a token arrives at this routing gate do
4: Get routing scores {s1, ..., sm}
5: for j = 1, ...,m do
6: Set

gj =

{
sj , sj − qj ∈ Topk({sl − ql|1 ≤ l ≤ m}, k),
0, otherwise.

7: end for
8: for t = 1, ..., T do
9: Set p = max(0, (k + 1)−th largest value of {sl − ql|1 ≤ l ≤ m})

10: for j = 1, ...,m do
11: Set qj = max(0, (nk/m+ 1)−th largest value of {Qj ∪ {sj − p}})
12: end for
13: end for
14: Set Q = {Qj ∪ {sj − p}, 1 ≤ j ≤ m}
15: end for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 3 can be applied in recommendation systems. Consider a scenario that there are over one adver-
tisement slots on one webpage. If our aim is to maximize the sum of CTRs and restrict flows of the most
popular advertisement provider, then the problem turns to be (BIP). (In this problem, an expert can be
seen as a slot.) Furthermore, the approximation version of Algorithm 3 is a better choice for this model (see
Algorithm 4 in Section 5.2), since its space complexity has no relationship with the number of flows.
In fact, we notice that this scenario is a special case of multi-slots online matchings Lu et al. (2022) . The
online matching problem has been widely studied, but for its multi-slot version, there is only a few works Lu
et al. (2022). The difficulty is that it is non-trivial to extend existing methods to the multi-slots version with
diversity pursuit Zhang (2009); Yan et al. (2020). They either depend on closed-form computations Zhong
et al. (2015); Agrawal et al. (2018) or additional assumptions which fail to hold in more than one slots Lu
et al. (2021); Balseiro et al. (2021). We believe that our algorithms in this work will help on solving this
difficult problem.

5.2 Approximate Algorithm with Constant Space Complexity

For Algorithm 3 there are some issues with time and space complexities need to be discussed, especially on
maintaining the set array Q. For each Qj ∈ Q, we can use a heap to maintaining its (nk/m)-largest member.
Thus for each token, the time complexity of maintaining Q and q is only O(m log n), or O(log n) per expert
on parallel computing. However, we will need O(m ∗ (nk/m)) = O(nk) space to storage sets in Q, which
can be seen as a linear relationship with the token size (or the number of flows). Since in recommendation
situations, the scale of flows per day can be over millions, which will cost too much storage resources on
running Algorithm 3.
In order to fix this issue, we notice that if 0 < s < 1 holds, we can divide the internal [0, 1) into several
blocks. Instead of maintaining the set array, we only need to count numbers lying in each block. when we
update the vector q, we first find the block that (nk/m+1)-th largest number lies in, then use interpolation
to approximate its value. Algorithm 4 shows details. Notice that the space complexity of Algorithm 4 is
O(m), which has no relationship with the token number.

Algorithm 4 BIP-Based Balancing Algorithm for MoE Models (Online Approximation Version)
1: Input: token number n, expert number m, topk number k, constant b and T
2: Initialize q = 0m, Q = 0mb

3: for a token arrives at this routing gate do
4: Get routing scores {s1, ..., sm}
5: for j = 1, ...,m do
6: Set

gj =

{
sj , sj − qj ∈ Topk({sl − ql|1 ≤ l ≤ m}, k),
0, otherwise.

7: end for
8: for t = 1, ..., T do
9: Set p = max(0, (k + 1)−th largest value of {sl − ql|1 ≤ l ≤ m})

10: for j = 1, ...,m do
11: Set

Q′
jl =

{
Qjl + 1, sj − p ≥ 0 and l

b ≤ sj − p < l+1
b ,

Qjl, otherwise.
12: Set

qj =

{
interpolation between l

b and
l+1
b , ∃l, (nk/m+ 1)−th largest of Q ′

j is in [lb ,
l+1
b),

0, otherwise.

13: end for
14: end for
15: Set Q = Q′

16: end for

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 Conclusion

In this work we provide BIP-Based Balancing, an expert load balancing algorithm based on binary integer
programming (BIP). The algorithm keep expert load balance by solving a specific form of binary integer
programmings with small time costs. The experimental results show BIP-based algorithm achieves keeping
load balance status on every expert and every MoE layer from the first step to the last step during the whole
pre-training process, while the trained MoE models also perform well. Finally, we discuss the potential
applications of BIP-based algorithm in the fields of recommendation system and online matching.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

References
Shipra Agrawal, Morteza Zadimoghaddam, and Vahab S. Mirrokni. Proportional allocation: Simple, dis-

tributed, and diverse matching with high entropy. PMLR, 2018.

Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Regularized online allocation problems: Fairness and
beyond. In International Conference on Machine Learning, 2021.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine
Learning, 3(1):1–122, 2010.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han
Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui
Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen,
Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin
Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang,
Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian,
Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi
Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu,
Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen
Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia
Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X.
Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan
Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian
Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen
Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang,
Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2024. https://arxiv.org/abs/2412.19437.

William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion pa-
rameter models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2021.
https://api.semanticscholar.org/CorpusID:231573431.

Jingyaogong. Minimind: Micro intellegence has great potional, 2024.
https://github.com/jingyaogong/minimind.

Dmitry Lepikhin, Hyouk Joong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation
and automatic sharding. In International Conference on Learning Representations, 2021.

Haihao Lu, Santiago Balseiro, and Vahab Mirrokni. Dual mirror descent for online allocation problems,
2021. https://arxiv.org/abs/2002.10421.

Xingyu Lu, Qintong Wu, and Leon Wenliang Zhong. Multi-slots online match-
ing with high entropy. In International Conference on Machine Learning, 2022.
https://api.semanticscholar.org/CorpusID:250341043.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017.
https://arxiv.org/abs/1701.06538.

Jianlin Su. Circumstances in moe models, part iii: Change your mind to allocate, Mar 2025.
https://spaces.ac.cn/archives/10757.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load balancing
strategy for mixture-of-experts, 2024. https://arxiv.org/abs/2408.15664.

Jinyun Yan, Zhiyuan Xu, Birjodh Tiwana, and Shaunak Chatterjee. Ads allocation in feed via constrained
optimization. In KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2020.

Mi Zhang. Enhancing diversity in top-n recommendation. In ACM Conference on Recommender Systems,
2009.

Wenliang Zhong, Rong Jin, Cheng Yang, Xiaowei Yan, and Qiang Li. Stock constrained recommendation in
tmall. In ACM SIGKDD International Conference, 2015.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A Other Tables and Graphics in Section 4.2

Algorithm Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8
Auxiliary Loss 0.8988 1.1607 1.1717 1.1726 1.1528 1.14 1.1403 1.1216

Loss Free 0.364 0.3044 0.3341 0.3556 0.3279 0.4681 0.4827 0.3693
BIP, T = 4 0.2024 0.1314 0.1722 0.2153 0.1584 0.1879 0.1998 0.2065

Table 4: AvgMaxV io on each layer in MoE models with m = 16 and k = 4 achieved by different routing
algorithms, for expert load balance evaluations.

Figure 3: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 1.

Figure 4: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 2.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 5: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 3.

Figure 6: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 4.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 7: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 5.

Figure 8: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 6.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 9: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 16-expert model on layer 7.

Figure 10: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 16-expert model on layer 8.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8
Auxiliary Loss 2.469 2.4456 2.4983 2.478 2.4586 2.3725 2.2958 2.177

Loss Free 1.5253 1.0639 1.0399 1.0587 1.036 1.1521 1.1314 1.1126
BIP, T = 14 0.1676 0.1138 0.1133 0.1109 0.1342 0.1356 0.2743 0.1888

Table 5: AvgMaxV io on each layer in MoE models with m = 64 and k = 8 achieved by different routing
algorithms, for expert load balance evaluations.

Figure 11: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 1.

Figure 12: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 13: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 3.

Figure 14: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 4.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 15: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 5.

Figure 16: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 17: The line graph of relationships between training steps and MaxV iobatchi by different methods in
the 64-expert model on layer 7.

Figure 18: The line graph of relationships between training steps and MaxV iobatchi
by different methods in

the 64-expert model on layer 8.

19

	Introduction
	Preliminary
	Mixture-of-Expert Layers in LLMs.
	Load Balancing Strategy with Auxiliary Loss (Loss-Controlled Method)
	Auxiliary-Loss-Free Load Balancing Strategy

	Algorithm
	Experiments
	Experimental Settings
	Main Results

	Discussion
	Online Algorithm for Problem (BIP)
	Approximate Algorithm with Constant Space Complexity

	Conclusion
	Other Tables and Graphics in [sec:result] Section 4.2

