Binary-Integer-Programming Based Algorithm for Expert Load Balancing in Mixture-of-Experts Models

Anonymous authors Paper under double-blind review

Abstract

For pre-training of MoE (Mixture-of-Experts) models, one of the main issues is unbalanced expert loads, which may cause routing collapse or increased computational overhead. Existing methods contain the Loss-Controlled method and the Loss-Free method, where both the unbalanced degrees at first several training steps are still high and decrease slowly. In this work, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer programming (BIP). The algorithm maintains an additional vector \boldsymbol{q} on each MoE layer that can help change the top-K order of \boldsymbol{s} by solving a binary integer programming with very small time costs. We implement the algorithm on two MoE language models: 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm trains models with the lowest perplexities, while saves at least 13% of pre-training time compared with the Loss-Controlled method. Within our current knowledge, this is the first routing algorithm that achieves maintaining load balance status on every expert in every MoE layer from the first step to the last step during the whole pre-training process, while the trained MoE models also perform well.

1 Introduction

MoE (Mixture-of-Experts) architectures allow LLMs (Large Language Models) become sparsity so that they can have both large scale of parameters and much small resource costs. However, unbalanced expert loads always happen in MoE LLM pre-training, especially when the number of experts is large. This problem will lead to computation bottlenecks Lepikhin et al. (2021); Fedus et al. (2021) or routing collapse Shazeer et al. (2017). Furthermore, the worst situation is that a MoE model finally degenerates to a dense model, but with fewer activated parameters.

In order to balance the expert loads, many methods are proposed. One is using an auxiliary loss to encourage balanced expert load Lepikhin et al. (2021); Fedus et al. (2021). A disadvantage is that it will introduces undesired gradients that conflict with the language modeling objective, which will influence model performance. The other way is auxiliary-loss-free load balancing strategy Wang et al. (2024), where authors add an additional bias vector on routing scores to change their sort order, instead of computing auxiliary loss. Neither of the two methods can guarantee expert load balancing in the first several steps of the pre-training process, and it may cost thousands of training steps to change expert loads into balanced status Wang et al. (2024).

In this paper, we propose BIP-Based Balancing, an expert load balancing algorithm based on binary integer programming (BIP). The algorithm can be set within each routing layer, which maintains an additional vector \mathbf{q} that can help change the top-K order of \mathbf{s} . The key point is that we update values of \mathbf{q} by solving a specific form of binary integer programmings on each routing gate with very small time costs. For evaluation experiments, we implement the algorithm on two MoE language models based on Minimind model series Jingyaogong (2024): 16-expert (0.3B) and 64-expert (1.1B). The experimental results show that on both models comparing with the Loss-Controlled method and the Loss-Free method, our algorithm train models with lower perplexities, while save at least 13% of pre-training time. Within our current knowledge, this is the first routing algorithm that achieves keeping load balance status on every expert and every MoE layer from the first step to the last step during the whole pre-training process, while the trained MoE models also perform well.

2 Preliminary

2.1 Mixture-of-Expert Layers in LLMs.

In MoE layers, for each token experts are selected by a Top-K routing. Let \mathbf{u}_i denote the input of the *i*-th token to an m-expert MoE layer, then output \mathbf{h}_i can be calculated as follows:

$$\mathbf{h}_{i} = \mathbf{u}_{i} + \sum_{j=1}^{m} g_{ij} \operatorname{FFN}_{j} (\mathbf{u}_{i}),$$

$$g_{ij} = \begin{cases} s_{ij}, & s_{ij} \in \operatorname{Topk} (\{s_{it} \mid 1 \leq t \leq m\}, k), \\ 0, & \text{otherwise}, \end{cases}$$

$$s_{ij} = G(\mathbf{u}_{i}^{T} \mathbf{e}_{j}).$$

Here G is a nonlinear gating function and \mathbf{e}_{j} is the centroid of the j-th expert.

2.2 Load Balancing Strategy with Auxiliary Loss (Loss-Controlled Method)

Auxiliary-loss methods have been used for control load balanceLepikhin et al. (2021); Fedus et al. (2021). For a sequence with length n, its auxiliary loss is calculated by

$$\mathcal{L}_{\text{Balance}} = \alpha \sum_{j=1}^{m} f_j P_j,$$

$$f_j = \frac{m}{kn} \sum_{i=1}^{n} \delta_{ij},$$

$$P_j = \frac{1}{n} \sum_{i=1}^{n} s_{ij},$$

where m is the total number of experts, k is the number of experts selected for each token, s_{ij} is the routing score of Expert j for Token i, f_j represents the fraction of tokens routed to Expert j. δ_{ij} is 0 or 1 representing whether Token i is for Expert j. P_j denotes the average gating scores of Expert j, and α is a hyper-parameter controlling the strength of the auxiliary loss.

2.3 Auxiliary-Loss-Free Load Balancing Strategy

The other way to expert load balance is auxiliary-loss-free load balancing strategy Wang et al. (2024), which first appears in DeepSeek-V3 DeepSeek-AI et al. (2024). Instead of computing loss functions, the authors introduce a bias vector \boldsymbol{b} on expert lists so that it can influence the determination of the top-K routing as follows:

$$g'_{ij} = \begin{cases} s_{ij}, & s_{ij} + b_j \in \text{Topk}(\{s_{it} + b_t | 1 \le t \le m\}, k), \\ 0, & \text{otherwise.} \end{cases}$$

3 Algorithm

The main result of this work is BIP-Based Balancing algorithm, whose details are described in Algorithm 1. Like Loss-Free strategy, BIP-Based Balancing algorithm also does not need to compute auxiliary-loss, while there is also an additional vector \boldsymbol{q} that can help change the top-K order of \boldsymbol{s} . The main difference is that the value of \boldsymbol{q} is computed by solving a binary integer programming, and we update values of \boldsymbol{q} after each calculation of a routing gate, instead of after each batch. Without loss of generality, all vectors mentioned in algorithms are row vectors.

To explain why Algorithm 1 works, we first model the expert load balancing problem to the following binary integer programming (BIP) problem:

129130131132

133

134 135

136

137138

139

140141

142143

144

145

146

147

148149150

151

152 153

154155156

157158159

160161

Algorithm 1 BIP-Based Balancing Algorithm for MoE Models

```
109
            1: Input: MoE model \theta, expert number m, topk number k and a small constant T.
110
            2: Initialize q_{lj} = 0 for each expert j in every MoE layer l;
111
               for a batch \{x,y\} in the batch enumeration do
112
                    Set n be the token number of \{x, y\};
           4:
113
           5:
                    for each MoE layer l do
114
                        Compute the routing score matrix s \in \mathbb{R}^{n \times m} on the batch data \{x, y\} and all experts;
            6:
115
            7:
                        for t = 1, ..., T do
                             Set P = s - \mathbf{1}_n^T q_l \in \mathbb{R}^{n \times m};
116
           8:
                             Set p_i = \max(0, (k+1)) -th largest value of P_i), 1 \le i \le n for p \in \mathbb{R}^n;
Set Q = s^T - \mathbf{1}_m^T p \in \mathbb{R}^{m \times n};
           9:
117
          10:
118
                             Set q_{lj} = \max(0, (nk/m+1)) -th largest value of Q_i, 1 \le j \le m;
          11:
119
          12:
                        end for
120
                        For every token i and expert j, set
          13:
121
122
                                               g_{ij} = \begin{cases} s_{ij}, & s_{ij} - q_{lj} \in \text{Topk}(\{s_{it} - q_{lt} | 1 \le t \le m\}, k), \\ 0, & \text{otherwise.} \end{cases}
123
124
          14:
                        Continue pre-training process on \theta with the expert decision matrix q:
125
          15:
                    end for
126
          16: end for
127
          17: Output: trained model \theta.
128
```

$$\max \sum_{i=1}^{n} \sum_{j=1}^{m} s_{ij} x_{ij}$$
 (BIP)

s.t.
$$\sum_{j=1}^{m} x_{ij} \le k, \forall i \in [n]$$
 (1)

$$\sum_{i=1}^{n} x_{ij} \le \frac{kn}{m}, \forall j \in [m]$$

$$x_{ij} \in \{0, 1\}, \forall i \in [n], \forall j \in [m].$$

$$(2)$$

Here, n is the number of tokens in one batch, m is the number of experts and k is the number of experts selected by each routing decision. s is the routing score matrix. The binary decision variables x_{ij} determine whether matching token i with expert j. Condition (1) holds since we can only match one token with k experts. Condition (2) ensures the load balance of experts.

in order to solve (BIP), consider its linear programming relaxation version:

$$\max \sum_{i=1}^{n} \sum_{j=1}^{m} s_{ij} x_{ij}$$
s.t.
$$\sum_{j=1}^{m} x_{ij} \le k, \forall i \in [n]$$

$$\sum_{i=1}^{n} x_{ij} \le \frac{kn}{m}, \forall j \in [m]$$

$$\mathbf{0} \le \mathbf{x} \le \mathbf{1}.$$
 (P-LP)

The dual problem of (P-LP) is:

min
$$k \sum_{i=1}^{n} p_i + \frac{kn}{m} \sum_{j=1}^{m} q_j + \sum_{i=1}^{n} \sum_{j=1}^{m} r_{ij}$$

s.t. $p_i + q_j + r_{ij} \ge s_{ij}, \forall i \in [n], \forall j \in [m]$
 $p > 0, q > 0, r > 0,$

where the decision variables are $p \in \mathbb{R}^n$, $q \in \mathbb{R}^m$ and $r \in \mathbb{R}^{n \times m}$.

By primal-dual principle, we have the inequality (BIP) \leq (P-LP)=(D-LP). In fact, the optimal solution x^* of (P-LP) has the following relationship between the optimal solution p^*, q^* of (D-LP):

$$x_{ij}^* = 1$$
 if and only if $p_i^* + q_j^* < s_{ij}$.

This result matches the line 13 in Algorithm 1, since we can change the inequality $p_i^* + q_j^* < s_{ij}$ to the form $s_{ij} - q_j^* > p_i^*$. Thus when i is fixed, there are exact m-k subscripts j satisfying $s_{ij} - q_j^* <= p_i^*$ while the other k subscripts j satisfy $s_{ij} - q_j^* > p_i^*$, which exactly match the subscripts of Topk($\{s_{ij}^* - q_j^* | 1 \le j \le m\}, k$).

On solving (D-LP), we use the standard ADMM algorithm Boyd et al. (2010):

Algorithm 2 ADMM algorithm for (D-LP)

```
1: for t = 1, ..., T do

2: Set \mathbf{p}_t = \operatorname{argmax}_{\mathbf{p}} L_{\lambda}(\mathbf{p}, \mathbf{q}_{t-1}, \mathbf{r}_{t-1}, \mathbf{u}_{t-1});

3: Set \mathbf{q}_t = \operatorname{argmax}_{\mathbf{q}} L_{\lambda}(\mathbf{p}_t, \mathbf{q}, \mathbf{r}_{t-1}, \mathbf{u}_{t-1});

4: Set \mathbf{r}_t = \operatorname{argmax}_{\mathbf{r}} L_{\lambda}(\mathbf{p}_t, \mathbf{q}_t, \mathbf{r}, \mathbf{u}_{t-1});

5: Update \mathbf{u}_t with the step parameter \lambda;

6: end for
```

Here $L_{\lambda}(\boldsymbol{p},\boldsymbol{q},\boldsymbol{r},\boldsymbol{u})$ is the augmented Lagrangian function of (D-LP) and \boldsymbol{u} is the dual vector variable in L. In order to implement optimizations, first notice that when $\boldsymbol{p},\boldsymbol{q}$ are fixed, the optimal values of \boldsymbol{r} and \boldsymbol{u} are $r_{ij}^* = \max(s_{ij} - p_i - q_j,0)$ and $\boldsymbol{u}^* = \boldsymbol{0}$. Then it is easy to verify that the line 2 and line 3 in Algorithm 2 imply the line 7 to line 12 part in Algorithm 1, by noticing that when \boldsymbol{q} and i are fixed, in order to keep exact k of $\{x_{ij}\}_{1\leq j\leq m}$ satisfying $x_{ij}>0$, we only need to keep exact k of inequalities $\{p_i+q_j< s_{ij}\}_{1\leq j\leq m}$ hold. That is, the best choice of p_i is the (k+1)-th largest value of $\{s_{ij}-q_j\}_{1\leq j\leq m}$. The analysis of optimizing \boldsymbol{q} when \boldsymbol{p} is fixed is similar.

4 Experiments

4.1 Experimental Settings

Model Architectures, Training Settings and Hardware. The models we choose in the experiments are from Minimind, a popular extremely-lightweight language model series Jingyaogong (2024). We train 2 models on its MoE version during the experiments, one is with 16 experts and the other is with 64 experts. For the MoE version of Minimind, the number of parameters in each expert is less than 20M, and the core function of MoE gates are softmax. The datasets are also from Jingyaogong (2024), where we split the pre-training dataset into a training set and a test set. In order to compare time cost efficiency between different routing algorithms more intuitively, we do not shuffle the datasets (See also the mutations of blue and green lines in Figure 1 and Figure 2). More information of models, settings and GPUs is listed in Table 1.

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Hyper parameters	16-expert model	64-expert model
Vocab size	6400	6400
Max Sequence Length	8192	8192
Attention heads	8	8
routing score function	softmax	softmax
MoE layers	8	8
Routed experts	4	8
Activated routed experts	16	64
Model size	0.3B	1.1B
GPUs	RTX4090 ×1	L20 ×1

Table 1: Model architectures, training settings and hardware.

Baseline. We compare our BIP-Balancing algorithm with both Loss-Controlled and Loss-Free strategies, especially in Loss-Controlled method since there are discussions show that on the softmax function the Loss-Controlled method works better Su (2025). For the baseline, we set $\alpha=0.1$ for the Loss-Controlled method which is the same value in the original Minimind model, and set u=0.001 for the Loss-Free method which is supported in Wang et al. (2024).

Measurements. We introduce two measurements, Average Maximum Violation (AvgMaxVio) and Supremum Maximum Violation (SupMaxVio), to measure the balance degree of experts among the whole pretraining process. AvgMaxVio is the average value of $MaxVio_{batch_i}$ among all training batches:

$$AvgMaxVio = \frac{\sum_{batch_i \in Batches} MaxVio_{batch_i}}{|Batches|},$$

and SupMaxVio is the maximum value of $MaxVio_{batch_i}$ among all training batches:

$$SupMaxVio = \max_{batch_i \in Batches} \{MaxVio_{batch_i}\}.$$

Here

$$MaxVio_{batch_i} = \frac{\max_{j} Load_{ij}}{\overline{Load}} - 1,$$

where $Load_{ij}$ represents the number of tokens matched to the j-th expert during the i-th batch pre-training, and \overline{Load} denotes the average number of tokens per expert in one batch. ($MaxVio_{batch}$ is first introduced in Wang et al. (2024).) The less AvgMaxVio is, the faster expert loads turn into balance states, which will lead to smaller time costs of LLM training and higher computing resource utilization. On the other hand, when SupMaxVio is small (for example, less than 0.2), then global training process can be seen as a balanced status approximately. Moreover, we will also show AvgMaxVio of each layer in the models in Appendix A.

Besides, we also use Perplexity to measure the performances of pre-trained models, and Training time to measure the efficiency of global training processes.

4.2 Main Results

Table 2 shows that on the 16-expert model, comparing with the Loss-Controlled method, the BIP-based algorithm with 4 different iteration times all achieve lower perplexities. More precisely, the BIP-based algorithm with T=4 (which has lowest perplexity) only cost 86.83% training time of which the Loss-Controlled method costs. This is due to the much lower values of AvgMaxVio and SupMaxVio (0.0602 versus 0.3852, and 0.1726 versus 1.5245). More details on the whole pre-training process are shown in Figure 1, where the $MaxVio_{batch_i}$ of Loss-Controlled method process has a large fluctuation, while the BIP-based method help maintain a smooth state on $MaxVio_{batch_i}$ of the whole pre-training process.

Algorithm	AvgMaxVio	SupMaxVio	Perplexity	Training time/h
Loss-Controlled	0.3852	1.5245	12.4631	4.6126
Loss-Free	0.1275	1.7702	11.1311	4.3558
BIP, $T=2$	0.0529	0.2019	11.2417	3.9547
BIP, $T=4$	0.0602	0.1726	10.6856	4.0051
BIP, $T = 8$	0.0626	0.1727	10.7291	4.0623
BIP, $T = 14$	0.0547	0.1925	10.7408	4.177
Table 2: Evaluat	tion results on t	raining MoE m	odels with m	k = 16 and k = 4.

Table 3 sh olled method, the BIP-based algorithm with T = 14 achieves lower perplexities, while perplexities of other 3 BIP-based algorithms with different iteration times are almost the same. The BIP-based algorithm with T=14 only cost 86.15% training time of which the Loss-Controlled method costs. It's important to emphasize that, unlike Loss-Controlled and Loss-Free methods, the AvgMaxVio and SupMaxVio of BIP-Based algorithm do not increase fast from the 16-expert model to the 64-expert one, which still remain at a low level. More details on the whole pre-training process are shown in Figure 2. Notice that the separations among three colors of lines are more obvious than the ones in Figure 1.

Algorithm	AvgMaxVio	SupMaxVio	Perplexity	Training time/h
Loss-Controlled	0.7158	2.3841	9.9956	23.7726
Loss-Free	0.3366	2.7121	10.2975	23.9557
BIP, $T=2$	0.0513	0.5613	10.6916	20.4569
BIP, $T=4$	0.0496	0.4107	10.1299	20.3046
BIP, $T = 8$	0.0441	0.2372	10.0677	20.4572
BIP, $T = 14$	0.0529	0.1946	9.9071	20.4799

Table 3: Evaluation results on training MoE models with m = 64 and k = 8.

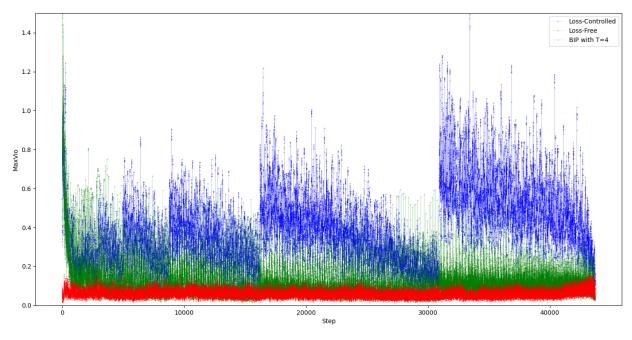


Figure 1: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model. The blue lines and dots represent trends of $MaxVio_{batch_i}$ by the Loss-Controlled method. The green lines and dots represent trends of $MaxVio_{batch_i}$ by the Loss-Free method. The red lines and dots represent trends of $MaxVio_{batch_i}$ by the BIP-based method.

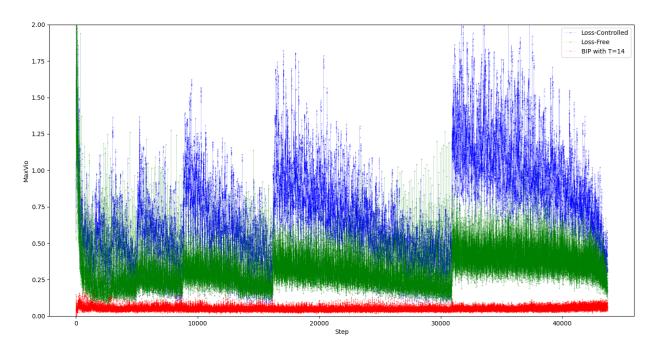


Figure 2: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model. The blue lines and dots represent trends of $MaxVio_{batch_i}$ by the Loss-Controlled method. The green lines and dots represent trends of $MaxVio_{batch_i}$ by the Loss-Free method. The red lines and dots represent trends of $MaxVio_{batch_i}$ by the BIP-based method.

The similar conclusions also hold for each layer in both two models. For more information on experimental data and statistical charts, see Appendix A.

5 Discussion

324

325 326

327328329

330 331

333

336337338

339 340

341 342

343

344 345

346

347

348

349350351

353 354

355

359 360

361 362

363

365

366

367

369 370

371

372

373

374

375

376

377

5.1 Online Algorithm for Problem (BIP)

We can easily provide Algorithm 3, the online version of Algorithm 1 on one routing gate:

Algorithm 3 BIP-Based Balancing Algorithm for MoE Models (Online Version, on one gate)

```
1: Input: token number per batch n, expert number m, topk number k and a small constant T
 2: Initialize q = 0^m, Q = \{Q_j = \phi, 1 \le j \le m\}
 3: for a token arrives at this routing gate do
         Get routing scores \{s_1, ..., s_m\}
 4:
         for j = 1, ..., m do
 5:
                                     g_j = \begin{cases} s_j, & s_j - q_j \in \text{Topk}(\{s_l - q_l | 1 \le l \le m\}, k), \\ 0, & \text{otherwise.} \end{cases}
             Set
 6:
 7:
         end for
 8:
         for t = 1, ..., T do
             Set p = \max(0, (k+1) -th largest value of \{s_l - q_l | 1 \le l \le m\})
 9:
10:
             for j = 1, ..., m do
                  Set q_j = \max(0, (nk/m + 1) - \text{th largest value of } \{Q_j \cup \{s_j - p\}\})
11:
12:
             end for
13:
         end for
         Set \mathbf{Q} = \{Q_j \cup \{s_j - p\}, 1 \le j \le m\}
15: end for
```

379

381

382

384

385

387

391

393

394

396

397

398

399

400

401

402

403

404

405 406 407

408

409 410

411

412

413

414 415 416

417

418

419

420

421 422 423

424

425 426 427

428

429

430

431

Algorithm 3 can be applied in recommendation systems. Consider a scenario that there are over one advertisement slots on one webpage. If our aim is to maximize the sum of CTRs and restrict flows of the most popular advertisement provider, then the problem turns to be (BIP). (In this problem, an expert can be seen as a slot.) Furthermore, the approximation version of Algorithm 3 is a better choice for this model (see Algorithm 4 in Section 5.2), since its space complexity has no relationship with the number of flows.

In fact, we notice that this scenario is a special case of multi-slots online matchings Lu et al. (2022). The online matching problem has been widely studied, but for its multi-slot version, there is only a few works Lu et al. (2022). The difficulty is that it is non-trivial to extend existing methods to the multi-slots version with diversity pursuit Zhang (2009); Yan et al. (2020). They either depend on closed-form computations Zhong et al. (2015); Agrawal et al. (2018) or additional assumptions which fail to hold in more than one slots Lu et al. (2021); Balseiro et al. (2021). We believe that our algorithms in this work will help on solving this difficult problem.

5.2 Approximate Algorithm with Constant Space Complexity

For Algorithm 3 there are some issues with time and space complexities need to be discussed, especially on maintaining the set array Q. For each $Q_j \in Q$, we can use a heap to maintaining its (nk/m)-largest member. Thus for each token, the time complexity of maintaining Q and q is only $O(m \log n)$, or $O(\log n)$ per expert on parallel computing. However, we will need O(m*(nk/m)) = O(nk) space to storage sets in Q, which can be seen as a linear relationship with the token size (or the number of flows). Since in recommendation situations, the scale of flows per day can be over millions, which will cost too much storage resources on running Algorithm 3.

In order to fix this issue, we notice that if 0 < s < 1 holds, we can divide the internal [0,1) into several blocks. Instead of maintaining the set array, we only need to count numbers lying in each block. when we update the vector \mathbf{q} , we first find the block that (nk/m+1)-th largest number lies in, then use interpolation to approximate its value. Algorithm 4 shows details. Notice that the space complexity of Algorithm 4 is O(m), which has no relationship with the token number.

Algorithm 4 BIP-Based Balancing Algorithm for MoE Models (Online Approximation Version)

```
1: Input: token number n, expert number m, topk number k, constant b and T 2: Initialize q=\mathbf{0}^m,\ Q=\mathbf{0}^{mb}
 3: for a token arrives at this routing gate do
 4:
            Get routing scores \{s_1, ..., s_m\}
            for j = 1, ..., m do
 5:
 6:
                   Set
                                                   g_j = \begin{cases} s_j, & s_j - q_j \in \text{Topk}(\{s_l - q_l | 1 \le l \le m\}, k), \\ 0, & \text{otherwise.} \end{cases}
 7:
            end for
 8:
 9:
                   Set p = \max(0, (k+1)) -th largest value of \{s_l - q_l | 1 \le l \le m\})
                   for j = 1, ..., m do
10:
                        Set
11:
                                                   Q'_{jl} = \begin{cases} Q_{jl} + 1, & s_j - p \ge 0 \text{ and } \frac{l}{b} \le s_j - p < \frac{l+1}{b}, \\ Q_{jl}, & \text{otherwise.} \end{cases}
12:
                        Set
                      q_j = \begin{cases} \text{interpolation between } \frac{l}{b} \text{ and } \frac{l+1}{b}, & \exists l, (nk/m+1) - \text{th largest of } Q_j' \text{ is in } \left[\frac{l}{b}, \frac{l+1}{b}\right), \\ 0, & \text{otherwise.} \end{cases}
                  end for
13:
14:
            end for
            Set Q = Q'
15:
16: end for
```

6 Conclusion

In this work we provide BIP-Based Balancing, an expert load balancing algorithm based on binary integer programming (BIP). The algorithm keep expert load balance by solving a specific form of binary integer programmings with small time costs. The experimental results show BIP-based algorithm achieves keeping load balance status on every expert and every MoE layer from the first step to the last step during the whole pre-training process, while the trained MoE models also perform well. Finally, we discuss the potential applications of BIP-based algorithm in the fields of recommendation system and online matching.

References

486

487

488

489 490

491

492

493

494

495

496

497

498

499

504

505

506

507

508

510

511

512

513

514

515

516

517

518

519

521

522

523

524

525

527

528

529

530

533

534 535

536

538

- Shipra Agrawal, Morteza Zadimoghaddam, and Vahab S. Mirrokni. Proportional allocation: Simple, distributed, and diverse matching with high entropy. PMLR, 2018.
- Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Regularized online allocation problems: Fairness and beyond. In International Conference on Machine Learning, 2021.
- Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 3(1):1–122, 2010.
- DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peivi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2024. https://arxiv.org/abs/2412.19437.
- William Fedus, Barret Zoph, and Noam M. Shazeer. Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity. https://api.semanticscholar.org/CorpusID:231573431.
- Jingyaogong. Minimind: Micro intellegence has great potional, 2024. https://github.com/jingyaogong/minimind.
- Dmitry Lepikhin, Hyouk Joong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional computation and automatic sharding. In International Conference on Learning Representations, 2021.
- Haihao Lu, Santiago Balseiro, and Vahab Mirrokni. Dual mirror descent for online allocation problems, 2021. https://arxiv.org/abs/2002.10421.
- Xingvu Lu, Qintong and Leon Wenliang Zhong. Multi-slots online matchwith high entropy. In International Conference on Machine Learning, 2022. https://api.semanticscholar.org/CorpusID:250341043.
- Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer, 2017. https://arxiv.org/abs/1701.06538.
- Jianlin Su. Circumstances in moe models, part iii: Change your mind to allocate, Mar 2025. https://spaces.ac.cn/archives/10757.

Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free load balancing strategy for mixture-of-experts, 2024. https://arxiv.org/abs/2408.15664.

Jinyun Yan, Zhiyuan Xu, Birjodh Tiwana, and Shaunak Chatterjee. Ads allocation in feed via constrained optimization. In KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2020.

Mi Zhang. Enhancing diversity in top-n recommendation. In <u>ACM Conference on Recommender Systems</u>, 2009.

Wenliang Zhong, Rong Jin, Cheng Yang, Xiaowei Yan, and Qiang Li. Stock constrained recommendation in tmall. In ACM SIGKDD International Conference, 2015.

A Other Tables and Graphics in Section 4.2

Algorithm	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8
Auxiliary Loss	0.8988	1.1607	1.1717	1.1726	1.1528	1.14	1.1403	1.1216
Loss Free	0.364	0.3044	0.3341	0.3556	0.3279	0.4681	0.4827	0.3693
BIP, $T=4$	0.2024	0.1314	0.1722	0.2153	0.1584	0.1879	0.1998	0.2065

Table 4: AvgMaxVio on each layer in MoE models with m=16 and k=4 achieved by different routing algorithms, for expert load balance evaluations.

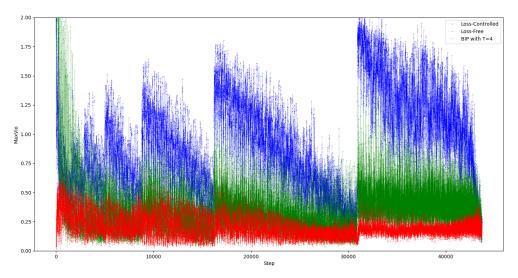


Figure 3: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 1.

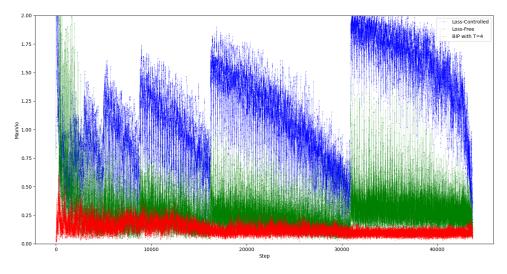


Figure 4: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 2.

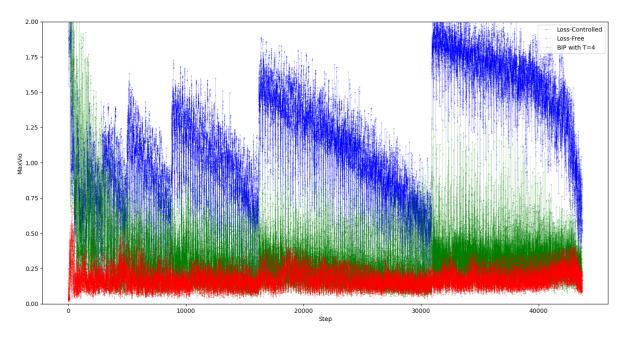


Figure 5: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 3.

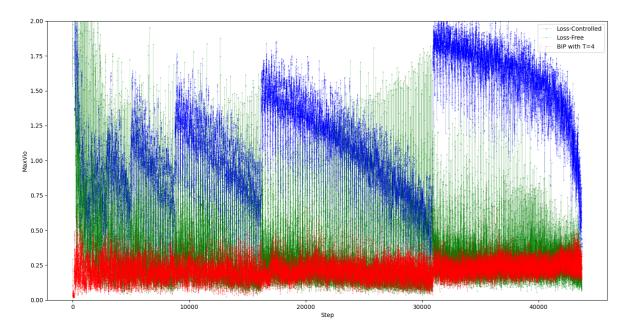


Figure 6: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 4.

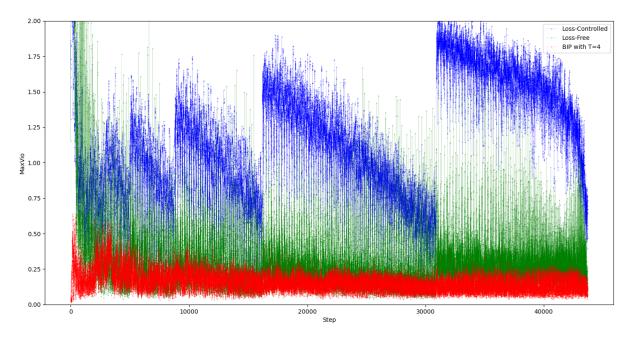


Figure 7: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 5.

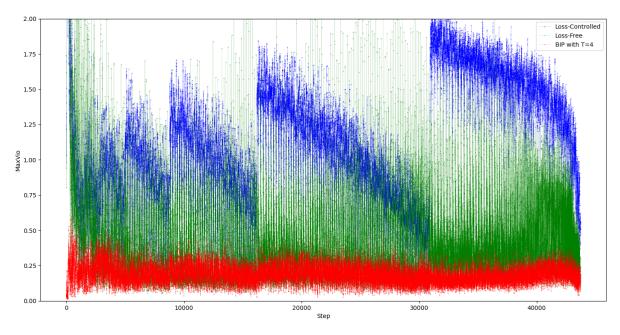


Figure 8: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 6.

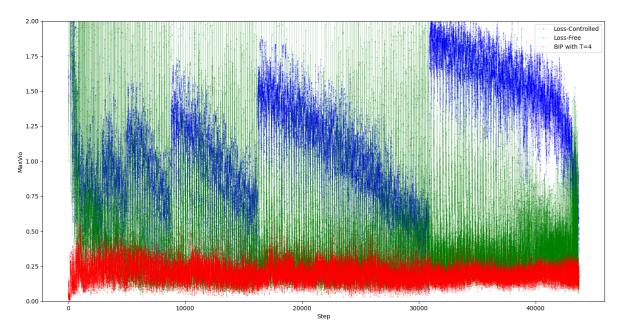


Figure 9: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 7.

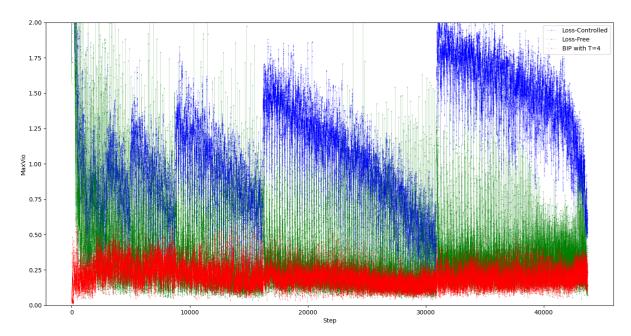


Figure 10: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 16-expert model on layer 8.

Algorithm	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Layer 6	Layer 7	Layer 8
Auxiliary Loss	2.469	2.4456	2.4983	2.478	2.4586	2.3725	2.2958	2.177
Loss Free	1.5253	1.0639	1.0399	1.0587	1.036	1.1521	1.1314	1.1126
BIP, $T = 14$	0.1676	0.1138	0.1133	0.1109	0.1342	0.1356	0.2743	0.1888

Table 5: AvgMaxVio on each layer in MoE models with m=64 and k=8 achieved by different routing algorithms, for expert load balance evaluations.

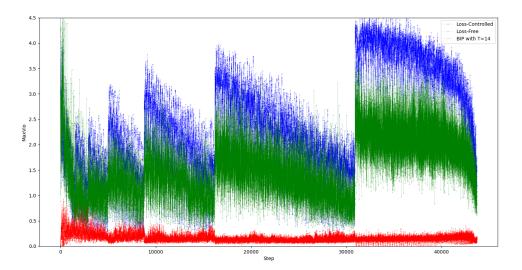


Figure 11: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 1.

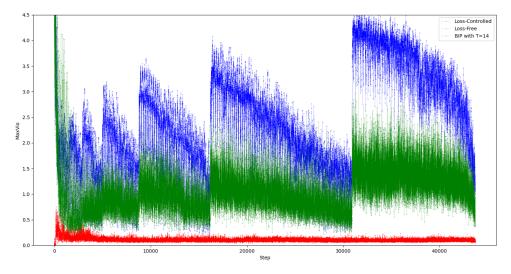


Figure 12: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 2.

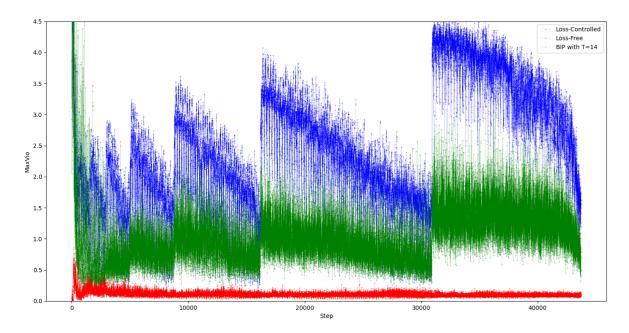


Figure 13: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 3.

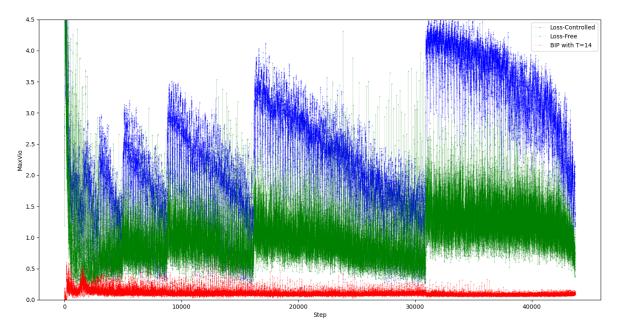


Figure 14: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 4.

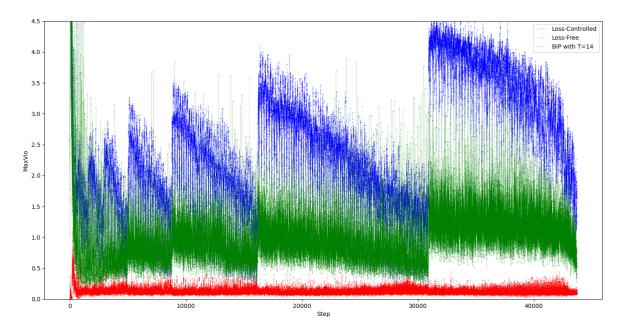


Figure 15: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 5.

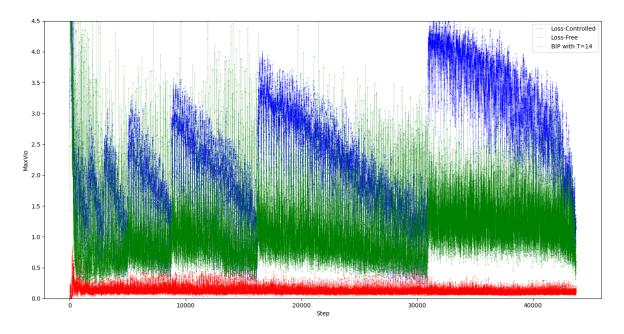


Figure 16: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 6.

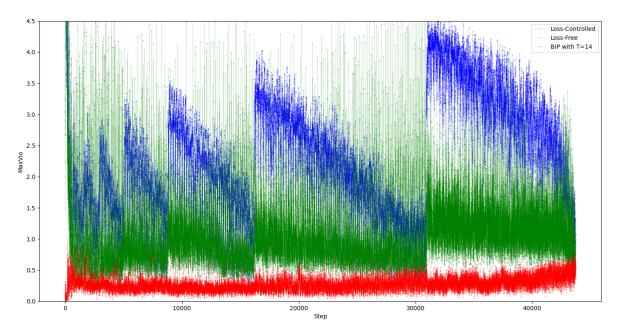


Figure 17: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 7.

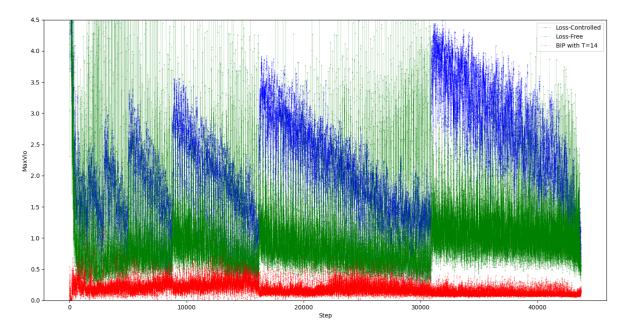


Figure 18: The line graph of relationships between training steps and $MaxVio_{batch_i}$ by different methods in the 64-expert model on layer 8.