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ABSTRACT

3D object detection is crucial for applications like autonomous driving and
robotics. While query-based 3D object detection for BEV (Bird’s Eye View)
images has seen significant advancements, most existing methods follows the
paradigm of static query. Such paradigm is incapable of adapting to complex
spatial-temporal relationships in the scene. To solve this problem, we introduce a
new paradigm in DynamicBEV, a novel approach that employs dynamic queries
for BEV-based 3D object detection. In contrast to static queries, the proposed
dynamic queries exploit K-means clustering and Top-K Attention in a creative
way to aggregate information more effectively from both local and distant fea-
ture, which enable DynamicBEV to adapt iteratively to complex scenes. To fur-
ther boost efficiency, DynamicBEV incorporates a Lightweight Temporal Fusion
Module (LTFM), designed for efficient temporal context integration with a sig-
nificant computation reduction. Additionally, a custom-designed Diversity Loss
ensures a balanced feature representation across scenarios. Extensive experiments
on the nuScenes dataset validate the effectiveness of DynamicBEV, establishing a
new state-of-the-art and heralding a paradigm-level breakthrough in query-based
BEV object detection.

1 INTRODUCTION

3D object detection is a pivotal task in various applications like autonomous driving, robotics, and
surveillance Huang et al. (2021); Huang & Huang (2022a); Li et al. (2022c;b); Park et al. (2022). In
the field of 3D object detection, BEV (Bird’s Eye View) algorithms have achieved increasing promi-
nence due to their ability to provide a top-down perspective, simplifying complex 3D scenes into
2D representations. This perspective aids in reducing computational complexity and enhancing the
clarity of object localization. However, traditional query-based BEV methods have mainly exploited
static queries Wang et al. (2022); Liu et al. (2022a;b), the query weights are learned from the training
phase and keep fixed during inference. This static nature limits the model’s ability to leverage both
spatial and temporal context effectively and adapt to complex scenes. We argue that evolving from
static to dynamic queries can initiate a new paradigm of 3D object detection, which will exploit
more robust mechanisms to adaptively capture complex spatial-temporal relationships. Figure 2
presents static query-based methods, such as DETR3D Wang et al. (2022), employ queries that are
learnable during training but remain fixed during inference. In contrast, our dynamic query-based
method, DynamicBEV, allows for queries to adapt to the input data in an iterative way, offering
greater generalization and flexibility.

In this vein, we introduce DynamicBEV, a novel method that pioneers dynamic queries in query-
based 3D object detection. Unlike traditional static queries in BEV-based methods, the proposed
dynamic queries are subject to iterative adapt in complex scenes. Specifically, we exploit feature
clustering to generate adaptive scene representation, and develop a Top-K Attention mechanism
where the query adapts to most relevant top-k clusters. This dynamism allows each query to ag-
gregate information adaptively from both local and distant feature clusters, thereby significantly
enhancing the model’s ability to capture complex 3D scenarios.

Along with Top-K Attention scheme, we introduce a Diversity Loss that balances the attention
weights to ensure that not only the most relevant but also the less prominent features are considered.
This not only elevates the detection accuracy but also boosts the model’s robustness and adaptability
to different scenarios.
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Figure 1: The architecture of DynamicBEV. The
process starts with the extraction of features using
a backbone network. Then, the features are clus-
tered around each query through K-means clus-
tering. Next, Top-K Attention Aggregation is ap-
plied to adaptively update each query. Finally, the
updated queries are used for 3D object prediction.
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Figure 2: Comparison between static query-
based and dynamic query-based methods.

To further improve the efficiency of DynamicBEV, we propose Lightweight Temporal Fusion Mod-
ule (LTFM). Contrary to traditional temporal fusion approaches that brings a significant compu-
tational burden, LTFM reuses the already computed dynamic queries and their associated feature
clusters, which gets rid of the heavy cost of the specific feature extraction in traditional temporal
fusion approaches and significantly boosts the efficiency the of temporal context incorporation.

We rigorously evaluate DynamicBEV on the nuScenes dataset, where it shows a significant gap over
the state-of-the-art methods in terms of both accuracy and efficiency.

2 RELATED WORK

2.1 QUERY-BASED OBJECT DETECTION IN 2D AND 3D

Query-based object detection has gained significant advancements thanks to the introduction of the
Transformer architecture Vaswani et al. (2017). Primary works like DETR Carion et al. (2020)
adopted a static query-based approach where queries are used to represent potential objects but do
not adapt during the detection process. Various works Zhu et al. (2020); Sun et al. (2021); Gao
et al. (2022) have focused on accelerating the convergence or improving the efficiency of these
static query-based methods. However, these models, even when extended to 3D space Wang et al.
(2022); Liu et al. (2022a), inherently lack the ability to adapt queries to complex spatial and temporal
relationships within the data. Our work diverges from this static paradigm by introducing dynamic
queries that iteratively adapt during detection, effectively constituting a new paradigm in query-
based object detection.
2.2 MONOCULAR AND MULTIVIEW 3D OBJECT DETECTION

Monocular 3D object detection Wang et al. (2019); Reading et al. (2021); Wang et al. (2021) and
multiview approaches Philion & Fidler (2020); Huang et al. (2021) have been widely studied for
generating 3D bounding boxes from 2D images. While effective, these methods generally operate
under a static framework where features are extracted and used without further adaptation. Our
work, DynamicBEV, enhances this by dynamically adapting the queries in BEV space to capture
both local and distant relationships, thus presenting a novel approach in the realm of 3D object
detection.
2.3 STATIC VS. DYNAMIC PARADIGMS IN BEV OBJECT DETECTION

BEV-based object detection has seen various advancements Pan et al. (2020); Philion & Fidler
(2020); Huang et al. (2021); Wang et al. (2022); Liu et al. (2022a); Park et al. (2022). However,
most existing works operate under the static paradigm where either the queries or the feature rep-
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resentations are fixed during the detection process. For example, DETR3D Wang et al. (2022) and
PETR series Liu et al. (2022a;b) use static queries for 3D object detection. Such static methods often
overlook the complex spatial-temporal dynamics present in real-world data. Our work fundamen-
tally differs by introducing a dynamic paradigm where queries are capable of iterative adaptation,
thus effectively capturing intricate relationships in both spatial and temporal dimensions.
2.4 TEMPORAL INFORMATION IN OBJECT DETECTION

Incorporating temporal information has been explored in various works Li et al. (2022c); Park
et al. (2022); Liu et al. (2023). However, these methods often introduce significant computational
complexity and are constrained by the static nature of their query or feature representations. Our
Lightweight Temporal Fusion Module (LTFM) not only efficiently integrates temporal context but
does so in a dynamic manner, further emphasizing the shift towards a dynamic paradigm in 3D
object detection.

3 METHOD

In this section, we introduce DynamicBEV, a novel method designed for effective and efficient 3D
object detection. Traditional static query-based methods lack the dynamism required to capture the
diverse nature of 3D spaces. In contrast, DynamicBEV harnesses dynamic queries that undergo iter-
ative updates, and thereby achieves unparalleled adaptability in discerning diverse object attributes.
The key components of DynamicBEV is illustrated in Figure 1, and a comparison between static
and dynamic query-based methods is shown in Figure 2.

DynamicBEV is composed of multiple integral components that synergize to facilitate robust and
precise 3D object detection. The framework includes a backbone network responsible for initial
feature extraction. With the extracted feature, a Dynamic Query Evolution Module (DQEM) comes
into play. First, DQEM exploits K-means clustering to groups features around each query, which
brings adaptive structure representation for complex 3D scenarios. Afterwards, a Top-K Attention
module is employed by DQEM to iteratively refine queries with their associated feature clusters.
Finally, a Lightweight Temporal Fusion Module (LTFM) is incorporated to efficiently capture tem-
poral context for each query.

3.1 DYNAMIC QUERY EVOLUTION MODULE (DQEM)

3.1.1 INITIALIZATION OF QUERIES (PILLARS)

In the context of 3D object detection, the initialization of queries plays a pivotal role in the subse-
quent detection performance. In the BEV space, these queries, often referred to as ”pillars”, serve
as reference points or anchors that guide the detection process. The query set Q can be represented
as:

Q = {(xi, yi, zi, wi, li, hi, θi, vxi , vyi)}
where (xi, yi, zi) is the spatial coordinates of the i-th pillar, indicating its position in the BEV space.
wi, li, hi are width, length and height of the pillar, respectively, providing the shape attributes. θi is
the orientation angle of the pillar, offering insights into its alignment in the BEV space. vxi and vyi

are velocity components of the pillar, capturing its motion dynamics.

In traditional methods like SparseBEV Liu et al. (2023), these queries and their associate features
are initialized based on pre-defined grid structures and remain static throughout the detection pro-
cess. Such static nature are designed to capture general object patterns but is not adept at handling
diverse scenarios with complex intricate object details. On the contrary, in DynamicBEV, the asso-
ciated feature are grouped into a clustered structure, which well adapts to the complex 3D scene,
and each pillar iteratively adjusts its attributes (like position, dimensions, or orientation) based on
the associated feature clusters. Such dynamism renders the pillars better adaptability to the object
attributes in the 3D scenes, leading to a more accurate and robust detection.

3.1.2 K-MEANS CLUSTERING

In DynamicBEV, K-means clustering is first employed to divide the surrounding features F of each
query into K clusters C1, . . . , CK . The rationale behind employing K-means clustering lies in its
ability to partition the feature space into clusters within which the feature variance is minimized.
This enable each query to focus on groups of coherent features rather than unorganized points,
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which is a more adaptive and structured representation, thereby enhancing the model’s ability to
discern the objects in 3D scenes. After K-means clustering, each query q will have an associated set
of feature clusters Ck, formally:

Ck = {fi | ci = k},
and the cluster center:

µk =
1

|Ck|
∑

fi∈Ck

fi.

These clusters encapsulate the local patterns around each query, and provide the model with a more
adaptive structured representation of the dynamic 3D scenes, serving as the foundation for the sub-
sequent Top-K Attention steps.

3.1.3 TOP-K ATTENTION AGGREGATION

To allow each query to aggregate features in a dynamic way, we introduce a Top-K Attention mech-
anism. For each query q, we compute the attention weights over its associated feature clusters Ck

obtained from K-means clustering.

Compute Attention Scores: For each query feature q and each cluster Ck, compute an attention
score.

Ak = (Wqq)
T ·Wkµk

Here, Wq represents the weight vector for the query and Wk represents the weight vector for the
cluster. The dot product measures the relevance between the query and each cluster.

This step allows the model to measure the importance of each feature cluster with respect to the
query, enabling more informed aggregations.

Select Top-K Clusters: Sort the attention scores Ak in descending order and select the top-K
clusters.

Top-K clusters = argmaxk(Ak), k = 1, . . . ,K

This selective attention mechanism enables each query to focus on the most relevant clusters, which
may even be farther away, thus enriching the aggregated feature.

Weighted Feature Aggregation: Aggregate the selected clusters using their attention weights to
form the aggregated feature q′ to update each query q.

q′ =
∑

k∈Top-K

Softmax(A)k · µk

The weighted sum allows for a rich combination of features, enabling each query to adaptively focus
on different aspects of the surrounding features.

The aggregated feature q′ serves as the foundation for 3D object prediction. By allowing each
query to aggregate information even from distant clusters, the model’s capacity to capture long-
range dependencies is significantly enhanced. Such capacity is particularly crucial in 3D object
detection, where objects might have parts that are spatially separated but are contextually related.

3.1.4 DIVERSITY LOSS FOR BALANCED FEATURE AGGREGATION

The proposed Top-K Attention mechanisms has the risk of focusing excessively on the most rele-
vant features corresponding to each query. While this approach is effective in capturing dominant
patterns, it often neglects the long-tail or less prominent features that could be critical for certain
edge cases or specific scenarios. For example, in a 3D object detection task involving vehicles and
pedestrians, focusing solely on the most relevant features might capture the overall shape of a vehi-
cle but miss out on smaller but important details like side mirrors or indicators, which are essential
for precise localization and classification.

To address this limitation, we introduce a Diversity Loss Ldiv. This loss function aims to balance the
attention mechanism by ensuring that not only the most relevant but also the less prominent features
are considered. Unlike conventional entropy-based losses, which are agnostic to the task at hand,
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our Diversity Loss is meticulously crafted for 3D object detection, ensuring a balanced attention
distribution across different feature clusters, formally:

Ldiv = −
K∑

k=1

pk log pk,

where the following function serves as a critical component for stabilizing the gradient flow during
the back-propagation process, especially when dealing with clusters of varying relevance:

p(k) =
exp(Ak)∑K
j=1 exp(Aj)

.

This Diversity Loss brings several advantages. Firstly, it promotes a balanced feature representation
by encouraging the model to pay attention to a variety of features, not just the most prominent ones.
This is particularly useful for capturing less obvious but potentially crucial features. Secondly, the
approach enhances the model’s robustness, allowing it to adapt better to different scenarios and
noise levels. Lastly, it fosters a more comprehensive understanding of the data, thereby improving
the model’s generalization capabilities.

3.1.5 DYNAMIC ADAPTATION OF QUERIES

After initializing the queries as pillars and performing K-means clustering to obtain feature clusters
Ck, the next crucial step is dynamically adapting these queries based on the Top-K Attention mech-
anism. This dynamic adaptation is the key difference from SparseBEV, where the queries are static.
In DynamicBEV, each query not only captures the local information but also dynamically updates
itself to aggregate relevant features from a large scope of feature clusters.

Initial Feature Aggregation: For each query q, aggregate the initial set of features using a simple
average or any other aggregation method.

q ← 1

|F |
∑
f∈F

f

This initial aggregation serves as a baseline, capturing the immediate vicinity of the query. It acts as
an anchor, grounding the subsequent dynamic adaptations.

Top-K Attention Update: Apply the previously described Top-K Attention mechanism to adap-
tively update each query q using its associated feature clusters Ck.

q ← q′ + β · q

Here, q′ is the aggregated feature obtained from Top-K Attention, and β is a hyper-parameter that
controls the blending of initial and dynamically aggregated features.

This step allows each query to adaptively refine its feature representation based on both local and
long-range information, enhancing its ability to capture complex patterns and relationships.

Iterative Update: Repeat the K-means clustering and Top-K Attention steps, using the newly
updated queries q as the new pillars for the next iteration. Such iterative update ensures the queries
continuously adapting to the varying feature landscape, thereby increasing the model’s robustness
and adaptability.

By iteratively updating queries through a combination of K-means clustering and Top-K Attention,
DynamicBEV ensures each query is both locally and globally informed, thereby capturing richer
and more balanced feature representations. This dynamic adaptation is a significant advancement
over SparseBEV, where pillars remain static and cannot adapt to capture long-range dependencies.

3.2 LIGHTWEIGHT TEMPORAL FUSION MODULE

In DynamicBEV, the key advantage of our Lightweight Temporal Fusion Module (LTFM) lies in its
computational efficiency. Unlike traditional temporal fusion methods that rely on resource-intensive
recurrent or convolutional layers, LTFM leverages the already computed dynamic queries Q and
their corresponding feature clusters Ck, thereby avoiding additional heavy computations.
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Temporal Query Initialization: The temporal queries q are initialized using a weighted combi-
nation of current and previous dynamic queries , thus reusing existing computations.

q ← α · q + (1− α) · qprevious

By reusing the dynamic queries, we eliminate the need for separate temporal query extraction,
thereby reducing computational overhead.

Dynamic Temporal Aggregation: The Top-K Attention mechanism is applied directly to q,
reusing the previously computed feature clusters Ck for both current and previous time steps.

q′ = Top-K Attention(q, Fcurrent, Fprevious)

This obviates the need for separate temporal feature extraction, further reducing computational cost.

Query Update: The temporal queries q are updated using the aggregated temporal features q′,
similar to the dynamic query update in the previous sections.

q ← q′ + β · q

The update operation is computationally light, as it only involves basic arithmetic operations, thus
bringing the computational efficiency.

LTFM provides an efficient way to incorporate temporal context without introducing a significant
computational burden. By reusing existing computations to avoid additional complex operations,
LTFM offers a lightweight yet effective solution for temporal fusion.

3.3 COMPUTATIONAL COMPLEXITY

The computational efficiency of DynamicBEV is one of its key advantages. Below, we quantify this
in terms of time complexity: The overall time complexity is approximately O(nKId+n log n+n),
where n is the number of data points, K is the number of cluster centers, I is the number of iterations
in K-means, d is the dimensionality of each data point. This is relatively low compared to methods
that require more complex temporal fusion techniques such as RNNs or CNNs.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We adopt ResNet He et al. (2016) as the backbone, the temporal module in our model is designed
to be lightweight and we use a total of T = 8 frames by default, with an interval of approximately
0.5s between adjacent frames. For label assignment between ground-truth objects and predictions,
we use the Hungarian algorithmKuhn (1955). The loss functions employed are focal lossLin et al.
(2017) for classification and L1 loss for 3D bounding box regression, augmented by our custom
Diversity Loss Ldiv with a weight factor of λ = 0.1. The initial learning rate is 2 × 10−4, and it is
decayed using a cosine annealing policy. In line with recent advancements, we adjust the loss weight
of x and y in the regression loss to 2.0, leaving the others at 1.0, to better capture spatial intricacies.
We also incorporate Query Denoising to stabilize training and speed up convergence, as suggested
by the recent work StreamPETRWang et al. (2023). For our K-means clustering, K is set to 6. The
number of Top-K clusters for attention is set to 4. The hyperparameter β used for blending in query
update is set to 0.6, and α for temporal fusion in the Lightweight Temporal Fusion Module (LTFM)
is set to 0.4.

4.2 DATASETS AND EVALUATION CRITERIA

Our experiments utilize the nuScenes dataset Caesar et al. (2020), a rich source of multimodal sensor
information encompassing 1000 driving sequences, each lasting around 20 seconds. Annotations
are available at a rate of 2Hz for key frames. Each frame in the dataset offers a comprehensive
360-degree field of view through six camera sensors. For the task of 3D object detection, the dataset
incorporates approximately 1.4 million 3D bounding boxes across 10 categories of objects.

We adopt a similar task setting as in previous worksLiu et al. (2023) for Birds-Eye View (BEV)
segmentation. The official evaluation metrics of nuScenes are comprehensive; they not only in-
clude mean Average Precision (mAP), which is calculated based on the center distance in the
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Method Backbone Input Size Epochs NDS mAP mATE mASE mAOE mAVE mAAE

PETRv2 Liu et al. (2022b) ResNet50 704 × 256 60 45.6 34.9 0.700 0.275 0.580 0.437 0.187
BEVStereo Li et al. (2022a) ResNet50 704 × 256 90 50.0 37.2 0.598 0.270 0.438 0.367 0.190
BEVPoolv2 Huang & Huang (2022b) ResNet50 704 × 256 90 52.6 40.6 0.572 0.275 0.463 0.275 0.188
SOLOFusion Park et al. (2022) ResNet50 704 × 256 90 53.4 42.7 0.567 0.274 0.511 0.252 0.181
Sparse4Dv2 Lin et al. (2023) ResNet50 704 × 256 100 53.9 43.9 0.598 0.270 0.475 0.282 0.179
StreamPETR † Wang et al. (2023) ResNet50 704 × 256 60 55.0 45.0 0.613 0.267 0.413 0.265 0.196
SparseBEV Liu et al. (2023) ResNet50 704 × 256 36 54.5 43.2 0.619 0.283 0.396 0.264 0.194
SparseBEV †Liu et al. (2023) ResNet50 704 × 256 36 55.8 44.8 0.595 0.275 0.385 0.253 0.187
DynamicBEV ResNet50 704 × 256 60 55.9 45.1 0.606 0.274 0.387 0.251 0.186
DynamicBEV † ResNet50 704 × 256 60 57.0 46.4 0.581 0.271 0.373 0.247 0.190

DETR3D † Wang et al. (2022) ResNet101 1600 × 900 24 43.4 34.9 0.716 0.268 0.379 0.842 0.200
BEVFormer † Li et al. (2022c) ResNet101 1600 × 900 24 51.7 41.6 0.673 0.274 0.372 0.394 0.198
BEVDepth Li et al. (2022b) ResNet101 1408 × 512 90 53.5 41.2 0.565 0.266 0.358 0.331 0.190
Sparse4D † Lin et al. (2022) ResNet101 1600 × 900 48 55.0 44.4 0.603 0.276 0.360 0.309 0.178
SOLOFusion Park et al. (2022) ResNet101 1408 × 512 90 58.2 48.3 0.503 0.264 0.381 0.246 0.207
SparseBEV † Liu et al. (2023) ResNet101 1408 × 512 24 59.2 50.1 0.562 0.265 0.321 0.243 0.195
DynamicBEV † ResNet101 1408 × 512 24 60.5 51.2 0.575 0.270 0.353 0.236 0.198

Table 1: Performance comparison on nuScenes val split. † benefits from perspective pretraining.

ground plane instead of 3D IoU, but also feature five additional True Positive (TP) error met-
rics: ATE, ASE, AOE, AVE, and AAE, to measure the errors in translation, scale, orientation,
velocity, and attributes respectively. To provide a unified score that captures multiple facets
of detection performance, the nuScenes Detection Score (NDS) is used, defined as NDS =
1
10

[
5×mAP +

∑
mTP∈TP (1−min(1,mTP ))

]
.

4.3 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Table 1 presents the performance of our DynamicBEV compared with other state-of-the-art methods,
which outperforms all other methods by a considerable margin on the nuScenes validation dataset.
With a ResNet50 backbone and an input size of 704 × 256, DynamicBEV achieves a nuScenes
Detection Score (NDS) of 55.9, which is marginally higher than the 54.5 achieved by SparseBEV.
More significantly, when perspective pre-training is applied, indicated by the † symbol, the NDS
score of DynamicBEV rises to 57.0, outperforming the 55.8 by SparseBEV.

In more complex configurations, such as using a ResNet101 backbone and an input size of 1408 ×
512, DynamicBEV outshines its competitors with an NDS of 60.5, exceeding SparseBEV’s 59.2,
making it the current leading approach.

DynamicBEV consistently maintains high Mean Average Precision (mAP) scores, proving its robust
object detection capabilities. In terms of True Positive metrics like mATE, mASE, DynamicBEV
holds its ground well compared to SparseBEV and other competing methods. Moreover, the model
also performs well on fine-grained evaluation metrics such as Object Orientation Error (mAOE) and
Attribute Error (mAAE). The application of perspective pre-training not only improves nearly all
evaluation metrics but also showcases the model’s adaptability and flexibility.

The advantages of DynamicBEV primarily stem from two inherent aspects: Firstly, the design of
DynamicBEV allows it to better capture long-range dependencies. In 3D object detection, different
parts of an object might be spatially distant but contextually related. For instance, the front and
rear of a car might be far apart in the BEV space, yet they belong to the same object. SparseBEV,
being a static query-based method, might struggle in such scenarios since its query points are fixed
and cannot dynamically adapt to the changing scene. In contrast, DynamicBEV, through its Dy-
namic Query Evolution Module, can update its query points in real-time, thereby better capturing
these long-range dependencies. Secondly, DynamicBEV is better equipped to handle the dynamism
of real-world scenes. Objects in real-world scenarios might move, rotate, or change their shape.
SparseBEV, with its static query points, might falter in such dynamically changing scenes. How-
ever, DynamicBEV, through its dynamic queries and K-means clustering, can dynamically adjust its
query points, thus better adapting to the evolving scene. In the following section, we will further
validate these observations through ablation experiments.

4.4 ABLATION STUDY

4.4.1 DYNAMIC QUERY EVOLUTION MODULE (DQEM)

For all ablation studies, we use ResNet-50 as the backbone and adopt the same training and evalua-
tion protocols. The baseline model employs the standard cross-attention mechanism. The Dynamic-
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K Block integrates Dynamic Queries, K-means Clustering, and Top-K Attention as a unified module.
We compare this with the baseline model that uses standard cross-attention.

Model Configuration NDSmAP
Baseline (Cross-Attention) 51.7 40.8
Dynamic-K Block 55.9 45.1

Table 2: Ablation study on the Dynamic-K
Block.

Model Configuration NDSmAP
Baseline (No Temporal Fusion) 52.8 42.3
With LTFM 55.9 45.1
LSTM-based Fusion 53.5 43.2
Convolutional LSTM Fusion 53.7 43.5
Simple Averaging 52.5 42.0

Table 3: Ablation study on the Lightweight
Temporal Fusion Module (LTFM).

Table 2 shows that the introduction of the Dynamic-K Block results in an 4.2% increase in NDS and
a 4.3% increase in mAP compared to the baseline. The Dynamic-K Block’s significant performance
boost can be attributed to its ability to focus on key features dynamically. Traditional methods with
static query points, like the baseline model, might not be able to adapt to the dynamic nature of
real-world scenes. In contrast, the Dynamic-K Block, with its integration of Dynamic Queries, K-
means Clustering, and Top-K Attention, allows the model to dynamically adjust its focus based on
the scene’s context. This adaptability ensures that the model can give precedence to critical features,
especially in complex scenes where objects might be occluded or distant from each other.

To further understand the impact of the clustering mechanism on the performance of DynamicBEV,
we explored alternative clustering methods in Table 4. Specifically, we evaluated the performance
of DBSCAN and Agglomerative Hierarchical Clustering, comparing them with our default choice,
K-means. From the results, K-means notably surpasses DBSCAN and Agglomerative Hierarchical
Clustering in NDS and mAP. K-means’ consistent partitioning aligns with 3D object detection’s
dynamic nature, ensuring coherent feature focus. Its computational efficiency is vital for large-
scale tasks, unlike the less scalable Agglomerative method. Unlike density-dependent DBSCAN,
K-means’ density independence ensures adaptability across varied scenarios. The clear centroid
representation in K-means enhances the subsequent Top-K Attention step.

Model Configuration NDSmAP
K-means 55.9 45.1
DBSCAN 52.3 41.8
Agglomerative 53.1 42.5

Table 4: Impact of the cluster-
ing mechanism on the perfor-
mance of DynamicBEV.

Temporal Resolution NDSmAP
Every Frame 55.5 44.8
Every 2 Frames 55.9 45.1
Every 5 Frames 55.2 44.5

Table 5: Performance of
LTFM at different temporal
resolutions.

Diversity Loss NDSmAP
Without 54.4 43.7
With 55.9 45.1

Table 6: Impact of Diversity
Loss in feature aggregation.

4.4.2 LIGHTWEIGHT TEMPORAL FUSION MODULE (LTFM)

To study the effectiveness of our Lightweight Temporal Fusion Module (LTFM), we compare it
with the baseline that doesn’t employ temporal fusion and other prevalent temporal fusion methods
in Table 3. All other configurations remain the same for a fair comparison.

Incorporating the Lightweight Temporal Fusion Module (LTFM) to the baseline model results in a
3.1% increase in NDS and a 2.8% increase in mAP. These improvements indicate that LTFM effec-
tively captures the temporal dependencies without introducing significant computational overhead,
thus validating its utility in our DynamicBEV framework. The LTFM provides the model with cru-
cial context about these object movements. By fusing information across time, the model gains a
more comprehensive understanding of the scene, allowing it to predict object trajectories and inter-
actions more accurately. LTFM consistently outperformed other methods like LSTM-based fusion,
Convolutional LSTM fusion, and simple averaging across time. This can be attributed to LTFM’s
lightweight design and its adeptness at capturing crucial temporal dependencies without significant
computational overhead.

We further explored the temporal resolution at which the LTFM operates in Table 5. Different
scenarios might benefit from different temporal granularities. When comparing the performance
of LTFM at different time intervals, such as every frame, every 2 frames, and every 5 frames, we
observed that fusing information at every 2 frames provided the optimal balance between computa-
tional efficiency and detection accuracy.
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Figure 3: Performance impact of different parameter settings in K-means and Top-K Attention.

4.4.3 SELECTION OF K IN K-MEANS AND TOP-K ATTENTION

As illustrated in Figure 3a, increasing the number of clusters K initially improves both NDS and
mAP. The performance plateau observed after K = 6 in K-means clustering suggests that there’s an
optimal number of clusters that capture the scene’s essence. Having too many clusters might over-
segment the data, leading to redundant or even conflicting information. Similarly, Figure 3b shows
that utilizing Top-K Attention with K = 6 yields the best performance, highlighting the importance
of selective attention. Including Diversity Loss improves both NDS and mAP, as shown in Table 6,
indicating its effectiveness in balancing the attention mechanism and capturing a variety of features.

4.4.4 PARAMETER SENSITIVITY IN DYNAMIC ADAPTATION AND TEMPORAL FUSION
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Figure 4: Sensitivity analysis of parameters β and α in the model.

The optimal values for key parameters are discussed with respect to their impact on model perfor-
mance. As shown in Figure 4a, the optimal value for β is around 0.6, providing the best blend of
initial and dynamically aggregated features. Deviating too much from this value results in subop-
timal performance. Similarly, Figure 4b shows that the value of α = 0.4 yields the highest NDS
and mAP, suggesting that balancing the current and previous dynamic queries effectively captures
temporal information.

5 CONCLUSION

In this paper, we presented DynamicBEV, a novel approach to 3D object detection that leverages
dynamic queries in BEV space. Distinct from conventional static query-based techniques, Dynam-
icBEV iteratively adapts queries to capture complex spatial and temporal relationships within the
data. This dynamic paradigm offers a more flexible and adaptive mechanism for 3D object detec-
tion, effectively constituting a new frontier in the field.

Our method integrates various novel components, including K-means clustering for feature selec-
tion, Top-K Attention for adaptive feature aggregation, and a Lightweight Temporal Fusion Module
for efficient temporal context integration. These components collectively enable our model to out-
perform state-of-the-art methods on various benchmarks, thus validating the efficacy of the dynamic
query-based paradigm.

As future work, we aim to explore the applicability of dynamic queries in other vision tasks and to
further optimize the computational efficiency of our model. We also plan to investigate the potential
of incorporating more advanced temporal models to capture long-term dependencies in videos or
large-scale 3D scenes.
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