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Abstract

Text-to-SQL, the process of translating natural language into Structured Query Language
(SQL), represents a transformative application of large language models (LLMs), potentially
revolutionizing how humans interact with data. This paper introduces the SQL-PaLM
framework, a comprehensive solution for understanding and enhancing Text-to-SQL using
LLMs, using in the learning regimes of few-shot prompting and instruction fine-tuning. With
few-shot prompting, we explore the effectiveness of consistency decoding with execution-based
error filtering. With instruction fine-tuning, we delve deep in understanding the critical
paradigms that influence the performance of tuned LLMs. In particular, we investigate
how performance can be improved through expanded training data coverage and diversity,
synthetic data augmentation, and integrating query-specific database content. We propose
a test-time selection method to further refine accuracy by integrating SQL outputs from
multiple paradigms with execution feedback as guidance. Additionally, we tackle the
practical challenge of navigating intricate databases with a significant number of tables and
columns, proposing efficient techniques for accurately selecting relevant database elements to
enhance Text-to-SQL performance. Our holistic approach yields substantial advancements
in Text-to-SQL, as demonstrated on two key public benchmarks, Spider and BIRD. Through
comprehensive ablations and error analyses, we shed light on the strengths and weaknesses
of our framework, offering valuable insights into Text-to-SQL’s future work.

1 Introduction

What are the names of nations where both English and French
are official languages?

SELECT T1.Name FROM country AS T1 JOIN countrylanguage AS T2 ON
T1.Code = T2.CountryCode WHERE T2.Language =
"English" AND T2.IsOfficial = "T" INTERSECT SELECT T1.Name
FROM country AS T1 JOIN countrylanguage AS T2 ON
T1.Code = T2.CountryCode WHERE T2.Language = " French" AND
T2.IsOfficial = "T"

Countrylanguage

CountryCode Language IsOfficial Percentage ...

Table 1

Columns:

Country

Code Name Continent Region ....

Table 2

Columns:

SQL solution

Natural Language Question

Database Schema

</>
 ...

Figure 1: Text-to-SQL systems are developed to trans-
form queries expressed in natural language into Struc-
tured Query Language (SQL) based on the information
from databases.

Text-to-SQL aims to automate the process of trans-
lating natural language questions into SQL queries
that can be executed directly on a database (An-
droutsopoulos et al., 1995; Hristidis et al., 2003; Li
& Jagadish, 2014; Wang et al., 2017). As illustrated
in Fig. 1, Text-to-SQL bridges the gap between the
way humans naturally communicate, using language,
and the way databases are structured, and has the
potential to revolutionize how humans interact with
data (Zhong et al., 2017; Yu et al., 2018; Li et al.,
2023c). Making databases accessible to non-expert
users through natural language, Text-to-SQL can
empower humans to extract valuable information
without needing specialized SQL knowledge (Wang
et al., 2019; Scholak et al., 2021; Cai et al., 2021;
Qi et al., 2022; Li et al., 2023b; Pourreza & Rafiei,
2023; Gao et al., 2023a; Sun et al., 2023; Chen et al.,
2023). This not only enhances the efficiency of data
analysis but also broadens the use of databases to
a wider range of applications. Intelligent database services, platforms for automated data analytics, and
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more sophisticated conversational agents capable of understanding and responding to complex data-related
questions can all be fueled by advancements in Text-to-SQL (Yu et al., 2019; Gu et al., 2022; Pérez-Mercado
et al., 2023; Xie et al., 2023).

At a high level, the Text-to-SQL is a sequence-to-sequence modeling task (Sutskever et al., 2014), with both
the database schema and natural language question being converted into a linear input sequence, and the SQL
being the target output sequence. Early works attempt to fine-tune domain-specific Transformer architectures
or decoding approaches tailored for Text-to-SQL utilizing SQL syntax, semantics or the intricate relationship
between questions and databases (Scholak et al., 2021; Qi et al., 2022; Li et al., 2023a; Wang et al., 2019;
Bogin et al., 2019; Cai et al., 2021; Hui et al., 2022). Recent years have witnessed the burgeoning application
of large language models (LLMs) to Text-to-SQL (Rajkumar et al., 2022; Liu et al., 2023a; Gao et al., 2023a;
An et al., 2023; Tai et al., 2023; Pourreza & Rafiei, 2023; Chen et al., 2023; Sun et al., 2023). Along this
line, most of the research has focused on leveraging prompting to translate user utterances into SQL queries
(Rajkumar et al., 2022; Liu et al., 2023a). More advanced prompting methods has domain-specific adoptions
to improve understanding natural language questions and structured database schemas, such as selecting
better few-shot exemplars based on question similarity (Gao et al., 2023a; An et al., 2023), decomposing
complex questions into sub-tasks (Tai et al., 2023; Pourreza & Rafiei, 2023), verifying the correctness of
model-predicted SQL queries through execution feedback (Chen et al., 2023; Sun et al., 2023; Pourreza &
Rafiei, 2023), as well as linking NL phrases (e.g. “nation” in the question in Fig. 1 ) to relevant database
constructs (e.g. the Name column in the County table, see (Pourreza & Rafiei, 2023)).

While these few-shot prompting methods have significantly improved Text-to-SQL performance, it still
remains unclear whether prompting alone is adequate to handle real-world challenges. As we elaborate
in Sec. 2, real-world Text-to-SQL exhibits a variety of challenges. Specifically, a user’s natural language
questions are often ambiguous (e.g. “sales in California”) and can have multiple plausible interpretations
(e.g. sales made by Californian businesses or produces sold in the states). Those questions might also come
with semantic constraints (e.g Who was the president before Joe Biden) that map to complex SQL queries
(e.g. requires reasoning steps that first retrieve the beginning date of Biden’s term and then identify the
last record whose end date is before that). Moreover, real-world databases may contain large volumes of
tables and columns, and the sheer content size would easily exceed the context limit of LLMs. Components
in a schema could also have rich data types (e.g. strings or datetimes) with complex dependencies defined
by primary-foreign key mappings, requiring non-trivial SQL queries to process such data. In addition to
those inherent challenges, collecting aligned examples of questions and SQL queries for learning also requires
laborious annotation efforts by domain experts, impeding the process of scaling-up data hungry LLMs for
Text-to-SQL.

As a first step towards addressing those challenges, in this paper, we propose SQL-PaLM , a holistic framework
that adapts a LLM, PaLM-2 (Anil et al., 2023) Unicorn variant, for Text-to-SQL tasks. We start with
evaluating SQL-PaLM ’s performance with prompting, and then we focus on SQL-PaLM ’s tuning as it leads to
better performance in challenging scenarios. Apart from existing work that mostly focus on few-shot prompting
strategies or tuning relatively smaller LLMs, SQL-PaLM focus on tuning a large LLM. Larger models have
different behaviors with their emergent abilities, a phenomenon of significantly improved understanding and
reasoning performance compared to smaller LLMs (Wei et al., 2022a). We systematically explore large models’
potential for Text-to-SQL and study the research topics along the key aspects presented in Sec. 4 . Through
extensive experiments and analyses, we unravel multiple key factors that influence the LLMs’ performance
when adapting to Text-to-SQL. First, diversity and coverage of train data can be crucial – we present ablation
studies on training data mixture and provide takeaways across tasks and benchmarks. To improve training
data coverage with low human cost, SQL-PaLM also proposes augmenting with large-scale LLM-generated
synthetic data. Second, input representations can greatly influence the overall quality. We present an in-depth
study on fine-tuning Text-to-SQL to better leverage different types of information-bearing content, such
as database values, column descriptions, and hints. Next, scaling to real-world database sizes would be
important for adoption. We present an efficient column selection approach that only encodes information from
the subset of relevant database columns as inputs to LLMs. This approach significantly reduces the context
size with negligible impact on performance. In particular, we propose a program-aided column selection
and retrieval-based column selection approach, We study integration with both hard (i.e. with removal of
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unselected columns) and soft (i.e. emphasizing on selected columns) column selection approach into the
overall Text-to-SQL pipeline. Finally, we propose execution-based test-time refinement to integrate multiple
training paradigms based on execution feedback.

Our contributions can be summarized as follows:

• We focus on large LLMs on Text-to-SQL and investigate from multiple important angles including
learning perspectives (prompting vs tuning), task perspectives (judiciously selecting input components)
and real-world scaling perspectives (e.g. column selection). Through thorough experiment and
analysis, we systematically identify components in influencing performance.

• We demonstrate that mixing training data with diverse sets, despite having various formats, can
benefit LLMs, indicating the potential of tuned LLMs for superior generalization ability. Complex
SQL data particularly have been observed to be more beneficial as tuning data.

• We study effective methods to utilize database content and auxiliary information, such as descriptions.
We show improvements with the relevant subset of them included in the prompt while irrelevant
information can harm the performance.

• For large-scale databases, we introduce a column selection approach that significantly reduces the
length of the inputs going into the LLMs, while yielding negligible impact to performance (hard
column selection). Among the two proposed approaches, program-aided column selection has higher
column selection accuracy, whereas retrieval-based approach is more cost-effective and controllable.
soft column selection, which doesn’t exclude unselected columns, has a higher performance than hard
column selection, albeit it necessitates LLMs with longer context length.

• We propose a test-time execution-based selection approach to integrate multiple setups to further
improve performance.

• Focusing on challenging SQLs that are close to real-world use, we provide in-depth error analysis and
case study to reveal the advantages and disadvantages of the proposed approaches.

2 Text-to-SQL Challenges

Real-world Text-to-SQL scenarios present a broad spectrum of challenges stemming from the complexity
of natural language questions, database structures, inherent SQL intricacies, and data availability. These
real-world challenges are often more severe than those encountered in academic benchmarks.

Natural language question phrasing: The ambiguity and complexity of natural language questions pose
challenges. Input phrases may have multiple interpretations in natural language (e.g. “sales in California"
could refer to sales made by people in California or products sold to people in California). They might also
come with complex sentence structures such as subordinate clauses and relative clauses. The meaning may
also depend on the surrounding context, making it difficult to derive correct interpretations. In addition,
databases and applications come from a wide range of domains, and Text-to-SQL systems need to understand
domain-specific terminology, which can vary greatly depending on the use case. Specific rules, regulations,
formulas or calculations related to a particular domain might need to be applied to generate the correct SQL.
For example, the question “List disease names of patients with proteinuria levels above normal” requires LLMs
to have domain knowledge “proteinuria level above normal means U-PRO >= 30” to solve the problem.

Sizes and diversities of databases: Real-world large-scale databases might contain numerous tables and
columns. The sheer volume of columns can exceed prompt length limits, making including the entire dataset
schema impossible. Furthermore, LLMs face difficulties in efficiently accessing and utilizing information within
lengthy input contexts as discussed in the phenomenon of “lost in the middle” (Liu et al., 2023b). Database
schemas often have complex and various structures, including differences in table names, column names, and
their relationships. The relationships between tables may not be explicitly defined in the schema, requiring
the system to infer them (by understanding “foreign keys”). Moreover, database schemas might contain
ambiguities – table and column names in a schema may not be informative (e.g. The column name “property”
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is vague about the feature it denotes, as opposed to “size” clearly specifies the type of property) or abbreviated
in a way that is not easily understood (such as “cname”). Additionally, some tables might contain tens of
similar columns (“sku1”, “sku2”, ... “sku100”), potentially leading to confusion for the Text-to-SQL system.

A challenging real-world example
Extract the “revenue” values: cast to number
if one number ("100"), take average if a range
("100-200")
case

when regexp_contains (revenue , '-')
then

(cast( regexp_extract (revenue , r'
^(\d+) ') as int64) + cast(
regexp_extract (revenue , r' -(\d+)\
$') as int64)) / 2

else
cast( regexp_replace (revenue , r'

[^0 -9] ', '') as int64)
end

Figure 2: An example SQL sample corresponding to
complex arithmetic operations and handcrafted rules
on a complex database.

Besides ambiguities in schemas, database contents
also have a wide variety of types and formats. The
data stored in the database can also vary significantly
in types and format, leading to lengthy and specific
clauses (e.g. regular expression, and type casting)
to extract variable information. (1) Type: they in-
clude scalars, arrays, nested arrays etc. (2) Format.
For instance, the year of 2024 might be saved as a
string: “2024”, a number: 2024, or in other forms
such as “year2014”, or “2014-01-01”. Extracting
different formats of “year” requires different regular
expressions. We show a real-world example in Fig. 2,
where extraction of the proper format of the column
“revenue” requires using “CASE” statements, cast-
ing string into numbers, schema interpretation, and
regular expressions, because the values of revenue is
stored in different string formats – single values (i.e.
i.e. “100”) or ranges (i.e. “100-200”).

Inherent SQL complexity: Certain SQL queries
are complex in nature, marked by the use of multiple
SQL keywords, the inclusion of nested sub-queries,
a variety of column selections or aggregations, the
application of conditional statements, and the in-
volvement of joins across multiple tables.

Data-centric challenges: In general, paired (text, SQL) data can be very costly to obtain (Yu et al., 2018),
so even the highly popular publicly-available dataset sizes are often much smaller than other text processing
applications. Given the challenge of curating such datasets, it is not rare to observe inconsistent, incomplete,
or incorrect ground truth data (e.g. human annotators making errors1), which might affect the quality of the
models trained on them.

3 Related Work

3.1 Approaches with Deep Neural Networks

Sequence-to-sequence models Text-to-SQL can be formulated as a sequence-to-sequence modeling prob-
lem, with both the database schema and natural language question being converted into a linear input
sequence, and the SQL being the target output sequence. Prior to the recent advances of large language
models (LLMs), the approach of fine-tuning Transformer models, such as T5 (Raffel et al., 2020), with
SQL-specific customizations had been the prevalent approach dominating the state-of-the-art. PICARD
(Scholak et al., 2021) introduces a technique that discards invalid beam search candidates during inference,
improving the grammatical correctness of the SQL queries. RASAT (Qi et al., 2022) augments transformer
architecture with relation-aware self-attention which is efficient to incorporate a variety of relational structures
while also leveraging a pretrained T5 model. RESDSQL(Li et al., 2023b) proposes a ranking-enhanced
encoding and skeleton-aware decoding framework to decouple the schema linking (e.g. table or column names)
and the skeleton parsing (e.g. keywords).

Graph encoders for schema understanding Another line of work is based on employing graph encoders
to explicitly model complex relationships within the database schemas and questions. RAT-SQL (Wang

1For example, BIRD datasets Li et al. (2023c) contain errors, as we described in error analysis in Sec. 8.7
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et al., 2019) introduces schema encoding and linking, and models the schema and its relationships as a
graph. Global-GNN (Bogin et al., 2019) further explores this concept of depicting the intricate structure
of a database schema with a graph. SADGA (Cai et al., 2021) employs both contextual and dependency
structures for encoding the question-graph, and utilizes database schema relations in the construction of the
schema graph. S2SQL (Hui et al., 2022) incorporates syntactic dependency information into the relational
graph attention network.

3.2 Text-to-SQL with LLMs

Prompting LLMs Recent advances in LLMs have yielded groundbreaking capabilities (Chowdhery et al.,
2022; Achiam et al., 2023) – their ability to understand, generate, and reason in unprecedented ways with
prompting has amplified their penetration into many real-world tasks. Numerous advanced prompting
techniques have further extended LLMs’ capability, such as Chain-of-Thought (Wei et al., 2022b), Least-
to-Most (Zhou et al., 2022), and others (Chen et al., 2022; Yao et al., 2023; Besta et al., 2023). However,
these generic-purpose prompting approaches are observed to fall behind on Text-to-SQL tasks compared to
approaches tailored to Text-to-SQL2 (Rajkumar et al., 2022; Liu et al., 2023a; Li et al., 2023c).

To further improve general-purpose prompting methods for Text-to-SQL specifically, advanced prompting
approaches tailored to Text-to-SQL task, have been proposed. DIN-SQL (Pourreza & Rafiei, 2023) exemplifies
this by breaking down the Text-to-SQL tasks into sub-tasks: schema linking , classify SQL difficulty level,
SQL generation based on SQL difficulty, and self-correction3. CoT-style (Tai et al., 2023) also proposes
decomposing Text-to-SQL into sub-problems and present them all at once to LLMs instead of solving
sub-problems iteratively. SQLPrompt (Sun et al., 2023) enhances LLMs with diverse representations of
database schemas and questions as inputs to encourage diverse SQL generation to improve performance from
execution-based consistency decoding. Self-debugging (Chen et al., 2023) appends error messages to the
prompt and performance multiple rounds of few-shot prompting to self-correct the errors. DAIL-SQL (Gao
et al., 2023a) provides an investigation on prompt designs, including question representations and example
selection on few-shot prompting. In addition, another line of work is selecting similar few-shot demonstrations
with the input questions so that LLMs can follow the solution of a similar question. Among those, DAIL-SQL
selects based on similarity of embedding of questions plus SQL queries, whereas SKILL-KNN(An et al., 2023)
selects based on similarity of the required skills.

Fine-tuning LLMs Instruction tuning on coding tasks have achieved remarkable performance on different
programming languages (e.g. Python and SQL) (Luo et al., 2023; Muennighoff et al., 2023; Li et al., 2023d),
indicating the immense potential of fine-tuning. However, regarding Text-to-SQL, compared to prompting
approaches, tuning approaches have been relatively under-explored, partially attributed to the prohibitively
high computational cost. DAIL-SQL (Gao et al., 2023a) has investigated fine-tuning open-source LLMs (e.g.
LLaMA). Their results suggest that although fine-tuning yields significant enhancements, the performance of
fine-tuning open-source LLMs, attributed to their smaller sizes, remains substantially lower than prompting
larger models like PaLM-2 or GPT-4. Encouragingly, concurrent work CodeS (Li et al., 2024) (“CodeS-15B”)
applies Text-to-SQL specific adaptation and achieves impressive results. Unlike existing work, we primarily
focus on LLMs at larger scales, to investigate the potential of achieving significant gain with the increase of
model size due to the emergent ability of large models (Wei et al., 2022a).

Schema linkage Schema linkage, which connects phrase in questions to those in the database schema,
is often incorporated as a guidance module into Text-to-SQL. IRNet (Guo et al., 2019) performs schema
linkage to generate custom type vectors to augments the embedding of questions and schema, that results in
improvements in recognition of the columns and the tables mentioned in a question and superior generation
of intermediate representations with abstract syntax tree decoder. RAT-SQL (Wang et al., 2019) integrates
schema linkage information directly into the self-attention layers of its encoder, along with question and
schema. With end-to-end training on Text-to-SQL, the encoder-decoder transformer learns to effectively

2For example, the standard single-pass prompting approach of LLMs, such as with PaLM-2 or GPT-4 on the development
(dev) set of the Spider dataset underperforms fine-tuned smaller capacity models, such as Picard Scholak et al. (2021) and
RESDSQL (Li et al., 2023a)

3Notably, DIN is the first few-shot prompting that can outperform strong tuning-based alternatives, such as Picard Scholak
et al. (2021) and RESDSQL (Li et al., 2023a)
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utilize these linkage cues, enhancing SQL generation abilities. RESDSQL (Li et al., 2023a) employs a
ranking-enhanced encoder to guild the model to prioritize the most pertinent elements for SQL generation.
The ranking is obtained by training a cross-encoder is for schema linkage, classifying schema items based
on their relevance to the question. Our proposed “column selection” approach is different from previous
methods as we rely on LLM’s intrinsic reasoning ability to infer relevant columns, whereas previous work
relied on either pattern matching or learning trainable parameters through end-to-end Text-to-SQL training.
In addition, the purposes are different that ours is an independent module, which serves as a prepossessing
step to enable applying Text-to-SQL to large-scale datasets that exceed the prompt length, whereas others
are proposed as parts of their Text-to-SQL methods that are hard to decouple from the overall Text-to-SQL
pipeline.

Retrieval-based methods incorporate retrieval-augmented generation and focus on real-world database
content. Zhang et al. (2023) introduces a retrieval-augmentation approach that enhances the structural
understanding of SQL by leveraging similar past queries to inform the generation process, addressing the gap
between specific structural knowledge and general knowledge. Nan et al. (2023) demonstrates the effectiveness
of retrieval-based approaches in selecting diverse and relevant demonstrations through prompt design strategies.
Wang et al. (2023) decouples the Text-to-SQL process into schema routing and SQL generation, and employs
a compact neural network-based router for effective navigation through large-scale schemas, complemented
by LLMs for SQL generation.

4 Key Aspects of the SQL-PaLM Framework

We investigate multiple key aspects of building a Text-to-SQL framework in this paper. Through extensive
experimental validation and in-depth analyses, we aim to systematically unravel the factors influencing
Text-to-SQL performance.

Learning perspective – pushing adaptation with prompting vs. tuning: Central to our investigation
is understanding the intrinsic property of LLMs on tackling the Text-to-SQL task, whereby we explore, within
the learning paradigms of few-shot prompting and tuning, how LLMs solve Text-to-SQL tasks differently
under different learning scenarios, and what factors influence the final performance significantly. Compared
with few-shot prompting approaches, tuning approaches have been relatively under-explored, partially due to
the prohibitively high computational cost. In this paper, therefore, focus on some pivotal questions for tuning,
such as: How does the performance of prompting strategies compare with that of tuning strategies? To what
extent does the performance rely on the foundation models’ capacity? How well do models generalize across
different datasets, especially when faced with limited training data (considering notable publicly-available
datasets like Spider and BIRD are not significant for large model size)? What is the impact of parameter-
efficient tuning techniques, like LoRA (Hu et al., 2021), on the training performance? How does tuning
depend on different foundation models (e.g. PaLM vs. LLaMA)?

Task perspective – judiciously selecting input components for Text-to-SQL: The Text-to-SQL
task contains a range of potentially-useful information that can be taken advantage of: (i) database schema:
there are table & column names, descriptions (e.g. clarifications such as abbreviations), data types (e.g.
string and integer), data formats (e.g. explanations of formats stored within the database such as with a raw
value or an interval), and primary & foreign keys that describe how different tables are connected to each
other; (ii) database content values, some database entry values are needed to solve the question4; (iii) natural
language questions, whether there are associated hints or formulas, such as the domain knowledge. Each of
the above information can be quite critical – with some of them missing, LLMs cannot produce accurate
SQL outputs. On the other hand, in some scenarios, they can add up to be lengthy and contain irrelevant
details, wiht the potential to distract the LLMs from focus on relevant information and generate the correct
SQL outputs. Therefore, within the limited input length, it is crucial to achieve a balance on not missing
critical information, and not providing a significant amount of irrelevant information. This necessitates

4For instance, Question: What is the revenue for shoes? In the database, the column "product" contains "Running shoes";
Without providing database content, such as "column ‘product’ contains ‘Running shoes’", the output SQL is likely to be
"SELECT ... WHERE product=‘shoes’", because "shoes" is mentioned in the question. However, the correct SQL is "SELECT ...
where product=‘Running shoes’"
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judicious selection of a subset of features for Text-to-SQL model to produce correct SQLs. Some fundamental
questions arise: How can we enable LLMs to effectively utilize various forms of available information? Which
information sources are most valuable? What are the linear formats to effectively represent the various inputs
for LLMs?

Real-world scaling – column selection: With the advances in LLMs, numerous challenges associated with
Text-to-SQL5 can be addressed more effectively, bringing us closer to resolving real-world database challenges.
However, one remaining key obstacle is the potentially high number of columns. Real-world databases, such
as those representing the full inventory of large-scale retailers, might contain a large number of attributes6.
Directly processing this volume of columns is often infeasible, as the concatenation of column names would
exceed the prompt length limits of LLMs. This highlights the need for column selection — the process of
identifying a relevant subset of columns from multiple tables. Column selection is related to the broader
process of schema linking7, which maps phrases in the natural language question to corresponding columns
and tables in the database schema. The difference is that column selection focuses solely on identifying the
set of relevant columns from the schema, without linking.

5 Problem Formulation

Text-to-SQL systems transform queries expressed in natural language into SQL programs. Provided a natural
language query Q, and an associated database D, SQL outputs are generated such that when executed against
database D, would generate the answer to the original natural language query Q.

A database D includes two primary components: the schema (including table and column names) and the
contents (entry values) of D. The schema, represented by S, outlines a database’s structure and includes a
set of table names T , and a set of column names C. The database content values V are the data values that
populate the entries of the tables, adhering to the attributes defined by the database schema.

The database schema S contains nT tables:

S = {S(1)
T , S

(2)
T ...S

(nT )
T } (1)

with the k-th table schema S(k)
T consisting the table name T (k)

N and a collection of columns C(k), where j-th
column name is represented by C(k)

j . The k-th table contains n(k)
col number of columns:

S
(k)
T = {T (k)

N , C(k)}

C(k) = {C(k)
1 , C

(k)
2 , ..C

(k)
j , ..}

j=1:n(k)
col

.

The database content values of the k-th table are V (k), a n(k)
row × n(k)

col matrix with each row being a data
entry and each column being a vector of values for an attribute:

V (k) = {v(k)
1 , v

(k)
2 , ..v

(k)
j , ..}

j=1:n(k)
col

, (2)

where v(k)
j are vectors of length n(k)

row encompassing all the values of the attributes C(k)
j . Usually, the number

of entries n(k)
row is significantly larger than the number of attributes n(k)

col . Primary keys K(k)
P ∈ C(k) are the

column(s) that contain values that uniquely identify each row in a table8. Foreign keys K(k)
F ∈ C(k) are

the column(s) in one table, referring to the primary key in another table. They are used to link multiple
tables.9 Additionally, databases often include supplementary information for clarification (such as the detailed

5For instance, public benchmarks, such as Spider
6The number of columns can be hundreds or thousands
7Major schema linkage approaches (Guo et al., 2019; Wang et al., 2019; Li et al., 2023a) are discussed in Sec. 3.
8For example, the column “StudentIDs” of the “Student” table.
9For example, consider the table "Student" with primary key "StudentID", and the table "BookOrders" which has two columns:

"OrderID" and "Buyer". The "Buyer" column contains a series of StudentIDs representing the individuals who placed the book
orders. In this scenario, "BookOrders.Buyer" is the foreign key which points to a primary key "Student.StudentID". This way,
each row in the "BookOrders" table can be associated with a specific student from the student table.
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Figure 3: Overview of the SQL-PaLM framework for fine-tuning. Our framework incorporates
different submodules for superior Text-to-SQL performance: (i) diversifying training data coverage (Sec. 6.3.2),
(ii) incorporating synthetic data (Sec. 6.3.3), (iii) including database content (Sec. 6.3.4& 6.3.5), (iv) test-time
refinement mechanism (Sec. 6.3.6).
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descriptions of columns) which help interpreting ambiguous or uninformative column names (as explained in
Sec. 2). We use fdes(C) to indicate the descriptions for column C. For k-th table, des(k) refer to a collection
of column description:

des(k) = {fdes(C(k)
j )}

j=1:n(k)
col

. (3)

Lastly, there can be hints H(k), user-specified aids for the question. They could contain definitions or formula
used to construct SQL queries.10

6 Methods

This paper presents the SQL-PaLM framework (depicted in Fig. 3), a holistic approach to push Text-to-
SQL capabilities using LLMs with both few-shot prompting and instruction-tuning. We first describe the
input representations (Sec. 6.1) used for both learning paradigms. For few-shot prompting, we propose a
prompting approach leveraging execution-based error-filtering-aided consistency decoding (Sec. 6.2). For
instruction-tuning, we delve deeply into understanding the critical factors in influencing performance of tuning
LLMs, including expanded training data coverage and diversity (Sec. 6.3.1 and Sec. 6.3.2), synthetic data
augmentation (Sec. 6.3.3), and integrating query-specific database content (Sec. 6.3.4). Using the test-time
selection approach (Sec. 6.3.6), we further enhance accuracy by integrating SQL outputs from various
paradigms, leveraging execution feedback for refinement. Furthermore, we address one of the real-world
challenges of navigating complex databases with a significant number of tables and columns, presenting
effective methods for precise selection of pertinent database components to improve Text-to-SQL performance
(Sec. 6.3.5).

6.1 Input representation

The primary step of modeling with LLMs is providing judiciously-designed input representations. We start
from the database schema S and primary and foreign keys. Following Shaw et al. (2020); Scholak et al.
(2021); Sun et al. (2023), we serialize the database schema as:

X1 = |T (1)
N : C(1)

1 (d(1)
1 ), C(1)

2 (d(1)
2 ), ...C(1)

n
(1)
col

(d(1)
n

(1)
col

)|T (2)
N : C(2)

1 (d(2)
1 ), C(2)

2 (d(2)
2 ), ...C(2)

n
(2)
col

(d(2)
n

(2)
col

)|...|KP ;KF ;, (4)

where T (k)
N denote the k-th table name represent the j-th column name of the k-th table, and d(k)

j indicate
its data type (such as number or string). We use the symbol ‘|’ to represent the boundaries between different
tables in the schema. Within each table, we use ‘:’ to separate the table name from its columns, and we
indicate each column via the delimiter ‘,’. We integrate the primary keys (Kp) and foreign (Kf ) keys to
denote relationships between tables. We refer the above schema design as “concise prompt”, as it concisely
presents the table structure 11. See Fig. 4 as an input example for the question given in Fig. 1 and a realistic
example in Sec. A.10.1 in Appendix.

Besides the database schema, other forms of database content can be beneficial. We use database content
values V (Q) to match with the tokens in question to clarify the database value (see Sec. 6.3.4). We also
incorporate column descriptions (des) and hints (H), which provide additional clarification or domain-specific
knowledge when applicable. We concatenate them together as:

X2 = des;V (Q);H.. (5)

Combining all, we form the overall input sequence by concatenating X1, X2, the natural language query Q,
and a SQL initiation marker "[SQL]":

X = f(X1;X2;Q; [SQL]), (6)
10For instance, for the query “List the phone numbers of schools with the top 3 SAT excellence rates”, the hint is the definition

of the excellence rate, the percentage of take takers with SAT score greater than 1500. "Excellence rate = NumGE1500 /
NumTstTakr", where column “NumGE1500” refers to “Number of Test Takers Whose Total SAT Scores Are Greater or Equal to
1500” and “NumTstTakr” refers to “Number of Test Takers”

11An alternative way to describe the schema would be “verbose prompt”, where we use human language to describe the schema
verbosely. See the example in A.10.2.
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where f is the prompt design to connect the concatenated components (e.g. ’[database schema] is ...; [Primary
keys]: ..’) and human instructions ("Convert text to SQL") explicitly in X. See Fig. 4 as an example.

Input: X (Eq. 6)
Convert text to SQL
« Few-shot examples »
[Schema]: | Countrylanguage: CountryCode (Number), Language (String), ... | Country: Code (Number), Name (String), ...
[Primary Keys]: Countrylanguage: CountryCode | Country: Code ...
[Foreign Keys]:Countrylanguage: CountryCode is equivalent to Country: Code | ...
[Detailed descriptions of tables and columns]: # column description
The column ‘IsOfficial’ in Table ‘Countrylanguage’ has column descriptions of “whether language is official language”
...
[Database values that related with questions]: database content
The column ‘Language’ in Table ‘Countrylanguage’ has database values: [’English’, ’French’]
...
[Additional Info]: # hints, if applicable
[Q]: What are the names of nations where both English and French are official languages?
[SQL]:

Figure 4: The overall input representation from Eq. 6. The basic prompts are in black (X1 in Eq. 4), and
auxiliary information is gray (X2 in Eq. 5), if the datasets have the corresponding information.

6.2 Prompting LLMs for few-shot learning

We first consider the use of LLMs for Text-to-SQL with prompting. Given an LLMθ and a question Q,
represented as a sequence of tokens, the prediction in zero-shot prompting can be formulated as:

Y = arg max
Y

PLLMθ
(Y |X), (7)

where Y are the inferred SQL outputs, X, as described in Sec. 6.1, are the input prompts including database
schema, other auxiliary information (i.e. hints) if applicable, and the question Q. θ are the parameters of the
pretrained LLM. With few-shot prompting, the formulation is extended to LLMs generating a sequence of
tokens conditioned on the provided demonstrations pairs demo = [(X1, Y1), (X2, Y2), ...]:

Y = arg max
Y

PLLMθ
(Y |demo,X). (8)

Essentially, in few-shot prompting, the prompts prepend the natural language queries Q with a list of
demonstrations (inputs, SQL) pairs, and the LLM follows the input to generate answers in an auto-regressive
way.

To further enhance performance beyond the standard few-shot prompting, we adapt an execution-based
consistency decoding method, following (Sun et al., 2023; Ni et al., 2023). This method leverages on the
unique benefit of coding task, including Text-to-SQL task, where the SQL outputs are executable. This
serves as a preliminary validation for the generated output, allowing us to identify invalid results more easily.
Concretely, our approach involves the following steps:

Step 1: Sample multiple SQL outputs from LLMs: Given an input X, we sample m SQL outputs
from the LLMθ(Y|X) using a sufficiently high temperature, i.e. Ω = {Ŷi}mi=1 ∼ PLLMθ

(Y |X).

Step 2: Verify with execution The generated SQL outputs, {Ŷi}, are subsequently executed using an
executor E(·), which yields the corresponding results denoted as ei = E(Yi).

Step 3: Aggregate Execution Result. Since multiple SQLs are valid for the same question, we aggregate
the SQL outputs in Ω that give the same execution result. The execution output with errors is guaranteed to
be wrong, and the execution outputs with the most occurrences are more likely to be correct (Wang et al.,
2022). We remove programs with invalid execution results to update the LLM generation probability with
the verification probability, and marginalize over SQL outputs with the same execution results. We use this
aggregated probability as the ranking score R:

R(X, Ŷ ) =
∑
Y ∈Ω

PLLMθ
(Ŷ |X) · 1

[
E(Y ) = E(Ŷ )

]
· 1
[
E(Ŷ ) ∈ Φ

]
, (9)
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where Φ indicate the set of valid execution results without yielding errors (denoted as "execution error
filtering"). We choose the outputs Y ∗ that execute the most probable result

Y ∗ = arg max
Ŷ ∈Ω

R(X, Ŷ ). (10)

6.3 Model tuning

Despite the significant advances achieved with few-shot prompting of LLMs, it remains a formidable challenge
for a pretrained LLM to rely solely on its parametric knowledge and prompting to accurately process highly-
complex SQL queries (Sec. 2). Such queries often involve sophisticated semantic logic, complex database
schemas, and database contents with numeric edge cases necessitating extensive clauses 12 for each case
(See Fig. 2). Additionally, the SQL logic may require the use of clauses that were underrepresented in the
pretraining corpus 13. To address these more intricate scenarios, this section focuses on tuning, wherein we
refine the pretrained LLMs to better align with a customized Text-to-SQL distribution. This paper delves
into crucial training paradigms that influence the tuning efficacy of LLMs, including expanding the range
and diversity of training data, leveraging synthetic data, integrating query-specific database content, and
optimizing table and column selection. We then introduce a test-time selection approach that integrates these
diverse training paradigms, aiming to enhance accuracy through the utilization of execution feedback.

6.3.1 Instruction tuning

To improve the SQL expertise of pretrained LLMθ, we propose adapting pretrained LLMθ to generate
SQL from the input sequences by tuning the model with Text-to-SQL datasets (Wei et al., 2021). The
training data contain a collection of serialized inputs X & corresponding SQL outputs Y pairs, sampled from
the Text-to-SQL distribution dtrain. The training objective is based on maximizing the log probability of
co-appearance of the training data (X, Y ):

max
θ

E(X,Y )∼dtrain logPLLMθ
(Y |X), (11)

where X = f(S,KP ,KF , H,Q) 14 are the serialized inputs as discussed in Sec. 6.1. The optimal θ∗ can be
obtained by tuning of LLMs with conventional language modeling objectives:

θ∗ = arg max
θ

∑
(X,Y )

logPLLMθ
(Y |X). (12)

6.3.2 Diversifying tuning data coverage

Tuning LLMs would require sufficient amount of data given their large model size (Kaplan et al., 2020). This
section focuses on enhancing model tuning through the use of diverse datasets. The rationale is that diverse
datasets provide a more comprehensive coverage of SQL knowledge to enrich LLMs. However, a notable
challenge of using more than one datasets is that they can be very different, which can lead to a decline
in performance due to distribution shifts. This means that a model trained on a particular dataset may
not perform as well on another datasets – a common issue for machine learning even for the pre-LLM era.
Concretely, Text-to-SQL datasets vary significantly from different perspectives: (i) they encompass a wide
range of topics, e.g. from healthcare, retail, and finance etc., each requiring specific knowledge; (ii) the clarify
of the database schema varies, with some containing straightforward table or column names, while others
are vague and demand further exploration or additional descriptions; (iii) the sizes of dataset range widely,
setting different challenges on schema linkage challenges; and (iv) the quality of database content values
might contain variations with some datasets having columns filled with NULL data that need filtering, while

12An example is using CASE statements and regular expressions
13An example is conditional expression (e.g., CASE, IFF, PARTITION clauses) and WINDOW functions.
14We discuss incorporation of database values V and column descriptions des in Sec. 6.3.4 to illustrate the effect of the key

factors one at a time.
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others not needing that. Given such diversity, it remains an open question how combining multiple training
datasets improves tuning performance. Towards this end, we extend Eq. 11 as:

max
θ

E(X,Y )∼dmix logPLLMθ
(Y |X), (13)

where dmix is a mixture of |d| datasets: dmix = {di}i=1:|d| and X = f(S,KP ,KF , H,Q). We investigate
whether the pretrained LLM, when tuned with a wide range of inputs from various datasets, can learn to
understand these diverse inputs presented in different datasets rather than overfitting to specific patterns,
and thus generalize better.

6.3.3 Augmentation with synthetic data

As previously described, introducing diverse datasets can improve tuning. We further extend this by using
diverse synthetic SQL data to augment real datasets, especially considering the high cost to obtain real-world
data. Since LLMs are pretrained with massive datasets, their prior knowledge can be utilized to create new
information and augment training via synthetic SQL data.

For the same natural language questions, there are usually multiple SQLs that are correct with the same
execution outputs15. Utilizing this, we focus on synthesizing data to incorporate the multiple ground truth
SQLs. We start from a Text-to-SQL dataset, for each (natural language question, SQL)-pair in the dataset, we
keep the database schema and natural language question unchanged, and generate new SQLs that are correct
but different from the ground truth SQLs. To achieve this, we query LLM with carefully-crafted prompts
which include database schema, natural language question, and the ground truth SQL, and request LLMs
to generate a SQL that is different from the ground truth and to output a similarity score. The similarity
score indicates how similar the candidate is from the true SQL. Details of prompt design F s are explained in
Sec. A.5.1 in Appendix. Given the database D, question Q, and original ground truth query SQL∗, we query
the LLM to generate a different SQL output, and estimate its similarity from SQL∗, formulated as:

(SQL(S), similarity(S)) = LLMo(F s(D,Q, SQL∗)) (14)

where SQL(S) is the generated SQL output, similarity(S) is the similarity score and F s is synthesis
prompting design. LLMo can be any LLMs, but ideally different from the LLMs that are used for tuning so
that they can introduce new information.

Synthetic data generation comes with two challenges: accuracy and diversity. Accuracy refers to the generated
SQLs are correct SQL for the natural language query. Diversity refers to the generated SQLs bring new
information that is different from original data. To ensure the generated SQL outputs are correct, after the
generation we evaluate the SQL 16 and keep the correct one. To ensure the diversity, we only keep the SQL
with similarity score below a threshold.

After generating synthetic data, we augment real datasets with them, and the training objective becomes

max
θ

E(X,Y )∼dmix+synthetic logPLLMθ
(Y |X), (15)

For this approach, we only synthesize target SQL without synthesizing new natural language questions
or databases, because we want to ensure that the generated SQL accuracy high17. We leave synthesizing
questions or database schema to encourage more diverse synthetic SQL to future work.

6.3.4 Integration of query-specific database content

Incorporating database content can be crucial for Text-to-SQL performance, particularly when natural
language questions refer to specific data values different from table or column names 18. In some scenarios,

15For example, SQL1 = “... order by score DESC LIMIT 1” and SQL2 = “... WHERE score=max(score)” are equivalent
16The result of the generated SQL match the result of the ground truth SQL
17For example, modifying new natural language questions of database schema lead to the situation where original ground

truth SQL cannot be used to evaluate synthetic SQLs, as the natural questions have been changed
18For example, a user might ask, "What is the population in Santa Clara?" However, if the database only has an entry for

"Santa Clara County," the correct SQL query should be SELECT .. WHERE county = "Santa Clara County", not WHERE
county = "Santa Clara".
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without access to the database content, it would be infeasible to formulate accurate SQL queries based solely
on the database schema and question, even for humans19. Furthermore, when multiple column names seem
relevant to a question, database values containing the keywords from the question can help identify the
appropriate columns20. Overall, access to database content can be critical for improving Text-to-SQL.

Database content is often much larger, compared to the input sequence (database schema, the question, and
etc). It is not preferable to include all database values to the inputs, because firstly, total values could go
beyond the limitation of the input length. Secondly, the valuable information, such as database schema, can
be lost in massive irrelevant values. To address this challenge, we propose including only a limited number of
entries V (Q) that are directly relevant to the question.

We first describe the process of extracting the relevant database values relevant to the question, inspired by
(Lin et al., 2020). Suppose a natural language question Q is broken into words, and each word is considered
as a key word: Q = [w1, w2, ..w|Q|]. For each keyword wi, we conduct a matching against all entries (v(k)

rj ) in
each attribute (column) across all tables, and select the ones above the pre-defined threshold δ. To prevent
the inclusion of extraneous irrelevant database content, we limit the selection to be topK values:

V (wi) =
{
v

(k)
rj | 1[Fm(wi, v(k)

rj ) > δ], (16)

∀k = 1 : nT ;∀r = 1 : n(k)
row;∀j = 1 : n(k)

col

}
[: topK ], (17)

where v(k)
rj is database content value of rth-row jth-column entry of kth-table and Fm is the matching

algorithm. Here, we use Fm as the longest contiguous matching subsequence approach (Cormen et al., 2022),
as it allows us to accurately extract the exact values stored in the database. This precision is particularly
important for some SQL queries21. Finally, the total matches for the entire question Q is determined by
aggregating all the matches of individual keywords:

V (Q) = {V (wi)|i = 1 : |Q|}. (18)

Additionally, Fm can also be instantiated using LLM inference (querying LLM with prompt and asking
"whether wi and v(k)

rj match") or embedding similarity (e.g. the cosine distance between the embedding of wi
and v(k)

rj above a threshold is a match). We choose to use the above proposed fuzzy string matching approach
as it is cost-effective and fast. We leave more investigations on Fm to future work.

With the proposed strategy of selectively including relevant database content, we propose training with
question-specific database content via jointly modeling of the conditional probability:

max
θ

E(X,Y ) log
[
PLLMθ

(Y |X,V (Q))P (V (Q)|D,Q)
]

(19)

with the serialized input X = f(S,KP ,KF , H,Q). See a demo example in Fig. 4 (basic prompt + “[Database
values that related with questions]”)22 and a real example in Sec. A.11 in Appendix. V (Q) is database content
relevant to Q. To enable effective training, we break down Eq. (19) into two stages. First, extracting relevant
database content associated with the natural language question V (Q). Second, with the extracted database
content, the LLMs are trained to generate output SQL programs Y using both the input sequence X and the
relevant database content. This approach tailors the training process to better reflect realistic scenarios when

19As they would not know exact format used in the database.
20For example, if the question is "Please list schools in Fresno County Office of Education?", and the database has columns

like “District", “District Name", and “dname", knowing that only “District Name" has database values “Fresno County Office of
Education" indicates that this “District Name” is the column to use.

21For example, being able to distinguish subtle differences “Santa Clara” vs “Santa Clara County”; “apple” vs “apples”
22For databases with column names without parentheses like those in Spider dataset Yu et al. (2018), to incorporate database

content into X, we append the identified database values to their respective column names in the input sequence’s schema,
separated by a delimiter “()”. This approach aligns with (Qi et al., 2022; Xie et al., 2022). For instance, the database schema
is represented as T1 : C1(V1), C2, C3(V3) . . ., and it indicates that only columns C1 and C3 contain relevant database content,
while C2 does not. For datasets with column names that include parentheses, like those in BIRD dataset (Li et al., 2023c), we
add the relevant database content separately, clearly specifying the values corresponding to which columns in particular tables,
to avoid confusion caused by the delimiter “()”.
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LLMs consider specific database entries relevant to the user’s query. Consequently, the training objective is
formulated as:

θ′ = arg max
θ

∑
(X,Y )

logPLLMθ

[(
Y |X,V (Q)

)]
. (20)

6.3.5 Table and column selection

Handling real-world datasets poses a significant challenge to Text-to-SQL due to the large number of tables
and columns. This challenges can arise when including the entire schema within the prompt limit is infeasible.
Even when the schema fits, the increased number of columns adds complexity to the reasoning problem –
LLMs struggle in scenarios resembling “finding a needle in a haystack” (Liu et al., 2023b). Thus, careful
selection of relevant tables and columns is crucial for improving Text-to-SQL performance (Lei et al., 2020a).

Column selection is to select a subset of columns that are relevant for a given natural language question,
so column selection Zsel(Q) is a function of question Q. To model Text-to-SQL with column selection, we
formulate the problem as modeling the joint probability of the conditional probability of column selection
Zsel(Q) given the input sequence X, and the conditional probability of generated SQL program Y given the
input sequence X and column selection Zsel(Q):

max
θ,β

E
(X,Y )

logPLLMθ

(
Y |X,Zsel(Q)

)
Pβ
(
Zsel(Q)|X

)
, (21)

where β represents the parameters for the column selection model. Due to the prohibitive computational
challenges of joint modeling of LLMs, we instead digest the objective into two steps: first, modeling the
selection of columns; and then, integrating these selected columns into the Text-to-SQL modeling process.

We start from inferring column selection. Text-to-SQL datasets typically do not explicitly provide the ground
truth for the relevant columns Z∗sel(Q). We propose extraction of this information from the true SQL queries
Y ∗. The selected columns are the columns that are referenced in the true SQL query. Concretely, for the
k-th table in the database, the selected columns are represented as:

Z
∗(k)
sel (Q) = {C(k)

j ∈ Y ∗ | C(k)
j ∈ S(k)

T , 1 ≤ j ≤ n(k)
col}. (22)

where C(k)
j is j-th column of k-th table and S(k)

T is database schema. For the entire database schema, we
aggregate the column selection of individual tables:

Z∗sel(Q) =
nT⋃
k=1

Z
(k)
sel (Q). (23)

Similarly, the selected tables are identified based on their presence in the ground-truth SQL.

W ∗sel(Q) = {T (k)
N ∈ Y ∗|T (k)

N ∈ S(k)
T , 1 ≤ K ≤ nT } (24)

where T (k)
N is table name of k-th table. We consider two approaches for column selection:

Retrieval-based column selection: Retrieval-augmented generation has proven to be an effective and
efficient method for handling large contexts in generative tasks. We employ a similar approach for the
Text-to-SQL task, utilizing a schema retriever based on nearest neighbor search. Given a natural language
query, we identify the closest columns in the semantic space. We opt to retrieve columns instead of tables to
achieve a more refined and granular selection. Once the columns are identified, we group them according
to their respective tables to construct the selected schema. The retrieval corpus is defined as the union of
all table columns. The method initiates by calculating embedding representations for both the query and
columns using a pretrained embedding model denoted as E. Specifically, we represent the query embedding
as QE = E(Q) and the embedding of j-th column as C(k)

Ej = E(C(k)
j ). Subsequently, the column selection
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score s(k)
j is defined as the cosine similarity between the query and the column vector embedding. The topK

columns closest to the query are then obtained based on this score:

s
(k)
j = CosineSimilarity(QE , C(k)

Ej ) =
QE · C(k)

Ej

‖QE‖‖C(k)
Ej ‖

. (25)

To generate column embeddings, we construct a sentence for each column by combining diverse pieces of
information, including the column name, column type, column description, table name, and a set of the most
common distinct values. This text serves as the input to the embedding model. The specific templates and
illustrative examples are presented in Appendix A.6.1.

Retrieval-based approach can be parallelized with tensor operations to efficiently scale to a large number of
tables and columns with low cost and latency. It also offers controllability via the hyper-parameter topK ,
which can adjust recall. It can effectively reduce the risk of false negatives.

Program-aided column selection: Solving problems with LLM using coding representation has demon-
strated impressive results on a variety of tasks (Gao et al., 2023b; Mishra et al., 2023). This is because coding
offers greater precision than natural language descriptions and it bypasses the ambiguities inherent in natural
language. Program-aided column selection is an approach to infer column selection using preliminary SQLs.
Specifically, we use initial LLMs (denoted as LLMpre) to generate a preliminary SQL query Ŷ .

Ŷ = LLMpre(X). (26)

Program-aided column selection
Preliminary SQL generation:
SELECT `FRPM Count (K-12)`/`Enrollment (K-12)` FROM

frpm WHERE `County Name`=`Alameda` ORDER BY (CAST(`

FRPM Count (K-12)` AS REAL) / `Enrollment (K-12)`)

DESC LIMIT 1

The selected table name:
frpm

The selected column name:
FRPM Count (K-12), Enrollment (K-12), County Name

Figure 5: Program-aided column selection.

Following the procedure used to infer ground truth col-
umn selection from true SQL (Eq 23), we generate col-
umn selection from the preliminary SQL Ŷ . The inferred
column selection is determined as:

Z∗gen(Q) =
nT⋃
k=1

Z(k)
gen(Q) =

nT⋃
k=1
{C(k)

j ∈ Ŷ | 1 ≤ j ≤ n(k)
col}.

(27)

To ease the matching process, both the preliminary SQL
and schema are normalized to lowercase. In practice, we
pinpoint “selected tables” by identifying elements in the
SQL following “FROM” or “JOIN” keywords that match
table names in the schema. “Selected columns” are then
identified by locating column names that appear both in
the SQL and the schema of the chosen tables. See the
output of program-aided column selection in Fig. 5.

The initial models used to generate preliminary SQLs can be standard Text-to-SQL framework to achieve
better performance, or some less capable models due to various constraints. For example, when dealing with
large datasets with many columns, in some scenarios, the prompt length limit can only fit column names,
leaving no space for auxiliary information, such as data types and database content, or descriptions. Using
these limited inputs (only the schema), we can generate preliminary SQL queries for column selection. Then
on the selected columns, we can apply complete prompt (schema plus auxiliary information) to obtain more
accurate SQL. Another scenario involves prioritizing the reduction of computational costs and latency, where
a smaller initial language model may be employed. Although preliminary SQLs generated from the initial
model may not be highly accurate, they can be effective for generating column selection because column
selection requires less details than Text-to-SQL task.

Program-aided column selection has the following advantages: The number of columns selected by this
approach is low as there are limited number of columns referenced in preliminary SQL queries. So this often
leads to high precise of column selection. Additionally and importantly, program-aided column selection
fosters a mutually reinforcing cycle – enhanced SQL accuracy improves column selection efficacy, which,
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in turn, increases the accuracy of future SQL queries. This iterative enhancement process can lead to
progressively higher levels of accuracy.

Integration of column selection to Text-to-SQL pipeline: We explore two approaches to incorporate
column selection:

• Soft column selection is the approach where, rather than removing the unselected columns from
the database schema S, we emphasize the selected columns by adding their column descriptions to
the prompt:

X = f(S,KP ,KF , H,Des[Zsel(Q)], V (Q), Q). (28)

Soft column selection can be considered as a way to effectively incorporate column descriptions of
relevant columns. This method’s advantage lies in its resilience to errors in column selection; such
errors have minimal impact on the Text-to-SQL task since the model continues to have access to the
entire database schema in the prompt. See a example of inputs in Sec. A.11.2 in Appendix.

• Hard column selection refers to that scenario that in the database schema S, only the chosen
columns are included, while the non-selected columns are omitted:

X = f(S[Zsel(Q)],KP ,KF , H, V (Q), Q). (29)

This approach has the advantage of considerably shortening the length of the data schema by
removing irrelevant columns, which in turn increases the chance that LLMs concentrate on more
critical information. Additionally, it also acts as an essential preprocessing step that facilitates the
application of Text-to-SQL when the prompt length is insufficient to accommodate the full schema.
However, inaccuracies in selecting columns can lead to certain errors in the Text-to-SQL task.

Column selection can be utilized in both few-shot prompting and tuning setups. For prompting, we integrating
column selection into the prompt and follow the procedures as outlined in Sec. 6.2; For tuning, column
selection is applied to the inputs and follows procedures in Sec. 6.3.1.

6.3.6 Test-time refinement via execution-based selection

In previous sections (from Section 6.3.1 to Section 6.3.5), we have outlined various training paradigms.
Each section focuses on a unique facet of Text-to-SQL, resulting in the generated SQL that exhibit distinct
advantages. Through empirical analysis, we observe that these produced SQL have diverse accuracy coverage
– the questions correctly answered by one training paradigm often differ substantially from those addressed by
others. This diversity suggests that selecting the appropriate SQL can be a viable strategy for integration
of multiple training paradigms. To this end, we introduce an approach called test-time refinement via
execution-based selection to identify the correct SQL at test time by analyzing execution outcomes. A
fundamental advantage of Text-to-SQL is SQL programs are executable. If a SQL program leads to an invalid
execution, such as error messages, the SQL can immediately be deemed incorrect. However, a valid execution
outcome does not guarantee the SQL is correct. To identify correct SQL, we execute the generated SQL
outputs for each question across multiple training paradigms and select the SQL that, while producing valid
results, has the execution outcomes supported by the majority of the paradigms. This approach is detailed in
Algorithm 1, providing a systematic method for integrating multiple training paradigms to improve SQL
query generation accuracy. Similar with execution-based consistency decoding for prompting approach in
Sec. 6.2, we consider majority of the execution outcome as a judgement for good SQL. The difference between
the two is the candidates in Sec. 6.2 come from sampling from the same setup multiple times, whereas here
candidates are come from different training paradigms.

An alternative approach involves combining different input configurations in previous sections into a single
training experiment. This method entails integrating various factors, such as mixed training data, synthetic
data, database content, and column selection, into the inputs for a single experiment. However, unfortu-
nately, the results of such experiment reveal that merging these components does not result in performance
improvements over using them individually. This suggests that LLMs may struggle to effectively process and
understand all the provided information simultaneously during tuning.
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Algorithm 1 Test-time refinement via execution-based selection
1: Input: Database D. N number of questions. {SQLi}p from P training paradigms. SQL executor E .
2: Output: outputs = []
3: for i = 1 to N do
4: for j = 1 to P do
5: executions = []
6: indexes = []
7: e = E(SQLji , D)
8: if e == valid then
9: executions ← e
10: indexes ← j
11: end if
12: end for
13: outputs← {SQLji |E(SQLji , D) = arg maxe(counts(executions)), j ∈ indexes} . Among SQLs without

execution error, select the SQL that gives execution output with maximum number of occurrences.
14: end for

7 Experimental Setup

7.1 Tasks and datasets

We consider publicly-available large-scale Text-to-SQL benchmarks. Spider (Yu et al., 2018) contains 7000
training samples across 166 databases and 1034 evaluation samples (‘Dev split’) across 20 databases from a
variety of domains. Spider-SYN (Gan et al., 2021a) is a complex variant of the Spider dev split, created
through the manual replacement of synonym substitutions in natural language queries. Spider-realistic
(Deng et al., 2020) samples 508 text-SQL pairs from Spider dev split removing explicit mentions of column
names in natural language queries. Spider-DK (Gan et al., 2021b) samples 535 question-SQL pairs on 10
databases from Spider dev split and incorporates domain knowledge to them. BIRD (Li et al., 2023c) is a
comprehensive dataset containing 9428 question-SQL pairs for train split and 1534 pairs for dev split, across
95 databases totalling a size of 33.4 GB. It covers a broad range of over 37 domains, including finance, sports,
healthcare, and education. Uniquely, BIRD incorporates four types of external knowledge sources (numeric
reasoning, domain-specific information, synonyms, and value illustration) to enhance the accuracy of SQL
query generation. Compared with Spider, BIRD SQLs are typically more complex because of longer SQL,
more keywords, more JOINs, and so on. BIRD also contains more challenging databases – more database
entries and larger number of tables and columns. Statistics of the number of tables and columns of BIRD
are shown in Appendix A.7. Note that BIRD datasets remove the errors on September of 2023, however we
conducted all our experiments on previous BIRD version before the error correction. Our performance could
be higher with the latest version.

7.2 Models

PaLM-2 is a Transformer-based model trained using a mixture of objectives similar to UL2 (Tay et al.,
2022), which is an improved version of its predecessor PaLM (Chowdhery et al., 2022) by efficiently applying
compute-optimal scaling, improved training dataset mixture, improved model architecture and objective. The
PaLM-2 used here is a Unicorn variant fine-tuned on a collection of improved datasets mixture phrased as
instructions following (Wei et al., 2021; Chung et al., 2022).

7.3 Experiments

For few-shot prompting, we use Spider datasets. For each question, we sample PaLM-2 32 times with
temperature of 0.5. The inputs of the model includes database schema, data type, primary keys, foreign keys,
database content, and the question. For fine-tuning, we choose more challenging dataset BIRD. The inputs
are described in each experiment. We train until convergence, and the number of steps is no more than 10K
steps.
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7.4 Baselines

We list several relevant baseline methods in this section. Fine-tuning baselines: PICARD (Scholak et al.,
2021) employs incremental parsing to constrain auto-regressive decoding. RASAT (Qi et al., 2022) is a
transformer model that integrates relation-aware self-attention and constrained auto-regressive decoders.
RESDSQL (Li et al., 2023a) decouples schema linking and skeleton parsing using a ranking-enhanced
encoding and skeleton-aware decoding framework. In-context learning baselines: (Rajkumar et al., 2022)
comprehensively evaluates the Text-to-SQL ability of CodeX and GPT3, while (Liu et al., 2023a) conducts a
thorough evaluation on ChatGPT. DIN (Pourreza & Rafiei, 2023) decomposes the Text-to-SQL tasks into
sub-tasks: schema linking, query classification and decomposition, SQL generation, and self-correction; then
perform few-shot prompting with GPT-4. DIN only provides test-suite (TS) evaluation results, so we run
execution accuracy (EX) evaluation with their provided SQL outputs. Self-debugging (Chen et al., 2023)
appends error messages to the prompt and performance multiple rounds of few-shot prompting to self-correct
the errors. Self-debugging only reports execution accuracy (EX). DAIL-SQL (Gao et al., 2023a) provides
a systematic investigation on prompt designs, including question representation and example selection on
few-shot prompting and fine-tuning paradigm.

7.5 Evaluation

Text-to-SQL evaluation: We consider the two commonly-used evaluation metrics: execution accuracy
(EX) and test-suite accuracy (TS) (Zhong et al., 2020). EX consists of one test – measuring whether SQL
execution outcome matches that of ground-truth. TS consists of multiple EX tests – measuring whether
the SQL passes all of the EX tests, generated by augmentation of the database. Since TS requires passing
of more tests, we consider TS as a more reliable evaluation metric. Note that exact match evaluation is
not performed, as multiple correct SQLs exist for single query. For Spider dataset, we follow the official
evaluation protocol of Spider23. For BIRD dataset, we follow BIRD official evaluation24. BIRD does not
have augmentation of test datasets, so BIRD does not have TS evaluation.

Column selection evaluation: To evaluate the accuracy for retrieval of columns and tables, we report
recall, precision, and F1. We compute these metrics and report the averaged metrics across all samples.
recall is the proportion of relevant columns correctly identified, e.g. identified relevant columns/true relevant
columns, whereas precision is the proportion of the selected columns that is relevant, e.g. identified relevant
columns / identified columns. Finally, F1 is defined as (2 · precision · recall)/(precision+ recall).

8 Results

We present the performance of our proposed framework, SQL-PaLM , in both few-shot prompting and tuning
settings. For few-shot prompting, we focus on the Spider benchmark, which is recognized for its high-quality
assessments, including both “execution accuracy” and “test suite accuracy”. For tuning, we focus on the
BIRD benchmark, known for its complex SQL and sophisticated database schema, to better differentiate
various methods. Both benchmarks are assessed on their respective dev split, which are publicly accessible,
in contrast to their private test split25. For intermediate results or ablation studies, we select representative
and high-performing methods as baselines for comparison.

8.1 Few-shot prompting setting

8.1.1 Ablation studies

Table 1 shows the efficacy of Few-shot SQL-PaLM on the Spider dev set. We utilize the concise prompt design
with four demonstrations due to the better performance compared against other prompt designs (Appendix
Sec. A.1). We conduct ablation studies showing the roles of execution-based consistency decoding and error

23https://yale-lily.github.io/spider
24https://bird-bench.github.io/
25These test split are only available through evaluation servers hosted by the benchmarks’ creators (refer to (Yu et al., 2018)

and (Li et al., 2023c) for more details).
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filtering played in enhancing model performance. The results indicate omitting either component results in a
performance degradation of 4.9% and 3.5% respectively, highlighting the substantial contributions to the
overall performance.

Table 1: Few-shot prompting on Spider dev split. We present both execution accuracy (EX) and test
suite accuracy (TS). Ablation studies are provided on removing execution-based consistency decoding or
error filtering respectively.

Execution accuracy (EX) Test-suite accuracy (TS)
Few-shot SQL-PaLM 82.7% 77.3%

Ablation scenarios
- Execution-based consistency 77.3% 72.4% (↓ 4.9%)
- Error filtering 79.0% 73.8% (↓ 3.5%)

8.1.2 Performance for different SQL difficulty levels

In our analysis, we evaluate the efficacy of SQL-PaLM against a spectrum of SQL difficulty levels, which are
categorized based on several factors, including the number of SQL keywords used, the presence of nested sub-
queries, and the application of column selections or aggregations. The results in Table 2 highlight SQL-PaLM
performance in comparison with standard few-shot prompting approach using GPT-4 and CodeX-Davinci,
as well as the advanced prompting approach DIN-SQL (Pourreza & Rafiei, 2023). Our findings reveal that
SQL-PaLM consistently surpasses the alternative approaches across all evaluated difficulty levels.

Table 2: Test-suite accuracy on Spider dev split with SQL outputs being categorized by difficulty
levels. The first four rows are taken from (Pourreza & Rafiei, 2023), and specifically the first two rows are
based on standard few-shot prompting.

Methods Model Easy Medium Hard Extra Hard All
Few-shot CodeX-davinci 84.7% 67.3% 47.1% 26.5% 61.5%
Few-shot GPT-4 86.7% 73.1% 59.2% 31.9% 67.4%
DIN-SQL CodeX-davinci 89.1% 75.6% 58.0% 38.6% 69.9%
DIN-SQL GPT-4 91.1% 79.8% 64.9% 43.4% 74.2%
Few-shot SQL-PaLM PaLM2 93.5% 84.8% 62.6% 48.2% 77.3%

8.1.3 Robustness evaluations

The Text-to-SQL models frequently encounter challenges in robustness, such as translating questions into
SQL queries when the terminology differs from the database schema or when specialized domain knowledge
is required. To address these, variants of the Spider dataset have been created, as detailed in the Table 30
in Appendix. These include the "Spider-Syn" and "Spider-Realistic" variants, which alter natural language
queries by substituting direct schema references with synonyms or by excluding explicit mentions altogether,
respectively. Additionally, the "Spider-DK" variant incorporates domain-specific knowledge into the schema.
To determine if Few-shot SQL-PaLM is capable of overcoming such robustness challenges, we evaluate its
performance on these Spider variants.

In Table 3, we compare Few-shot SQL-PaLM with previous Text-to-SQL methods. Among these, methods
such as T5-3B + PICARD (Scholak et al., 2021), RASAT + PICARD (Qi et al., 2022), and RESDSQL-3B
+ NatSQL (Li et al., 2023a) rely on tuning-based strategies26. In contrast, ChatGPT (Liu et al., 2023a)
and SQL-PaLM utilize few-shot prompting methods without further training. While LLMs naturally have
the ability to perform reasoning, including understanding synonyms through extensive pretraining, prior
evaluations with ChatGPT (Liu et al., 2023a) have demonstrated significantly lower effectiveness compared

26For instance, fine-tuning a T5 model
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to the training-based methods. This is attributed to the generation challenge of Text-to-SQL. However,
Few-shot SQL-PaLM which also adopts a few-shot prompting strategy, has shown to achieve results on par
with the best-performing training-based method (RESDSQL-3B + NatSQL), consistently outperforming
other approaches. This outcome highlights the potential of Few-shot SQL-PaLM in addressing the robustness
challenges.

Table 3: Evaluation of Few-shot SQL-PaLM on Spider variants: Spider-Syn, Spider-Realistic
and Spider-DK. Spider-DK does not contain augmented tests so test suite accuracy is not available.

Methods/Datasets Spider-Syn Spider-Realistic Spider-DK
EX TS EX TS EX TS

T5-3B + PICARD (Scholak et al., 2021) 69.8 61.8 71.4 61.7 62.5 -
RASAT + PICARD (Qi et al., 2022) 70.7 62.4 71.9 62.6 63.9 -
RESDSQL-3B + NatSQL (Li et al., 2023a) 76.9 66.8 81.9 70.1 66.0 -
ChatGPT (OpenAI default Prompt) (Liu et al., 2023a) 58.6 48.5 63.4 49.2 62.6
Few-shot SQL-Palm (Ours) 74.6 67.4 77.6 72.4 66.5 -

8.1.4 Improving few-shot prompting with column-selection

Table 4 demonstrates improved performance of SQL-PaLM on BIRD with column-selection enhanced few-shot
prompting, which applies the soft column selection approach (Sec. 6.3.5) to the few-shot prompting (Sec. 6.2).
We use the BIRD dataset instead of Spider, as it has larger database schema, where column selection can yield
larger impact. We opt for the verbose prompt in our experiments due to its superior performance (Table A.2
in Appendix). The results show that compared with few-shot prompting baseline27. The proposed approach,
column-selection enhanced few-shot prompting, improves performance ∼ 2%. To further understand the
potential, we also investigate the upper-bond of the proposed method, where we apply the ground truth
column selection. In this setup, we observe an improvement of ∼ 5.7%, which provides a motivation for
further improving column selection performance for better Text-to-SQL performance.

Table 4: Evaluations of column-selection enhanced prompting on BIRD dev split.
Methods EX
Few-shot SQL-PaLM 43.02%
+ Soft-column selection (inferred) based description 45.05%(↑ 2.03%)
+ Soft-column selection (GT) based description 48.70%(↑ 5.68%)

8.2 Tuning settings

In this section, we present results for exploring the effect of various training paradigms that influence tuning
performance of LLMs. We use the following experiments to answer questions proposed in Sec. 4.

8.2.1 Performance comparisons with few-shot prompting

“In what scenarios the improvements are observed to be more significant?”
On more challenging datasets.

We first explore the improvements with tuning compared to few-shot prompting. Tables 5 and 6 show the
comparisons on BIRD and Spider. For both, tuning demonstrates superior results, highlighting the LLMs
proficiency to adapt to high-quality Text-to-SQL training data. Notably, tuning yields a larger improvement
on BIRD, (∼ 8.5%), compared to Spider (∼ 1%). This suggests that the benefits of tuning become increasingly

27The preliminary SQLs used in column-selection enhanced few-shot prompting is the baseline shown in the first line of
Table 4. The input sequences for all the experiments in this table are formed of database schema, data type, primary keys,
foreign keys, and the natural language question. Database content is not included.
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important in more complex Text-to-SQL tasks. Given the significant improvements observed on BIRD, we
conduct our tuning investigations primarily on it.

Table 5: Evaluations on BIRD dev split with few-shot prompting and tuning.
Adaptation approach EX
Few-shot prompting 45.05%
Tuning 53.59% (↑ 8.51%)

Table 6: Evaluations on Spider dev split with few-shot prompting and tuning.
Adaptation approach EX TS
Few-shot prompting 82.7% 77.3 %
Tuning 82.8% 78.2 % (↑ 0.9%)

8.2.2 Scaling model size and different foundation models

“How about tuning with different foundation models: PaLM-2 vs LLaMA?
Does foundation models’ properties, such as parametric knowledge, matter?”

Yes, stronger models help with tuning.

Another investigation is whether tuning performance increases with the model size. Table 7 shows results for
tuning PaLM-2 Gecko versus PaLM-2 Unicorn model on BIRD dev split after training on BIRD train split28.
Despite limited training samples, the larger model has a significant improvement.

Table 7: Execution accuracy on BIRD dev split using PaLM models of different sizes.
Model size Gecko Unicorn
EX 15.84% 55.8%

Table 31 in Appendix A.4 shows the results with tuning open-source models LLaMA7B, LLaMA13B, and
LLaMA33B on Spider using the best input representation as reported in Gao et al. (2023a)29. Compared with
PaLM-2 tuning results in Table 6, LLaMA’s fine-tuning results are about 10% lower, that is attributed mainly
to the capability of base foundation models. Overall, despite the tuning involving updating parameters,
foundation models with larger sizes and better reasoning abilities are observed to be beneficial for tuning
Text-to-SQL.

8.2.3 Comparisons with parameter efficient tuning

“How is Text-to-SQL performance with parameter efficient tuning compared with full supervised tuning
(SFT)?”

“Since train data is limited, is LoRA better than SFT?”
SFT is observed to be better even with limited tuning data.

Next question is whether tuning benefits from parameter efficient tuning such as LoRA, as we do not have
significant amount of training data. Table 8 presents results on tuning a PaLM-2 Gecko using full supervised
tuning versus LoRA. The results reveal that full model tuning has clear advantages over LoRA even in the
limited data regimes that we have considered with Spider and BIRD, suggesting that the customization for
improved Text-to-SQL can benefit from more learnable parameters.

28The inputs of the two are the same. Input sequence including database content
29Gao et al. (2023a) mainly reports tuning results on SPIDER datasets for LLaMA, not on BIRD

21



Under review as submission to TMLR

Table 8: Evaluation of BIRD dev Split, PaLM-2 Gecko
Model method Full Supervised Fine-tuning LoRA
EX 33.96% 15.84%

8.2.4 The impact of training data diversity and generalization

“What kinds of tuning data might be more helpful?”
Complex SQLs are observed to be more useful.

Text-to-SQL benchmarks can be quite different from each other. We explore whether training on more
datasets, despite of the diversity30, can help with tuning performance. We tune LLMs on combination of
Spider and BIRD datasets, and evaluate their performance on each. Table 9 shows that when evaluating
on the BIRD dev split, a model trained on both BIRD and Spider outperforms a model trained solely on
BIRD. Similarly, Table 10 illustrates the improved performance on the Spider dev split when trained on both
datasets, compared to training only on Spider. The results suggest that tuning LLMs on various datasets
benefits tuning performance, and the model after tuning is more robust to distribution shifts, indicating the
tuned models are not over-fitting on train dataset. BIRD contains more complex SQL queries compared to
Spider. We observe a more significant performance improvement on Spider when BIRD data are incorporated,
compared to the improvement seen on BIRD when Spider data are incorporated. This implies that introducing
complex SQL queries into training can yield larger benefits compared with less complex SQL samples.

Table 9: Evaluations on BIRD Dev Split with different training data used for tuning.
Train data Execution accuracy
BIRD Only 53.59%
BIRD + Spider 55.15 (↑ 1.56%)

Table 10: Evaluations on Spider Dev Split with different training data used for tuning.
Train data Execution accuracy Test-suite accuracy
Spider Only 82.8% 78.2 %
BIRD + Spider 86.8% (↑ 4%) 82.8 (↑ 3.5%)

8.2.5 Incorporating database content

“How does the database content help tuning?”
It clarifies mismatches in questions and database.

We explore whether introducing question-specific database content benefits tuning performance. Table 11
presents the improvements achieved by incorporating database content31. The results indicate more than 3%
accuracy improvement when testing on the BIRD dev split, highlighting the positive impact of incorporating
database content.

Table 11: Evaluations on BIRD Dev Split with and without database content.
Train data EX
Without database content 55.15%
With database content 58.80% (↑ 3.65%)

30Other than the difference in SQLs or database. The provided information can be different. BIRD has hints, column
descriptions, etc; Spider has none of them

31We train on both BIRD and Spider datasets, as they bring good performance described in Sec. 8.2.4
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We further provide two case studies to illustrate why database content would help. One scenario arises when
there is disparity between the words used in natural language query and the words used in the database,
as exemplified in Fig. 6. As another example, Fig. 7 illustrates how database content can serve as valuable
cues for LLMs to identify relevant columns when multiple columns seem relevant for the question. This is a
situation when both LLMs and human experts have a difficult time to deciding which columns to use. The
database values presented in Figs. 6 and 7 encompass all the keywords in the questions, not limited to the
specific keywords discussed in this context.

Case Study 1
Question:
What is the highest eligible free rate for K-12 students in the schools in Alameda County?
True SQL:
SELECT ‘FRPM Count (K-12)’ / ‘Enrollment (K-12)’
FROM frpm WHERE ‘County Name’ = ‘Alameda’
ORDER BY (CAST(‘FRPM Count (K-12)’ AS REAL) / ‘Enrollment (K-12)’) DESC LIMIT 1;

Without database content
Inferred SQL:
SELECT ‘FRPM Count (K-12)’ / ‘Enrollment (K-12)’
FROM frpm WHERE ‘County Name’ = ‘Alameda County’
ORDER BY (CAST(‘FRPM Count (K-12)’ AS REAL) / ‘Enrollment (K-12)’) DESC LIMIT 1;
Error reason:
Question has "Alameda County", whereas database has values "Alameda" (no "County")

With database content
Extracted database content values: {table: {column: [matched values]}}
Table ‘frpm’:
‘County Name’: [‘Alameda’],
Table ‘satscores’:
‘cname’: [‘Alameda’],
Table ‘schools’:
‘AdmFName1’: [‘Rae’],
‘AdmLName1’: [‘Free’],
‘City’: [‘Alameda’],
‘County’: [‘Alameda’],
‘GSoffered’: [‘K-12’],
‘GSserved’: [‘K-12’],
‘MailCity’: [‘Alameda’],
Inferred SQL:
SELECT ‘FRPM Count (K-12)’ / ‘Enrollment (K-12)’
FROM frpm WHERE ‘County Name’ = ‘Alameda’
ORDER BY (CAST(‘FRPM Count (K-12)’ AS REAL) / ‘Enrollment (K-12)’) DESC LIMIT 1;

Figure 6: Case study 1: Terminology used in the question is different from that saved in the database.
Consider the instance of the keyword "Alameda County" found in the natural language query: "What is
the highest eligible free rate for K-12 students in the schools in Alameda County?" While the question uses
“Alameda County”, in the database, this information is stored as "Alameda" without the word "County". If
LLMs have access only to the original question without database content, the resulted SQL query is likely to
contain the same keywords from the natural language, leading to an incorrect answer. Following Sec. 6.3.4,
we extract database content that is relevant to the question and the output is presented in Fig. 6 (e.g. the
column ‘County Name‘ containing ’Alameda’).

8.3 Improving tuning with synthetic data

We present the impact of synthetic data augmentation on the Text-to-SQL task. Table 12 presents the
results of the inclusion of synthetic data into the original training data (Spider and BIRD), which leads to
the performance increase of 1.3% on the BIRD dev split. This improvement underscores the effectiveness of
synthetic data in enhancing overall performance.

Table 12: Evaluations on BIRD Dev Split showing the impact of extra LLM-generated synthetic data.
Tuning data Execution accuracy
Spider + BIRD 55.15%
Spider + BIRD + LLM-generated synthetic data 56.45% (↑ 1.3%)
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Case Study 2
Question: Please list the zip code of all the charter schools in Fresno County Office of Education.
True SQL:
SELECT T2.Zip FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode
WHERE T1.‘District Name’ = ‘Fresno County Office of Education’AND T1.‘Charter School (Y/N)’ = 1

Without database content
Inferred SQL:
SELECT T1.Zip FROM schools AS T1 INNER JOIN frpm AS T2 ON T1.CDsCode = T2.CDsCode
WHERE T2.‘County Name’ = ‘Fresno County Office of Education’ AND T2.‘Charter School (Y/N)’ = 1
Error Reason:
Multiple columns may contain keywords ( ‘Fresno County Office of Education’);
LLMs don’t know which columns to use (‘District Name’ vs ‘County Name’)

With database content
Extracted database content values: {table: {column: [matched values]}}
Table ‘frpm’:
‘County Name’: [‘Fresno’],
‘District Name’ : [‘Fresno County Office of Education’],
‘District Type’: [‘County Office of Education (COE)’],
Table ‘satscores’:
‘cname’: [‘Fresno’],
‘dname’: [’Fresno County Office of Education’],
Table ‘schools’:
‘AdmLName1’: [‘Coe’],
‘City’: [‘Fresno’],
‘County’: [‘Fresno’],
‘DOCType’: [‘County Office of Education (COE)’],
‘District’: [‘Fresno County Office of Education’, ‘Colusa County Office of Education’],
‘MailCity’: [‘Fresno’],
Inferred SQL:
SELECT T2.Zip FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode = T2.CDSCode
WHERE T1.‘District Name’ = ‘Fresno County Office of Education’AND T1.‘Charter School (Y/N)’ = 1

Figure 7: Case study 2: The association of keywords with a specific column is unclear without database
content. Consider the keyword "Fresno County Office of Education" in the question "Please list the zip code
of all the charter schools in Fresno County Office of Education.". Without utilizing the database content,
the LLMs might erroneously select the wrong column, such as "County name." However, with the inclusion
of database content (assuming the column "District Name" contains the relevant keywords ‘Fresno County
Office of Education’), the LLMs learn ‘District Name’ is the columns to use.

To encourage generation of a correct, distinct queries, we prompt the LLM to generate up to three queries,
followed by removing SQL that fails official evaluation or with a similarity score (Eq. 6.3.3) greater than
0.9. We choose to augment BIRD datasets, instead of Spider, because Spider contains simpler queries than
BIRD, resulting in reduced flexibility in generating diverse queries from the original SQL. We use GPT-4
in synthetic generation, as selecting the LLMs for synthetic data differently from the LLMs used in tuning
potentially can bring new information.

We further examine the generated SQLs and their similarity score. Most of the generated SQL outputs do not
deviate significantly from ground truth, as indicated by the similarity score distribution (see statistics shown
in Fig. 10 and Table 33 in Appendix). Among these generated SQL outputs, 81.4% are correct, validated
by official evaluation. After removing similar SQLs (with similarity score > 0.9), 78.8% of the generated
queries remains for training, which are considered as both diverse and precise, (Table 32 in Appendix). A few
examples of the LLM generated synthetic SQL rewrites are provided in Table 13. It can be observed that the
LLM performs well at the given task by diversifying the ground truth queries and augmenting the dataset in
a useful way.

8.4 Tuning with table and column selection

Table & column selection plays an important role for Text-to-SQL scalability and accuracy, as covered in
Sec. 6.3.5 – for database schema with high number of columns, it becomes vital to distill them down to a
pertinent subset for Text-to-SQL especially when the schema size exceeds the LLMs’ prompt length limit.
This process is also crucial even for database schemas that can be represented within prompt limit, as it
facilitates LLMs to focus on important information.
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Table 13: Examples of BIRD dataset queries generated.
Synthetic Data Examples

Example 1:
Question Please name any three restaurants that have an unidentified region.
Ground-truth SELECT T2.label FROM location AS T1 INNER JOIN generalinfo AS T2 ON T1.id_restaurant =

T2.id_restaurant INNER JOIN geographic AS T3 ON T2.city = T3.city WHERE T3.region = ‘unknown’ LIMIT 3
Generated
Query-1 SELECT gi.label FROM generalinfo gi, geographic g WHERE gi.city = g.city AND g.region = ‘unknown’

LIMIT 3
Query-2 SELECT label FROM generalinfo WHERE id_restaurant IN (SELECT id_restaurant FROM location WHERE city

IN (SELECT city FROM geographic WHERE region = ‘unknown’)) LIMIT 3
Query-3 SELECT label FROM generalinfo WHERE city IN (SELECT city FROM geographic WHERE region = ‘unknown’)

LIMIT 3
Comment The generated queries 1, 2, 3 have similarities 0.8, 0.7, 0.6 respectively. In this example, the LLM has also

identified redundant table usage from the ground truth and removed it from the generated query.

Example 2:
Question Please give all the list prices of the product LL Fork.
Ground-truth SELECT T2.ListPrice FROM Product AS T1 INNER JOIN ProductListPriceHistory AS T2 ON T1.ProductID =

T2.ProductID WHERE T1.Name = ‘LL Fork’
Generated
Query-1 SELECT ProductListPriceHistory.ListPrice FROM Product JOIN ProductListPriceHistory ON

Product.ProductID = ProductListPriceHistory.ProductID WHERE Product.Name = ‘LL Fork’
Query-2 SELECT plph.ListPrice FROM Product p, ProductListPriceHistory plph WHERE p.ProductID = plph.ProductID

AND p.Name = ‘LL Fork’) LIMIT 3
Query-3 SELECT ListPrice FROM ProductListPriceHistory WHERE ProductID IN (SELECT ProductID FROM Product WHERE

Name = ‘LL Fork’)
Comment The generated queries 1, 2, 3 have similarities 0.95, 0.85, 0.75 respectively. Query-1 is merely an alias change

from the original query and hence queries with higher similarity (closer to 1) are not useful for augmenting
the dataset.

Regarding the selection of columns, a high “recall” rate (the proportion of relevant columns correctly identified)
- is crucial, to ensure that no crucial columns are missed. With “recall” meets a satisfactory level, we also
aim to enhance the “precision” - the proportion of the selected columns that is relevant, since it is beneficial
to exclude numerous irrelevant columns.

In this section, we discuss the outcomes of using retrieval-based and program-aided column selection techniques.
We begin by evaluating the accuracy of column selection achieved by each method, then assess how these
approaches influence the overall effectiveness of Text-to-SQL conversions. Lastly, we explore the advantages
and limitations associated with both strategies.

Retrieval-based column selection: Table 14 shows the performance of retrieval-based column selection,
with top 10 and 25 columns selected based on the retrieval ranking scores. The recall rates for selecting
the top 10 and 25 columns are notably high at 81.52% and 92.93% respectively. Nonetheless, the precision
is comparatively lower, suggesting that while retrieval-based column selection has a good coverage of true
columns, it also incorporates superfluous columns.

Table 15 presents the performance of end-to-end Text-to-SQL on the BIRD dev split, using both soft and
hard column selection. The soft column selection method surpasses the baseline performance, which lacks
column selection, demonstrating the effectiveness of soft column selection. On the other hand, hard column
selection yields results worse than the baseline. This decrease in performance is likely due to hard column
selection’s incorrect exclusion of relevant columns from the database schema. For instance, with the top
10 selection, approximately 20% of columns (1 − 81.52%) are missing from the inputs, while soft column
selection is more effective retaining the entire schema information while also enriching the selected columns
with additional column description information.

Program-aided column selection: Table 16 presents the efficacy of the program-aided approach for
column and table selection. Overall, we observe impressive performance of this approach for selecting relevant
columns, with recall, precision, and F1 are all more than 90%. In comparison to the retrieval-based column
selection, the program-aided column selection has a substantially higher precision, indicating fewer irrelevant
columns are selected. Additionally, program-aided method depends on preliminary SQL – more accurate
preliminary SQL prediction leads to more precise column and table choices, as detailed in Table 34 in the
Appendix.
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Table 14: Accuracy (%) of retrieval-based column selection when retrieving top 10 and 25
candidates on BIRD dev split.

Table selection Column selection
Top 10 Top 25 Top 10 Top 25

Average counts 3.39 5.4 10 25
Recall 90.11 97.08 81.52 92.93
Precision 56.34 40.48 26.96 16.00
F1 38.95 54.05 38.95 26.39

Table 15: Execution accuracy of Text-to-SQL on BIRD dev split with retrieval-based column
selection incorporated into inputs. Baseline is from Table 11. Experiments are using the same setups
as baseline.

Baseline Top 10 Top 25
Baseline 58.8% - -
+ Hard column selection - 52.48% 56.39%
+ Soft column selection - 58.93% 59.13%

Table 16: Accuracy (%) with program-aided column selection. The preliminary SQL used for the
program-aided approach is the baseline SQL from Table 11 which has an accuracy of 58.8%.

Table selection Column selection
Average count 1.88 5.24
Recall 94.64 90.66
Precision 96.14 92.60
F1 95.39 91.62

Table 17 illustrates the comprehensive impact of integrating chosen columns into model fine-tuning. Hard
column selection yields inferior outcomes compared to the baseline, likely because its recall rate is 90%—a
seemingly high number that nonetheless results in the omission of 10% of columns. Conversely, soft column
selection avoids this shortcoming and outperforms the baseline.

Table 17: Execution accuracy of Text-to-SQL on BIRD dev split with program-aided column
selection incorporated into inputs. Baseline is from Table 11. Experiments use the same setups as
baseline.

EX
Baseline 58.80%
+ Hard column selection 57.95%
+ Soft column selection 59.19%

Furthermore, we evaluate our column selection approaches against alternative baseline approaches, such as
using LLMs to directly identify relevant tables and columns through prompting (e.g. "What are the relevant
tables or columns?") and other existing methods. Our methods demonstrably surpass such alternatives, as
detailed in Table 35 within the Appendix.

Ablation studies and the upper bond: What is the upper bound on the achievable performance
incorporating the soft column selection approach? We conduct an ablation study using ground-truth column
selection for soft column selection, which serves as an upper bound of this approach.
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As Table 18 suggests, with ground truth column selection applied as the oracle, the
performance of Text-to-SQL reaches to 62.06%, which is ∼ 3% above the results us-
ing inferred column selection, indicating the potential of improving column selection.

Table 18: Ablation studies on column selection.
Method EX
Baseline 58.80%
+ Full column descriptions 54.69%(↓ 4.11%)
+ Soft column selection (retrieval-based) 59.13%
+ Soft column selection (program-aided) 59.19%
+ Ground truth column selection (oracle) 62.06%(↑ 3.26%)

Additionally, since soft column selection
incorporates the column description of
a subset of the columns, what would
the performance be if we incorporate the
descriptions of all columns? We con-
duct an ablation study to include full
column descriptions (See an input exam-
ple A.11.1). For the prompts that ex-
ceed the input length, we cut them to
fit the input length. The results reveal
that introducing full column descriptions
actually decreases the performance compared with baseline by 4.11%. The reason might be due to full column
descriptions yielding too lengthy inputs that distract LLM from focusing on important information such as
database schema and important information might get truncated.

Comparing retrieval-based and program-aided column selection: The program-aided approach
outperforms retrieval-based approach in the accuracy of column selection, evidenced by its high F1 score
and precision (Table 14 and Table 16). It achieves comparable recall with on average of 5 selected columns,
unlike the retrieval-based approach that uses 25 to achieve 90% recall, demonstrating its efficiency. However,
the overall Text-to-SQL performance of retrieval-based and program-aided column selection methods are
comparable. Despite the program-aided approach showing significantly better performance in column
selection, its end-to-end performance does not reflect a similar improvement. This seeming contradiction can
be explained with the recall of the program-aided method being comparable to the top 25 retrieval approach
(90 vs 92) and the recall being more critical for Text-to-SQL performance. Additionally, there is a mismatch
between accuracy of column selection on train and dev splits. The program-aided approach, which trains
an initial model to produce preliminary SQL outputs, results in higher accuracy in column selection of the
train split compared to the dev split. This accuracy disparity could hinder the program-aided method from
achieving its highest potential performance.

The retrieval-based method stands out for its computational efficiency and cost savings, as it avoids the
need for querying expensive LLMs. This approach also allows for easy adjustment of recall by modifying the
number of retrieved candidates (“topK”). Furthermore, in cases of extremely large datasets where the schema
size makes generating even preliminary SQL infeasible due to prompt length constraints, the retrieval-based
approach is the only practical solution. While this scenario might not occur in academic benchmarks, it is a
common challenge in real-world applications.

Comparing hard and soft column selection:
Compared with soft column selection, hard column selection leads to performance reduction. The reduction,
3% for retrieval-based approach (top 25) and 1% for program-aided approach, might be a reasonable trade-off
when we consider the amount of input information that has been reduced and the cost has been saved.

Table 19: The number of input token saved
due to hard column selection.

Tokens Tokens remained
(counts) (percentage (%))

Baseline 1085.66 100%
Program-aided 286.31 26.37%
Retrieval-based 454.97 41.91%

From column level, BIRD dev split contains on average of
76 columns (Table 37 in Appendix), and program-aided
approach selects on average 5.24 columns, therefore, there
are only 5.24/76 = 6.8% of the total columns used for
program-aided column selection at the cost of 1% of accu-
racy loss. Similarly, for retrieval-based approach, there are
only 33% of total columns are used in inputs at the cost of
3% of accuracy. From token level, Table 19 demonstrates
that the numbers of token after hard column selection are
for only 26% or 42% compared to the full prompt for the
two approaches. This suggests an equivalent proportion
of cost savings, given that the cost associated with LLMs
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is directly proportional to the number of tokens. In some scenario, one may want to sacrifice some performance
for the cost reduction.
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Figure 8: Text-to-SQL performance (y-axis) with re-
spect to column numbers (x-axis). Both retrieval-based
and program-aided are based on soft-column selection.

Impact of the size of the database schema:
Fig. 8 shows how the performance of the end-to-end
Text-to-SQL process changes with different numbers
of columns in the schema, using a soft column se-
lection approach where the descriptions of selected
columns are included in the prompt. The analysis
reveals that as the number of columns increases, Text-
to-SQL performance declines, indicating that column
count is a significant indicator for the difficulty of
Text-to-SQL tasks. The program-aided column selec-
tion method performs better than others when the
column count is below 90, whereas the retrieval-based
approach excels when the column count exceeds 90.
On average, the program-aided method selects about
5.24 columns per question, whereas the retrieval-
based method extracts 25. When the total number
of columns is below 90, including descriptions of 25 columns can overwhelm the prompt, leading to poorer
performance. However, when the total number of columns is above 90, including 25 columns does not take a
significant proportion of the schema, making the retrieval-based approach more effective.

8.5 Improvements with test-time refinement via execution-based selection

Table 20 presents the effectiveness of the test-time refinement via execution-based selection approach, as
discussed in Section 6.3.6. Test-time refinement via execution-based selection approach integrates multiple
predefined training paradigms introduced in previous sections, including mixing of training data, the integration
of database content, the use of synthetic data, and the implementation of both hard and soft column selection
strategies. This combination method results in a performance improvement of 2.9% over individual training
paradigms, such as the results in Table 11.

To assess the robustness of the test time execution selection to distribution shifts, we also apply the model,
originally tailored for BIRD, to the Spider dataset. Despite Spider’s distinct format differences from BIRD,
such as lacking of column descriptions and hints or not employing column selection, Table 21 reveals that the
method still enhances performance on a different dataset, indicating its robustness to format variations.

Alternatively, we also explore another approach of combining different training paradigms into a single
paradigm. This involves integrating various training components directly into the inputs of one single
experiment. This method entails integrating various elements, such as mixed training data, synthetic data,
database content, and column selection, into the inputs for a single experiment. Yet, as outlined in Table 38 in
the Appendix, this strategy does not yield additional accuracy gain, suggesting combining multiple information
at once does not have superimposed positive effects. The reason may be LLMs cannot understand multiple
information in the inputs simultaneously effectively, highlighting the inherent difficulties of incorporating
various components of inputs.

Table 20: Execution of text-time refinement via execution-based selection on BIRD dev split.
Decoding approach Execution accuracy
Baseline 58.8%
+ Test-time execution-based selection 61.7% (↑ 2.9%)

8.6 Combining all constituents in SQL-PaLM

We consolidate our findings, as illustrated in Table 22. Our experimentation involves applying standard
instruction tuning for an LLM which significantly outperforms in-context learning techniques. Utilizing
combined training data BIRD and Spider for tuning led to an improvement of 2%. Furthermore, the
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Table 21: Evaluations of text-time refinement via execution-based selection on Spider dev split.
Train data Execution accuracy Test-suite accuracy
Baseline 86.8% 82.8%
Baseline 87.3% (↑ 0.5%) 83.5% (↑ 0.7%)

integration of synthetically generated data contributes to an additional 1% boost. Incorporating the database
content results in a 3% increase, and further incorporating soft column selection into intputs adds another 1%.
Additionally, the implementation of test time execution-based selection, which combines the aforementioned
training paradigms, provides an additional 3% improvement. Additionally, we present the results of execution-
based test-time selection on different difficulty levels in Table 23.

Table 22: Summary of each component’s contribution in Text-to-SQL performance.

Run Type Train data Method Execution accuracy
1 Tuning BIRD 53.00%
2 Tuning BIRD + Spider 55.15%

3 Tuning BIRD + Spider
+ Synthetic data 56.45%

4 Tuning BIRD + Spider + Database content 58.80%

5 Tuning BIRD + Spider
+ Synthetic data + Database content 58.35%

6 Tuning BIRD + Spider
+ Database content
+ Soft column selection
(Retrieval-based)

59.13%

7 Tuning BIRD + Spider
+ Database content
+ Soft column selection
(Program-aided)

59.19%

9 Post-Tuning - Execution-based
test-time selection 61.70%

Table 23: Execution accuracy of execution-based test-time adaptation algorithm across various
SQL complexity levels on the BIRD dev split.

Simple Moderate Challenging Total
Count 933 459 142 1534
Execution-based test-time selection 68.92% 52.07% 47.89% 61.93%

8.6.1 Overall Text-to-SQL performance comparison with other methods

Putting everything together, SQL-PaLM demonstrates strong results on both the Spider and BIRD datasets.
We present a comparative analysis of our methodology against leading methods from the BIRD (Table 24)
and Spider (Table 25) leaderboards. SQL-PaLM has achieved notable results, with execution accuracy of
87.3% on Spider dev split and 61.7% on BIRD dev split. These improvements are made possible by effectively
utilizing diverse input components for tuning efficiently and adopting a selective execution approach.

In Table 24 and Table 25, we compare our approach with a variety of different methods for BIRD and
SPIDER, respectively, since the top methods on the different leaderboards vary. The fact that our single
method is competitive across different benchmarks and against diverse sets of methods further attests to the
efficacy of our strategy.

Note that some leaderboard submissions are by anonymous contributors, lacking detailed documentation
or code, and hindering a full comparison on dev splits (Leaderboard number is for test split, not dev split).
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In such cases, we use ‘-’ to acknowledge their notable leaderboard performance, despite not being able to
consider them for a direct evaluation.

Table 24: Evaluation on BIRD dev set with top-ranked methods.

Methods/Datasets EX
Tuning SFT CodeS-15B 58.47%

Few-shot prompting

Codex 25.42%
ChatGPT 37.22%
GPT-4 46.35%
DIN-SQL + GPT-4 50.72%
DAIL-SQL + GPT-4 54.56%
MAC-SQL + GPT-4 57.56%

Not available Dubo-SQL 59.71%
MCS-SQL + GPT-4 -
Few-shot SQL-PaLM (Ours) 45.5%
Fine-tuned SQL-PaLM (Ours) 61.7%

Table 25: Evaluation on SPIDER dev set with top-ranked methods.

Methods/Datasets EX TS

Fine-tuning
T5-3B + PICARD 79.3% 69.4%
RASAT + PICARD 80.5% 70.3%
RESDSQL-3B + NatSQL 84.1% 73.5%

Few-shot prompting

CodeX davinci (0-shot) 67.0% 55.1%
CodeX davinci (few-shot) 71.0% 61.5%
ChatGPT 70.1% 60.1%
GPT-4 (Zero-shot) 72.9% 64.9%
GPT-4 (Few-shot) 76.8% 67.4%
Self-Debug 84.1% -
DIN-SQL (w/ CodeX Davinci) 75.6% 69.9%
DIN-SQL (w/ GPT-4) 82.8% 74.2%
DAIL-SQL + GPT-4 + Self-Consistency 83.6% 72.8%
MiniSeek - -
Few-shot SQL-PaLM (Ours) 82.7% 77.3%
Fine-tuned SQL-PaLM (Ours) 87.3% 83.5%

8.7 Error analyses

For few-shot prompting on Spider: In our detailed examination of the SQL queries produced by SQL-
PaLM via few-shot prompting on the SPIDER dataset, we undertook an in-depth manual evaluation to
assess the quality of the generated SQL. Our analysis indicates that the queries often exhibit creativity32,
often deviating from the ground-truth by employing varied SQL clause. These queries are mostly free from
syntactical errors and consistently display complex reasoning, such as the capability to join multiple tables.
To provide more tangible insights, Table 26 shows two complex yet accurately generated queries. Further
discussions and examples are provided in Section A.9.1 in the Appendix.

32It is an evidence of not memorization.
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Table 26: SQL examples generated by few-shot prompting of SQL-PaLM .
Question: What are the number of concerts that occurred in the stadium
with the largest capacity ?
SQL:
SELECT count(*) FROM concert AS T1 JOIN stadium AS T2 ON T1.stadium_id = T2.stadium_id

WHERE T2.capacity = ( SELECT max(T3.capacity) FROM stadium AS T3 )

Question: What are the id sand names of all countries that either have more
than 3 car makers or produce fiat model ?
SELECT T1.countryid , T1.countryname FROM countries AS T1 JOIN car_makers AS T2 ON

T1.countryid = T2.country GROUP BY T1.countryid HAVING count(*) > 3 UNION SELECT T1.

countryid , T1.countryname FROM countries AS T1 JOIN car_makers AS T2 ON T1.countryid =

T2.country JOIN model_list AS T3 ON T2.id = T3.maker WHERE T3.model = "fiat"

For tuning on BIRD: To better understand the common error modes of the fine-tuned LLM, we randomly
select 100 queries from different databases in the BirdSQL dev split, where the execution results from
generated queries don’t match those of the ground-truth results. Table 27 shows a high-level breakdown of
accuracy on BIRD, categorized by query difficulty. As one would expect, the accuracy on harder examples
is lower – the accuracy on easier examples (68.92%) is significantly higher than that of moderate examples
(52.07%) which is significantly higher than the challenging examples (47.89%). Additionally, we manually

Table 27: SQL-PaLM error analysis statistics on BIRD dev split
Category Number of Queries Percentage
Total 1533 -
Correct 950 61.97%
Incorrect 584 38.10%
Invalid 14 0.91%

Per difficulty Number of queries EX
Total Simple 933 60.86%
Total Moderate 459 29.94%
Total Challenging 142 9.26%
Correct Simple 290 68.92%
Correct Moderate 220 52.07%
Correct Challenging 74 47.89%

inspect these queries and categorize them according to the types of errors they produce. The error categories
are shown in Figure 9 and will be described below. The representation of each category in the pie plot is
proportional to its respective percentage.
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Figure 9: Error categories for SQL-PaLM fine-
tuned LLM on Bird dev set.

We subdivide the errors into several categories: Schema
Linking: Encompasses queries where the model was not
able to select the relevant tables for the queries (e.g. failing
to join tables). Misunderstanding Database Content:
The model fails to accurately interpret the data within the
tables (e.g. assumes an incorrect date format for a specific
column). Misunderstanding Knowledge Evidence: The
model wasn’t able to interpret the human-annotated evidence
or ignores it altogether. Reasoning: The model fails to
comprehend the question and the generated query doesn’t
contain the necessary reasoning steps to generate the correct
queries. Syntax-Related Errors: The model produces SQL
that are not runnable due to some syntactical mistake (e.g.,
missing backticks to refer to a column which has spaces).
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Finally, in red, we label an additional error category, denoted Dataset related errors, which encompasses
different errors due to questions, schema, evidence, inconsistencies between the ground-truth SQL and the
question, not because of the outputted SQL. In the 100 queries that we analyze, 31 of them present this
error category that, if extrapolated to the full dataset, would upper bound the performance of BIRD dev set
to 70%. We describe more of our finding on data-quality in the Appendix A.9.2 and present more error
examples of each category in Table 42 in Appendix.

9 Conclusions

This paper presents the SQL-PaLM framework, our holistic approach to advancing Text-to-SQL capabilities.
We provide insightful discussion for understanding key factors in deciding Text-to-SQL performance. We start
with a comprehensive examination of few-shot prompting to enhance Text-to-SQL performance with LLMs.
Then we present best practices for instruction fine-tuning, examining how performance can be improved
through expanded data coverage and diversity, synthetic data augmentation and integrating query-specific
database content. We introduce a test-time refinement approach that leverages query execution feedback
to bolster SQL query accuracy. Additionally, we address some of the real-world challenges of navigating
complex databases with many tables and columns, presenting effective methods for the precise selection of
pertinent database components to improve Text-to-SQL performance. Our integrated approach demonstrates
substantial improvements in Text-to-SQL performance, demonstrated on two important public benchmarks.
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