
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GRADIENT INVERSION TRANSCRIPT: LEVERAGING RO-
BUST GENERATED PRIORS TO RECONSTRUCT TRAIN-
ING DATA FROM GRADIENT LEAKAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Gradient Inversion Transcript (GIT), a novel model-based approach
for reconstructing training data from leaked gradients. GIT employs a data re-
construction model, whose architecture is tailored to align with the inversion of
the federated learning (FL) model’s back-propagation process. Once trained of-
fline, GIT can be deployed efficiently and only relies on the leaked gradients to
reconstruct the input data, rendering it applicable under various distributed learning
environments. When used as a prior for other iterative optimization-based methods,
GIT not only accelerates convergence but also enhances the overall reconstruction
quality. GIT consistently outperforms existing methods across multiple datasets and
demonstrates strong robustness under challenging conditions, including inaccurate
gradients, data distribution shifts and discrepancies in model parameters.

1 INTRODUCTION

In distributed learning (Jochems et al., 2016; McMahan et al., 2017; Yang et al., 2019) and federated
learning (FL) (Huang et al., 2021), each client trains its model on local data and shares the gradients
with a central server, which aggregates them to update the global model. While these methods are
effective in improving performance and efficiency without directly exposing the client’s data to public,
recent research (Phong et al., 2017; Zhu et al., 2019; Zhao et al., 2020) has shown that the gradients
leaked by sharing can still cause sensitive information leakage, as attackers may exploit them to
reconstruct the original training data used by the individual client, posing significant privacy risks in
real-world learning systems.

There is a considerable amount of works proposed to reconstruct the training data from its gradi-
ent (Huang et al., 2021; Phong et al., 2017; Zhu et al., 2019; Zhao et al., 2020; Wei et al., 2020;
Geiping et al., 2020; Zhu & Blaschko, 2020; Wang et al., 2020; Yin et al., 2021; Wang et al., 2023;
Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al., 2023; Chen & Vikalo, 2024; Wu et al.,
2025) based on varying levels of model access, as shown in Table 1. These works generally fall into
two major categories: iterative optimization methods, which iteratively optimize the reconstructed
data to align its gradients with the leaked ones; and model-based methods, which leverage an auxiliary
model to approximate the user data. Model-based methods can be further subdivided into two types:
generative model-based methods and input-gradient mapping-based methods. The first type trains a
latent space as the input of a pre-trained generative model. The second type trains a model mapping
leaked gradients to the corresponding user data.

Iterative optimization methods typically require repeated access to gradients from the target
model (Phong et al., 2017; Zhu et al., 2019; Wei et al., 2020; Geiping et al., 2020; Wang et al.,
2020; Huang et al., 2021; Chen & Vikalo, 2024) or full access to the model parameters (Zhu &
Blaschko, 2020; Wang et al., 2023). In contrast, the generative-model based methods (Yin et al.,
2021; Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al., 2025) relies on a pre-trained
generative model and public data that closely matches the distribution of the user data to train the
latent space. And the input-gradient mapping-based methods (Wu et al., 2023) require input-gradient
pairs from public datasets to train the auxiliary model itself.

We focus on the input-gradient mapping-based methods for input data reconstruction in this work.
We call the model under attack the leaked model. The existing mapping-based method, such as

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

LTI (Wu et al., 2023), usually employs a fixed-architecture multi-layer perception (MLP) (Rosenblatt,
1958) as the data reconstruction model. However, this approach lacks justification for how gradients
relate to the input data. We argue that the auxiliary model to reconstruct the input data from the
gradient should approximate the inverse of the gradient computation process and thus be adaptive to
the architecture of the leaked model. In this context, we introduce gradient inversion transcript
(GIT) in this work to adaptively choose the architecture of the auxiliary reconstruction model to
improve its effectiveness. In addition, we can combine GIT with iterative optimization methods like
IG Geiping et al. (2020), in which we use GIT’s output as the initial estimation of the input data for
iterative optimization methods to further refine the reconstructed input data.

Problem Settings: In general, we assume that the attacker only has access to the leaked gradients and
the model architecture. Our method does not need the parameters of the leaked model or the labels of
the training data, as GIT trains the auxiliary reconstruction model on publicly available data with
known labels. This direct input-gradient mapping architecture circumvents the need for dummy input
optimization, thereby eliminating the requirement for label inference. As illustrated in Figure 1, we
adopt a similar premise to DLG Zhu et al. (2019): the attacker hacks the channel to inject data to one
client, which shares the gradient with the server and other clients. Alternatively, in scenarios where
the attacker gains illicit access to the gradient query pipeline, our proposed GIT can also operate
effectively in this context. The attack aims to reconstruct the data from both the hacked client and
other clients by shared gradients. The problem settings and comparison with existing literature are
summarized in Table 1.

Practical Application Scenarios: As shown in Table 1, all gradient leakage-based training data
reconstruction methods require either gradient queries or access to known leaked model parameters.
Our work adheres to the former assumption. This "curious-but-honest" setting is also commonly
assumed in federated learning contexts, such as in data poisoning and backdoor attack scenarios.

 Local Dataset 3

client 1

 Local Dataset 1

net 1

client 2

 Local Dataset 2

client 3

Attacker
 Public Dataset Server

Shared
Gradient 1

Generative 
Model

Shared
Gradient 2

Shared
Gradient 3

Shared
Gradient 

net 2 net 3

Figure 1: A flowchart of problem settings for GIT. The
attacker hacks the channel of one client to inject data and
utilizes the obtained input-gradient pair to train generative
models. The attacker aims to reconstruct the data from both
the hacked client and other clients by shared gradients.

Challenges: Figure 1 provides an
overview of GIT. Beyond the basic
case where the training data for aux-
iliary reconstruction model follows
the same distribution as the input data
for recovery, we may encounter more
challenging scenarios: (1) The clients
may send defensive inaccurate gradi-
ents, like clipped gradients Zhu et al.
(2019) and noisy gradients Abadi
et al. (2016); (2) When recovering
data from other clients based on their
shared gradients, challenges arise due
to distributional shifts between data
on different nodes and slight discrep-
ancies in model parameters across
nodes due to lack of synchronization.
Input-gradient mapping-based meth-
ods can adapt to both scenarios, unlike
iterative optimization-based methods,
which are not applicable for scenario (2) since the attacker has no access to inject data to unhacked
clients and is therefore unable to reconstruct training data from them.

Compared with iterative optimization-based methods, our method can train reconstruction model
offline and is much more efficient during deployment, making it well-suited for real-time reconstruc-
tion tasks with a small tolerated delay. Compared with generative–based methods, GIT demonstrates
greater robustness to out-of-distribution (OOD) scenarios, as it focuses on inverting the backpropaga-
tion process and implicitly recovering the model parameters. Compared with other mapping-based
methods like LTI (Wu et al., 2023), GIT is broadly applicable to leaked models with diverse ar-
chitectures and achieves better performance. Moreover, GIT remains effective under challenging
reconstruction scenarios.

We summarize our contributions as following points: (1) We propose Gradient Inversion Transcript
(GIT), which is inspired by back-propagation and constructs a reconstruction model whose architec-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ture is tailored to adapt the leaked model. GIT is shown to effectively reconstruct the input data given
its gradient without the knowledge of model parameters and data labels. (2) GIT can be efficiently de-
ployed after offline training. Compared with existing methods, GIT can achieve the best performance
in most cases. In addition, the outputs of GIT can serve as the prior for gradient matching, further
improving the performance. (3) GIT is generally applicable and has robust performance under some
challenging performance. It remains effective under discrepancies in model parameters, and achieves
best performance under inaccurate gradients and data distributional shift.

2 RELATED WORK

Table 1: The comparison in terms of attacker’s access for different input data reconstruction methods.
dist. means access to distribution of labels. The categories of methods are separated by dashed lines
and, from top to bottom, are: parameter-based methods, iterative optimization-based methods, model-
based methods (including generative model–based methods, and input-gradient mapping–based
methods).

Method
Model Model Shared Gradient Output Data Public Pretrained

Parameters Architecture Gradients Query Logit Label Data GAN

(RTNN) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(DLG; IG; Sapag; RLU) ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗

(iDLG; iLRG) ✗ ✗ ✓ ✓ ✗ dist. ✗ ✗

(Spear) ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

(R-gap; R-provably) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

(GradInversion; DGGI) ✗ ✗ ✓ ✓ ✗ dist. ✓ ✓

(GIAS; GGL; GIFD) ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

(LTI), GIT ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Optimization-Based Methods. The feasibility of optimization-based method for data reconstruction
from gradient leakage was initially explored by Phong et al. (2017) Zhu et al. (2019) demonstrated its
practicality by proposing Deep Leakage from Gradients (DLG). DLG optimizes a randomly generated
dummy input to estimate the training data by matching its gradients and the leaked ground truth
gradients. There are several subsequent works improving DLG from either optimization perspectives
or more realistic scenarios Wei et al. (2020); Geiping et al. (2020); Wang et al. (2020); Zhu &
Blaschko (2020); Wang et al. (2023); Chen & Vikalo (2024) with settings as shown in Table 1.

Model-Based Methods. Unlike optimization-based methods, model-based methods estimate the
distribution of user data using an auxiliary model designed by the attacker, which maps the leaked
gradient to input data estimation or the initial dummy input for subsequent optimization-based
refinement. Model-based methods generally have two major categories, which are based on the
generative model and the input-gradient mapping, respectively. The first type trains a latent space
representation and uses a pre-trained generative model to synthesize estimations of the user data.
The second type directly trains an auxiliary reconstruction model to map leaked gradients to the
corresponding user data.

Early attempts of the generative method Yin et al. (2021) use a pre-trained generative model to
produce image priors for reconstruction. Building on this, GIAS Jeon et al. (2021); Huang et al.
(2021) employs a generative adversarial network (GAN) Goodfellow et al. (2014) as the generative
model and alternately searches both the latent space and the parameter space of the generator.
However, GIAS is computationally prohibitive, as it requires training a new generator for each
reconstructed image. In this context, there are several works Li et al. (2022); Fang et al. (2023); Wu
et al. (2025) focus on improving the efficiency and performance of GIAS under different settings as
shown in Table 1.

The input-gradient mapping-based method was originally proposed by Wu et al. (2023) as Learning to
Invert (LTI). Specifically, they design the reconstruction model as a three-layer multi-layer perceptron
(MLP) with a fixed hidden size regardless of the leaked model, which may not be optimal. In contrast,
we introduce gradient inversion transcript (GIT), which is a framework that dynamically selects the
architecture of the threat model based on the leaked model to enhance performance.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 INPUT DATA RECONSTRUCTION BY BACK-PROPAGATION

3.1 A GENERAL FRAMEWORK

𝑎!
(#$%)𝑧!

(#$%)

𝑎'
(#$%)

𝑧'
(#$%)

𝑎𝑧

𝑎(!"#)!
(#$%)𝑧(!"#)!

(#$%)

𝑎(!"#
(#$%)𝑧(!"#

(#$%)𝑧($%
(*+) 𝑎($%

(*+)

𝑎($%)!
(*+)𝑧($%)!

(*+)

𝑧'
(*+) 𝑎'

(*+)

𝑎!
(*+)𝑧!

(*+)

𝜎

𝜎!

𝜎'

𝜎(!"#)!

𝜎(!"#

𝑊!
(*+)

𝑊'
(*+)

𝑊!
(#$%)

𝑊'
(#$%)

𝑊(!"#)!
(#$%)

𝑊(!"#
(#$%)𝑊($%

(*+)
𝑊($%)!

(*+)

Figure 2: An MIMO layer.

As in Figure 2, we consider the generic architecture of
a multi-input multi-output (MIMO) layer with nonlinear
elementwise activation functions as follows:

z =

Nin∑
i=1

W
(in)
i a

(in)
i , z

(out)
j = W

(out)
j a,

a = σ(z), a
(out)
j = σj(z

(out)
j ), j = 1, ..., Nout

(1)

The MIMO layer is connected with Nin input layers
and Nout output layers. σ and {σi}Nout

i=1 are the non-
linear activation functions. We let B be the batch size,
z ∈ RB×d and a ∈ RB×d represent the pre-activation
and post-activation of this MIMO layer, respectively. Sim-

ilarly,
{(

z
(in)
i ∈ RB×d

(in)
i ,a

(in)
i ∈ RB×d

(in)
i

)}Nin

i=1
and{(

z
(out)
j ∈ RB×d

(out)
j ,a

(out)
j ∈ RB×d

(out)
j

)}Nout

j=1
represent the pre-activation and post-activation

pairs for the input layers and the output layers, respectively. In addition,
{
W

(in)
i ∈ Rd×d

(in)
i

}Nin

i=1

and
{
W

(out)
j ∈ Rd

(out)
j ×d

}Nout

j=1
refer to the weights connecting this layer and its adjacent layers.

We replace notation W with g to represent the gradient of the loss function L w.r.t its weights, e.g.,
g
(in)
i = ∇

W
(in)
i
L, g(out)

j = ∇
W

(out)
j
L. We omit the bias term for notation simplicity, since the bias

terms can be incorporated as part of the weight matrices.

We have the following equations by back-propagation:

g
(out)
j =

∂L
∂z

(out)
j

⊗ aT , g
(in)
i =

Nout∑
j=1

W
(out)T
j ⊗ ∂L

∂z
(out)
j

⊙ σ′(z)

⊗ a
(in)T
i (2)

Here we define operator ⊗ as tensor multiplication and operator ⊙ as broadcast row-wise product.
In addition, z, a are broadcast as a tensor of shape B × d × 1, similar broadcast mechanisms are
applied to z

(out)
j and z

(in)
i ; W(out)

j is broadcast as a tensor of shape 1×d
(out)
j ×d, and the transpose

operator (·)T switches the second and the third dimensions of a 3-d tensor. Based on Equation (2),
we cancel out ∂L/∂z(out)

j and approximate the input of the layer as follows:

a
(in)T
i ≃

Nout∑
j=1

W
(out)T
j ⊗ g

(out)
j ⊗ (aT )+

⊙ σ′(z)

+

⊗ g
(in)
i

(3)

Here we use (·)+ to represent the Moore–Penrose inverse of a matrix. For a third-order tensor, (·)+
calculate the Moore-Penrose inverse of each of its subspace via the first dimension. Equation (3)
establishes the formulation wherein we leverage the gradients, the parameters and the output activation
to estimate the input data of a neuron. For a neural network of general architecture, we can estimate
the input of each layer following back-propagation and ultimately obtain the reconstructed input data.

Generality. Our analysis is generic and can be applied to general neural network architectures as
long as they support back-propagation. For multi-layer perceptrons (MLP) and vanilla convolutional
neural networks (CNN) like LeNet, we have Nin = Nout = 1 for all layers; for residual networks
(ResNet), we have Nout > 1 for layers which receive the inputs from both the preceding layer and
the shortcut connections. Our framework is also compatible with more complicated architectures like
attention mechanism in transformers Vaswani et al. (2017). We defer detailed derivation for these
popular architectures in Appendix F.3. The mini-batch training setting is shown in Appendix F.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 MODULARIZED INPUT DATA RECONSTRUCTION

For models with large amount of parameters, it would be computationally expensive to infer the input
data by recursively using Equation (3). In this context, we formulate the large model as a composition
of several modules and apply input data reconstruction on the module level instead of the layer level.
We re-consider the multi-input multi-output (MIMO) layer as in Section 3.1 with input and output

connections followed by functions
{
f
(in)
i

}Nin

i=1
,
{
f
(out)
j

}Nout

j=1
, respectively:

z =

Nin∑
i=1

f
(in)
i (W

(in)
i a

(in)
i ), z

(out)
j = f

(out)
j (W

(out)
j a), j = 1, ..., Nout. (4)

a
(in)
i and a are calculated in the same way as in Equation (1). We follow the derivation as in

Section 3.1 and obtain the following equation for modularized input data reconstruction:

a
(in)T
i =

Nout∑
j=1

W
(out)T
j ⊗ g

(out)
j ⊗ (aT )+

⊙ σ′(z)⊗ f
′(in)
i (W

(in)
i a

(in)
i )

+

⊗ g
(in)
i

(5)

Equation (5) demonstrates modularized input data reconstruction. It establishes a high-level formula-
tion to estimate input data for large models. However, we need the gradient information from the
input module f

(in)
i to estimate f

′(in)
i (W

(in)
i a

(in)
i ), which will be elaborated in the next section.

4 GIT: GRADIENT INVERSE TRANSCRIPT

Exact-GIT. Based on Equation (3) and the analyses in Section 3.1, the input value a
(in)
i of a general

MIMO layer can be estimated from the activation a, the gradient g(in)
i of the input weight and output

weights {W(out)
j }Nout

j=1 . Therefore, we can recursively utilize Equation (3) to reconstruct the input
data by an auxiliary reconstruction model with all unknown variables, such as the weights, as its
trainable parameters. We use the mean square error between the true input data and its estimation as
the loss objective function. Once trained, the reconstruction model can subsequently reconstruct the
training data batch using the leaked gradients as input during inference.

The detailed pseudo-code for the training and the inference phase is shown as Algorithm 1. The
key innovation of our method is that we adaptively adjust the architectures of the reconstruction
models by Equation (3) based on the leaked model and map the leaked gradients to the estimated
input data, so we name it gradient inverse transcript (GIT). We further name our method Exact-GIT
when we strictly follow Equation (3), i.e. using model weights as parameters for the reconstruction
models, for all layers to reconstruct the input data. We present some specific example architectures in
Appendix F.3. The results of the Exact-GIT implementation are presented in Appendix F.2.

Coarse-GIT. Exact-GIT enjoys good interpretability but is computationally expensive for large
models. Moreover, the Moore-Penrose inverse in Equation (3) would introduces numerical instability
issues for large-scale tensors in practice. To tackle these issues, compared with Equation (3), we can
also model such estimation in a more coarse-grained manner and name the corresponding method
Coarse-GIT. Specifically, we utilize a shallow multi-layer perceptron (MLP) mθ, parameterized by
θ, to approximate the right-hand-side of Equation (3). The inputs of this shallow MLP are all the
known variables on the right-hand-side of Equation (3), including the leaked gradients and the output
activation. Therefore, like Equation (3), Coarse-GIT recursively estimates each layer’s input by
a
(in)
i = mθ

(
{g(out)

j }Nout
j=1 , g

(in)
i ,a

)
. The reconstruction model comprises multiple shallow MLPs,

with orders based on back-propagation and collectively trained to minimize the difference between
the estimated input and the corresponding ground truth.

Coarse-GIT also supports modularized input data reconstruction as discussed in Section 3.2, which
is more computationally affordable. It employs a shallow MLP mθ to estimate the right-hand-side
of Equation (5): a(in)

i = mθ

(
{g(out)

j }Nout
j=1 , g

f ′(in)
i , g

(in)
i ,a

)
where g

f ′(in)
i represents the leaked

gradients for the parameters in the input module f
(in)
i . Compared with layerwise reconstruction,

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1: Training and Inference of GIT

1: Training input: Training set of GIT, i.e., input-gradient pairs D = {
(
x(i), g(i)

)
}Ni=1. Epoch budget E.

Batch size B. Learning rate η.
2: Initialization: Construct the reconstruction model M parameterized by Θ based on the architecture of the

leaked model. Popular architectures are discussed as examples in Appendix F.3.
3: for the epoch index from 1 to E do
4: for the batch index from 1 to N/B do
5: Sample one mini-batch {

(
x(bi), g(bi)

)
}Bi=1

6: if use Exact-GIT then
7: Estimate the input {x̂(bi)}Bi=1 = M(Θ, {g(bi)}Bi=1) by recursively using Equation (3).
8: else
9: Estimate the input {x̂(bi)}Bi=1 = M(Θ, {g(bi)}Bi=1) by recursively using Equation (3) or

Equation (5) with right hand side replaced by a shallow MLP discussed in Section 4.
10: end if
11: Calculate the loss L(gen) = 1

2B

∑B
i=1 ∥x̂

bi − xbi∥ and update Θ← Θ− η∇ΘL(gen)

12: end for
13: end for
14: Training output: GIT generator M with learned parameters Θ.
15:
16: Inference input: GIT generator M with parameters Θ. Leaked gradients {g(i)}N

′
i=1.

17: Inference output: Input data estimation {x̂(i)}N
′

i=1 = M(Θ, {g(i)}N
′

i=1)

modularized reconstruction only considers the high-level topologies of the leaked model, making it
suitable for large models.

Bootstrap. For both Exact-GIT and Coarse-GIT, we need to estimate the output logits, i.e., last
layer’s output, to start the recursive estimation. The average output logits over the mini-batch can be
analytically estimated if the last layer has a bias term Zhu & Blaschko (2020). Otherwise, we use the
leaked gradients for the weight of the last layers to estimate the output logits by a shallow MLP. The
ablation studies are presented in Appendix G.5.

5 EXPERIMENTS

We comprehensively assess our methods on various datasets, including CIFAR-10 (Krizhevsky
et al., 2009), ImageNet (Deng et al., 2009) and facial datasets (Facial Expression Recognition (FER)
from kaggle, Japanese Female Facial Expression (Jaffe) (Lyons et al., 1998)). Correspondingly,
we employ various model architectures, including LeNet (LeCun et al., 1998), ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2020) to comprehensively demonstrate the effectiveness of our
methods. Since the reconstruction models are trained by minimizing the mean square error (MSE)
between the ground-truth and the estimated inputs, in addition to MSE, we also use peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), learned perceptual image patch similarity
(LPIPS) as metrics to quantitatively and comprehensively evaluate the performance of training data
reconstruction. PSNR, SSIM and LPIPS reflect more perceptual and structural differences than MSE.

5.1 COMPARISON WITH BASELINES

We compare our method with baselines under two different settings: (1) we directly employ recon-
struction models to map the leaked gradient to the reconstructed input data; (2) we first employ
reconstruction models to obtain the input data estimation as priors and then refine the estimation by
optimization-based methods. Unless specified, we use 10000 random samples and their gradients to
train the reconstruction models. More implementation details are deferred to Appendix D.

5.1.1 DIRECT INFERENCE BY AUXILIARY RECONSTRUCTION MODELS

As shown in Table 2, we first compare GIT with other reconstruction models in direct inference.
Specifically, we compare GIT with Learning to Invert (LTI) Wu et al. (2023), which employs an MLP
with approximately the same number of parameters as the generators. In addition, we include the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

performance of optimization-based methods for reference, such as Deep Leakage from Gradients
(DLG) Zhu et al. (2019) and Inverting Gradients (IG) Geiping et al. (2020). The computational
overhead for optimization-based methods and mapping-based methods are fundamentally different.
Optimization-based methods necessitate a complete optimization process for each batch data recovery,
whereas input-gradient mapping-based methods need to train an auxiliary reconstruction model
capable of retrieving data from the corresponding leaked gradients. We run both types of methods
until their convergence and report the training and inference time for comparison.

The results in Table 2 include different tasks and network architectures. To save memory consump-
tion and guarantee numerical stability, we adopt Coarse-GIT for all architectures and specifically
modularized reconstruction for ViT. The GIT implementation details for specific architectures are
deferred to Appendix D. The results indicate that GIT outperforms in most cases and metrics than
baselines, including both optimization-based methods and mapping-based methods.

Visual inspection of reconstructed ImageNet samples by GIT as shown in Appendix G.7 reveals that
images with large uniform color regions tend to be recovered more accurately, while those containing
complex structures or multiple objects exhibit inferior reconstruction quality. This is consistent with
the observations in Table 2 that GIT always performs the best in term of MSE but may underperform
in term of LPIPS which focuses more on the image structure. Therefore, instead of directly employing
GIT for inference, we further utilize it as an image prior to guide optimization-based methods toward
more perceptually accurate results.

Table 2: Quantitative comparison for different datasets and models in terms of different metrics.
Dashed lines separate mapping-based methods with optimization-based ones. The training time
represents the time cost for training the reconstruction model. The inference time represents the
average time to reconstruct one input data instances from the leakage gradients during inference.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑ Training
Time (s)

Inference
Time (s)

CIFAR10

LeNet

DLG 0.073 11.32 0.2380 0.0847 / 1660
IG 0.082 11.27 0.3916 0.1193 / 1899
LTI 0.015 19.17 0.2202 0.5304 8549 0.0030
GIT 0.010 20.38 0.2663 0.5533 8071 0.0025

ResNet

DLG 0.084 10.93 0.3813 0.0667 / 7474
IG 0.080 10.75 0.2489 0.0739 / 6875
LTI 0.035 15.32 0.4400 0.2888 5212 0.0020
GIT 0.032 15.53 0.3957 0.3188 4019 0.0013

ImageNet

ResNet

DLG 0.147 9.25 0.8754 0.1324 / 3974
IG 0.161 9.17 0.8802 0.1283 / 4103
LTI 0.043 14.25 0.9017 0.3418 10200 0.0007
GIT 0.039 14.42 0.8513 0.3507 13011 0.0008

ViT

DLG 0.172 7.57 0.9513 0.1217 / 3734
IG 0.175 7.64 0.9427 0.1210 / 3025
LTI 0.046 13.37 0.9223 0.2117 9738 0.0029
GIT 0.034 15.25 0.8365 0.3774 6717 0.0025

5.1.2 OPTIMIZATION-BASED DATA RECONSTRUCTION USING GIT AS PRIORS

Optimization-based methods are shown highly sensitive to the initialization of dummy inputs Wei
et al. (2020). Therefore, recent methods, such as Gradient Inversion with Generative Image Prior
(GIAS) Jeon et al. (2021), propose to utilize generative models to generate image priors as initial-
ization of optimization-based methods. In this context, we can employ GIT to generate informative
priors, which are subsequently refined through iterative optimization-based methods like IG. For
model-based methods (Yin et al., 2021; Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al.,
2025; 2023), we select GIAS Jeon et al. (2021) and LTI Wu et al. (2023) as a representative baseline
for comparison. To ensure fairness, all reconstruction models are trained from scratch without relying
on any pretraining, and are followed by the same optimization-based method.

As shown in Table 3, using GIT to generate priors and refine the reconstructed image by IG (GIT+IG)
have the best performance in almost all cases and all metrics. In addition, GIT+IG always has
better performance than LTI+IG, indicating GIT based on adaptive architectures can provide better

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

priors than LTI based on fixed architectures. Furthermore, GIT+IG, as a hybrid approach, not only
converges faster but also outperforms both GIT and IG when used individually, demonstrating its
superior effectiveness. We visualize the convergence curves of IG with and without the image prior in
Appendix G.6, further highlighting the benefits of incorporating generated priors into the optimization
process.

Table 3: Quantitative comparison for different datasets and models in terms of different metrics. The
performance of IG is used as references. The training time represents the time cost for training the
reconstruction model. The inference time represents the average time to reconstruct one input data
instances from the leakage gradients during inference.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑ Training
Time (s)

Inference
Time (s)

CIFAR10

LeNet

IG 0.082 11.27 0.3916 0.1193 / 1899
GIAS+IG 0.009 21.45 0.0328 0.8925 10025 242
LTI+IG 0.002 30.86 0.0025 09356 8549 158
GIT+IG 0.001 31.25 0.0009 0.9551 8071 161

ResNet

IG 0.080 10.75 0.2489 0.0739 / 6875
GIAS+IG 0.019 18.96 0.2437 0.6125 10892 187
LTI+IG 0.009 20.48 0.0092 0.8266 5212 1651
GIT+IG 0.002 31.34 0.0041 0.9218 4019 1655

ImageNet

ResNet

IG 0.161 9.17 0.8802 0.1283 / 4103
GIAS+IG 0.037 14.32 0.8218 0.3765 27453 3209
LTI+IG 0.029 15.38 0.7434 0.4129 10200 2065
GIT+IG 0.021 16.78 0.6995 0.4758 13011 1998

ViT

IG 0.175 7.64 0.9427 0.1210 / 3025
GIAS+IG 0.039 14.09 0.7572 0.5239 36950 3997
LTI+IG 0.029 15.96 0.7250 0.4231 6138 2950
GIT+IG 0.019 17.21 0.6730 0.5025 6717 2987

5.2 RECONSTRUCTION UNDER CHALLENGING SITUATIONS

In this section, we investigate the robustness of reconstruction methods under different challenging
situations, including inaccurate leaked gradients and the substantial distributional shift between the
public data and the training data. In such situations, optimization-based methods are not applicable
or do not have competitive performance. Therefore, we mainly compare the results from the direct
inference by model-based methods. More implementation details are deferred to Appendix D.

5.2.1 INACCURATE GRADIENTS

Table 4: Comparison of metrics under gradient perturbation
with varying noise variance. The batch size is fixed at 1, and
the leaked model is LeNet with 5 layers.

Method std of noise MSE↓ PSNR↑ LPIPS↓ SSIM↑

IG
None 0.082 11.27 0.3916 0.1193
0.01 0.105 9.79 0.4098 0.1172
0.1 0.162 9.18 0.4320 0.1126

LTI
None 0.015 19.17 0.2202 0.5304
0.01 0.015 19.16 0.2205 0.5300
0.1 0.015 19.16 0.2199 0.5287

GIAS
None 0.012 19.21 0.2350 0.5398
0.01 0.012 19.18 0.3010 0.5219
0.1 0.013 18.87 0.3113 0.5189

GIT
None 0.010 20.38 0.2663 0.5533
0.01 0.010 20.36 0.2675 0.5520
0.1 0.010 20.37 0.2669 0.5522

Prior works Wu et al. (2023) have
shown degraded performance of
optimization-based methods when
the leaked gradients are inaccu-
rate. Unlike optimization-based meth-
ods which observe significant per-
formance degradation in the case of
inaccurate gradients, Appendix G.2
shows that input-gradient mapping-
based methods primarily utilize the
gradient elements with large absolute
values to generate outputs, indicating
robustness in such challenging cases.

In Table 4, we consider the leaked gra-
dients perturbed by isotropic Gaussian
noise with different standard devia-
tion (std). I compare different input-
gradient mapping-based methods and also include the performance of optimization-based methods
like IG for reference. The results confirm the vulnerability of optimization-based methods against

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

gradient perturbations. Among input-gradient mapping-based methods, GIT performs the best in all
cases and all metrics, showing minimal susceptibility to inaccurate gradients.

5.2.2 DISTRIBUTION SHIFT

As shown in Figure 1, GIT is trained on the public dataset injected by the attacker, and aims to
reconstruct the local dataset. There may be a distributional shift between these two datasets, which
could influence the effectiveness of the reconstruction model.

We consider two possible scenarios of distribution shifts: (1) the public and local datasets come
from different subsets of the same dataset, with distribution differences arising from overlapping but
distinct classes; (2) the public datasets are subsets of huge but more general datasets, such as FER,
while the local datasets held by individual clients are more specific ones, such as Jaffe.

Our experiment in Table 5 investigate both scenarios above. For CIFAR-10 and ImageNet, the public
data and the local data share 6 classes and the rest classes are distinct. For facial dataset, the public
data and the local data have different resolutions and significant distributional shifts. The results in
Table 5 indicate that GIT demonstrates the strongest generalization ability across distribution shifts
and achieves the best performance on the local dataset. GIT learns an implicit representation of the
leaked model’s parameters by its adaptive architecture, which is more agnostic to the data distribution.
By contrast, GIAS learns a latent space that captures the distribution characteristics of the public
dataset, which requires the public and local datasets to share highly similar features to perform well.

Table 5: Comparison of the metrics under distributional shift. For each dataset, we select a federated
learning model architecture that is well-suited for its classification task: LeNet is used for CIFAR-10,
ResNet for ImageNet, and Vision Transformer (ViT) for facial datasets. The "classes" in the public
data and local data represent categories sampled to form datasets. In the case of facial data, we
conduct experiment where both the public data and local data come from FER, which serves as a
comparison.

Dataset
Public
Data

Local
Data

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑

CIFAR10 classes 1-8 classes 3-10
GIAS 0.065 11.87 0.3670 0.3092
LTI 0.029 15.38 0.3028 0.3790
GIT 0.020 17.44 0.2155 0.4150

ImageNet100 classes 1-53 classes 48-100
GIAS 0.061 12.15 0.9518 0.3126
LTI 0.049 13.10 0.9274 0.3150
GIT 0.043 13.67 0.9044 0.3224

Facial Data FER

FER
GIAS 0.020 17.73 0.4174 0.4051
LTI 0.020 17.60 0.4420 0.3949
GIT 0.018 17.93 0.3405 0.4228

Jaffe
GIAS 0.042 13.77 0.5128 0.2826
LTI 0.033 15.21 0.4625 0.3187
GIT 0.030 15.54 0.3461 0.3244

5.3 MORE ANALYSES AND ABLATION STUDIES

More analyses and ablation studies are deferred to Appendix G.

6 CONCLUSIONS

This work introduces Generative Gradient Inversion Transcript (GIT), a novel method for reconstruct-
ing training data in federated learning by exploiting gradient leakage. We propose a reconstruction
framework with an adaptive structure inspired by the inverse of backpropagation. GIT offers a
significant efficiency advantage, being more cost-effective in inference than optimization-based
methods, and can be seamlessly deployed after offline training. Compared to existing methods,
GIT achieves superior performance in most cases. Furthermore, GIT-generated outputs can serve as
priors for optimization-based gradient matching approaches, further enhancing attack effectiveness.
GIT demonstrates strong robustness under challenging conditions, including inaccurate gradients,
distributional shifts, and discrepancies in model parameters across clients. Future work will focus
on extending GIT into a more generalized autoencoder framework and enhancing its reconstruction
capabilities.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Huancheng Chen and Haris Vikalo. Recovering labels from local updates in federated learning. arXiv
preprint arXiv:2405.00955, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Dimitar I Dimitrov, Maximilian Baader, Mark Müller, and Martin Vechev. Spear: Exact gradient
inversion of batches in federated learning. Advances in Neural Information Processing Systems,
37:106768–106799, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Hao Fang, Bin Chen, Xuan Wang, Zhi Wang, and Shu-Tao Xia. Gifd: A generative gradient
inversion method with feature domain optimization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 4967–4976, 2023.

Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting gradients-how
easy is it to break privacy in federated learning? Advances in neural information processing
systems, 33:16937–16947, 2020.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Niv Haim, Gal Vardi, Gilad Yehudai, Ohad Shamir, and Michal Irani. Reconstructing training
data from trained neural networks. Advances in Neural Information Processing Systems, 35:
22911–22924, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gra-
dient inversion attacks and defenses in federated learning. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 7232–7241. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf.

Jinwoo Jeon, Kangwook Lee, Sewoong Oh, Jungseul Ok, et al. Gradient inversion with generative
image prior. Advances in neural information processing systems, 34:29898–29908, 2021.

Arthur Jochems, Timo M Deist, Johan Van Soest, Michael Eble, Paul Bulens, Philippe Coucke, Wim
Dries, Philippe Lambin, and Andre Dekker. Distributed learning: developing a predictive model
based on data from multiple hospitals without data leaving the hospital–a real life proof of concept.
Radiotherapy and Oncology, 121(3):459–467, 2016.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy defenses in federated learning
via generative gradient leakage. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 10132–10142, 2022.

10

https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/3b3fff6463464959dcd1b68d0320f781-Paper.pdf


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Lyons, Miyuki Kamachi, and Jiro Gyoba. The japanese female facial expression (jaffe)
dataset. (No Title), 1998.

Kailang Ma, Yu Sun, Jian Cui, Dawei Li, Zhenyu Guan, and Jianwei Liu. Instance-wise batch
label restoration via gradients in federated learning. In The Eleventh International Conference on
Learning Representations, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Le Trieu Phong, Yoshinori Aono, Takuya Hayashi, Lihua Wang, and Shiho Moriai. Privacy-preserving
deep learning: Revisited and enhanced. In Applications and Techniques in Information Security:
8th International Conference, ATIS 2017, Auckland, New Zealand, July 6–7, 2017, Proceedings,
pp. 100–110. Springer, 2017.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organization in
the brain. Psychological review, 65(6):386, 1958.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yijue Wang, Jieren Deng, Dan Guo, Chenghong Wang, Xianrui Meng, Hang Liu, Caiwen Ding, and
Sanguthevar Rajasekaran. Sapag: A self-adaptive privacy attack from gradients. arXiv preprint
arXiv:2009.06228, 2020.

Zihan Wang, Jason Lee, and Qi Lei. Reconstructing training data from model gradient, provably. In
International Conference on Artificial Intelligence and Statistics, pp. 6595–6612. PMLR, 2023.

Wenqi Wei, Ling Liu, Margaret Loper, Ka-Ho Chow, Mehmet Emre Gursoy, Stacey Truex, and
Yanzhao Wu. A framework for evaluating gradient leakage attacks in federated learning. arXiv
preprint arXiv:2004.10397, 2020.

Liwen Wu, Zhizhi Liu, Bin Pu, Kang Wei, Hangcheng Cao, and Shaowen Yao. Dggi: Deep generative
gradient inversion with diffusion model. Information Fusion, 113:102620, 2025.

Ruihan Wu, Xiangyu Chen, Chuan Guo, and Kilian Q Weinberger. Learning to invert: Simple adaptive
attacks for gradient inversion in federated learning. In Uncertainty in Artificial Intelligence, pp.
2293–2303. PMLR, 2023.

Wensi Yang, Yuhang Zhang, Kejiang Ye, Li Li, and Cheng-Zhong Xu. Ffd: A federated learning
based method for credit card fraud detection. In Big Data–BigData 2019: 8th International
Congress, Held as Part of the Services Conference Federation, SCF 2019, San Diego, CA, USA,
June 25–30, 2019, Proceedings 8, pp. 18–32. Springer, 2019.

Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz, and Pavlo Molchanov. See
through gradients: Image batch recovery via gradinversion. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 16337–16346, 2021.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. idlg: Improved deep leakage from gradients.
arXiv preprint arXiv:2001.02610, 2020.

Junyi Zhu and Matthew Blaschko. R-gap: Recursive gradient attack on privacy. arXiv preprint
arXiv:2010.07733, 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/60a6c4002cc7b29142def8871531281a-Paper.pdf.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ETHICS STATEMENT

This work proposes a novel method, Generative Gradient Inversion Transcript (GIT), for reconstruct-
ing training data from gradients in federated learning. The study is conducted with the primary goal
of exposing and understanding potential privacy risks associated with gradient leakage, a critical
challenge in distributed learning paradigms. All experiments are performed using standard models
and architectures on publicly available datasets; no real-world sensitive or private data is involved.
We strongly discourage any malicious use of this method and advocate for its responsible application
in security and privacy research.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will provide anonymized supplementary materials.
These will include the complete implementation code of the GIT framework. The configuration
details are shown in Appendix D.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, large language models (LLMs) were utilized solely as auxiliary
tools for improving writing quality. Their use was strictly limited to polishing the text, such as
correcting grammatical errors, enhancing sentence clarity, and ensuring consistent formatting. No
LLM was involved in generating the core research ideas, designing the GIT methodology, conducting
analyses, or drawing conclusions. All text that received LLM-assisted editing was meticulously
reviewed and substantively refined by the authors, who take full responsibility for the entire intellectual
content of this paper.

D EXPERIMENT CONFIGURATIONS

Universal Settings We employ various architectures for the leaked model. For LeNet, we use a 5-
layer configuration with kernel size 2 and same padding. For ResNet, we adopt a 15-layer variant with
kernel size 3, consisting of 4 blocks, each containing 2 convolutional layers and 1 skip connection.
For ViT, we connect four 4-head attention blocks following the patch embedding layer.

For generative methods, we use 10000 batches of input-gradient pairs from the public dataset to
train the generative model. During reconstruction, we use 10000 batches of gradients from the local
dataset to recover the corresponding local data. For iterative optimization-based methods, we perform
reconstruction for each batch of local data by starting from dummy inputs and applying iterative
optimization individually.

For Coarse-GIT and Module-GIT, we use mθ and fϑ with 3000 neurons in each hidden layer. For
LTI, we employ a generative model consisting of three hidden layers, each with 3000 neurons, as
described in Wu et al. (2023).

Specific Settings In our experiments described in Section 5.1.1, the inference time for generative
methods is computed as the average over reconstructing 10000 local data batches, whereas for
optimization-based methods, it is calculated based on the average over 10 local data batches, since
each reconstruction is significantly more time-consuming.

In our experiments described in Section 5.1.2, the inference time of generative+optimization-based
hybrid methods is computed as the sum of their individual inference times. For all methods, inference
time is calculated as the average over 10 local data batches.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

E NOTATION

L Loss objective function of the leaked model

L(gen) Loss objective function of GIT

σ(·) The elementwise activation function

σ′(·) The derivative of σ(·)
z Pre-activation of an MIMO layer

a Post-activation of an MIMO layer

W Weight matrix in a neural network

g Gradient of the loss objective function w.r.t W

B Batch size in mini-batch training

b Batch index in mini-batch training

E Empirical average over the samples in batch b

d Number of hidden nodes of an MIMO layer

Nin Number of input layers of an MIMO layer

Nout Number of output layers of an MIMO layer

N Number of input-gradient pairs for training GIT

N ′ Number of input-gradient pairs for testing

(·)+ Moore-Penrose inverse of a matrix; or Moore-Penrose of each of (·)’s
subspace via the first dimension when (·) is a third order tensor

(·)T Transpose of a matrix; or transpose of the second and the third dimension
when (·) is a third order tensor

⊗ Tensor Multiplification

⊙ Broadcast row-wise product

f(·)(in) A module that approximates the input mapping of an MIMO layer

f(·)(out) A module that approximates the output mapping of an MIMO layer

f ′(·) The derivative of module f(·)
D Input-gradient pairs

E Epoch budget

η Learning rate

(·)(i) The i-th sample in the dataset

M The generative model GIT

Θ Trainable parameters of GIT

mθ A shallow MLP parameterized by θ to approximate recursive reconstruc-
tion in Coarse-GIT

ϑ Trainable parameters in Module-GIT

x Input data of the leaked model

x̂ The estimated input data by GIT

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

F METHODOLOGY DETAILS

F.1 MINI-BATCH TRAINING.

In mini-batch training, g(in)
i and g

(out)
j obtained by Equation (2) contains the gradient information

for all data instances in the mini-batch. In practice, the leaked the gradient is their average over the
mini-batch, that is g(in)

i ← Ebg
(in)
i [b, :, :], g(out)

j ← Ebg
(out)
j [b, :, :]. Since the leaked gradient is the

average over the mini-batch. When reconstructing the input data, we broadcast the leaked gradient in
the dimension of batch size in Equation (3).

F.2 EXACT-GIT

Activation Function. The Exact-GIT method in Algorithm 1 requires iteratively applying Equa-
tion (3). Equation (3) involves the derivative of the activation function σ′(z), which can be estimated
by a. Although function σ may not be an injective function, we demonstrate in Table 6 below that
we can uniquely identify σ′(z) given a for the most popular activation functions used in practice. In

Table 6: Mappings from a to σ′
i(z) for popular activation functions. Operations are elementwise.

Name ReLU Leaky ReLU Sigmoid Tanh

a = σ(z) max(0,z) max(kz,z) 1
1+e−z

ez−e−z

ezi+e−z

σ′(z)

{
1 if a > 0

0 if a = 0

{
1 if a > 0

k if a ≤ 0
ai(1− a) 1− a2

Exact-GIT, the weights of the generative attack model represent the estimated weights of the leaked
model. Therefore, we can compare the difference between their weights to investigate to which
degree the generative attack models recover the gradient-to-input inversion. In this context, we run
Exact-GIT based on Algorithm 1 and plot its convergence curve as in Figure 3. Figure 3 illustrates the
l2 distance curve between the generative model’s weights and the leaked model’s weights, alongside
the MSE between the reconstructed inputs and the ground truth inputs. As shown in Figure 3, when
Exact-GIT converges, its weights align closely with the ground truth weights. This convergence
highlights the effectiveness of exact-GIT in extracting weight information from the leaked model.

0 200 400 600 800 1000
Epochs

101

102

L2
 D

ist
an

ce

100

101

102

103

Te
st

 L
os

s (
M

SE
)

L2 Distance between Weights and Test Loss Across Epochs

Figure 3: The red curve represents convergence curve of l2 distance between weights of the generative
model and the leaked model. The blue curve represents the convergence curve of MSE between
reconstructed input and the ground truth input. The experiment is conducted on CIFAR-10 using
Exact-GIT.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

F.3 COARSE-GIT FOR DIFFERENT ARCHITECTURES

Section 3 demonstrates a generic framework for any neural network architectures as long as they
support back-propagation. In this section, we provide more technical details for specific neural
network architecture that we use in the experiments, including feed forward networks, residual
networks (ResNet) and vision transformer (ViT). We believe the details in this section will provide
more insights for practitioners to understand how GIT is adapted to different neural architectures.
Due to the scale of the architectures discussed in this section, we employ Coarse-GIT for all of them.

While related to the notation we use in Section 3, we use specific notations in this section for better
readability. We provide the exact definition for each of these notations.

F.3.1 FEED FORWARD NEURAL NETWORKS

Feed forward neural networks, including multi-layer perceptron (MLP) and convolutional neural
networks (CNN), can be formulated as follows:

Lθ(x, y) = ℓ(zN , y) = ℓ(WNaN−1, y)

ai = σi(zi), zi = Wiai−1, i = 1, 2, ..., N − 1
(6)

We denote the number of hidden nodes for the i-th layer as {di}N−1
i=1 . The input data batch a0 =

x ∈ RB×d0 , where B is the batch size. θ = {Wi ∈ Rdi×di−1}Ni=1 refer to the parameters of N
linear layers, including convolutional layers and fully connected layers. {σi}N−1

i=1 are the nonlinear
activation functions of different layers. In this context, {zi ∈ RB×di}N−1

i=1 and{ai ∈ RB×di}N−1
i=1

represent the pre-activation and post-activation of intermediate layers, respectively. zN = WNaN−1

is the output logit, and ℓ is the function calculating the classification error, such as the softmax
cross-entropy function. We use gi = ∇WiLθ(x, y) to represent the gradient of each weight matrix.

In this context, similar to Equation (2) and Equation (3) in Section 3, we derive the back-propagation
and then the iterative input layer approximation for feed forward neural network defined in Equa-
tion (6) as follows:

gi =

N−1∏
j=i

(
WT

j+1 ⊙ σ′
j(zj)

)
⊗ ∂L

∂zN
⊗ aT

i−1 (7)

aT
i−1 ≃ aT

i ⊗ g+
i+1 ⊗ (WT

i+1 ⊙ σ′
i(zi))

+ ⊗ gi (8)

⊗ and ⊙ have the same definition as in Section 3. As we can see, Equation (7) can be considered as a
specific case of Equation (3) where Nin = Nout = 1 Furthermore, we employ Coarse-GIT in the
experiments. Specifically, we use an MLP model f parameterized by ϑ to estimate ai−1 from ai,
gi+1 and gi. We apply Equation (7) recursively and utilize it to reconstruct the input data.

ai−1 = fϑ(ai, gi+1, gi) (9)

F.3.2 RESIDUAL NETWORKS

The key feature for residual networks (ResNet) He et al. (2016) is the skip connections, resulting in
Nout > 1 for layers that combine inputs from both the previous layer and shortcut connections.

Without the loss of generality, we generally follow the notation of feed forward neural network
defined in (6) except that there is a single shortcut connection linking the k-th layer to l-th layer
(k < l). Specifically, the shortcut connection links the post-activation ak to the pre-activation zl with
a weight parameter S ∈ Rdk×dl . Therefore, {zi}Ni=1 and {ai}Ni=1 are calculated in the same manner
except that zl = Wlal−1 +Sak. Based on the back propagation, gi is calculated in the same way as
in Equation (7) when i > k. When i ≤ k, gi is calculated as follows:

gi =

k−1∏
j=i

Mj ⊗

l−1∏
j=k

Mj + S⊙ σ′
k(zk)

⊗ N−1∏
j=l

(
WT

j+1 ⊙ σ′
j(zj)

)
⊗ ∂L

∂zN
⊗ aT

i−1 (10)

Following a similar analysis to feed forward neural networks, we can derive an approximation of
ai−1 using ai. The approximation is the same as (8) except for the case i = k. This is because
we calculate ai using ai−1 in the same manner except for the case i = k, where the k-th layer is

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

connected to not only the immediate preceding layer but also the l-th layer via shortcut connection.
Therefore, ak−1 is approximated in a different way from (8) as follows.

ak−1 ≃
(
WT

k+1 ⊙ σ′
k(zk)

)
⊗ gk+1 ⊗ (aT

k )
+ + (S⊙ σ′

k(zk))⊗ gl ⊗ (al−1)
+ ⊗ gk (11)

Compared with (8), the estimation in (11) incorporates not only gk and gk+1 but also gl to estimate
aT
k−1, which is consistent with the case of Nout = 2 in the analysis in Section 3. Since ak is

connected to zl via skip connection, gradients can flow directly from the k-th layer to the l-th layer
in back propagation. The insight provided by the approximation in Equation (11) indicates that the
reconstruction sequence follows the same path as the gradient flow during backpropagation.

We use Coarse-GIT in the experiment for ResNet, similar to Equation (9), we employ an MLP model
f parameterized by ϑ and reconstruct ak−1 by:

ak−1 = fϑ(ak, gk+1, gk, gl) (12)

When estimating the input from the leaked gradients, we apply Equation (12) when there is a shortcut
connection and Equation (9) otherwise.

F.3.3 VISION TRANSFORMER (VIT)

In the case of vision transformer (ViT) (Dosovitskiy et al., 2020), we apply modularized input data
reconstruction and represent the each self-attention module as follows:

z = softmax
(
QK⊤
√
dk

)
V, Q = a

(in)
i WQ, K = a

(in)
i WK , V = a

(in)
i WV (13)

where WQ, WK and WV represent the mapping weights to the tuple of query, key and value.
In multi-head attention (MHA), we concatenate the outputs of several self-attention modules and
transform them by an affine operation. Without the loss of generality, we focus on single layer
attention. Furthermore, we reorganize Equation (13) to fit the formulation of Equation (4):

z = f
(in)
i ([Q,K,V]) := softmax

(
QK⊤
√
dk

)
V

[Q,K,V] = a
(in)
i W

(in)
i := a

(in)
i [WQ,WK ,WV ]

(14)

Equation (13) identifies the concrete definitions of f (in) and W
(in)
i for self-attention modules in the

framework by Equation (4) so that we can plug these definitions employ Equation (5) to reconstruct
the input of the attention layer by the leaked gradients.

Due to the large amount of parameters in ViT, we use Coarse-GIT for input reconstruction. If we use
gQ, gK , gV to represent the leaked gradients of WQ, WK and WV , respectively, then we employ
an MLP module f parameterized by ϑ to reconstruct a(in)

i in a self-attention module.

a
(in)
i = fϑ(g

Q, gK , gV , {g(out)
j }Nout

j=1 , z) (15)

where {g(out)
j }Nout

j=1 are the leaked gradients of output matrices as defined for a general MIMO layer
in Section 3. The gradient inversion of fully-connected layers and residual structure in the ViT follows
the same formulation as described in previous sections. Altogether, we can iteratively employ these
formulas to reconstruct the input estimation of each layer, starting from the last layer and progressing
to the first layer of the ViT model, eventually obtaining the input data estimation.

G MORE EXPERIMENTAL ANALYSES AND ABLATION STUDIES

G.1 DISCREPANCIES IN MODEL PARAMETERS

In federated learning, gradient sharing may be asynchronous Geiping et al. (2020), leading to
slight discrepancies in model parameters across different nodes. Such inconsistencies can affect the
performance of both optimization-based and generative reconstruction methods.

To create discrepancies in model parameters, we train each node with different volume of local dataset
for several epochs, then we use generative models trained on input-gradient pairs from one node, i.e.,

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

the node under attack, to reconstruct the input data from another node, which is not necessarily under
attack and has parameter discrepancies. In this context, larger local data and more training epochs
lead to larger parameter discrepancies, making the input data reconstruction task more challenging.

Our experimental results under different settings are summarized in Table 7. We can clearly observe
that GIT achieves the best performance under significant parameter discrepancies and is still capable
of reconstructing high-quality training data, demonstrating its robustness to variations in model
parameters across nodes. We also find that increasing the number of local datasets sometimes leads
to reduced performance degradation. This may be because a larger number of local datasets increases
the likelihood of including samples from classes that are easier to reconstruct, thus introducing a
degree of randomness that favors recovery.

Table 7: Comparison of the MSE for GIT with varying parameter discrepancies. The parameter
discrepancies is quantified by volume of local dataset & number of locally trained epochs. The leaked
model for CIFAR10 is LeNet, and for ImageNet is ResNet.

Dataset
Volume of

Method
Number of Locally Trained Epochs

Local Dataset 0 10 20

CIFAR10

500
IG 0.082 0.089 0.096
LTI 0.015 0.019 0.023
GIT 0.010 0.013 0.017

1000
IG 0.082 0.097 0.102
LTI 0.015 0.026 0.030
GIT 0.010 0.017 0.020

10000
IG 0.082 0.096 0.107
LTI 0.015 0.032 0.036
GIT 0.010 0.029 0.034

ImageNet

500
IG 0.161 0.162 0.162
LTI 0.043 0.049 0.053
GIT 0.039 0.043 0.044

1000
IG 0.161 0.162 0.163
LTI 0.043 0.049 0.053
GIT 0.039 0.043 0.043

10000
IG 0.161 0.164 0.164
LTI 0.043 0.048 0.051
GIT 0.039 0.040 0.040

G.2 RECONSTRUCTION WITH CLIPPED GRADIENTS

The prune rate γ represents the proportion of gradient directions with small absolute values that are
pruned (Pruning is applied by a mask with 0 and 1 values, therefore the dimension of gradients is
not changed). As shown in Table 8, gradient pruning has minimal impact on GIT’s performance
but significantly degrades the performance of DLG. The results indicate that even when pruning
90% of the gradient components with smaller absolute values, generative approaches remain largely
unaffected, relying only on the top 10% of the largest gradient values for training. This suggests
that generative approaches primarily capture the dominant gradient components with large absolute
values during training, unlike optimization-based methods, which require a finer alignment with the
full gradient information.

It can be deduced from Table 8 that generative approaches are less effective than optimization-based
methods in recovering fine-grained image details. However, they demonstrate greater robustness
against inaccurate gradients and gradient pruning while also being more efficient. Furthermore,
generative methods train significantly faster, as gradient matching requires extensive computation to
precisely align finer gradient details, leading to higher time complexity.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 8: Comparison of the MSE under gradient
pruning with varying pune rate. The dataset is
CIFAR10 and the leaked model is LeNet.

Prune rate γ DLG LTI GIAS GIT

0 0.073 0.015 0.027 0.010

0.9 0.098 0.016 0.033 0.010

0.99 0.116 0.021 0.049 0.016

0.999 0.187 0.049 0.070 0.040

Table 9: MSE comparison with varying volumes
of training data. The dataset is CIFAR10 and the
leaked model is LeNet.

Data Volume LTI GIAS GIT

1000 0.039 0.049 0.027

2000 0.033 0.045 0.021

5000 0.027 0.036 0.015

10000 0.015 0.027 0.010

G.3 EFFECT OF NOISE ON THE PERFORMANCE OF OPTIMIZATION-BASED RECONSTRUCTION
METHODS

Under inaccurate gradients, generative approaches demonstrate robust performance, as shown in
Table 4. However, IG fails to recover meaningful data with as little as 0.01 noise applied. This
highlights the significant impact of noise on gradient matching methods like DLG. In the contrast, IG
fails to recover meaningful data with as little as 0.01 noise applied. This highlights the significant
impact of noise on optimization-based methods like IG.

Noise std = 0

Noise std = 0.0001

Noise std = 0.001

Noise std = 0.01

Figure 4: The figure illustrates the reconstructed images for IG when the leaked model is LeNet and
the dataset is CIFAR-10. Varying levels of noise are applied to the gradients. The results depict IG’s
reconstructions between the 200th and 300th optimization iterations.

G.4 RECONSTRUCTION WITH DIFFERENT VOLUMES OF TRAINING DATA

Training data volume refers to the size of the auxiliary dataset sampled by the attacker from public
data. A larger training dataset, akin to performing data augmentation, can enhance the generalization
ability of the generative model. However, it also incurs higher computational costs, requiring more
time and resources to train the model. Moreover, in practice, acquiring a large volume of data with
a distribution similar to the local dataset can be challenging. Given this tradeoff, it is essential to
evaluate the performance of the generative approach under different training data volumes. In this
section, we evaluate the performance of GIT using varying amounts of training data: 1, 000, 2, 000,
5, 000 and 10, 000 samples. Table 9 presents the impact of training data volume on the performance
of the generative approach. It demonstrates that even with only 1, 000 input-gradient pairs, GIT is
capable of reconstructing reasonable images, indicating that effective recovery is achievable with
a limited amount of training data. As the generative model achieves near-perfect performance

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

with larger training sets, we can conclude that increased data volume helps mitigate overfitting and
consequently improves model performance. Moreover, GIT consistently outperforms both LTI and
GIAS across all settings.

G.5 RECONSTRUCTION WITHOUT GRADIENT OF LAST LAYER’S BIAS

When the last layer of the neural network has a bias term bN , i.e., aN = WNaN−1 + bN , following
the idea of Ma et al. (2023), we have ∂L

∂zN
= ∂L

∂bN
. That is to say, we can directly utilize the gradient

of the bias term in the last year as ∂L
∂zN

. When the last layer of the neural network does not have
a bias term, we cannot directly obtain ∂L

∂zN
. Therefore, we employ ablation study using the leaked

gradients for the weight of the last layers to estimate the output logits by a shallow MLP.

Table 10: Quantitative comparison for GIT with and w/o gradient of last layer’s bias.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑

CIFAR10 LeNet
with bias 0.010 20.38 0.2663 0.5533
w/o bias 0.012 19.35 0.2879 0.5035

Imagenet Resnet
with bias 0.039 14.42 0.8513 0.3507
w/o bias 0.039 14.30 0.9017 0.3120

G.6 OPTIMIZATION-BASED METHODS WITH AND W/O GENERATED IMAGE PRIOR

As shown in the Figure 5, the blue curve represents the convergence of the hybrid method, while the
red curve illustrates IG without an image prior. It is evident that the hybrid method not only converges
faster but also achieves superior performance. The fluctuations in the blue convergence curve are due
to the small learning rate set for the optimizer, which causes oscillations when the loss falls below 1.

0 5000 10000 15000 20000 25000 30000
Iterations

10 1

100

101

102

103

L2
 D

ist
an

ce
 b

et
we

en
 d

um
m

y 
gr

ad
ie

nt
s a

nd
 g

ro
un

d 
tru

th
 g

ra
di

en
ts

Convergence Curve
DLG with Imge Prior
DLG w/o Image Prior

Figure 5: The convergence curve of DLG with and without an image prior. The leaked model is
ResNet. The vertical axis indicates the distance between the dummy gradients and the corresponding
ground-truth gradients.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

G.7 VISUAL RESULTS

G.7.1 VISUAL RESULTS ON CIFAR-10 AND TINY IMAGENET

Figure 6 illustrates reconstructed CIFAR-10 and Tiny ImageNet direct using GIT for reconstruction
or using GIT as generated image prior. These results show that directly using GIT for reconstruction
can achieve reasonable recovery but tends to lose some high-frequency details. In contrast, using
GIT as an image prior—specifically for initializing optimization-based methods—helps preserve
high-frequency information and achieves reconstruction quality beyond what optimization-based
methods alone can attain.

Ground Truth

Direct GIT

GIT as Image Prior

Ground Truth

Direct GIT

GIT as Image Prior

Figure 6: The figure illustrates the ground truth input images, the direct reconstructed images by
GIT and the reconstructed images using IG initialized with GIT-generated prior, from top to the
bottom respectively. The top three rows correspond to the CIFAR-10 dataset with the leaked model
being LeNet, while the bottom three rows correspond to the TinyImageNet dataset with the leaked
model being ResNet.

G.7.2 VISUAL RESULTS FOR GIT ON LARGE RESOLUTION

Reconstruction at high resolution tends to be more challenging, especially for images containing
complex objects. To illustrate the characteristics of both easy and hard-to-recover examples, we
present the first 8 and the best 100 reconstructions. The results are shown in Figure 7 and Fig-
ure 8. Odd-numbered rows show the ground-truth images, while even-numbered rows display the
corresponding reconstructions obtained directly using GIT.

Figure 7: The first 8 reconstructed images (ImageNet, ResNet). Odd-numbered rows show the
ground-truth images, while even-numbered rows display the corresponding reconstructions obtained
directly using GIT.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 8: The best 100 reconstructed images with lowest MSE (ImageNet, ResNet). Odd-numbered
rows show the ground-truth images, while even-numbered rows display the corresponding reconstruc-
tions obtained directly using GIT.

21


	Introduction
	Related Work
	Input Data Reconstruction by Back-Propagation
	A General Framework
	Modularized Input Data Reconstruction

	GIT: Gradient Inverse Transcript
	Experiments
	Comparison with Baselines
	Direct Inference by Auxiliary Reconstruction Models
	Optimization-Based Data Reconstruction Using GIT as Priors

	Reconstruction Under Challenging Situations
	Inaccurate Gradients
	Distribution Shift

	More Analyses and Ablation Studies

	Conclusions
	Ethics Statement
	Reproducibility Statement
	The Use of Large Language Models (LLMs)
	Experiment Configurations
	Notation
	Methodology Details
	Mini-Batch Training.
	Exact-GIT
	Coarse-GIT for Different Architectures
	Feed Forward Neural Networks
	Residual Networks
	Vision Transformer (ViT)


	More Experimental Analyses and Ablation Studies
	Discrepancies in Model Parameters
	Reconstruction with Clipped Gradients
	Effect of Noise on the Performance of Optimization-Based Reconstruction Methods
	Reconstruction with Different Volumes of Training Data
	Reconstruction without gradient of last layer's bias
	Optimization-based methods with and w/o Generated Image Prior
	Visual Results
	Visual Results on CIFAR-10 and Tiny ImageNet
	Visual Results for GIT on Large Resolution



