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ABSTRACT

We propose Gradient Inversion Transcript (GIT), a novel model-based approach
for reconstructing training data from leaked gradients. GIT employs a data re-
construction model, whose architecture is tailored to align with the inversion of
the federated learning (FL) model’s back-propagation process. Once trained of-
fline, GIT can be deployed efficiently and only relies on the leaked gradients to
reconstruct the input data, rendering it applicable under various distributed learning
environments. When used as a prior for other iterative optimization-based methods,
GIT not only accelerates convergence but also enhances the overall reconstruction
quality. GIT consistently outperforms existing methods across multiple datasets and
demonstrates strong robustness under challenging conditions, including inaccurate
gradients, data distribution shifts and discrepancies in model parameters.

1 INTRODUCTION

In distributed learning (Jochems et al., 2016; McMahan et al., 2017; Yang et al., 2019) and federated
learning (FL) (Huang et al., 2021), each client trains its model on local data and shares the gradients
with a central server, which aggregates them to update the global model. While these methods are
effective in improving performance and efficiency without directly exposing the client’s data to public,
recent research (Phong et al., 2017; Zhu et al., 2019; Zhao et al., 2020) has shown that the gradients
leaked by sharing can still cause sensitive information leakage, as attackers may exploit them to
reconstruct the original training data used by the individual client, posing significant privacy risks in
real-world learning systems.

There is a considerable amount of works proposed to reconstruct the training data from its gradi-
ent (Huang et al., 2021; Phong et al., 2017; Zhu et al., 2019; Zhao et al., 2020; Wei et al., 2020;
Geiping et al., 2020; Zhu & Blaschko, 2020; Wang et al., 2020; Yin et al., 2021; Wang et al., 2023;
Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al., 2023; Chen & Vikalo, 2024; Wu et al.,
2025) based on varying levels of model access, as shown in Table 1. These works generally fall into
two major categories: iterative optimization methods, which iteratively optimize the reconstructed
data to align its gradients with the leaked ones; and model-based methods, which leverage an auxiliary
model to approximate the user data. Model-based methods can be further subdivided into two types:
generative model-based methods and input-gradient mapping-based methods. The first type trains a
latent space as the input of a pre-trained generative model. The second type trains a model mapping
leaked gradients to the corresponding user data.

Iterative optimization methods typically require repeated access to gradients from the target
model (Phong et al., 2017; Zhu et al., 2019; Wei et al., 2020; Geiping et al., 2020; Wang et al.,
2020; Huang et al., 2021; Chen & Vikalo, 2024) or full access to the model parameters (Zhu &
Blaschko, 2020; Wang et al., 2023). In contrast, the generative-model based methods (Yin et al.,
2021; Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al., 2025) relies on a pre-trained
generative model and public data that closely matches the distribution of the user data to train the
latent space. And the input-gradient mapping-based methods (Wu et al., 2023) require input-gradient
pairs from public datasets to train the auxiliary model itself.

We focus on the input-gradient mapping-based methods for input data reconstruction in this work.
We call the model under attack the leaked model. The existing mapping-based method, such as
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LTI (Wu et al., 2023), usually employs a fixed-architecture multi-layer perception (MLP) (Rosenblatt,
1958) as the data reconstruction model. However, this approach lacks justification for how gradients
relate to the input data. We argue that the auxiliary model to reconstruct the input data from the
gradient should approximate the inverse of the gradient computation process and thus be adaptive to
the architecture of the leaked model. In this context, we introduce gradient inversion transcript
(GIT) in this work to adaptively choose the architecture of the auxiliary reconstruction model to
improve its effectiveness. In addition, we can combine GIT with iterative optimization methods like
IG Geiping et al. (2020), in which we use GIT’s output as the initial estimation of the input data for
iterative optimization methods to further refine the reconstructed input data.

Problem Settings: In general, we assume that the attacker only has access to the leaked gradients and
the model architecture. Our method does not need the parameters of the leaked model or the labels of
the training data, as GIT trains the auxiliary reconstruction model on publicly available data with
known labels. This direct input-gradient mapping architecture circumvents the need for dummy input
optimization, thereby eliminating the requirement for label inference. As illustrated in Figure 1, we
adopt a similar premise to DLG Zhu et al. (2019): the attacker hacks the channel to inject data to one
client, which shares the gradient with the server and other clients. Alternatively, in scenarios where
the attacker gains illicit access to the gradient query pipeline, our proposed GIT can also operate
effectively in this context. The attack aims to reconstruct the data from both the hacked client and
other clients by shared gradients. The problem settings and comparison with existing literature are
summarized in Table 1.

Practical Application Scenarios: As shown in Table 1, all gradient leakage-based training data
reconstruction methods require either gradient queries or access to known leaked model parameters.
Our work adheres to the former assumption. This "curious-but-honest" setting is also commonly
assumed in federated learning contexts, such as in data poisoning and backdoor attack scenarios.

 Local Dataset 3

client 1

 Local Dataset 1

net 1

client 2

 Local Dataset 2

client 3

Attacker
 Public Dataset Server

Shared
Gradient 1

Generative 
Model

Shared
Gradient 2

Shared
Gradient 3

Shared
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Figure 1: A flowchart of problem settings for GIT. The
attacker hacks the channel of one client to inject data and
utilizes the obtained input-gradient pair to train generative
models. The attacker aims to reconstruct the data from both
the hacked client and other clients by shared gradients.

Challenges: Figure 1 provides an
overview of GIT. Beyond the basic
case where the training data for aux-
iliary reconstruction model follows
the same distribution as the input data
for recovery, we may encounter more
challenging scenarios: (1) The clients
may send defensive inaccurate gradi-
ents, like clipped gradients Zhu et al.
(2019) and noisy gradients Abadi
et al. (2016); (2) When recovering
data from other clients based on their
shared gradients, challenges arise due
to distributional shifts between data
on different nodes and slight discrep-
ancies in model parameters across
nodes due to lack of synchronization.
Input-gradient mapping-based meth-
ods can adapt to both scenarios, unlike
iterative optimization-based methods,
which are not applicable for scenario (2) since the attacker has no access to inject data to unhacked
clients and is therefore unable to reconstruct training data from them.

Compared with iterative optimization-based methods, our method can train reconstruction model
offline and is much more efficient during deployment, making it well-suited for real-time reconstruc-
tion tasks with a small tolerated delay. Compared with generative–based methods, GIT demonstrates
greater robustness to out-of-distribution (OOD) scenarios, as it focuses on inverting the backpropaga-
tion process and implicitly recovering the model parameters. Compared with other mapping-based
methods like LTI (Wu et al., 2023), GIT is broadly applicable to leaked models with diverse ar-
chitectures and achieves better performance. Moreover, GIT remains effective under challenging
reconstruction scenarios.

We summarize our contributions as following points: (1) We propose Gradient Inversion Transcript
(GIT), which is inspired by back-propagation and constructs a reconstruction model whose architec-
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ture is tailored to adapt the leaked model. GIT is shown to effectively reconstruct the input data given
its gradient without the knowledge of model parameters and data labels. (2) GIT can be efficiently de-
ployed after offline training. Compared with existing methods, GIT can achieve the best performance
in most cases. In addition, the outputs of GIT can serve as the prior for gradient matching, further
improving the performance. (3) GIT is generally applicable and has robust performance under some
challenging performance. It remains effective under discrepancies in model parameters, and achieves
best performance under inaccurate gradients and data distributional shift.

2 RELATED WORK

Table 1: The comparison in terms of attacker’s access for different input data reconstruction methods.
dist. means access to distribution of labels. The categories of methods are separated by dashed lines
and, from top to bottom, are: parameter-based methods, iterative optimization-based methods, model-
based methods (including generative model–based methods, and input-gradient mapping–based
methods).

Method
Model Model Shared Gradient Output Data Public Pretrained

Parameters Architecture Gradients Query Logit Label Data GAN

(RTNN) ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

(DLG; IG; Sapag; RLU) ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗

(iDLG; iLRG) ✗ ✗ ✓ ✓ ✗ dist. ✗ ✗

(Spear) ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗

(R-gap; R-provably) ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗

(GradInversion; DGGI) ✗ ✗ ✓ ✓ ✗ dist. ✓ ✓

(GIAS; GGL; GIFD) ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓

(LTI), GIT ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✗

Optimization-Based Methods. The feasibility of optimization-based method for data reconstruction
from gradient leakage was initially explored by Phong et al. (2017) Zhu et al. (2019) demonstrated its
practicality by proposing Deep Leakage from Gradients (DLG). DLG optimizes a randomly generated
dummy input to estimate the training data by matching its gradients and the leaked ground truth
gradients. There are several subsequent works improving DLG from either optimization perspectives
or more realistic scenarios Wei et al. (2020); Geiping et al. (2020); Wang et al. (2020); Zhu &
Blaschko (2020); Wang et al. (2023); Chen & Vikalo (2024) with settings as shown in Table 1.

Model-Based Methods. Unlike optimization-based methods, model-based methods estimate the
distribution of user data using an auxiliary model designed by the attacker, which maps the leaked
gradient to input data estimation or the initial dummy input for subsequent optimization-based
refinement. Model-based methods generally have two major categories, which are based on the
generative model and the input-gradient mapping, respectively. The first type trains a latent space
representation and uses a pre-trained generative model to synthesize estimations of the user data.
The second type directly trains an auxiliary reconstruction model to map leaked gradients to the
corresponding user data.

Early attempts of the generative method Yin et al. (2021) use a pre-trained generative model to
produce image priors for reconstruction. Building on this, GIAS Jeon et al. (2021); Huang et al.
(2021) employs a generative adversarial network (GAN) Goodfellow et al. (2014) as the generative
model and alternately searches both the latent space and the parameter space of the generator.
However, GIAS is computationally prohibitive, as it requires training a new generator for each
reconstructed image. In this context, there are several works Li et al. (2022); Fang et al. (2023); Wu
et al. (2025) focus on improving the efficiency and performance of GIAS under different settings as
shown in Table 1.

The input-gradient mapping-based method was originally proposed by Wu et al. (2023) as Learning to
Invert (LTI). Specifically, they design the reconstruction model as a three-layer multi-layer perceptron
(MLP) with a fixed hidden size regardless of the leaked model, which may not be optimal. In contrast,
we introduce gradient inversion transcript (GIT), which is a framework that dynamically selects the
architecture of the threat model based on the leaked model to enhance performance.
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3 INPUT DATA RECONSTRUCTION BY BACK-PROPAGATION

3.1 A GENERAL FRAMEWORK
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Figure 2: An MIMO layer.

As in Figure 2, we consider the generic architecture of
a multi-input multi-output (MIMO) layer with nonlinear
elementwise activation functions as follows:

z =

Nin∑
i=1

W
(in)
i a

(in)
i , z

(out)
j = W

(out)
j a,

a = σ(z), a
(out)
j = σj(z

(out)
j ), j = 1, ..., Nout

(1)

The MIMO layer is connected with Nin input layers
and Nout output layers. σ and {σi}Nout

i=1 are the non-
linear activation functions. We let B be the batch size,
z ∈ RB×d and a ∈ RB×d represent the pre-activation
and post-activation of this MIMO layer, respectively. Sim-

ilarly,
{(

z
(in)
i ∈ RB×d

(in)
i ,a

(in)
i ∈ RB×d

(in)
i

)}Nin

i=1
and{(

z
(out)
j ∈ RB×d

(out)
j ,a

(out)
j ∈ RB×d

(out)
j

)}Nout

j=1
represent the pre-activation and post-activation

pairs for the input layers and the output layers, respectively. In addition,
{
W

(in)
i ∈ Rd×d

(in)
i

}Nin

i=1

and
{
W

(out)
j ∈ Rd

(out)
j ×d

}Nout

j=1
refer to the weights connecting this layer and its adjacent layers.

We replace notation W with g to represent the gradient of the loss function L w.r.t its weights, e.g.,
g
(in)
i = ∇

W
(in)
i
L, g(out)

j = ∇
W

(out)
j
L. We omit the bias term for notation simplicity, since the bias

terms can be incorporated as part of the weight matrices.

We have the following equations by back-propagation:

g
(out)
j =

∂L
∂z

(out)
j

⊗ aT , g
(in)
i =

Nout∑
j=1

W
(out)T
j ⊗ ∂L

∂z
(out)
j

⊙ σ′(z)

⊗ a
(in)T
i (2)

Here we define operator ⊗ as tensor multiplication and operator ⊙ as broadcast row-wise product.
In addition, z, a are broadcast as a tensor of shape B × d × 1, similar broadcast mechanisms are
applied to z

(out)
j and z

(in)
i ; W(out)

j is broadcast as a tensor of shape 1×d
(out)
j ×d, and the transpose

operator (·)T switches the second and the third dimensions of a 3-d tensor. Based on Equation (2),
we cancel out ∂L/∂z(out)

j and approximate the input of the layer as follows:

a
(in)T
i ≃

Nout∑
j=1

W
(out)T
j ⊗ g

(out)
j ⊗ (aT )+

⊙ σ′(z)

+

⊗ g
(in)
i

(3)

Here we use (·)+ to represent the Moore–Penrose inverse of a matrix. For a third-order tensor, (·)+
calculate the Moore-Penrose inverse of each of its subspace via the first dimension. Equation (3)
establishes the formulation wherein we leverage the gradients, the parameters and the output activation
to estimate the input data of a neuron. For a neural network of general architecture, we can estimate
the input of each layer following back-propagation and ultimately obtain the reconstructed input data.

Generality. Our analysis is generic and can be applied to general neural network architectures as
long as they support back-propagation. For multi-layer perceptrons (MLP) and vanilla convolutional
neural networks (CNN) like LeNet, we have Nin = Nout = 1 for all layers; for residual networks
(ResNet), we have Nout > 1 for layers which receive the inputs from both the preceding layer and
the shortcut connections. Our framework is also compatible with more complicated architectures like
attention mechanism in transformers Vaswani et al. (2017). We defer detailed derivation for these
popular architectures in Appendix F.3. The mini-batch training setting is shown in Appendix F.1.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 MODULARIZED INPUT DATA RECONSTRUCTION

For models with large amount of parameters, it would be computationally expensive to infer the input
data by recursively using Equation (3). In this context, we formulate the large model as a composition
of several modules and apply input data reconstruction on the module level instead of the layer level.
We re-consider the multi-input multi-output (MIMO) layer as in Section 3.1 with input and output

connections followed by functions
{
f
(in)
i

}Nin

i=1
,
{
f
(out)
j

}Nout

j=1
, respectively:

z =

Nin∑
i=1

f
(in)
i (W

(in)
i a

(in)
i ), z

(out)
j = f

(out)
j (W

(out)
j a), j = 1, ..., Nout. (4)

a
(in)
i and a are calculated in the same way as in Equation (1). We follow the derivation as in

Section 3.1 and obtain the following equation for modularized input data reconstruction:

a
(in)T
i =

Nout∑
j=1

W
(out)T
j ⊗ g

(out)
j ⊗ (aT )+

⊙ σ′(z)⊗ f
′(in)
i (W

(in)
i a

(in)
i )

+

⊗ g
(in)
i

(5)

Equation (5) demonstrates modularized input data reconstruction. It establishes a high-level formula-
tion to estimate input data for large models. However, we need the gradient information from the
input module f

(in)
i to estimate f

′(in)
i (W

(in)
i a

(in)
i ), which will be elaborated in the next section.

4 GIT: GRADIENT INVERSE TRANSCRIPT

Exact-GIT. Based on Equation (3) and the analyses in Section 3.1, the input value a
(in)
i of a general

MIMO layer can be estimated from the activation a, the gradient g(in)
i of the input weight and output

weights {W(out)
j }Nout

j=1 . Therefore, we can recursively utilize Equation (3) to reconstruct the input
data by an auxiliary reconstruction model with all unknown variables, such as the weights, as its
trainable parameters. We use the mean square error between the true input data and its estimation as
the loss objective function. Once trained, the reconstruction model can subsequently reconstruct the
training data batch using the leaked gradients as input during inference.

The detailed pseudo-code for the training and the inference phase is shown as Algorithm 1. The
key innovation of our method is that we adaptively adjust the architectures of the reconstruction
models by Equation (3) based on the leaked model and map the leaked gradients to the estimated
input data, so we name it gradient inverse transcript (GIT). We further name our method Exact-GIT
when we strictly follow Equation (3), i.e. using model weights as parameters for the reconstruction
models, for all layers to reconstruct the input data. We present some specific example architectures in
Appendix F.3. The results of the Exact-GIT implementation are presented in Appendix F.2.

Coarse-GIT. Exact-GIT enjoys good interpretability but is computationally expensive for large
models. Moreover, the Moore-Penrose inverse in Equation (3) would introduces numerical instability
issues for large-scale tensors in practice. To tackle these issues, compared with Equation (3), we can
also model such estimation in a more coarse-grained manner and name the corresponding method
Coarse-GIT. Specifically, we utilize a shallow multi-layer perceptron (MLP) mθ, parameterized by
θ, to approximate the right-hand-side of Equation (3). The inputs of this shallow MLP are all the
known variables on the right-hand-side of Equation (3), including the leaked gradients and the output
activation. Therefore, like Equation (3), Coarse-GIT recursively estimates each layer’s input by
a
(in)
i = mθ

(
{g(out)

j }Nout
j=1 , g

(in)
i ,a

)
. The reconstruction model comprises multiple shallow MLPs,

with orders based on back-propagation and collectively trained to minimize the difference between
the estimated input and the corresponding ground truth.

Coarse-GIT also supports modularized input data reconstruction as discussed in Section 3.2, which
is more computationally affordable. It employs a shallow MLP mθ to estimate the right-hand-side
of Equation (5): a(in)

i = mθ

(
{g(out)

j }Nout
j=1 , g

f ′(in)
i , g

(in)
i ,a

)
where g

f ′(in)
i represents the leaked

gradients for the parameters in the input module f
(in)
i . Compared with layerwise reconstruction,
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Algorithm 1: Training and Inference of GIT

1: Training input: Training set of GIT, i.e., input-gradient pairs D = {
(
x(i), g(i)

)
}Ni=1. Epoch budget E.

Batch size B. Learning rate η.
2: Initialization: Construct the reconstruction model M parameterized by Θ based on the architecture of the

leaked model. Popular architectures are discussed as examples in Appendix F.3.
3: for the epoch index from 1 to E do
4: for the batch index from 1 to N/B do
5: Sample one mini-batch {

(
x(bi), g(bi)

)
}Bi=1

6: if use Exact-GIT then
7: Estimate the input {x̂(bi)}Bi=1 = M(Θ, {g(bi)}Bi=1) by recursively using Equation (3).
8: else
9: Estimate the input {x̂(bi)}Bi=1 = M(Θ, {g(bi)}Bi=1) by recursively using Equation (3) or

Equation (5) with right hand side replaced by a shallow MLP discussed in Section 4.
10: end if
11: Calculate the loss L(gen) = 1

2B

∑B
i=1 ∥x̂

bi − xbi∥ and update Θ← Θ− η∇ΘL(gen)

12: end for
13: end for
14: Training output: GIT generator M with learned parameters Θ.
15:
16: Inference input: GIT generator M with parameters Θ. Leaked gradients {g(i)}N

′
i=1.

17: Inference output: Input data estimation {x̂(i)}N
′

i=1 = M(Θ, {g(i)}N
′

i=1)

modularized reconstruction only considers the high-level topologies of the leaked model, making it
suitable for large models.

Bootstrap. For both Exact-GIT and Coarse-GIT, we need to estimate the output logits, i.e., last
layer’s output, to start the recursive estimation. The average output logits over the mini-batch can be
analytically estimated if the last layer has a bias term Zhu & Blaschko (2020). Otherwise, we use the
leaked gradients for the weight of the last layers to estimate the output logits by a shallow MLP. The
ablation studies are presented in Appendix G.5.

5 EXPERIMENTS

We comprehensively assess our methods on various datasets, including CIFAR-10 (Krizhevsky
et al., 2009), ImageNet (Deng et al., 2009) and facial datasets (Facial Expression Recognition (FER)
from kaggle, Japanese Female Facial Expression (Jaffe) (Lyons et al., 1998)). Correspondingly,
we employ various model architectures, including LeNet (LeCun et al., 1998), ResNet (He et al.,
2016) and ViT (Dosovitskiy et al., 2020) to comprehensively demonstrate the effectiveness of our
methods. Since the reconstruction models are trained by minimizing the mean square error (MSE)
between the ground-truth and the estimated inputs, in addition to MSE, we also use peak signal-to-
noise ratio (PSNR), structural similarity index (SSIM), learned perceptual image patch similarity
(LPIPS) as metrics to quantitatively and comprehensively evaluate the performance of training data
reconstruction. PSNR, SSIM and LPIPS reflect more perceptual and structural differences than MSE.

5.1 COMPARISON WITH BASELINES

We compare our method with baselines under two different settings: (1) we directly employ recon-
struction models to map the leaked gradient to the reconstructed input data; (2) we first employ
reconstruction models to obtain the input data estimation as priors and then refine the estimation by
optimization-based methods. Unless specified, we use 10000 random samples and their gradients to
train the reconstruction models. More implementation details are deferred to Appendix D.

5.1.1 DIRECT INFERENCE BY AUXILIARY RECONSTRUCTION MODELS

As shown in Table 2, we first compare GIT with other reconstruction models in direct inference.
Specifically, we compare GIT with Learning to Invert (LTI) Wu et al. (2023), which employs an MLP
with approximately the same number of parameters as the generators. In addition, we include the
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performance of optimization-based methods for reference, such as Deep Leakage from Gradients
(DLG) Zhu et al. (2019) and Inverting Gradients (IG) Geiping et al. (2020). The computational
overhead for optimization-based methods and mapping-based methods are fundamentally different.
Optimization-based methods necessitate a complete optimization process for each batch data recovery,
whereas input-gradient mapping-based methods need to train an auxiliary reconstruction model
capable of retrieving data from the corresponding leaked gradients. We run both types of methods
until their convergence and report the training and inference time for comparison.

The results in Table 2 include different tasks and network architectures. To save memory consump-
tion and guarantee numerical stability, we adopt Coarse-GIT for all architectures and specifically
modularized reconstruction for ViT. The GIT implementation details for specific architectures are
deferred to Appendix D. The results indicate that GIT outperforms in most cases and metrics than
baselines, including both optimization-based methods and mapping-based methods.

Visual inspection of reconstructed ImageNet samples by GIT as shown in Appendix G.7 reveals that
images with large uniform color regions tend to be recovered more accurately, while those containing
complex structures or multiple objects exhibit inferior reconstruction quality. This is consistent with
the observations in Table 2 that GIT always performs the best in term of MSE but may underperform
in term of LPIPS which focuses more on the image structure. Therefore, instead of directly employing
GIT for inference, we further utilize it as an image prior to guide optimization-based methods toward
more perceptually accurate results.

Table 2: Quantitative comparison for different datasets and models in terms of different metrics.
Dashed lines separate mapping-based methods with optimization-based ones. The training time
represents the time cost for training the reconstruction model. The inference time represents the
average time to reconstruct one input data instances from the leakage gradients during inference.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑ Training
Time (s)

Inference
Time (s)

CIFAR10

LeNet

DLG 0.073 11.32 0.2380 0.0847 / 1660
IG 0.082 11.27 0.3916 0.1193 / 1899
LTI 0.015 19.17 0.2202 0.5304 8549 0.0030
GIT 0.010 20.38 0.2663 0.5533 8071 0.0025

ResNet

DLG 0.084 10.93 0.3813 0.0667 / 7474
IG 0.080 10.75 0.2489 0.0739 / 6875
LTI 0.035 15.32 0.4400 0.2888 5212 0.0020
GIT 0.032 15.53 0.3957 0.3188 4019 0.0013

ImageNet

ResNet

DLG 0.147 9.25 0.8754 0.1324 / 3974
IG 0.161 9.17 0.8802 0.1283 / 4103
LTI 0.043 14.25 0.9017 0.3418 10200 0.0007
GIT 0.039 14.42 0.8513 0.3507 13011 0.0008

ViT

DLG 0.172 7.57 0.9513 0.1217 / 3734
IG 0.175 7.64 0.9427 0.1210 / 3025
LTI 0.046 13.37 0.9223 0.2117 9738 0.0029
GIT 0.034 15.25 0.8365 0.3774 6717 0.0025

5.1.2 OPTIMIZATION-BASED DATA RECONSTRUCTION USING GIT AS PRIORS

Optimization-based methods are shown highly sensitive to the initialization of dummy inputs Wei
et al. (2020). Therefore, recent methods, such as Gradient Inversion with Generative Image Prior
(GIAS) Jeon et al. (2021), propose to utilize generative models to generate image priors as initial-
ization of optimization-based methods. In this context, we can employ GIT to generate informative
priors, which are subsequently refined through iterative optimization-based methods like IG. For
model-based methods (Yin et al., 2021; Jeon et al., 2021; Li et al., 2022; Fang et al., 2023; Wu et al.,
2025; 2023), we select GIAS Jeon et al. (2021) and LTI Wu et al. (2023) as a representative baseline
for comparison. To ensure fairness, all reconstruction models are trained from scratch without relying
on any pretraining, and are followed by the same optimization-based method.

As shown in Table 3, using GIT to generate priors and refine the reconstructed image by IG (GIT+IG)
have the best performance in almost all cases and all metrics. In addition, GIT+IG always has
better performance than LTI+IG, indicating GIT based on adaptive architectures can provide better

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

priors than LTI based on fixed architectures. Furthermore, GIT+IG, as a hybrid approach, not only
converges faster but also outperforms both GIT and IG when used individually, demonstrating its
superior effectiveness. We visualize the convergence curves of IG with and without the image prior in
Appendix G.6, further highlighting the benefits of incorporating generated priors into the optimization
process.

Table 3: Quantitative comparison for different datasets and models in terms of different metrics. The
performance of IG is used as references. The training time represents the time cost for training the
reconstruction model. The inference time represents the average time to reconstruct one input data
instances from the leakage gradients during inference.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑ Training
Time (s)

Inference
Time (s)

CIFAR10

LeNet

IG 0.082 11.27 0.3916 0.1193 / 1899
GIAS+IG 0.009 21.45 0.0328 0.8925 10025 242
LTI+IG 0.002 30.86 0.0025 09356 8549 158
GIT+IG 0.001 31.25 0.0009 0.9551 8071 161

ResNet

IG 0.080 10.75 0.2489 0.0739 / 6875
GIAS+IG 0.019 18.96 0.2437 0.6125 10892 187
LTI+IG 0.009 20.48 0.0092 0.8266 5212 1651
GIT+IG 0.002 31.34 0.0041 0.9218 4019 1655

ImageNet

ResNet

IG 0.161 9.17 0.8802 0.1283 / 4103
GIAS+IG 0.037 14.32 0.8218 0.3765 27453 3209
LTI+IG 0.029 15.38 0.7434 0.4129 10200 2065
GIT+IG 0.021 16.78 0.6995 0.4758 13011 1998

ViT

IG 0.175 7.64 0.9427 0.1210 / 3025
GIAS+IG 0.039 14.09 0.7572 0.5239 36950 3997
LTI+IG 0.029 15.96 0.7250 0.4231 6138 2950
GIT+IG 0.019 17.21 0.6730 0.5025 6717 2987

5.2 RECONSTRUCTION UNDER CHALLENGING SITUATIONS

In this section, we investigate the robustness of reconstruction methods under different challenging
situations, including inaccurate leaked gradients and the substantial distributional shift between the
public data and the training data. In such situations, optimization-based methods are not applicable
or do not have competitive performance. Therefore, we mainly compare the results from the direct
inference by model-based methods. More implementation details are deferred to Appendix D.

5.2.1 INACCURATE GRADIENTS

Table 4: Comparison of metrics under gradient perturbation
with varying noise variance. The batch size is fixed at 1, and
the leaked model is LeNet with 5 layers.

Method std of noise MSE↓ PSNR↑ LPIPS↓ SSIM↑

IG
None 0.082 11.27 0.3916 0.1193
0.01 0.105 9.79 0.4098 0.1172
0.1 0.162 9.18 0.4320 0.1126

LTI
None 0.015 19.17 0.2202 0.5304
0.01 0.015 19.16 0.2205 0.5300
0.1 0.015 19.16 0.2199 0.5287

GIAS
None 0.012 19.21 0.2350 0.5398
0.01 0.012 19.18 0.3010 0.5219
0.1 0.013 18.87 0.3113 0.5189

GIT
None 0.010 20.38 0.2663 0.5533
0.01 0.010 20.36 0.2675 0.5520
0.1 0.010 20.37 0.2669 0.5522

Prior works Wu et al. (2023) have
shown degraded performance of
optimization-based methods when
the leaked gradients are inaccu-
rate. Unlike optimization-based meth-
ods which observe significant per-
formance degradation in the case of
inaccurate gradients, Appendix G.2
shows that input-gradient mapping-
based methods primarily utilize the
gradient elements with large absolute
values to generate outputs, indicating
robustness in such challenging cases.

In Table 4, we consider the leaked gra-
dients perturbed by isotropic Gaussian
noise with different standard devia-
tion (std). I compare different input-
gradient mapping-based methods and also include the performance of optimization-based methods
like IG for reference. The results confirm the vulnerability of optimization-based methods against
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gradient perturbations. Among input-gradient mapping-based methods, GIT performs the best in all
cases and all metrics, showing minimal susceptibility to inaccurate gradients.

5.2.2 DISTRIBUTION SHIFT

As shown in Figure 1, GIT is trained on the public dataset injected by the attacker, and aims to
reconstruct the local dataset. There may be a distributional shift between these two datasets, which
could influence the effectiveness of the reconstruction model.

We consider two possible scenarios of distribution shifts: (1) the public and local datasets come
from different subsets of the same dataset, with distribution differences arising from overlapping but
distinct classes; (2) the public datasets are subsets of huge but more general datasets, such as FER,
while the local datasets held by individual clients are more specific ones, such as Jaffe.

Our experiment in Table 5 investigate both scenarios above. For CIFAR-10 and ImageNet, the public
data and the local data share 6 classes and the rest classes are distinct. For facial dataset, the public
data and the local data have different resolutions and significant distributional shifts. The results in
Table 5 indicate that GIT demonstrates the strongest generalization ability across distribution shifts
and achieves the best performance on the local dataset. GIT learns an implicit representation of the
leaked model’s parameters by its adaptive architecture, which is more agnostic to the data distribution.
By contrast, GIAS learns a latent space that captures the distribution characteristics of the public
dataset, which requires the public and local datasets to share highly similar features to perform well.

Table 5: Comparison of the metrics under distributional shift. For each dataset, we select a federated
learning model architecture that is well-suited for its classification task: LeNet is used for CIFAR-10,
ResNet for ImageNet, and Vision Transformer (ViT) for facial datasets. The "classes" in the public
data and local data represent categories sampled to form datasets. In the case of facial data, we
conduct experiment where both the public data and local data come from FER, which serves as a
comparison.

Dataset
Public
Data

Local
Data

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑

CIFAR10 classes 1-8 classes 3-10
GIAS 0.065 11.87 0.3670 0.3092
LTI 0.029 15.38 0.3028 0.3790
GIT 0.020 17.44 0.2155 0.4150

ImageNet100 classes 1-53 classes 48-100
GIAS 0.061 12.15 0.9518 0.3126
LTI 0.049 13.10 0.9274 0.3150
GIT 0.043 13.67 0.9044 0.3224

Facial Data FER

FER
GIAS 0.020 17.73 0.4174 0.4051
LTI 0.020 17.60 0.4420 0.3949
GIT 0.018 17.93 0.3405 0.4228

Jaffe
GIAS 0.042 13.77 0.5128 0.2826
LTI 0.033 15.21 0.4625 0.3187
GIT 0.030 15.54 0.3461 0.3244

5.3 MORE ANALYSES AND ABLATION STUDIES

More analyses and ablation studies are deferred to Appendix G.

6 CONCLUSIONS

This work introduces Generative Gradient Inversion Transcript (GIT), a novel method for reconstruct-
ing training data in federated learning by exploiting gradient leakage. We propose a reconstruction
framework with an adaptive structure inspired by the inverse of backpropagation. GIT offers a
significant efficiency advantage, being more cost-effective in inference than optimization-based
methods, and can be seamlessly deployed after offline training. Compared to existing methods,
GIT achieves superior performance in most cases. Furthermore, GIT-generated outputs can serve as
priors for optimization-based gradient matching approaches, further enhancing attack effectiveness.
GIT demonstrates strong robustness under challenging conditions, including inaccurate gradients,
distributional shifts, and discrepancies in model parameters across clients. Future work will focus
on extending GIT into a more generalized autoencoder framework and enhancing its reconstruction
capabilities.
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A ETHICS STATEMENT

This work proposes a novel method, Generative Gradient Inversion Transcript (GIT), for reconstruct-
ing training data from gradients in federated learning. The study is conducted with the primary goal
of exposing and understanding potential privacy risks associated with gradient leakage, a critical
challenge in distributed learning paradigms. All experiments are performed using standard models
and architectures on publicly available datasets; no real-world sensitive or private data is involved.
We strongly discourage any malicious use of this method and advocate for its responsible application
in security and privacy research.

B REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will provide anonymized supplementary materials.
These will include the complete implementation code of the GIT framework. The configuration
details are shown in Appendix D.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, large language models (LLMs) were utilized solely as auxiliary
tools for improving writing quality. Their use was strictly limited to polishing the text, such as
correcting grammatical errors, enhancing sentence clarity, and ensuring consistent formatting. No
LLM was involved in generating the core research ideas, designing the GIT methodology, conducting
analyses, or drawing conclusions. All text that received LLM-assisted editing was meticulously
reviewed and substantively refined by the authors, who take full responsibility for the entire intellectual
content of this paper.

D EXPERIMENT CONFIGURATIONS

Universal Settings We employ various architectures for the leaked model. For LeNet, we use a 5-
layer configuration with kernel size 2 and same padding. For ResNet, we adopt a 15-layer variant with
kernel size 3, consisting of 4 blocks, each containing 2 convolutional layers and 1 skip connection.
For ViT, we connect four 4-head attention blocks following the patch embedding layer.

For generative methods, we use 10000 batches of input-gradient pairs from the public dataset to
train the generative model. During reconstruction, we use 10000 batches of gradients from the local
dataset to recover the corresponding local data. For iterative optimization-based methods, we perform
reconstruction for each batch of local data by starting from dummy inputs and applying iterative
optimization individually.

For Coarse-GIT and Module-GIT, we use mθ and fϑ with 3000 neurons in each hidden layer. For
LTI, we employ a generative model consisting of three hidden layers, each with 3000 neurons, as
described in Wu et al. (2023).

Specific Settings In our experiments described in Section 5.1.1, the inference time for generative
methods is computed as the average over reconstructing 10000 local data batches, whereas for
optimization-based methods, it is calculated based on the average over 10 local data batches, since
each reconstruction is significantly more time-consuming.

In our experiments described in Section 5.1.2, the inference time of generative+optimization-based
hybrid methods is computed as the sum of their individual inference times. For all methods, inference
time is calculated as the average over 10 local data batches.
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E NOTATION

L Loss objective function of the leaked model

L(gen) Loss objective function of GIT

σ(·) The elementwise activation function

σ′(·) The derivative of σ(·)
z Pre-activation of an MIMO layer

a Post-activation of an MIMO layer

W Weight matrix in a neural network

g Gradient of the loss objective function w.r.t W

B Batch size in mini-batch training

b Batch index in mini-batch training

E Empirical average over the samples in batch b

d Number of hidden nodes of an MIMO layer

Nin Number of input layers of an MIMO layer

Nout Number of output layers of an MIMO layer

N Number of input-gradient pairs for training GIT

N ′ Number of input-gradient pairs for testing

(·)+ Moore-Penrose inverse of a matrix; or Moore-Penrose of each of (·)’s
subspace via the first dimension when (·) is a third order tensor

(·)T Transpose of a matrix; or transpose of the second and the third dimension
when (·) is a third order tensor

⊗ Tensor Multiplification

⊙ Broadcast row-wise product

f(·)(in) A module that approximates the input mapping of an MIMO layer

f(·)(out) A module that approximates the output mapping of an MIMO layer

f ′(·) The derivative of module f(·)
D Input-gradient pairs

E Epoch budget

η Learning rate

(·)(i) The i-th sample in the dataset

M The generative model GIT

Θ Trainable parameters of GIT

mθ A shallow MLP parameterized by θ to approximate recursive reconstruc-
tion in Coarse-GIT

ϑ Trainable parameters in Module-GIT

x Input data of the leaked model

x̂ The estimated input data by GIT
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F METHODOLOGY DETAILS

F.1 MINI-BATCH TRAINING.

In mini-batch training, g(in)
i and g

(out)
j obtained by Equation (2) contains the gradient information

for all data instances in the mini-batch. In practice, the leaked the gradient is their average over the
mini-batch, that is g(in)

i ← Ebg
(in)
i [b, :, :], g(out)

j ← Ebg
(out)
j [b, :, :]. Since the leaked gradient is the

average over the mini-batch. When reconstructing the input data, we broadcast the leaked gradient in
the dimension of batch size in Equation (3).

F.2 EXACT-GIT

Activation Function. The Exact-GIT method in Algorithm 1 requires iteratively applying Equa-
tion (3). Equation (3) involves the derivative of the activation function σ′(z), which can be estimated
by a. Although function σ may not be an injective function, we demonstrate in Table 6 below that
we can uniquely identify σ′(z) given a for the most popular activation functions used in practice. In

Table 6: Mappings from a to σ′
i(z) for popular activation functions. Operations are elementwise.

Name ReLU Leaky ReLU Sigmoid Tanh

a = σ(z) max(0,z) max(kz,z) 1
1+e−z

ez−e−z

ezi+e−z

σ′(z)

{
1 if a > 0

0 if a = 0

{
1 if a > 0

k if a ≤ 0
ai(1− a) 1− a2

Exact-GIT, the weights of the generative attack model represent the estimated weights of the leaked
model. Therefore, we can compare the difference between their weights to investigate to which
degree the generative attack models recover the gradient-to-input inversion. In this context, we run
Exact-GIT based on Algorithm 1 and plot its convergence curve as in Figure 3. Figure 3 illustrates the
l2 distance curve between the generative model’s weights and the leaked model’s weights, alongside
the MSE between the reconstructed inputs and the ground truth inputs. As shown in Figure 3, when
Exact-GIT converges, its weights align closely with the ground truth weights. This convergence
highlights the effectiveness of exact-GIT in extracting weight information from the leaked model.
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Figure 3: The red curve represents convergence curve of l2 distance between weights of the generative
model and the leaked model. The blue curve represents the convergence curve of MSE between
reconstructed input and the ground truth input. The experiment is conducted on CIFAR-10 using
Exact-GIT.
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F.3 COARSE-GIT FOR DIFFERENT ARCHITECTURES

Section 3 demonstrates a generic framework for any neural network architectures as long as they
support back-propagation. In this section, we provide more technical details for specific neural
network architecture that we use in the experiments, including feed forward networks, residual
networks (ResNet) and vision transformer (ViT). We believe the details in this section will provide
more insights for practitioners to understand how GIT is adapted to different neural architectures.
Due to the scale of the architectures discussed in this section, we employ Coarse-GIT for all of them.

While related to the notation we use in Section 3, we use specific notations in this section for better
readability. We provide the exact definition for each of these notations.

F.3.1 FEED FORWARD NEURAL NETWORKS

Feed forward neural networks, including multi-layer perceptron (MLP) and convolutional neural
networks (CNN), can be formulated as follows:

Lθ(x, y) = ℓ(zN , y) = ℓ(WNaN−1, y)

ai = σi(zi), zi = Wiai−1, i = 1, 2, ..., N − 1
(6)

We denote the number of hidden nodes for the i-th layer as {di}N−1
i=1 . The input data batch a0 =

x ∈ RB×d0 , where B is the batch size. θ = {Wi ∈ Rdi×di−1}Ni=1 refer to the parameters of N
linear layers, including convolutional layers and fully connected layers. {σi}N−1

i=1 are the nonlinear
activation functions of different layers. In this context, {zi ∈ RB×di}N−1

i=1 and{ai ∈ RB×di}N−1
i=1

represent the pre-activation and post-activation of intermediate layers, respectively. zN = WNaN−1

is the output logit, and ℓ is the function calculating the classification error, such as the softmax
cross-entropy function. We use gi = ∇WiLθ(x, y) to represent the gradient of each weight matrix.

In this context, similar to Equation (2) and Equation (3) in Section 3, we derive the back-propagation
and then the iterative input layer approximation for feed forward neural network defined in Equa-
tion (6) as follows:

gi =

N−1∏
j=i

(
WT

j+1 ⊙ σ′
j(zj)

)
⊗ ∂L

∂zN
⊗ aT

i−1 (7)

aT
i−1 ≃ aT

i ⊗ g+
i+1 ⊗ (WT

i+1 ⊙ σ′
i(zi))

+ ⊗ gi (8)

⊗ and ⊙ have the same definition as in Section 3. As we can see, Equation (7) can be considered as a
specific case of Equation (3) where Nin = Nout = 1 Furthermore, we employ Coarse-GIT in the
experiments. Specifically, we use an MLP model f parameterized by ϑ to estimate ai−1 from ai,
gi+1 and gi. We apply Equation (7) recursively and utilize it to reconstruct the input data.

ai−1 = fϑ(ai, gi+1, gi) (9)

F.3.2 RESIDUAL NETWORKS

The key feature for residual networks (ResNet) He et al. (2016) is the skip connections, resulting in
Nout > 1 for layers that combine inputs from both the previous layer and shortcut connections.

Without the loss of generality, we generally follow the notation of feed forward neural network
defined in (6) except that there is a single shortcut connection linking the k-th layer to l-th layer
(k < l). Specifically, the shortcut connection links the post-activation ak to the pre-activation zl with
a weight parameter S ∈ Rdk×dl . Therefore, {zi}Ni=1 and {ai}Ni=1 are calculated in the same manner
except that zl = Wlal−1 +Sak. Based on the back propagation, gi is calculated in the same way as
in Equation (7) when i > k. When i ≤ k, gi is calculated as follows:

gi =

k−1∏
j=i

Mj ⊗

l−1∏
j=k

Mj + S⊙ σ′
k(zk)

⊗ N−1∏
j=l

(
WT

j+1 ⊙ σ′
j(zj)

)
⊗ ∂L

∂zN
⊗ aT

i−1 (10)

Following a similar analysis to feed forward neural networks, we can derive an approximation of
ai−1 using ai. The approximation is the same as (8) except for the case i = k. This is because
we calculate ai using ai−1 in the same manner except for the case i = k, where the k-th layer is
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connected to not only the immediate preceding layer but also the l-th layer via shortcut connection.
Therefore, ak−1 is approximated in a different way from (8) as follows.

ak−1 ≃
(
WT

k+1 ⊙ σ′
k(zk)

)
⊗ gk+1 ⊗ (aT

k )
+ + (S⊙ σ′

k(zk))⊗ gl ⊗ (al−1)
+ ⊗ gk (11)

Compared with (8), the estimation in (11) incorporates not only gk and gk+1 but also gl to estimate
aT
k−1, which is consistent with the case of Nout = 2 in the analysis in Section 3. Since ak is

connected to zl via skip connection, gradients can flow directly from the k-th layer to the l-th layer
in back propagation. The insight provided by the approximation in Equation (11) indicates that the
reconstruction sequence follows the same path as the gradient flow during backpropagation.

We use Coarse-GIT in the experiment for ResNet, similar to Equation (9), we employ an MLP model
f parameterized by ϑ and reconstruct ak−1 by:

ak−1 = fϑ(ak, gk+1, gk, gl) (12)

When estimating the input from the leaked gradients, we apply Equation (12) when there is a shortcut
connection and Equation (9) otherwise.

F.3.3 VISION TRANSFORMER (VIT)

In the case of vision transformer (ViT) (Dosovitskiy et al., 2020), we apply modularized input data
reconstruction and represent the each self-attention module as follows:

z = softmax
(
QK⊤
√
dk

)
V, Q = a

(in)
i WQ, K = a

(in)
i WK , V = a

(in)
i WV (13)

where WQ, WK and WV represent the mapping weights to the tuple of query, key and value.
In multi-head attention (MHA), we concatenate the outputs of several self-attention modules and
transform them by an affine operation. Without the loss of generality, we focus on single layer
attention. Furthermore, we reorganize Equation (13) to fit the formulation of Equation (4):

z = f
(in)
i ([Q,K,V]) := softmax

(
QK⊤
√
dk

)
V

[Q,K,V] = a
(in)
i W

(in)
i := a

(in)
i [WQ,WK ,WV ]

(14)

Equation (13) identifies the concrete definitions of f (in) and W
(in)
i for self-attention modules in the

framework by Equation (4) so that we can plug these definitions employ Equation (5) to reconstruct
the input of the attention layer by the leaked gradients.

Due to the large amount of parameters in ViT, we use Coarse-GIT for input reconstruction. If we use
gQ, gK , gV to represent the leaked gradients of WQ, WK and WV , respectively, then we employ
an MLP module f parameterized by ϑ to reconstruct a(in)

i in a self-attention module.

a
(in)
i = fϑ(g

Q, gK , gV , {g(out)
j }Nout

j=1 , z) (15)

where {g(out)
j }Nout

j=1 are the leaked gradients of output matrices as defined for a general MIMO layer
in Section 3. The gradient inversion of fully-connected layers and residual structure in the ViT follows
the same formulation as described in previous sections. Altogether, we can iteratively employ these
formulas to reconstruct the input estimation of each layer, starting from the last layer and progressing
to the first layer of the ViT model, eventually obtaining the input data estimation.

G MORE EXPERIMENTAL ANALYSES AND ABLATION STUDIES

G.1 DISCREPANCIES IN MODEL PARAMETERS

In federated learning, gradient sharing may be asynchronous Geiping et al. (2020), leading to
slight discrepancies in model parameters across different nodes. Such inconsistencies can affect the
performance of both optimization-based and generative reconstruction methods.

To create discrepancies in model parameters, we train each node with different volume of local dataset
for several epochs, then we use generative models trained on input-gradient pairs from one node, i.e.,
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the node under attack, to reconstruct the input data from another node, which is not necessarily under
attack and has parameter discrepancies. In this context, larger local data and more training epochs
lead to larger parameter discrepancies, making the input data reconstruction task more challenging.

Our experimental results under different settings are summarized in Table 7. We can clearly observe
that GIT achieves the best performance under significant parameter discrepancies and is still capable
of reconstructing high-quality training data, demonstrating its robustness to variations in model
parameters across nodes. We also find that increasing the number of local datasets sometimes leads
to reduced performance degradation. This may be because a larger number of local datasets increases
the likelihood of including samples from classes that are easier to reconstruct, thus introducing a
degree of randomness that favors recovery.

Table 7: Comparison of the MSE for GIT with varying parameter discrepancies. The parameter
discrepancies is quantified by volume of local dataset & number of locally trained epochs. The leaked
model for CIFAR10 is LeNet, and for ImageNet is ResNet.

Dataset
Volume of

Method
Number of Locally Trained Epochs

Local Dataset 0 10 20

CIFAR10

500
IG 0.082 0.089 0.096
LTI 0.015 0.019 0.023
GIT 0.010 0.013 0.017

1000
IG 0.082 0.097 0.102
LTI 0.015 0.026 0.030
GIT 0.010 0.017 0.020

10000
IG 0.082 0.096 0.107
LTI 0.015 0.032 0.036
GIT 0.010 0.029 0.034

ImageNet

500
IG 0.161 0.162 0.162
LTI 0.043 0.049 0.053
GIT 0.039 0.043 0.044

1000
IG 0.161 0.162 0.163
LTI 0.043 0.049 0.053
GIT 0.039 0.043 0.043

10000
IG 0.161 0.164 0.164
LTI 0.043 0.048 0.051
GIT 0.039 0.040 0.040

G.2 RECONSTRUCTION WITH CLIPPED GRADIENTS

The prune rate γ represents the proportion of gradient directions with small absolute values that are
pruned (Pruning is applied by a mask with 0 and 1 values, therefore the dimension of gradients is
not changed). As shown in Table 8, gradient pruning has minimal impact on GIT’s performance
but significantly degrades the performance of DLG. The results indicate that even when pruning
90% of the gradient components with smaller absolute values, generative approaches remain largely
unaffected, relying only on the top 10% of the largest gradient values for training. This suggests
that generative approaches primarily capture the dominant gradient components with large absolute
values during training, unlike optimization-based methods, which require a finer alignment with the
full gradient information.

It can be deduced from Table 8 that generative approaches are less effective than optimization-based
methods in recovering fine-grained image details. However, they demonstrate greater robustness
against inaccurate gradients and gradient pruning while also being more efficient. Furthermore,
generative methods train significantly faster, as gradient matching requires extensive computation to
precisely align finer gradient details, leading to higher time complexity.
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Table 8: Comparison of the MSE under gradient
pruning with varying pune rate. The dataset is
CIFAR10 and the leaked model is LeNet.

Prune rate γ DLG LTI GIAS GIT

0 0.073 0.015 0.027 0.010

0.9 0.098 0.016 0.033 0.010

0.99 0.116 0.021 0.049 0.016

0.999 0.187 0.049 0.070 0.040

Table 9: MSE comparison with varying volumes
of training data. The dataset is CIFAR10 and the
leaked model is LeNet.

Data Volume LTI GIAS GIT

1000 0.039 0.049 0.027

2000 0.033 0.045 0.021

5000 0.027 0.036 0.015

10000 0.015 0.027 0.010

G.3 EFFECT OF NOISE ON THE PERFORMANCE OF OPTIMIZATION-BASED RECONSTRUCTION
METHODS

Under inaccurate gradients, generative approaches demonstrate robust performance, as shown in
Table 4. However, IG fails to recover meaningful data with as little as 0.01 noise applied. This
highlights the significant impact of noise on gradient matching methods like DLG. In the contrast, IG
fails to recover meaningful data with as little as 0.01 noise applied. This highlights the significant
impact of noise on optimization-based methods like IG.

Noise std = 0

Noise std = 0.0001

Noise std = 0.001

Noise std = 0.01

Figure 4: The figure illustrates the reconstructed images for IG when the leaked model is LeNet and
the dataset is CIFAR-10. Varying levels of noise are applied to the gradients. The results depict IG’s
reconstructions between the 200th and 300th optimization iterations.

G.4 RECONSTRUCTION WITH DIFFERENT VOLUMES OF TRAINING DATA

Training data volume refers to the size of the auxiliary dataset sampled by the attacker from public
data. A larger training dataset, akin to performing data augmentation, can enhance the generalization
ability of the generative model. However, it also incurs higher computational costs, requiring more
time and resources to train the model. Moreover, in practice, acquiring a large volume of data with
a distribution similar to the local dataset can be challenging. Given this tradeoff, it is essential to
evaluate the performance of the generative approach under different training data volumes. In this
section, we evaluate the performance of GIT using varying amounts of training data: 1, 000, 2, 000,
5, 000 and 10, 000 samples. Table 9 presents the impact of training data volume on the performance
of the generative approach. It demonstrates that even with only 1, 000 input-gradient pairs, GIT is
capable of reconstructing reasonable images, indicating that effective recovery is achievable with
a limited amount of training data. As the generative model achieves near-perfect performance
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with larger training sets, we can conclude that increased data volume helps mitigate overfitting and
consequently improves model performance. Moreover, GIT consistently outperforms both LTI and
GIAS across all settings.

G.5 RECONSTRUCTION WITHOUT GRADIENT OF LAST LAYER’S BIAS

When the last layer of the neural network has a bias term bN , i.e., aN = WNaN−1 + bN , following
the idea of Ma et al. (2023), we have ∂L

∂zN
= ∂L

∂bN
. That is to say, we can directly utilize the gradient

of the bias term in the last year as ∂L
∂zN

. When the last layer of the neural network does not have
a bias term, we cannot directly obtain ∂L

∂zN
. Therefore, we employ ablation study using the leaked

gradients for the weight of the last layers to estimate the output logits by a shallow MLP.

Table 10: Quantitative comparison for GIT with and w/o gradient of last layer’s bias.

Dataset
Leaked
Model

Method MSE↓ PSNR↑ LPIPS↓ SSIM↑

CIFAR10 LeNet
with bias 0.010 20.38 0.2663 0.5533
w/o bias 0.012 19.35 0.2879 0.5035

Imagenet Resnet
with bias 0.039 14.42 0.8513 0.3507
w/o bias 0.039 14.30 0.9017 0.3120

G.6 OPTIMIZATION-BASED METHODS WITH AND W/O GENERATED IMAGE PRIOR

As shown in the Figure 5, the blue curve represents the convergence of the hybrid method, while the
red curve illustrates IG without an image prior. It is evident that the hybrid method not only converges
faster but also achieves superior performance. The fluctuations in the blue convergence curve are due
to the small learning rate set for the optimizer, which causes oscillations when the loss falls below 1.
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Figure 5: The convergence curve of DLG with and without an image prior. The leaked model is
ResNet. The vertical axis indicates the distance between the dummy gradients and the corresponding
ground-truth gradients.
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G.7 VISUAL RESULTS

G.7.1 VISUAL RESULTS ON CIFAR-10 AND TINY IMAGENET

Figure 6 illustrates reconstructed CIFAR-10 and Tiny ImageNet direct using GIT for reconstruction
or using GIT as generated image prior. These results show that directly using GIT for reconstruction
can achieve reasonable recovery but tends to lose some high-frequency details. In contrast, using
GIT as an image prior—specifically for initializing optimization-based methods—helps preserve
high-frequency information and achieves reconstruction quality beyond what optimization-based
methods alone can attain.

Ground Truth

Direct GIT

GIT as Image Prior

Ground Truth

Direct GIT

GIT as Image Prior

Figure 6: The figure illustrates the ground truth input images, the direct reconstructed images by
GIT and the reconstructed images using IG initialized with GIT-generated prior, from top to the
bottom respectively. The top three rows correspond to the CIFAR-10 dataset with the leaked model
being LeNet, while the bottom three rows correspond to the TinyImageNet dataset with the leaked
model being ResNet.

G.7.2 VISUAL RESULTS FOR GIT ON LARGE RESOLUTION

Reconstruction at high resolution tends to be more challenging, especially for images containing
complex objects. To illustrate the characteristics of both easy and hard-to-recover examples, we
present the first 8 and the best 100 reconstructions. The results are shown in Figure 7 and Fig-
ure 8. Odd-numbered rows show the ground-truth images, while even-numbered rows display the
corresponding reconstructions obtained directly using GIT.

Figure 7: The first 8 reconstructed images (ImageNet, ResNet). Odd-numbered rows show the
ground-truth images, while even-numbered rows display the corresponding reconstructions obtained
directly using GIT.
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Figure 8: The best 100 reconstructed images with lowest MSE (ImageNet, ResNet). Odd-numbered
rows show the ground-truth images, while even-numbered rows display the corresponding reconstruc-
tions obtained directly using GIT.
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