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Abstract
Unraveling the co-expression of genes across studies enhances the understanding of cellular pro-
cesses. Inferring gene co-expression networks from transcriptome data presents many challenges,
including the high-dimensionality of the data relative to the number of samples, sample correla-
tions, and batch effects. To address these complexities, we introduce a robust method for high-
dimensional graph inference from multiple independent studies. We base our approach on the
premise that each dataset is essentially a noisy linear mixture of gene loadings that follow a multi-
variate t-distribution with a sparse precision matrix, which is shared across studies. This allows us
to show that we can identify the co-expression matrix up to a scaling factor among other model pa-
rameters. Our method employs an Expectation-Maximization procedure for parameter estimation.
Empirical evaluation on synthetic and gene expression data demonstrates our method’s improved
ability to learn the underlying graph structure compared to baseline methods.
Keywords: co-expression network inference, high-dimensional statistics, multi-view linear inde-
pendent component analysis

1. Introduction

Over the past decades, advances in DNA sequencing technologies have led to significant advances
in gene regulation research. These developments have provided deep insights into biological func-
tions and disease processes. One notable example, which we will revisit later, is the comprehensive
study of the bacterium Bacillus subtilis. This Gram-positive bacterium serves as a model organism
for studying bacterial chromosome replication and cell differentiation. A substantial research en-
deavor has led to a continuous manual collection of biological findings about Bacillus subtilis reg-
ulation and gene functionality on the online platform SubtiWiki (Pedreira et al., 2021), providing a
clearer and more precise understanding of its cellular processes. This underscores the importance
of developing methods that facilitate this process by robustly identifying such gene-gene interac-
tions in a vast collection of experimental data from multiple sources, such as different technologies
and laboratories.
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Figure 1: Two variations of the gene regula-
tion of genes X,Y, Z (A) colored in purple
and their corresponding co-expression net-
work illustrated in (B) in yellow. In (A) (left),
genes X,Y, Z are regulated by a common la-
tent factor, such as another gene. The exam-
ple in (A) (right) shows that gene X regulates
both Y and Z. In addition, a bi-directional
dashed line indicates potential confounding
between genes Y and Z.

Biologically relevant gene-gene interactions are
often represented by a gene co-expression network
(GCN), which is an undirected graph where each
node corresponds to a gene. Genes that are con-
nected or positioned closely within the GCN belong
to the same functional modules, indicating that they
work together to perform coordinated cellular activ-
ities. Therefore, constructing a GCN facilitates the
understanding of gene regulation mechanisms. In
this work, we aim to construct a GCN that closely
resembles a gene regulatory network, considering
only links that connect genes within the same reg-
ulatory network, such as regulator-regulated gene
pairs or co-regulated genes (see Figure 1).

The analysis of transcriptome data presents sev-
eral challenges. First, the number of genes typically
far exceeds the number of samples (p≫ n), making it a high-dimensional problem. Second, exper-
iments often have a limited number of replicates per condition, sometimes as few as two, limiting
the effectiveness of causal discovery algorithms to infer gene regulatory relationships without addi-
tional prior knowledge. Third, correlations arise not only between genes but also between samples,
due to overlapping experimental designs and batch effects from non-biological factors such as vari-
ations in technology or laboratory equipment. Together, these challenges complicate the inference
of GCNs, not to mention the even more challenging task of inferring regulatory networks. In re-
sponse, current research in gene co-expression analysis often makes specific assumptions about the
data generation model to deal with this complexity. This is typically represented by a noisy decom-
position model: X = SA + E, where X ∈ Rp×n is a gene expression matrix describing the activ-
ity of p genes across n different samples (experiments, patients, tissues, etc.), S ∈ Rp×k is the gene
loading matrix, A is the sample loading matrix, and E is the additive noise. A common assump-
tion is that GCNs can be reconstructed from the gene loadings, where gene clusters are identified
from each latent vector, a column in the gene loadings matrix S (e.g. (Moran et al., 2021; Hochre-
iter et al., 2010; Sastry et al., 2019)).

This paper presents a novel probabilistic method for inferring complex network structures from
high-dimensional data across multiple views. Unlike traditional approaches that rely primarily on
clustering techniques or Gaussian models (e.g. (Moran et al., 2021; Hochreiter et al., 2010; Gao
et al., 2016; Kim and Park, 2007; Danaher et al., 2014; Guo et al., 2011)), our method employs
a matrix-variate t-distribution framework that extends TLASSO by Finegold and Drton (2011).
As pointed out by Finegold and Drton (2011) the t-distribution provides a more robust modelling
approach under the assumption that the data is contaminated, what we often observe in practice. We
refer to our model as MVTLASSO, which captures the covariance at both the sample and variable
levels in the multi-view setting. Key contributions of this work, besides the proposed model, include
the formulation of identifiability guarantees for the model parameters, such as the sparse precision
matrix, which we can identify up to a scalar multiple (see Section 2.2). For model estimation, we
implement an Expectation-Maximization (EM) procedure, which is described in Section 3. We
apply MVTLASSO to both synthetic datasets and real-world gene expression data to validate its
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effectiveness. Our empirical results in Section 4 show that MVTLASSO consistently demonstrates
improved accuracy in reconstructing the underlying graph structures compared to baseline methods.

2. Robust Co-Expression Inference from non-i.i.d Samples

In this section, we introduce and justify our chosen generative model, which we will refer to as
MVTLASSO, placing it within the broader context of known GCN inference methods. In Sec-
tion 2.2, we present theoretical guarantees for recovering the true model parameters.

Our approach can be seen as an instance of ICA, where the latent components, or gene load-
ings, are divided into two categories: those used to construct the GCN, denoted by S, and those
considered noise, denoted by Z, which do not contribute to the GCN inference. We infer the GCN
from the sparse precision matrix Θ estimated from all “useful” gene loadings S across datasets (or
views) that follow a multivariate t-distribution similar to (Finegold and Drton, 2011). More specifi-
cally, we make the following assumptions regarding the data generation process:

Definition 1 Consider the scenario where we are given D different data sets Xd ∈ Rp×nd , which
may come from different sources and follow the representation:

Xd = SdAd + ZdBd,

where for each d = 1, . . . , D, it holds:

1. (A⊤
d |B⊤

d )
⊤ ∈ R(kd+rd)×nd have full row rank with

rank(Ad) = kd and rank(Bd) = nd − kd =: rd,

2. the columns of Sd ∈ Rp×kd are mutually independent and follow a multivariate t-distribution,
i.e. Sd:,i ∼ tp(ν, µd,Σ) with ν > 2 degrees of freedom and a sparse inverse dispersion matrix
Θ := (Σ)−1 that has a prior distribution pλ(Θ) with λ > 0 defined as

pλ(Θ) ∝ exp (−λ∥Θ∥1) with ∥Θ∥1 =
∑
i,j

|Θij |,

3. the columns of Zd ∈ Rp×rd are noise random variables and are i.i.d multivariate t-distributed
tp(ν, 0, σ

2
dIp), such that there is no λ ∈ R with σ2dIp = λΣ,

4. the latents Sd and noise matrix Zd are conditionally independent given Θ.

This perspective on Θ as a representation of the GCN closely aligns our work with that proposed
by Stegle et al. (2011) for the single view case. Compared to (Stegle et al., 2011), we shift from a
multivariate normal distribution to a multivariate t-distribution with sparse Θ. Although this moves
away from the theoretical guarantees of conditional independence to a more relaxed condition of
conditional uncorrelation, as outlined by Finegold and Drton (2011) and Section 2.1, this approach
provides more robust inference for unknown parameters, in this case,Ad, Bd, µd,Θ. This robustness
is particularly beneficial in the presence of data contamination, a common challenge in the analysis
of transcriptome data. Additionally, compared to TLASSO by Finegold and Drton (2011), three
major differences are that MVTLASSO models the correlation between the samples via the mixing
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matrix Ad, it is designed to simultaneously model multiple views and assumes that some gene
loadings represent noise and therefore do not contribute to the estimation of the GCN matrix.

Finally, our model is reminiscent of dimensionality reduction methods, similar to the application
of principle component analysis (PCA), aiming to identify kd components per dataset (or view)
that capture the most significant signals from the data. The remaining components are considered
as i.i.d. noise, following a multivariate t-distribution, which does not play a role in estimating the
network structure, represented by Θ. A similar decomposition is proposed by Parsana et al. (2019),
where the authors show that removing the noise components after applying PCA improves the GCN
inference of several algorithms.

2.1. Dependence Relationship between the Genes in the GCN

The GCN is inferred from Θ as follows. Consider a graph G = (V,E), where V = {1, . . . , p}
represents the set of observed genes and E is a collection of edges between pair of nodes (or genes)
i and j for which the corresponding entry Θij is non-zero.

An interesting aspect is understanding the types of (in)dependencies encoded by this graph
structure. For context, in Gaussian models, the absence of an edge between two nodes i and j im-
plies conditional independence between them, given the remaining nodes. However, this direct im-
plication does not translate to multivariate t-distributions. Instead, a weaker concept of dependence,
conditional uncorrelation, applies, as discussed in (Finegold and Drton, 2011):

Theorem 1 ((Finegold and Drton, 2011)) Let S ∼ tp(ν, µ,Σ), where Σ is a positive definite ma-
trix with (Σ−1)ij = 0 for indices i ̸= j corresponding to non-edges in the graph G. If two nodes i
and j are separated by a set of nodes C in G, then Si and Sj are conditionally uncorrelated given
SC .

While Theorem 1 shows that conditional uncorrelation can be derived from the graph structure, it
leaves open the question of whether multivariate t-distributions can be factorized according to any
Bayesian network. The following result addresses this issue by showing that the only Bayesian
network compatible with the multivariate t-distribution is a fully connected DAG:

Lemma 1 Let G = (V,E) be a DAG with vertices V = {1, . . . , p}. Furthermore, the joint
distribution of the corresponding variables S1, . . . , Sp is multivariate t-distribution tp(ν, µ,Σ) with
0 < ν < ∞. Let pa(k) ⊆ V \ {k} denote the set of parents of node k. Then, the following
holds P (S1, . . . , Sp) =

∏p
k=1 P (Sk | Spa(k)) iff there exists an ordering Sτ(1), . . . , Sτ(p) such that

pa(τ(k)) = {τ(1), . . . , τ(k − 1)}, i.e. the graph is fully connected.

Remark 1

(a) Lemma 1 suggests that from the estimated Θ, we can infer only conditional uncorrelation be-
tween the genes, not conditional independence. However, this result does not contradict the
GCN notion used in this work, as detailed in Section 1, which is based on correlation rather
than statistical independence.

(b) According to Theorem 1, the reconstructed GCN should exclude edges between genes that are
conditionally uncorrelated given the rest of the genes. This implies that co-regulated genes
will not be connected in the GCN, as they become conditionally uncorrelated when conditioned
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on their regulators. However, in practice, this assumption is often violated due to specific
limitations in the data, e.g. lack of examples with temporal information.

Temporal information plays a crucial role in inferring gene regulatory relationships from ob-
served data. Consider an example with three genes: X , Y and Z. At time t the gene X be-
comes active and we observe its expression as Xt. At the subsequent time point t+ 1, changes
in the expression of genes Y and Z are detected and recorded as Yt+1 and Zt+1 respectively.
This sequential pattern suggests a regulatory relationship, with Xt potentially affecting Yt+1

and Zt+1. In other words, the gene X probably regulates Y and Z.

However, in many experimental datasets there is limited availability of time series data, which
limits the ability of machine learning algorithms to clearly infer sequential dependencies. For
example, without observing gene profiles at time t but only at t + 1, Yt+1 and Zt+1 appear to
be confounded by the hidden variable Xt. Thus, Y and Z may appear to be directly related in
GCN, even though X may be their regulator.

Yin et al. (2021) empirically demonstrated that without accounting for temporal information,
regulators like X may appear uncorrelated with their targets, causing regulatory connections
to be absent from the GCN.

2.2. Identifiability Guarantees

Next, we will present our theoretical guarantees for identifying model parameters from Definition 1,
i.e {Ad, Bd, µd, σ

2
d}, d = 1, . . . , D, and Σ. We will show that the location µd and dispersion matrix

Σ of the gene loadings, as well as the sample loadings Ad are identifiable up to the same constant
across all views:

Proposition 1 Let X1, . . . ,XD with Xd ∈ Rp×nd be random matrices with the following two
representations:

S
(1)
d A

(1)
d + Z

(1)
d B

(1)
d = Xd = S

(2)
d A

(2)
d + Z

(2)
d B

(2)
d ,

where for d = 1, . . . , D, both representations, j ∈ {1, 2}, satisfy:

A
(j)
d ∈ Rk

(j)
d ×nd , B

(j)
d ∈ R(nd−k

(j)
d )×nd , S

(j)
d ∈ Rp×k

(j)
d , Z

(j)
d ∈ Rp×(nd−k

(j)
d ),

and the properties of Definition 1. Then, for d = 1, . . . , D, we have k(1)d = k
(2)
d =: kd. Further-

more, there exist permutation matricesPA1 , . . . , PAD
, PB1 , . . . , PBD

and constants c, c1, . . . , cD > 0
such that:

A
(2)
d = cPAd

A
(1)
d , Σ

(2)
S =

Σ
(1)
S

c2
, µ

(2)
Sd

=
µ
(1)
Sd

c
,

B
(2)
d = cdPBd

B
(1)
d , Σ

(2)
Zd

=
Σ
(1)
Zd

c2d
, µ

(2)
Zd

=
µ
(1)
Zd

cd
.

In contrast to well-established results in the ICA literature (Comon, 1994; Kagan et al., 1973),
which provide identifiability for the univariate case, we extend these results to multivariate elliptic
distributions, as shown in Corollary 1. Proposition 1 is a special case and a direct consequence of
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our more general results. Unlike the single-view case, the multi-view setting allows us to achieve
identifiability of the sample matrices Ad across views, up to a common scaling factor c. Further-
more, assumption (3) in Definition 1 is essential for distinguishing between noise and gene load-
ings; if no noise components are present, this assumption becomes unnecessary.

3. Parameter Estimation

We begin by deriving the data likelihood, drawing inspiration from the ICA literature, e.g. the works
of (Hyvarinen, 1999; Amari et al., 1995). Instead of making derivations with respect to Ad and
Bd, we proceed in terms of the inverse of the concatenated matrix, denoted as Wd = (Ad | Bd)

−1.
Consequently, the “unmixed” signal Yd := XdWd represents the estimates for the latent vectors
Sd:,i for i = 1, . . . , kd, and Zd:,i for i = 1, . . . , nd − kd, up to some scaling and permutation as
described in Proposition 11. These signals follow a multivariate t-distribution. Thus, the likelihood
for all views X1, . . . ,XD is:

p(X1, . . . ,XD | {Wd, µd, σd }Dd=1,Σ) =
D∏

d=1

p(Xd) =
D∏

d=1

| detWd| p(Xd ·Wd) (1)

=
D∏

d=1

| detWd|
nd∏
i=1

tp
(
Yd:,i | ν, ρdi ,Φdi

)
,

where Φdi = 1{i≤kd}Σ + 1{i>kd}σ
2
dIp and ρdi = 1{i≤kd}µd. Thus, the data likelihood is propor-

tional to the product of the probabilities of
∑D

d=1 nd independent multivariate t-distributed vectors.

3.1. The Expectation-Maximization Procedure

Unfortunately, directly estimating the unknown parameters from (1) is infeasible. However, we
can leverage the alternative representation of the multivariate t-distribution described in Theorem 4,
which is central to the EM procedure proposed by Liu and Rubin (1995); Finegold and Drton (2011).
For each random vector Yd:,i , the generative process can equivalently be represented as:

τdi ∼ Γ
(ν
2
,
ν

2

)
, Yd:,i ∼ N (ρdi ,Φdi/τdi),

where the variables τdi are unobserved. Thus, the complete data log-likelihood with unknown
parameters γ := {Wd, µd, σd}Dd=1 ∪ {Σ} and random variables X1, . . . ,XD and τ1, . . . τD with
τd := (τd1 , . . . , τdnd

) is (up to additive constants) given by:

l
(
γ; {Xd, τd}Dd=1

) +∝
∑
d

{
ln |detWd|+

nd∑
i=1

1

2
ln detΦ−1

di
− τdi

2
tr
(
Φ−1
di

Yd:,iY
⊤
d:,i

)
(2)

+ τdiρ
⊤
di
Φ−1
di

Yd:,i −
τdi
2
ρ⊤diΦ

−1
di
ρdi

}
,

1. Specifically, the first kd columns of Yd correspond to the estimates of Sd, while the remaining n − kd columns
correspond to the estimates of Zd.
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where Φ−1
di

= 1{i≤kd}Θ + 1{i>kd}
1
σ2
d
Ip with Θ = (Σ)−1. The right side of (2) is linear in the la-

tent variables τdi . Thus, for the E-step it suffices to compute E[τdi | Xd] for every d = 1, . . . , D
and i = 1, . . . , nd. This can be derived directly by observing that the conditional distribution
p(τdi | Xd) = p(τdi | Yd:,i) is given by

τdi | Yd:,i ∼ Γ

(
ν + p

2
,
ν + δ(Yd:,i , ρdi ,Φdi)

2

)
with

δ(Yd:,i , ρdi ,Φdi) = (Yd:,i − ρdi)
⊤Φ−1

di
(Yd:,i − ρdi).

Consequently, for the conditional expectation we get: E[τdi | Yd:,i ] =
ν + p

ν + δ(Yd:,i , ρdi ,Φdi)
.

Hence, the EM procedure iterates through two main steps for each view d: 1) the estimation of
τdi while keeping ρdi , Φdi , and Wd fixed; and 2) the estimation of ρdi , Φdi , Wd, and Θ := (Σ)−1,
where Θ is determined by solving the graphical lasso (GLASSO) problem as described by Friedman
et al. (2008). This method is designed to estimate sparse precision matrices in a multi-view setting.
The EM procedure at step t ≥ 1 is performed as follows:

E-step: For fixed estimated µ(t−1)
d ,Σ(t−1), σ

(t−1)
d and W (t−1)

d compute E[τdi | Xd], i.e.

Y
(t−1)
d = XdW

(t−1)
d , τ

(t)
di

=
ν + p

ν + δ(Y
(t−1)
d:,i

, ρ
(t−1)
di

,Φ
(t−1)
di

)
.

M-step: Solve the optimization problem:

γ(t) ∈ argmax
γ

l
(
γ; {Xd, τ

(t)
d }Dd=1

)
,

with γ(t) = {W (t)
d , µ

(t)
d , σ

(t)
d }Dd=1 ∪ {Σ(t)} that leads to the following steps for all d = 1, . . . , D:

1. Calculate µ(t)d ,Σ(t) and σ(t)d for fixed τ (t)di
and Y

(t)
d

µ
(t)
d =

∑kd
i=1 τ

(t)
di

Y
(t−1)
d:,i∑kd

i=1 τ
(t)
di

, Σ(t) =
1∑
d kd

∑
d

kd∑
i=1

τ
(t)
di

(
Y

(t−1)
d:,i

− µ
(t)
d

)(
Y

(t−1)
d:,i

− µ
(t)
d

)⊤
,

σ
(t)
d =

√√√√ 1

p(n− kd)

n∑
i=kd+1

p∑
l=1

τ
(t)
di

(Y
(t−1)
dl,i

)2

2. Estimate Θ via solving the GLASSO optimization problem for Σ(t) with penalty parameter
λ > 0 given by:

Θ(t) ∈ argmin
Θ≻0

− ln det(Θ) + tr(Σ(t)Θ) + λ∥Θ∥1 (3)
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3. Estimate W (t)
d for fixed µ(t)d ,Σ(t), σ

(t)
d and τ (t)di

:

W
(t)
d ∈ argmin

W

{
tr

((
XdW − µ

(t)
d

)⊤
Θ(t)

(
XdW − µ

(t)
d

)
T (t)
1

)
(4)

+
1

(σ
(t)
d )2

tr
(
W⊤X⊤

d XdWT (t)
2

)
− ln | detW |

}
,

where µ
(t)
d := (µ

(t)
d , . . . , µ

(t)
d︸ ︷︷ ︸

kd

, 0 . . . , 0) ∈ Rp×nd , and T (t)
1 , T (t)

2 ∈ Rnd×nd are diagonal ma-

trices defined as T (t)
1 = diag(τ

(t)
d1
, . . . , τ

(t)
dkd
, 0, . . . , 0) and T (t)

2 = diag(0, . . . , 0, τ
(t)
dkd+1

, . . . , τ
(t)
dnd

)

Details on the implementation of the EM procedure can be found in Appendix E.1.

4. Results

4.1. Simulated Data

We benchmark our method, MVTLASSO, against GLASSO (Friedman et al., 2008) and TLASSO
(Finegold and Drton, 2011) using a series of synthetic experiments. For each method, we run
100 independent experiments across various sparsity parameters, λ. By computing the average
true positive and false positive rates across these experiments, we evaluate how well each method
reconstructs the ground truth precision matrix, Θ, used in generating the synthetic data.

The simulated data follows the generative model defined in Definition 1 and mirrors the setup
proposed by Finegold and Drton (2011). In particular, the sparse precision matrix Θ is constructed
as follows: 1) off-diagonal entries Θij with i ̸= j are sampled from {−1, 0, 1} with probabilities
{0.01, 0.98, 0.01} 2) the diagonal entries are set to 1 plus the number of edges connected with the
node, i.e. Θii = 1 +

∑
j 1{Θij ̸=0}. Additionally, we set µ = 0 and σ = 1 in all experiments. The

sample loading matrices A and B have entries sampled according to standard normal distribution.
The dimension of Θ is fixed at 200× 200 for all experiments.

Figure 2 presents the results from three major experiments, each displayed in a separate panel
corresponding to different total numbers of sources per view (i.e., the sum of gene loadings and
noise sources): 20 (A), 40 (B), and 60 (C). Within each panel, nine figures are organized by the
number of gene loadings k and the number of views D: each row represents a different value for
D ∈ {2, 5, 10} and each column corresponds to a specific k chosen to represent 50%, 75%, and
100% of the total sources. For example, in panel A, where the total number of sources is 20, the
columns represent k = 10, 15 or 20.

From the results in Figure 2, we observe that: 1) MVTLASSO’s performance significantly
improves with an increasing number of views, while the other two methods show only moderate
improvements. 2) All methods perform better when the number of gene loadings is higher relative
to the number of noise sources. 3) Most of the time, MVTLASSO achieves a more favorable true
positive to false positive ratio compared to the other baselines.

4.2. Gene Co-Expression Inference

We revisit the motivational example of the GCN inference from B. Subtilis gene expression data.
For this purpose, we use two well-controlled transcriptome data compendia. These datasets were
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A B

C

Figure 2: True positive rate vs false positive rate for total number of sources A) 20, B) 40, C) 60.
Columns indicate the number of gene loadings k and rows the number of views D. In all cases
MVTLASSO manages to retrieve the ground truth precision matrix better if not equally good as the
baseline methods.
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A B

Figure 3: True positive vs. possibly false positive edges obtained via stability selection for S. aureus
(A) and B. subtilis (B). The results suggest that MVTLASSO tends to infer more true positive edges
across different settings.

collected using the B. subtilis strain BSB1, which contains 269 samples from 104 different exper-
imental conditions (Nicolas et al., 2012), and the closely related strain PY79, which contains data
from 38 unique experimental designs (Arrieta-Ortiz et al., 2015). The B. Subtilis genome contains
approximately 4100 genes, and for every transcriptome experiment, gene expressions from 3994
genes were obtained. Both datasets include a wide range of conditions, including growth in differ-
ent media, competence, biofilm formation, swarming, different stress conditions, sporulation, and
knockout experiments. The data were preprocessed as outlined in Appendix E.2. We further split
each dataset into three approximately equal subsets of samples, ensuring they are as distinct as pos-
sible in their experimental design.

We then used these six views to benchmark MVTLASSO against two other methods: TLASSO
and GLASSO+Standardization, as described in Appendix E.1. Since the correct number of gene
loadings kd remains unknown, we set kd = 1 in this study. The development of a more sophisticated
method for determining kd is left for future research.

The fitting process for all methods incorporates stability selection, as outlined by Meinshausen
and Bühlmann (2010) and detailed in Appendix E.1. In this approach, for each penalty parameter λ,
“stable” edges are selected from 100 precision matrices, each estimated from bootstrapped samples
containing 90% of the data. An edge is considered stable if its stability score exceeds 0.5, meaning
that the edge appears in more than 50% of the 100 precision matrices. We then aggregate the stable
edges across all sparsity parameters by summing their stability scores across all experiments.

To evaluate the model’s performance, we rank the edges of the weighted undirected graph ac-
cording to their weights. We then count the number of true positive edges, as verified against the
ground truth data from SubtiWiki, as well as potential false positives in the top 100, 200, 300,
. . . edges. The counts of true positive versus false positive edges for each method are shown in Fig-
ure 3(B). These results indicate that MVTLASSO consistently identifies more true positive edges
across most penalty parameters compared to the other two methods.

We apply this process to gene expression data from the bacterium Staphylococcus aureus, a
species commonly found on the skin and in the nose that can cause a range of infections. This dataset
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contains gene expression profiles for p = 2810 genes measured under 53 different conditions,
yielding a total of n = 160 samples. The gene expression data, provided by the DREAM challenge
(Marbach et al., 2012), is accompanied by a ground truth network comprising 18, 208 edges. In this
analysis, we treat the data as a single-view case (D = 1) due to the limited background information
regarding the experimental design.

We estimate the gene loadings k1 following the approach in (Parsana et al., 2019) prior to fitting
the models. For this dataset, we use a GLASSO method based on the partial correlation matrix
(similar to (Carter et al., 2024)), which enhances the performance of all methods. We then compare
the performance of MVTLASSO with the same baselines as in the previous case with respect to the
potential true positive and false positive edges. As before, we apply stability selection to estimate
the stable edges from 100 independent runs for each sparsity parameter and subsequently aggregate
all stable edges into a single weighted undirected graph. Figure 3(A) illustrates that for sparse gene
co-expression networks (GCNs), MVTLASSO identifies more true positive edges compared to the
baselines.

5. Discussion

We introduced MVTLASSO, a robust method for inferring gene co-expression networks from high-
dimensional gene expression data across multiple independent studies. Our approach effectively ad-
dresses the inherent complexity of gene expression data, including gene and sample correlations as
well as batch effects, by modeling each dataset as a noisy linear mixture of gene loadings governed
by a multivariate t-distribution with a sparse precision matrix. We employ an EM procedure for pa-
rameter estimation, supported by theoretical guarantees that ensure the identifiability of the model
parameters. Empirical evaluations on both synthetic and real gene expression data have demon-
strated the superior performance of MVTLASSO compared to baseline methods. Our method con-
sistently shows improved accuracy in learning the underlying graph structures, underscoring its ro-
bustness and reliability.

Thus, our model can be interpreted as an instance of independent component analysis, where the
sources follow a multivariate t-distribution with an identifiable sparse precision matrix. Although
our model is restricted to inferring only the conditionally uncorrelated relationships, we believe that
it, along with the baseline TLASSO, more accurately captures the true data distribution. In con-
trast, the GLASSO method, which is based on the Gaussian model and is theoretically designed to
infer conditional independence between genes, often faces practical challenges due to confounding
factors present in the data (see (Parsana et al., 2019)). Consequently, in practice, GLASSO is pri-
marily employed for inferring gene co-expression networks rather than direct gene regulation, e.g.
see (Petralia et al., 2018; Lyu et al., 2018; Seal et al., 2023).

A promising direction for future work is to develop a more efficient and reliable hyperparameter
selection procedure. The selection of sample dimensions and noise loadings can be challenging
and time-consuming due to the implemented EM procedure. In addition, incorporating available
experimental metadata into the modeling process could provide further refinement and improve the
overall performance of MVTLASSO.
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Appendix A. Related Work

Inferring GCNs from data can be very challenging, mainly due to hidden confounders and batch ef-
fects associated with the different data sources. In response, current research in gene co-expression
analysis often makes specific assumptions about the data generation model to deal with this com-
plexity. This is typically represented by a noisy decomposition model: X = SA + E, where
X ∈ Rp×n is a gene expression matrix describing the activity of p genes across n different samples
(experiments, patients, tissues, etc.), S ∈ Rp×k is the gene loading matrix, A is the sample loading
matrix, and E is the additive noise. These approaches can be broadly categorized into decomposi-
tion methods and their refinements, biclustering algorithms.

Decomposition methods, including Independent Component Analysis (ICA), Principal Compo-
nent Analysis (PCA), and other variations of factor analysis, have shown remarkable effectiveness
in identifying clusters of genes connected in the GCN. These methods are used to analyze single
data sets (Saelens et al., 2018; Rychel et al., 2020) as well as to integrate data from multiple stud-
ies (Lê Cao et al., 2008; Smilde et al., 2017; Kim et al., 2017; Pandeva and Forré, 2023). A com-
mon assumption is that GCNs can be reconstructed from the gene loadings, where gene clusters are
identified from each latent vector, a column in the gene loadings matrix S, usually by thresholding.
Often, these clusters are assumed to represent sets of genes connected within the GCN and mapped
to gene modules with a common function.

Biclustering algorithms aim to cluster genes and samples simultaneously by applying sparsity
constraints to both gene and sample loadings, e.g., (Moran et al., 2021; Hochreiter et al., 2010; Gao
et al., 2016; Kim and Park, 2007), providing a principled approach for a two-fold clustering. This
approach assumes that the sample loading matrix A will have a sparse pattern, i.e., only a small
group of genes will deviate within a small subset of samples. These methods are particularly useful
for subgroup analyses, such as classifying patients into different subtypes based on gene expression
levels.

Despite their ability to cluster, all these methods do not model the relationships between clus-
ters and thus do not provide a comprehensive strategy for inferring gene co-expression graphs. One
exception is the Kronecker graphical LASSO approach by (Stegle et al., 2011), which constructs a
sparse graph structure while modeling sample covariance. However, this method has not been ex-
tended to handle multiple datasets collected from different labs and may lack robustness against data
contamination. On the other hand, existing methods that use the graphical LASSO to infer GCNs
from various data sources (Danaher et al., 2014; Guo et al., 2011) do not address the confounding
variables in the experiments and assume that the data are independent and identically distributed.

Appendix B. Identifiability

In our analysis, we will make use of the multivariate elliptical distributions, denoted by Ep(µ,Σ),
whose density f(x;µ,Σ) is proportional to f(x;µ,Σ) ∝ g((x−µ)⊤Σ(x−µ)) for some measurable
function g and a positive semi-definite dispersion matrix Σ and median µ. An example of such
elliptical distributions is the Gaussian and multivariate t-distribution. First, we show that the sample
loadings are identifiable up to scaling and permutation, provided that none of the gene loadings
have Gaussian marginals. This result is an extension of Theorem 10.3 in (Kagan et al., 1973) for
the multivariate case:
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Lemma 2 Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) = X = S(2)A(2),

with the following properties for i = 1, 2 :

1. A(i) ∈ Rk(i)×n is a (non-random) matrix with a full row rank

2. S(i) ∈ Rp×k(i) is a random matrix such that the columns of S(i) are mutually independent.

If the i-th row of A(1) is not proportional to any row of A(2) then the i-th column of S(1) has Gaus-
sian distributed marginals. Additionally, if the i-th column of S(1) follows an elliptical distribution,
then it is multivariate Gaussian.

Proof of Lemma 2 Proof W.l.o.g. let i = 1. According to (Kagan et al., 1973, Lemma 10.2.2)
there exists a n×2 matrixH such that the matricesC1 = A(1)H andC2 = A(2)H of orders k(1)×2
and k(2) × 2 respectively have the following property; the first row of C1 is not proportional to any
of the other rows of C1 or to any of the rows of C2.

Now consider the following algebraic relationship for Y = XH:

S(1)C1 = Y = S(2)C2,

where Y ∈ Rp×2. For each row r = 1, . . . p of Y we have the two equivalent representations

S(1)
r,: C1 = Yr,: = S(2)

r,: C2.

Thus, by (Kagan et al., 1973, Lemma 10.2.4), it follows that S(1)
r,1 is Gaussian distributed because the

first row of C1 is not proportional to any of the other rows of C1 or to the one of C2. Consequently,
this implies that the marginal distributions of S(1)

:,1 are Gaussians since it is elliptically distributed.

Given that S(1)
:,1 is elliptical with the previous argument it follows that it is Gaussian (Fang et al.,

2018).

Theorem 2 Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) = X = S(2)A(2)

with the following properties for i = 1, 2 :

1. A(i) ∈ Rk(i)×n is a (non-random) matrix with full row rank, i.e. rank(A(i)) = k(i)

2. S(i) ∈ Rp×k(i) is a random matrix such that

(a) The columns of S(i) are mutually independent,

(b) For k = 1, . . . , k(i) the vectors S(i)
:,k are distributed according to a non-Gaussian ellipti-

cal distribution Ep(µ
(i),Σ(i)) with mean µ(i) and a dispersion matrix Σ(i).

(c) Additionally, S(i)
:,k the random vectors do not have Gaussian components.
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Then k(1) = k(2) = k and there exist a permutation matrix P = P (ρ) ∈ Rk×k given by Pej = eρ(j)
and a constant c > 0 such that:

A(2) = cPA(1), Σ(2) =
Σ(1)

c2
µ(2) =

µ(1)

c
.

Proof Lemma 2 establishes that each row of matrix A(1) is proportional to a row of A(2). Now if
we assume that k(1) > k(2) then there must be at least two distinct rows inA(1) that are proportional
to the same row of A(2). This contradicts the assumption that both A(1) and A(2) have full row
rank. Thus, it follows that k(1) = k(2) =: k and there exist a permutation matrix P ∈ Rk×k and an
invertible diagonal matrix Λ = diag(λ1, . . . , λk) ∈ Rk×k such that A(2) = ΛPA(1).

Note that for the characteristic function of a matrix S that fulfills 2a) to c) for some mean µ and
dispersion matrix Σ holds

χS(t) = E
[
exp(i tr(t⊤S))

]
= E

exp
i∑

j

t⊤:,jS:,j)


=

∏
j

χS:,j (t:,j) =
∏
j

χS:,1 (t:,j)

=
∏
j

exp
(
it⊤:,jµ

)
ψ
(
t⊤:,jΣt:,j

)
,

where ψ is the characteristic generator and t ∈ Rp×k.
Let S̃(2) = S(2)P . Then we get for the characteristic functions of S̃(2) and S(1) for all t ∈ Rp×k

χS(1)(t) = χS̃(2)Λ(t) ∏
j

exp
(
it⊤:,jµ

(1)
)
ψ1

(
t⊤:,jΣ

(1)t:,j

)
=

∏
j

exp
(
iλjt

⊤
:,jµ

(2)
)
ψ2

(
λ2jt

⊤
:,jΣ

(2)t:,j

)
,

where ψi is the characteristic generator corresponding to the i−the representation. Consequently,
for each j with t:,j = t ∈ Rp and otherwise t:,r = 0 for all r ̸= j we get

exp
(
it⊤µ(1)

)
ψ1

(
t⊤Σ(1)t

)
= exp

(
iλjt

⊤µ(2)
)
ψ2

(
λ2j t

⊤Σ(2)t
)

It follows that λ1 = . . . = λk = c and µ(1) = cµ(2), and Σ(1) = c2Σ(2).

Next, we show that by imposing additional constraints on the gene loadings - in particular,
requiring that they come from the same elliptic non-Gaussian multivariate distribution - it becomes
possible to determine that the sample matrix, along with its locations and dispersion matrix, are
identifiable up to a scalar:

Theorem 3 Let X ∈ Rp×n be a random matrix. Assume the following two representations of X

S(1)A(1) + Z(1)B(1) = X = S(2)A(2) + Z(2)B(2)

with the following properties for i = 1, 2 :
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1. (A(i)⊤|B(i)⊤)⊤ ∈ R(k(i)+l(i))×n is a (non-random) matrix with full row rank with rank(A(i)) =
k(i) and rank(B(i)) = l(i) ≤ n− k(i)

2. S(i) ∈ Rp×k(i) and Z(i) ∈ Rp×l(i) are random matrices such that for i = 1, 2 and V(i) ∈
{S(i),Z(i)}

(a) The columns of V(i) are mutually independent,

(b) The column vectors V(i)
:,k are distributed according to a non-Gaussian elliptical distri-

bution Ep(µ
(i)
V ,Σ

(i)
V ) with location µ(i)V and a dispersion matrix Σ

(i)
V .

(c) Additionally, the random column vectors of Sd and Zd do not have Gaussian compo-
nents.

3. the latents S(i) and noise matrix Z(i) are independent and there exist no λ ∈ R such that
µ
(i)
Z = λµ

(i)
S ,Σ

(i)
Z = λ2Σ

(i)
S .

Then k(1) = k(2) = k and l(1) = l(2) = l and exist permutation matrices PA, PB ∈ Rk×k and
constants cA, cB > 0 such that:

A(2) = cAPAA
(1), B(2) = cBPBB

(1),

Σ
(2)
S =

Σ
(1)
S

c2A
, µ

(2)
S =

µ
(1)
S

cA
,

Σ
(2)
Z =

Σ
(1)
Z

c2B
, µ

(2)
Z =

µ
(1)
Z

cB
.

Proof of Theorem 3 Proof According to Lemma 2 each row of (A(1)⊤|B(1)⊤)⊤ is proportional
to a row of (A(2)⊤|B(2)⊤)⊤. With similar arguments as above it holds that k(1) + l(1) = k(2) + l(2).

Suppose that the j−th row of A(1) is proportional to the r−th row of B(1). It follows that that
there exist a constant λ such that for all t ∈ Rp :

exp
(
it⊤µ

(1)
S

)
ψ1

(
t⊤Σ

(1)
S t

)
= exp

(
iλt⊤µ

(2)
Z

)
ψ2

(
λ2t⊤Σ

(2)
Z t

)
,

i.e., µ(1)S = λµ
(2)
Z and Σ

(1)
S = λ2Σ

(2)
Z . Thus, k(1) = k(2) and l(1) = l(2). The rest follows from

Theorem 2.

Corollary 1 Let X1, . . . ,XD with Xd ∈ Rp×nd be random matrices with the following two repre-
sentations

S
(1)
d A

(1)
d + Z

(1)
d B

(1)
d = Xd = S

(2)
d A

(2)
d + Z

(2)
d B

(2)
d

with the following properties for i = 1, 2 and d = 1, . . . , D :

1. (A
(i)⊤
d |B(i)⊤

d )⊤ ∈ R(k
(i)
d +l

(i)
d )×nd is a (non-random) matrix with full row rank:

rank(A
(i)
d ) = k

(i)
d , rank(B

(i)
d ) = l

(i)
d ≤ nd − k

(i)
d ,

18



ROBUST MULTI-VIEW CO-EXPRESSION NETWORK INFERENCE

2. the columns of S(i)
d are independent and are distributed according to a non-Gaussian ellipti-

cal distributionEp(µ
(i)
Sd
,Σ

(i)
Sd
) with location µ(i)Sd

and a dispersion matrix Σ(i)
S := Σ

(i)
S1

= . . . = Σ
(i)
SD

.

3. the columns of Z(i)
d are noise random variables and are i.i.d non-Gaussian elliptical dis-

tributedEp(µ
(i)
Zd
,Σ

(i)
Zd
) with location µ(i)Zd

and a dispersion matrix Σ(i)
Zd

. Furthermore, for each

d there exist no λ ∈ R such that µ(i)Zd
= λµ

(i)
S ,Σ

(i)
Zd

= λ2Σ
(i)
S .

4. the latents S(i)
d and noise matrix Z

(i)
d are mutually independent.

5. Additionally, the random column vectors of Sd and Zd do not have Gaussian components.

Then, for d = 1, . . . , D, k(1)d = k
(2)
d = kd and l(1)d = l

(2)
d = ld. Furthermore, there exist

permutation matrices PA1 , . . . , PAD
, PB1 , . . . , PBD

and constants cA, cB1 , . . . , cBD
> 0 such that:

A
(2)
d = cAPAd

A
(1)
d , B

(2)
d = cBd

PBd
B

(1)
d ,

Σ
(2)
S =

Σ
(1)
S

c2A
, µ

(2)
Sd

=
µ
(1)
Sd

cA
,

Σ
(2)
Zd

=
Σ
(1)
Zd

c2Bd

, µ
(2)
Zd

=
µ
(1)
Zd

cBd

.

Proof of Corollary 1 Theorem 3 guarantees the identifiability results for each view separately,
i.e. for each d = 1, . . . , D there exist permutation matrices PAd

, PBd
and constants cAd

, cBd
> 0

such that:

A
(2)
d = cAd

PAd
A

(1)
d , B

(2)
d = cBd

PBd
B

(1)
d ,

Σ
(2)
S =

Σ
(1)
S

c2Ad

, µ
(2)
Sd

=
µ
(1)
Sd

cAd

,

Σ
(2)
Zd

=
Σ
(1)
Zd

c2Bd

, µ
(2)
Zd

=
µ
(1)
Zd

cBd

.

It follows that for all d = 1, . . . , D :

Σ
(2)
S =

Σ
(1)
S

c2Ad

.

Thus, cA := cA1 = . . . = cAD
.

Appendix C. Dependence Structure and Properties of the Multivariate t-Distribution

C.1. Alternative Generative Model for the Multivariate t-Distribution

The probability density function of the multivariate t-distribution with ν degrees of freedom, mean
vector µ, and scale matrix Σ in p dimensions is given by:

f(x) =
Γ
(ν+p

2

)
Γ
(
ν
2

)
(νπ)p/2|Σ|1/2

(
1 +

1

ν
(x− µ)TΣ−1(x− µ)

)− ν+p
2

where:
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• x is the variable vector,

• µ is the mean vector,

• Σ is the scale matrix,

• ν is the degrees of freedom,

• Γ is the gamma function.

The following result is central to the EM procedure and is shows that the multivariate t-distribution
can be expressed by means of the multivariate normal distributed random variable and Gamma dis-
tributed random variable:

Theorem 4 ((Arellano-Valle and Bolfarine, 1995)) Let S ∼ tp(ν, µ,Σ) for some mean µ and
positive semi-definite matrix Σ. Then, there exist random variables τ and N that follow Gamma
distribution Γ(ν2 ,

ν
2 ) and a Gaussian distribution N (0,Σ), respectively, such that S ∼ µ+N/

√
τ .

Proof of Lemma 1 “ ⇐ ” This direction follows directly from the chain rule of probabilities.
“ ⇒ ” Assume that the DAG is not fully connected, i.e. there exist sets A,B,C ⊂ V, A ̸=

∅, B ̸= ∅ such that the random variables SA and SB are d-separated given SC (SA ⊥G SB|SC).
Thus, it follows that SA ⊥⊥ SB | SC which implies that p(SA | SB, SC) = p(SA|SC).

According to (Arellano-Valle and Bolfarine, 1995) the joint distribution of SA, SB, SC , their
conditionals and marginals follow a multivariate t-distribution. More precisely, let d = |A| +
|B| + |C|, µd = (µ⊤A, µ

⊤
B, µ

⊤
C)

⊤, Σ = Σ(A,B,C),(A,B,C), then Sd = (SA, SB, SC) ∼ td(ν, µd,Σ).
Furthermore, for the conditional distributions we have

SA | SB, SC ∼ t|A|

(
ν + |B|+ |C|, µA|B,C ,

ν + dB,C

ν + |B|+ |C|
ΣA|B,C

)
(5)

SA | SC ∼ t|A|

(
ν + |C|, µA|C ,

ν + dC
ν + |C|

ΣA|C

)
Then, it follows that ν + |B|+ |C| = ν + |B|+ |C| which implies that |B| = 0.

Appendix D. Parameter Inference: Background

D.1. Graphical LASSO

The Graphical lasso (GLASSO) is a maximum likelihood estimator for inferring graph structure
within high-dimensional multivariate normal distributed data through estimating a sparse preci-
sion matrix (Friedman et al., 2008). More precisely, let X = (X1,X2, . . . ,Xn) be a collection
of n i.i.d. samples distributed according to the multivariate normal distribution N (0,Θ−1), where
Θ−1 ∈ Rp×p is the covariance matrix and its inverse Θ known as the precision matrix. The un-
derlying undirected graph structure among the variables can be inferred directly from the precision
matrix: a non-zero entry Θij indicates an undirected edge between the i-th and j-the variables in
the multivariate vector. GLASSO estimates Θ by maximizing the posterior distribution of X given
Θ := Σ−1 which is proportional to

p(X,Θ) = pλ(Θ)

n∏
i=1

N (Xi|µ,Θ−1) where Θ ≻ 0.
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The prior pλ(Θ) on the positive-definite matrices Θ parametrized by λ > 0 is defined as

pλ(Θ) ∝ exp (−λ∥Θ∥1) with ∥Θ∥1 =
∑
i,j

|Θij |.

Thus, the MLE problem that GLASSO solves can be formalized as follows

max
Θ≻0

ln p(X,Θ) ≡ min
Θ≻0

− ln det(Θ) + tr(Σ̂Θ) + λ∥Θ∥1, (6)

where S is the empirical covariance matrix, Σ̂ = 1
n

∑n
i=1(Xi − X̄)(Xi − X̄)⊤, and X̄ is the

empirical mean. Intuitively, the parameter λ controls the sparsity level of the precision matrix Θ.
Specifically, selecting a higher value for λ leads to sparser precision matrix estimates.

D.2. Student’s t-Lasso

The accuracy of graph inference can be significantly compromised by deviations from the normal
distribution assumption. To address this robustness issue, (Finegold and Drton, 2011) propose an
alternative to GLASSO for inferring graph structure of multivariate Student’s t-distribution which
we call TGLASSO. Consider the setting from above, where we are given a collection of n i.i.d
samples X = (X1,X2, . . . ,Xn). Then the joint distribution of the data X and precision matrix Θ
is given by

p(X,Θ) = pλ(Θ)

n∏
i=1

tν,p(Xi|µ,Θ−1) where Θ ≻ 0,

where the density function of the Student’s t-distribution tν,p(µ,Θ−1) is given by

Γ ((ν + p)/2) detΘ1/2

(πν)p/2Γ(ν/2) (1 + δ (x;µ,Θ) /ν)(ν+p)/2

with

δ (x;µ,Θ) = (x− µ)⊤Θ(x− µ), x ∈ Rp.

Estimating the precision matrix in this setting is not tractable, and (Finegold and Drton, 2011) pro-
pose an Expectation-Maximization procedure for estimating Θ by exploiting the following genera-
tive model with latent variables Zi and τi for each sample Xi

Zi ∼ N (0,Θ−1)

τi ∼ Γ(ν/2, ν/2)

Xi := µ+ Zi/
√
τ i ∼ tν,p(µ,Θ

−1).

The proposed EM procedure operates under the assumption that τi’s are latent variables and that
Xi|τi ∼ N (µ, (τiΘ)−1). This process iterates through two main steps: 1) Estimating the τi for
fixed µ and Θ−1 and 2) Estimating µ and Θ−1, where Θ is a solution to the GLASSO problem in
Equation (6) for an empirical covariance matrix of the estimated Z. More precisely, at step t ≥ 0
the EM procedure becomes
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E-step: For fixed estimated µ(t−1) and Θ(t−1) compute

τ
(t)
i =

ν + p

ν + δ
(
Xi;µ(t−1),Θ(t−1)

)
M-step: Calculate µ(t) and Σ(t)

µ(t) =

∑n
i=1 τ

(t)
i Xi∑n

i=1 τ
(t)
i

Σ(t) =
1

n

n∑
i=1

τ
(t)
i

(
Xi − µ(t)

)(
Xi − µ(t)

)⊤
(7)

Estimate Θ(t) via solving the GLASSO optimization problem

Θ(t) ∈ argmin
Θ≻0

− ln det(Θ) + tr(Σ(t)Θ) + λ∥Θ∥1

Appendix E. Experiments

E.1. Implementation

Implementation of MVTLASSO Here are the key points of the training and implementation.
The implementation follows the steps explained in Section 3 with the following differences:

1. The optimization problem in step 3 is convex when {Wd}Dd=1 are positive semi-definite matri-
ces. In the general case, we only require {Wd}Dd=1 to be invertible which makes solving equa-
tion 4 more challenging. However, by treating the datasets X1, . . . ,XD as instances of ICA
we can transform the original problem equation 4 into finding orthogonal matrices Wd. This
process incorporates data whitening—a preprocessing step that ensures features are uncorre-
lated and have uniform variance, typically achieved through eigen-decomposition—commonly
employed prior to applying ICA. We utilize the Python library pytorch (Paszke et al., 2017)
for the implementation and employ the geotorch library (Lezcano-Casado, 2019) to en-
force orthogonality constraints on each view’s unmixing matrices. The optimization lever-
ages the L-BFGS algorithm, a stochastic gradient-based method.

2. We initialize the parameter Wd with the estimated of FastICA, and the parameters µd, σd and
Θ using a few iterations (not necessarily to convergence) of TLASSO by Finegold and Drton
(2011).

3. We found that estimating the precision matrix through the partial correlation matrix instead
of the covariance improves the MVTLASSO performance in some cases as for S. aureus (the
first iteration of (Carter et al., 2024)). This means the input matrix to the graphical lasso has
entries Σ̃(i, j) =

Σij√
Σ(ii)Σ(jj)

. After that the estimate of the glasso Θ̃ is mapped back to an

estimate of the precision matrix via: Θ(ij) = Θ̃(ij)√
Σ(ii)Σ(jj)

.

4. The steps in the M-step are interdependent, i.e., steps 1 and 2 are based on the inverse sample
matrix Wd. Therefore, it is possible to iterate steps 1 to 3 multiple times. In our implementa-
tion, however, we perform only a single iteration.
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5. Our model relies on several hyperparameters, including the number of multivariate t-distributed
vectors kd used for graph inference and the penalty parameter λ. Ideally, these parameters
could be determined by cross-validation. However, our EM procedure involves a GLASSO
step in each iteration, which is computationally intensive. Therefore, we preselect the num-
ber of components prior to the parameter estimation process as described by Parsana et al.
(2019). This resulted in 107 noise components and 53 gene loadings for S.aureus.

Implementation of baselines For GLASSO, we used the implementation available in the R pack-
age (Friedman et al., 2019). The variants GLASSO+Standardization includes preliminary steps
where all samples are subjected to standardization, before GLASSO is applied for precision matrix
estimation. The TLASSO is implemented according to (Finegold and Drton, 2011).

Stability Selection The fitting procedure for all GLASSO-based methods makes use of stability
selection by Meinshausen and Bühlmann (2010) with a predefined range of penalty parameters. The
steps of the procedure are outlined as follows:

1. The data is repeatedly subsampled by selecting 90% of all samples per view N = 100 times.
For each subsample, the selected GCN inference method is applied using the predefined set
of penalty parameters, Λ.

2. The outcomes for each penalty parameter are gathered in the selection probability matrix Πλ,
where (Πλ)ij represents the proportion of theN precision matrices Θ̂(1), . . . , Θ̂(N) indicating

a nonzero edge between nodes i and j, i.e. (Πλ)ij =

∑
l 1{Θ̂(l)

ij
̸=0}

N .

3. We select the edges whose selection probability exceeds 50% for each penalty parameter.

4. The final graph can be constructed by collecting all edges inferred from the range of penalty
parameters with weights wij =

∑
λ(Πλ)ij

Figure 4: Comparison between six and two views
for B. Subtilis.

The primary benefit of stability selection,
as outlined by (Meinshausen and Bühlmann,
2010), is that it can reduce the risk of false pos-
itives, i.e., incorrectly identifying edges in the
network. By requiring that an edge be consis-
tently identified across many subsamples of the
data, stability selection ensures that the edges
selected are robust and not the result of random
variations in the data.

Additional Experiment for B. Subtilis We
compare two scenarios for B. Subtilis: one us-
ing the original setup with six views, and an-
other using only two views. For the last exper-
iment, we randomly selected 130 samples from
each dataset and applied the same procedure as
before. The final undirected graph was con-
structed using stability selection. As shown in Figure 4, including more views benefits the MVT-
LASSO method, as it results in the discovery of significantly more true positive edges.
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E.2. Data Preprocessing

The dataset BSB1 is preprocessed following the method suggested by Rychel et al. (2020). Specifi-
cally, three samples (S3 3, G+S 1, and Mt0 2) were removed to ensure that the Pearson correlation
between biological replicates was at least 0.9. Furthermore, we centered the data by subtracting the
mean gene values in the M9 exponential growth condition. We used the preprocessed PY79 dataset
by Arrieta-Ortiz et al. (2015). BSB1 and PY79 samples are then centered and rescaled before ap-
plying any graph inference procedures. We selected genes that are present in both datasets. In addi-
tion, we have split both datasets into three subsets of samples with experimental designs that are as
different as possible to simulate six views instead of two.
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