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LLM-BS: Enhancing Large Language Models for Recommendation
through Exogenous Behavior-Semantics Integration

Anonymous Author(s)∗

Abstract
Large language models (LLMs) are increasingly leveraged as foun-
dational backbones in the development of advanced recommender
systems, offering enhanced capabilities through their extensive
knowledge and reasoning. Existing LLM-based recommender sys-
tems (RSs) often face challenges due to the significant differences
between the linguistic semantics of pre-trained LLMs and the collab-
orative semantics essential for RSs. Typically, these systems apply
pre-trained linguistic semantics while learning collaborative seman-
tics from scratch using the LLM-Backbone. However, as LLM archi-
tectures are not inherently tailored for recommendation tasks, this
approach results in inefficient learning of collaborative information,
poor understanding of result correlations, and a failure to leverage
traditional RSs features effectively. To address these challenges, we
propose LLM-BS, a decoder-only LLM-based generative recom-
mendation framework that integrates endogenous and exogenous
Behavioral and Semantic information in a non-intrusive manner.
Specifically, we propose 1) a dual-source, knowledge-rich item in-
dexing scheme that integrates indexing sequences for exogenous
signals, enabling efficient link-wide processing; 2) a multi-scale
reconfiguration alignment that non-intrusively guides the model
toward a deeper understanding of both collaborative and semantic
signals; 3) an Annealing Adapter designed to finely balance the
model’s recommendation performance with its comprehension ca-
pabilities. We demonstrate LLM-BS’s effectiveness through rigorous
testing on three public benchmarks.
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1 Introduction
Recommender systems (RSs) are tools designed to alleviate the phe-
nomenon of information overload inWeb environments by algorith-
mically analyzing user behavior to predict and push content that
may be of interest to users. Typical recommender systems[11, 17, 20,
34] encode users and items as latent representations within a shared
space to capture semantic similarities, followed by efficient retrieval
using Approximate Nearest Neighbors (ANNs) algorithms[8, 16].
The distinct separation of these two phases often introduces perfor-
mance limitations due to the absence of end-to-end optimization.

The emerging paradigm of recommender systems (RS) leverag-
ing pre-trained large language models (LLMs) is showing great
promise. Research across domains like vision[1, 23], speech[4, 15],
and multimodality[42] demonstrates the broader applicability of
LLMs, where various task instructions are encoded in language and
fused with other forms, optimized via end-to-end training to adapt
effectively to target domains. This paradigm harnesses the deeply
embedded knowledge and logical reasoning capabilities of LLMs
to discern intricate associations between user behavior and item
semantics, leading to more accurate and nuanced recommendations.

Several recent studies investigate the potential roles of LLMs
in recommender systems (RSs). Unlike traditional models that
encode users and items as embedding vectors, some LLM-based
RSs[2, 5, 13, 21] converts user behaviors and preferences, alongside
the candidate item set, into discrete natural language text sequences
or prompts. These prompts are then used to extract item-related
information from the LLM’s textual outputs. [7, 14, 24, 43] enhance
collaboration by incorporating additional or existing tokens into
the LLM to represent user and item IDs, which are then fine-tuned
during specialized training to fit interaction data. [35, 38] employs
exogenous collaboration models to obtain collaboration embed-
dings, which are integrated into the inputs of the LLM, thereby
enriching the recommendation process.

But these paradigms suffer from several flaws:
(1) While the plain text approach can yield favorable outcomes

in zero-shot recommendation[5, 13] , it primarily analyzes only
the surface-level textual semantics of behavioral sequences. This
method heavily relies on candidate sets and incurs significant com-
putational overhead when modeling extensive historical sequences.
(2) In real-world applications, where the number of candidate rec-
ommendation items vastly exceeds the vocabulary size of LLMs,
the tokenization redundancy introduced by Vanilla IDs complicates
LLMs’ ability to accurately interpret commands. This redundancy
results in low learning efficiency and a failure to effectively lever-
age semantic features. (3) The substantial disparity between the
domains of external collaborative signals and the semantic signals
of pre-trained LLMs means that directly integrating these signals
can significantly disrupt the original functionalities of the LLMs.
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Figure 1: A framework of LLM-Based recommendation. Con-
verting recommendation tasks into Next Token generation
tasks, directly generate target Items.

Consequently, the model struggles to effectively process and in-
terpret the information contained in these external signals[35, 38].

To overcome the challenges outlined, we introduce LLM-BS, a
novel decoder-only LLM-based generative recommendation frame-
work. In this framework, we compress massive exogenous signals
into a few newly added tokens with extremely high compression ra-
tios. Additionally, we incorporate a non-invasive multi-scale align-
ment reconstruction tasks and Multi-Stage Training that facilitates
an efficient understanding and integration of exogenous behaviors,
semantic signals, and recommendation data knowledge with the
LLM’s original parameters. Our approach is detailed through few
key aspects:

Primarily, we introduceDual-source Knowledge-rich Item In-
dices to address the inefficiencies of previous approaches that used
atomic tokens to represent item IDs, which resulted in tokenization
redundancy and overly discrete and independent semantics that
did not effectively support the recommendation task. Our method
efficiently characterizes large candidate sets with a minimal number
of identifiers, incorporating a useful priori knowledge with a high
compression ratio to integrate exogenous semantic and behavioral
information into the decoding inference process. We implement an
indexing structure where semantically similar items share identifier
prefixes. Given the distinct domain differences between behavioral
and semantic feature spaces, prior research in multimodal and
bimodal models[3] has shown that even advanced encoder-side
feature fusion approaches like Q-former[19] are insufficient for
effective integration of dual-source features. Consequently, we dis-
cretize and separately splice the exogenous behavioral and semantic
signals. This decoupled indexing scheme minimizes information
loss from encoder-side feature fusion and enables the model to
more effectively represent the complex interplay between behavior
and semantics during subsequent training.

Furthermore, we have introduced Non-Invasive Multiscale
AlignmentReconstructionTasks. This approach helps themodel
process complex collaborative and semantic signals from tokens
rich with exogenous information, while integrating the LLM’s own
parameters and reasoning capabilities to deepen its understanding
of recommendations and associated tasks. Given the vast amount of
exogenous semantic and behavioral signals compressed into a small
number of tokens at a very high compression ratio, it is challenging

for the model to directly assimilate adequate exogenous knowledge.
To address this, we have devised the Global Contrast Decompres-
sion Task and Comprehensive Interaction Modeling Tasks. These
initiatives aid the model in decompressing extensive exogenous
knowledge from a limited number of highly compressed tokens. By
incorporating additional summarization tokens and leveraging the
restricted context of recommendation data, these tasks effectively
minimize the domain gap between natural language and collabo-
rative semantics, enhancing the efficiency of the recommendation
process. In addition, we introduced a multi-stage training scheme
centered on the Annealing Adapter, which flexibly balances rec-
ommendation accuracy and model text inference capability.

The contribution of this paper can be concretely summarized as:
• We present LLM-BS, an innovative decoder-only LLM-based

generative recommendation framework that synergistically in-
tegrates endogenous and exogenous behavioral and semantic
information

• We propose a Dual-source Knowledge-rich Item Indices and a
Multiscale Alignment Reconstruction Tasks that non-intrusively
guides the model towards a deep understanding of collaborative
and semantic signals. Additionally, we introduce an Annealing
Adapter to optimize the balance between the model’s textual
reasoning abilities and recommendation accuracy.

• Extensive experiments across three public recommendation bench-
marks demonstrate the superiority of LLM-BS over existingmeth-
ods, emphasizing its effectiveness and robustness.

2 Related work
2.1 Sequential Recommendation
The use of deep sequential models for understanding user-item in-
teractions in recommender systems has significantly evolved, with
various approaches making notable contributions. GRU4REC[11]
introduced the use of GRU-based RNNs to model sequential user
behaviors effectively. SASRec[17] implemented self-attention mech-
anisms akin to those found in decoder-only transformer models
to enhance recommendation accuracy. Drawing inspiration from
the success of masked language modeling in NLP, BERT4Rec[30]
applied transformers with masking techniques specifically tailored
for sequential recommendation tasks. Additionally, TIGER[28] has
started emphasizing the use of semantic IDs. In this approach, each
item is represented by a series of tokens that reflect its related
details, and the system predicts the sequence of upcoming item to-
kens using a seq2seqmethod. Additionally EAGER[36] advances the
investigation by implementing a dual-stream generation architec-
ture that incorporates both semantic and behavioral information.
Recently, P5[7, 14] fine-tunes a pre-trained LLMs for multi-task
recommender systems. In this study, we endeavor to further inves-
tigate a paradigm designed to mitigate the substantial discrepancies
between LLMs in recommendation tasks and their original training
tasks by integrating exogenous semantic and behavioral informa-
tion.

2.2 LMs for Recommendation
Recently, LLMs have been utilized in recommendation tasks due
to their ability to understand, generate, and infer natural language
properties. LLM-based RSs[24] constructs user/item correlations
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Figure 2: The illustration of Dual-source Knowledge-rich Item Indice. Incorporate massive exogenous behavioral semantic
signals into project indices with extremely high compression ratios.

through its powerful high-quality textual representations and exten-
sive external knowledge, and is expected to solve the problems of
poor generalization[22] and poor performance of traditional RSs on
sparse historical interaction data, etc. Chat-Rec[6] aims to enhance
conversational recommendation systems by integrating ChatGPT’s
interactive capabilities with established recommendation models,
such as MF[18] and LightGCN[10]. P5[7] fine-tunes a pre-trained
large language model for multi-task recommender systems, utiliz-
ing the LLM tokenizer (SentencePiece tokenizer) to generate tokens
from randomly assigned item pseudo-IDs. M6[5]explores the use
of item text information (such as names) as identifiers for items.
LC-Rec[39] designs a learning-based vector quantization method
to generate ID from Item’s semantic representation and proposes
alignment tuning tasks to enhance the intergration of collaborative
semantics in LLMs. However, merely using directive-based fine-
tuning falls short in effectively leveraging the inherent capabilities
of LLMs to understand collaborative information and inadequately
learn from the implicit interaction data crucial for recommenda-
tions. Recently, new research has emerged to bridge the significant
gap between pre-trained language models and recommendation
tasks. CoLLM[38] infuses behavior information into LLMs by incor-
porating representations from an external collaborative model into
the input. In this work, we aim to further explore recommender
frameworks that can integrate endogenous and exogenous behav-
ioral and semantic signals based on LLM.

3 METHODOLOGY
3.1 Problem Formulation
Sequential recommendation is a crucial metric in LLM-based rec-
ommender systems (RSs). We transform the traditional two-tower
model, which computes similarity followed by reordering, into a
generative recommendation paradigm. In this framework, each item
x is represented by a set of tokens Y = [y1, y2, · · · , y𝑘 ] ∈ Y. As
illustrated in 3, given an input sequence X, which includes instruc-
tions and the interaction history, the sequence of the target item Y
is generated directly in an autoregressive manner. The probability
can be calculated by:

𝑝 (Y|X) =
∏𝑘

𝑖=1
𝑝 (y𝑖 |X, y1, y2, . . . , yi−1) (1)

3.2 Dual-source Knowledge-rich Item Indices
Some existing LLM-based methods utilize bracket notations like
“<item_i>” as newly-introduced atomic tokens to represent items.
However, this method can be problematic in data-rich real-world
scenarios, where the number of potential recommended items
greatly exceeds the vocabulary of LLMs. This leads to tokenization
redundancy, making it challenging for LLMs to process commands
accurately. Moreover, the description-based approach[2], which
assigns tokens to index items based on the semantics of item titles
or descriptions, introduces a strong inductive bias. This can obscure
the true intent of user behaviors, as it does not model behavioral
sequences clearly and unbiasedly, compromising the model’s ability
to understand and predict user preferences effectively.

Additionally, existing methods often overlook the value of exoge-
nous prior knowledge. Further, our experiments show that using ei-
ther exogenous behavioral or semantic signals in isolation does not
outperform random sampling. Remarkable results are only achieved
when these two signals are effectively integrated, demonstrating
subtle interaction, understanding, and cooperation.

To address our objectives, we aim to: 1) introduce a minimal
number of tokens to efficiently represent a vast set of candidates;
2) infuse useful a priori knowledge into identifiers to incorporate
exogenous semantic and behavioral information about items into
the reasoning process; and 3) design an indexing structure where
semantically similar items share identifier prefixes. To achieve these
goals, we utilize a discretized indexing algorithm that encodes dual-
source information for item representation. As illustrated in 2, for
any given item along with its descriptive text (title, synopsis, etc.),
semantic embeddings are derived using pre-trained language mod-
els (e.g., T5[27], Llama[32]). In this study, we specifically employ
the LLM-Backbone itself for semantic extraction:

hiddenstate𝑡 = 𝑙𝑙𝑚(𝑥𝑡 ,hiddenstate𝑡−1), 𝑡 = 1, 2, 3, ..., 𝑛

𝑧𝑠𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

hiddenstate𝑖
(2)

The descriptive text 𝑥1:𝑛 of item 𝑖 is entered sequentially into the last
hidden state transformed by the LLM and averaged as the semantic
representation 𝑧𝑠 of the item. Behavioral features 𝑧𝑏 are extracted
by the encoder of a two-tower model (e.g., DIN[40]) that uses only
ID sequences as recommendations:

𝑧𝑏𝑖 = 𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑖) (3)
3
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exogenous signals from these densely packed, knowledge-rich tokens in a non-invasive manner, and to integrate the llm’s
reasoning capabilities for deep understanding of recommendations.

Given the domain disparities between behavioral and seman-
tic feature spaces, prior research has shown that even advanced
encoder-side feature fusion techniques (e.g., Q-former[19]) often
result in significant compression losses and fail to effectively inte-
grate dual-source features. This places supernumerary strain on
the decoding process. Consequently, we opt to separately and dis-
cretely process the exogenous semantic and behavioral signals.
While vector quantization is commonly used for discretization, it
proves unstable for training, leading to issues like item ID conflicts.

To facilitate reproducibility in our study, we employ hierarchical
K-Means to discretize the semantic embedding 𝑍𝑠 and behavioral
embedding 𝑍𝑏 , where each cluster is progressively subdivided into
𝑘 child clusters until each cluster contains only a single item. The
embeddings for each item are discretized into 𝐶𝑠 and 𝐶𝑏 . Specifi-
cally, the j-th ID of the i-th item is denoted as 𝑐𝑡

𝑖 𝑗
, where t includes

s for semantic, b for behavioral, and u for the unitive. Theoretically,
with each item represented by four tokens and each token capa-
ble of 256 distinct values, this method can uniquely characterize

up to 2564 = 4294967296 items. This capacity is more than ade-
quate for real-world applications, ensuring efficiency in vocabulary
expansion and the subsequent encoding and decoding processes.

3.3 Non-Invasive Multiscale Alignment
Reconstruction Tasks

3.3.1 Global Contrast Decompression Task. After incorporat-
ing additional tokens to represent items, we achieve a high compres-
sion ratio (≈ 2,000,000:1), which significantly condenses massive
exogenous signals into a very small number of tokens. This extreme
compression ratio presents a challenge for the model to indepen-
dently learn substantial, useful knowledge. Drawing inspiration
from[36, 39], we have devised a series of multi-scale alignment re-
construction tasks. These tasks facilitate the LLM’s comprehension
of complex collaborative and semantic signals from these densely
packed, knowledge-rich tokens in a non-invasive manner, and to
integrate the llm’s own parameters and reasoning capabilities for
deep understanding of recommendations and their related tasks.

4
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We introduce the Global Contrast Decompression Task (GCT), a
method that non-intrusively enhances the model’s ability to quickly
and easily interpret knowledge-rich indices at extreme compression
rates. This is achieved by incorporating additional summarization
token and trainable Decompression Guidance Projectors.

seq = {𝑋Prompts, 𝑋𝑢
1 , ......, 𝑋

𝑢
𝑛 , 𝑦

𝑠
1, ......, 𝑦

𝑏
𝑘
, 𝑦[𝐶𝑂𝑁 ] } (4)

Where𝑋Prompts denotes the sequence of text prompts {𝑥P1 , ..., 𝑥
P
𝑚}

and 𝑋𝑢
𝑖
represents the indexed tokens for the i-th item, reflecting

the user’s chronological behavior sequence. As outlined in 3.2, 𝑦𝑡
𝑗

denotes the j-th level of the predicted item tokens, where 𝑡 = 𝑏

corresponds to the item’s behavioral token, and 𝑡 = 𝑠 to the seman-
tic token. The summary character 𝑦[𝐶𝑂𝑁 ] is strategically placed
at the end to encapsulate the global knowledge of the preceding
sequence.

To efficiently transmit exogenous dual-source signals into the
preordered tokens through gradient updating, we introduce non-
intrusive Decompression Guidance Projectors 𝑓 𝑡 . This projector
transforms the global hidden state distilled by𝑦[𝐶𝑂𝑁 ] into semanti-
cally and behaviorally-guided latent states. Additionally, we employ
a contrastive learning paradigm that utilizes original exogenous
semantic embbeddings 𝑍𝑠 and behavioral embbeddings 𝑍𝑏 to ac-
celerate and assist the decompression process of hyper-compressed
Tokens.

hiddenstate𝑡 = ˆ𝑙𝑙𝑚(𝑥𝑡 , hiddenstate𝑡−1), 𝑡 = 1, 2, 3, ..., 𝑛

L𝑡
con = F (𝑓 𝑡 (hiddenstate[CON]),Z𝑡 ), 𝑡 ∈ {𝑏, 𝑠}

(5)

The total contrastive loss Lcon , is calculated by proportionally
summing L𝑡

con and L𝑏
con . The function F (·, ·) serves as the metric

for contrastive learning. Importantly, the Decompression Guidance
Projectors 𝑓 𝑡 are utilized only during training, not in inference.

3.3.2 Comprehensive Interaction Modeling Task. To effec-
tively harness the inference capabilities, pre-training knowledge,
and trainable parameters of the LLM-Backbone for fitting recom-
mendation data, we have restructured the traditional sequence
recommendation task and its auxiliary tasks into a Next Token
Prediction task, which LLMs are good at. Unlike using additional
selectors as suggested by[43], we contend that this could alter the
model’s output form and output domain distribution, potentially
compromising the original capabilities of the LLM-Backbone and
diminishing the framework’s generalizability across different back-
bones.

As illustrated in 3, Comprehensive Interaction Modeling is seg-
mented into three subtasks: “Sequence Recommendation Task,”
“Semantic Reconstruction Task,” and “Preference Reconfiguration
Task.” These tasks effectively leverage the model’s own parameters
to integrate exogenous signals, recommendation data knowledge,
and the model’s intrinsic reasoning capabilities organically.

3.4 Initial training, Annealing Adapter Tuning
and Inference

3.4.1 Initial training. In the initialization phase of enhancing
the model’s recommendation capabilities, we devised various con-
ditional language modeling objectives. This strategy encourages

D
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Figure 4: The illustration of multi-stage training & inference
process.

highly divergent models, compared to pre-recommendation pre-
train tasks, to cultivate in-depth generalization, understanding, and
reasoning abilities pertinent for recommendation tasks.

The initial training can be formulated as follows:

max
Φ

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log
(
𝑃Φ+𝜑𝑟

(𝑦𝑡 | 𝑥,𝑦<𝑡 )
)

(6)

𝑥 represents the "Instruction Input". 𝑦 denotes the "Instruction
Output" within the initial training data. 𝑦𝑡 stands for the 𝑡-th token
of𝑦.Φ corresponds to the original parameters of the LLM-Backbone.
𝜑𝑟 represents the additional parameters in Sequence Recommenda-
tion Task (SRT), andZ refers to the training set. We combine the
generation and exogenous Semantic, Behavioral Reconstruction
Loss to train our model, given by:

L = L𝑔𝑒𝑛 + 𝐼SRT (𝜆1L𝑠
𝑐𝑜𝑛 + 𝜆2L𝑏

𝑐𝑜𝑛) (7)

Where 𝐼SRT is an indicator function that is 1 if the task is SRT
and 0 otherwise. 𝜆1 and 𝜆2 are loss coefficients.

3.4.2 Annealing Adapter Tuning. we observed that annealing
with restricted quantities of high-grade sequence recommendation
data considerable improves the performance of the LLM-Backbone
on pivotal benchmarks subsequent to the initial training of recom-
mendation capabilities.

Achieving the optimal solution for enhancing sequence recom-
mendation performance remains a formidable challenge without
adjusting the data volume ratio across various tasks. Integrating
tasks such as sequence recommendation, preference reconfigura-
tion, and semantic reconstruction, while neglecting to bridge the
gap between natural language processing and sequential behavior,
complicates the optimization of sequence recommendation perfor-
mance without modifying the proportion of data volume allocated
to different tasks.

Conversely, training on a limited set of high-grade sequence rec-
ommendation tasks during the Annealing Training phase can also
impair the model’s original capabilities due to the significant dis-
parity between the language semantics modeled by LLMs and the
collaborative semantics implicit in recommender systems. There-
fore, the use of an Adapter to introduce additional parameters in
this phase, as shown in 4, constitutes an efficient and pragmatic
approach to mitigate the adverse effects associated with Annealing
Training.

Formally,
5
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Table 1: Statistics of the Datasets.

Dataset #Users #Items #Interactions #Sparsity

Beauty 22,363 12,101 198,360 0.00073
Sports and Outdoors 35,598 18,357 296,175 0.00045

Instruments 24,733 9,923 206,153 0.00083

max
𝜑𝑎

∑︁
(𝑥,𝑦) ∈Z

|𝑦 |∑︁
𝑡=1

log
(
𝑃Φ+𝜑𝑟+𝜑𝑎

(𝑦𝑡 | 𝑥,𝑦<𝑡 )
)

(8)

where 𝜑𝑎 denotes the parameters of Annealing Adapter.

3.4.3 Inference. It is noteworthy that the additional parameter
𝜙 , brought forth by the SRT, is disregarded during the inference
stage. Moreover, employing the Annealing Adapter dynamically to
meet varying task demands acts as a potent strategy for achieving
a flexible balance between the model’s textual reasoning abilities
and recommendation accuracy.

4 EMPIRICAL STUDY
We analyze the proposed LLM-BS method on three datasets and
demonstrate its effectiveness by answering the following research
questions:
• RQ1: How does LLM-BS compare to state-of-the-art sequential

recommendation (traditional, LLM-based) methods in different
datasets?

• RQ2: How do the components of LLM-BS (e.g., Dual-source
Knowledge-rich Item Indices, Non-invasive Contrast Task, An-
nealing Adapter ) affect the performance?

• RQ3: How do various ablation variants and hyper-parameter
adjustments impact the performance of LLM-BS?

4.1 Experimental Setting
4.1.1 Dataset. We conducted experiments using three real-world
public datasets of Amazon product reviews[9, 26], which are among
the most widely utilized benchmarks for sequence recommenda-
tion. Specifically, the experiments focused on three subcategories:
“Beauty”, “Sports and Outdoors” and “Musical Instruments”. These
categories include user reviews and item metadata spanning from
May 1996 to July 2018. In line with previous studies[12, 29, 37],
we utilized the 5-core dataset approach, which excludes unpopular
items and inactive users with fewer than five interaction records.
The statistics for these datasets are presented in 1.

4.1.2 Evaluation Metrics. We utilize two widely recognized cri-
teria for the matching phase: Recall and Normalized Discounted
Cumulative Gain (NDCG). We present metrics calculated for the top
5/10 recommended candidates. In line with the standard evaluation
protocol[17], we adopt the leave-one-out method for assessments.
Specifically, for each sequence of user behavior, the most recent
item is designated as the test data, the next most recent as the
validation data, and all previous interactions are used for training.
During training phases, we restrict the user’s historical item count
to 20. Additionally, for generative methods employing beam search,
we consistently set the beam size to 20.

4.1.3 Implementation Details. We utilize Llama-7b[32] as LLM-
Backbone. In constructing the item indexes, LLM-Backbone itself
and DIN[40] as encoders, combining semantic and behavioral in-
dexes to form each item’s final ID. For training, our approach mir-
rors that of LC-Rec for ease of comparison, employing the AdamW
optimizer with a learning rate set to 5e-5 and weight decay at 0.01.
We use a cosine scheduler with warmup to adjust the learning rate
effectively. We implement data parallelism and gradient accumu-
lation to achieve an overall batch size of 128. For GCT, we adopt
InfoNCE to serve as the loss metric.

4.2 Performance Comparison (RQ1)
4.2.1 Baselines. To demonstrate the superiority of all our meth-
ods, we compare the following five categories of methods:
(1) Traditional seqiential methods
• GRU4REC [11]: An RNN-based sequential recommendation

model that utilizes GRU model to encode the item sequence.
• Caser [31]: a CNN-based approach that utilizes horizontal and

vertical convolutional layers to model the patterns in user be-
havior.

• HGN ] [25]: employs hierarchical gating networks to effectively
discern long-term and short-term user preferences.

(2) For transformer-based methods, we have:
• S^3-Rec [41]: S^3-Rec enhances sequential recommendation by

pre-training a bidirectional Transformer using self-supervised
learning tasks, focusing on maximizing mutual information.

• BERT4Rec [30]: Utilizes a bidirectional Transformer to over-
come the constraints of unidirectional models..

• FDSA [37]: models feature sequence transition patterns using a
self-attention module.

(3) For generative methods, we have:
• TIGER [28]: TIGER employs T5 to generate semantic IDs for

items and uses an autoregressive decoding process to identify
target candidates.

• P5-CID [14]: leverages collaborative signals to construct ID
identifiers for T5-based generative recommender model.

(4) For LLM-Based methods, we have:
• LC-Rec [39]: LC-Rec designs a vector quantization method to

generate semantic IDs and use Llama as backbone to autoregres-
sively decodes the identifiers of the target candidates items.

• LETTER [35]: Integrates collaborative signals into LLM-Backbone
through a series of regularizations.

4.2.2 Overall Performance. We provide a detailed report in
2 on the sequence recommendation performance of our method
across three datasets, comparing it against various baseline models.
Specifically for the Instruments dataset, we used the official LC-Rec
checkpoints to rerun the inference with the conflicts removed. The
results lead to several key observations :

LLM-BS obtains better results than base modes on all three
datasets. We believe that this is mainly attributed to the fact that
LLM-BS effectively introduces exogenous semantic and behavioral
signals and makes it possible for the LLM-Backbone to understand
this information in depth through a series of non-invasive tasks.

Traditional baselines employ a simple inner-product match-
ing approach, which segments the process and limits its ability to
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Table 2: Performance comparison of different methods. The best performance is highlighted in bold while the second best
performance is underlined. The last column indicates the improvements over the best baseline models and all the results of
LLM-BS are statistically significant with p < 0.05 compared to the best baseline models.

Dataset Metric Traditional Transformer-based Generative LLM-based Improv.
GRU4REC Caser HGN Bert4Rec S^3-Rec FDSA P5-CID TIGER LC-Rec Ours

Beauty

Recall@5 0.0164 0.0205 0.0325 0.0203 0.0387 0.0267 0.0400 0.0454 0.0482 0.0548 13.69%
Recall@10 0.0283 0.0347 0.0512 0.0347 0.0647 0.0407 0.0590 0.0648 0.0681 0.0830 21.88%
NDCG@5 0.0099 0.0131 0.0206 0.0124 0.0244 0.0163 0.0274 0.0321 0.0327 0.0369 12.84%
NDCG@10 0.0137 0.0176 0.0266 0.0170 0.0327 0.0208 0.0335 0.0384 0.0409 0.0459 12.22%

Sports

Recall@5 0.0129 0.0116 0.0189 0.0115 0.0251 0.0182 0.0313 0.0264 0.0304 0.0373 19.17%
Recall@10 0.0204 0.0194 0.0313 0.0191 0.0385 0.0288 0.0431 0.0400 0.0451 0.0569 26.16%
NDCG@5 0.0086 0.0072 0.0120 0.0075 0.0161 0.0122 0.0224 0.0181 0.0196 0.0251 12.05%
NDCG@10 0.0110 0.0097 0.0159 0.0099 0.0204 0.0156 0.0262 0.0225 0.0246 0.0315 20.23%

Instruments

Recall@5 0.0821 0.0543 0.0813 0.0671 0.0863 0.0834 0.0827 0.0863 0.0964 0.0991 2.80%
Recall@10 0.1031 0.0710 0.1048 0.0822 0.1136 0.1046 0.1016 0.1064 0.1177 0.1224 3.99%
NDCG@5 0.0698 0.0355 0.0668 0.0560 0.0626 0.0681 0.0708 0.0738 0.0819 0.0851 3.91%
NDCG@10 0.0765 0.0409 0.0744 0.0608 0.0714 0.0750 0.0768 0.0803 0.0890 0.0926 4.04%

Table 3: Performance comparison of LETTER and our
method. For fair comparison, llm-bacbone is uniformly
Llama2-7b. All the results of LLM-BS are statistically sig-
nificant with p < 0.05.

Model Instruments

R@5 R@10 N@5 N@10

TIGER 0.0870 0.1058 0.0737 0.0797
LETTER-TIGER 0.0909 0.1122 0.0763 0.0831

LC-Rec 0.0824 0.1006 0.0712 0.0712
LETTER-LC-Rec 0.0913 0.1115 0.0789 0.0854

LLM-BS (Llama2-7B) 0.0994 0.1206 0.0854 0.0922

Improv. 8.95% 7.48% 8.26% 8.02%

effectively model complex user interaction histories and intentions.
Moreover, this approach’s computational complexity grows expo-
nentially with the candidate set, also restricting the representational
space size. In contrast, LLM-BS aligns with the generative recom-
mendation paradigm. It not only leverages pre-training knowledge
to enhance recommendation-relevant capabilities, but it also re-
duces computational costs by directly generating the target item
ID through beam search. This approach expands the limitations of
latent space size in item representation, allowing it to incorporate
significantly more exogenous information.

Generative recommendation, llm-based approaches (TIGER,
LC-REC etc.) neglected the importance of exogenous behavioral
signals for sequence recommendation. While the transformer ar-
chitecture with generation loss works well in various domains, it
is not designed for the task of sequence recommendation. These
non-native approaches ignore the rank-order relationship of the
candidates in the recommendation task, which leads to poor model
performance on ranking-related metrics such as ndcg. Therefore,

we believe that introducing additional behavioral signals is the key
to improving the overall performance of model recommendation
without changing the model architecture and training process.

There are also some approaches that attempt to incorporate
exogenous behavioral signals into the recommendations (P5-
CID, LETTER). LETTER, for instance, integrates collaborative sig-
nals into discrete coding through a series of regularizations. How-
ever LETTER does not have open source code and is only imple-
mented as Llama2-7b[33], we evaluated our LLM-BS using the
Llama2-7b on the Instruments dataset, as detailed in 3. Our method
outperforms LETTER by over 8% across all metrics. We contend that
even sophisticated encoder-side feature fusion methods can intro-
duce additional compression loss, hindering the efficient integration
of multi-source features. Therefore, allowing the LLM-Backbone
itself to handle the fusion of information without introducing extra
generalization bias at the input emerges as a simpler and more
effective strategy.

4.3 Ablation Study (RQ2)
In the ablation experiments, the Sequence Recommendation Predic-
tion Task was used as the core metric to evaluate the performance
impact of each component. The main components of LLM-BS in-
clude Dual-source Knowledge-rich Item Indices (DKI), Global Con-
trast Decompression Task (GCT), and Annealing Adapter Tuning
(AAT). The results are reported in 4, we can observe that:

• Removing LLM-BS of theDKI, GCT, ATT (random index) achieves
the worst results in different datasets, but still outperforms the
vast majority of traditional baselines. This underscores the inher-
ent superiority and robustness of our foundational framework in
addressing the sequence recommendation task, and highlights
significant potential for further development and enhancement
in future work.
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Table 4: Ablation studies by selectively discarding the Dual-source Knowledge-rich Item Indices (DKI), Global Contrastive Task
(GCT), and Annealing Adapter Tuning (AAT).

Variants Beauty Musical Instruments

DKI GCT AAT R@1 R@5 R@10 NDCG@5 NDCG@10 R@1 R@5 R@10 NDCG@5 NDCG@10

0.0135 0.0453 0.0650 0.0295 0.0358 0.0631 0.0883 0.1071 0.0757 0.0817
✓ 0.0152 0.0499 0.0760 0.0329 0.0413 0.0696 0.0978 0.1199 0.0802 0.0886
✓ ✓ 0.0175 0.0513 0.0781 0.0346 0.0432 0.0694 0.0981 0.1215 0.0839 0.0914
✓ ✓ ✓ 0.0176 0.0544 0.0817 0.0363 0.0451 0.0707 0.0991 0.1225 0.0852 0.0927
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Figure 5: The performance of our architecture (w/o GCT,
AAT), under indexing with different exogenous signal com-
positions.

• Removing DKI significantly impacts sequence recommendation
performance, illustrating the base model’s effectiveness in en-
hancing recommendations by integrating exogenous behavioral
and semantic information. This also showcases DKI’s capability
to encapsulate vast information within a few tokens at a high
compression ratio.

• GCT significantly enhances the NDCG metrics compared to Re-
call, indicating its efficacy in decoding exogenous behavioral
signals compressed by DKI. GCT effectively incorporates exter-
nal knowledge that optimizes the model’s ability to sequence
recommendations. This underscores our architecture’s adapt-
ability in harnessing distinct properties from various exogenous
information sources.

4.4 Further Analysis (RQ3)
As depicted in 5, we conducted performance experiments on the
Beauty and Instruments datasets using various exogenous signal
indexing methods. We tested four indexing strategies: (1) Random,
where each level of indices is randomly selected from candidates and
ensured to be conflict-free; (2) Semantic, utilizing indices derived

0.035
0.037
0.039
0.041
0.043
0.045
0.047
0.049
0.051
0.053

0 2 4 6 8 10 12 14 16 18

Beauty

Recall@5 NDCG@5

Figure 6: Analysis of the performance impact of Items Indices
schemes of different lengths.

solely from exogenous textual semantic signals via a discretization
algorithm; (3) Behavior, using indices generated solely from ex-
ogenous behavioral signals via a discretization algorithm; and (4)
Unit, combining indices from both Semantic and Behavior. The Unit
index significantly exceeds the sum of the individual contributions
from the two sources, yielding much higher results.

To our shock, in the Beauty dataset, the Semantic index per-
forms worse than the Random index, likely due to a high compres-
sion ratio that complicates the model’s ability to decode separate
exogenous signals, especially after removing GCT and AAT. This
often results in a diminished or even negative impact on recommen-
dation performance. More intriguingly, the integration of exoge-
nous Behavioral signals enables effective interaction between the
dual information streams, enhancing their mutual comprehension
and decoding. This synergy not only mitigates the negative impacts
but also transforms them into substantial positive outcomes.

In 6, we demonstrate the impact of varying lengths of the Item
Indices scheme on performance within the Beauty dataset. Ob-
servations indicate that four layers of Indices provide sufficient
information for effective model learning. Larger layers does not
complicate the generation of legitimate IDs for the model. however,
it does result in increased inference times.

5 CONCLUSION
In this paper, we introduce LLM-BS, a novel decoder-only, LLM-
based generative recommendation framework that seamlessly inte-
grates both endogenous and exogenous behavioral and semantic
information non-intrusively. Extensive experiments validate the
effectiveness and robustness of LLM-BS, showcasing superior per-
formance compared to existing state-of-the-art methods.
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