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Abstract

Deep generative models have demonstrated effectiveness in
learning compact and expressive design representations that
significantly improve geometric design optimization. However,
these models do not consider the uncertainty introduced by
manufacturing or fabrication. Past work that quantifies such
uncertainty often makes simplified assumptions on geometric
variations, while the “real-world” uncertainty and its impact
on design performance are difficult to quantify due to the high
dimensionality. To address this issue, we propose a Gener-
ative Adversarial Network-based Design under Uncertainty
Framework (GAN-DUF), which contains a deep generative
model that simultaneously learns a compact representation of
nominal (ideal) designs and the conditional distribution of fab-
ricated designs given any nominal design. We demonstrated
the framework on two real-world engineering design examples
and showed its capability of finding the solution that possesses
better performances after fabrication.

Introduction
Many engineering design problems boil down to geometric
optimization. However, geometric optimization remains a
grand challenge because of its extreme dimensional complex-
ity and often hard-to-achieve performance objective. Recent
work has shown that deep generative models can learn a
compact and expressive design representation that remark-
ably improves geometric design optimization performances
(indicated by both the quality of optimal solutions and the
computational cost) (Chen, Chiu, and Fuge 2020; Chen and
Ramamurthy 2021; Chen and Ahmed 2021). However, past
work based on deep generative models only considers the
ideal scenario where manufacturing or fabrication imperfec-
tions do not occur, which is unrealistic due to the existence
of uncertainties in reality, such as limited tool precision or
wear. Such imperfections sometimes have a high impact on a
design’s performance or properties. Consequently, the origi-
nally optimal solution might not possess high performance
or desired properties after fabrication.

Past work has developed non-data-driven robust optimiza-
tion techniques to identify geometric design solutions that
are insensitive to variations of load, materials, and geome-
try (Chen, Chen, and Lee 2010; Chen and Chen 2011; Wang
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et al. 2019). However, due to the lack of generalized un-
certainty representation that is compatible with the geomet-
ric representations, previous works often make simplified
assumptions on geometric variations (e.g., the distribution
or the upper/lower bound of uncertain parameters), while
the “real-world” geometric uncertainty and its impact on
design performance are difficult to quantify due to the high-
dimensionality. In this paper, we propose a Generative Adver-
sarial Network-based Design under Uncertainty Framework
(GAN-DUF) to allow uncertainty quantification (UQ) of geo-
metric variability under real-world scenarios. This framework
is generalizable to both shape and topology designs, and im-
proves existing geometric design under uncertainty from four
aspects: 1) The generative adversarial network (GAN) uses a
compact representation to reparameterize geometric designs,
allowing accelerated optimization; 2) The GAN associates
fabrication uncertainty with ideal designs (nominal designs)
by learning a conditional distribution of fabricated designs
given any nominal design; 3) The optimization process ac-
counts for the real-world distribution of geometric variability
underlying any manufacturing processes, and allows UQ for
robust design optimization or reliability-based design op-
timization; and 4) The compact representation of nominal
designs allows efficient gradient-free global optimization.

We list the contributions of this work as follows:

1. We propose a novel deep generative model to simulta-
neously learn a compact representation of designs and
quantify their real-world geometric uncertainties.

2. We combine the proposed model with a robust design
optimization framework and demonstrate its effectiveness
on two realistic robust design examples.

3. We build two benchmark datasets, containing nominal
and fabricated designs, which will facilitate future study
on data-driven design under manufacturing uncertainty.

Background
In this section, we introduce Generative Adversarial Net-
works and previous work on design under uncertainty.

Generative Adversarial Networks
The generative adversarial network (Goodfellow et al. 2014)
models a game between a generator G and a discriminator
D. The goal of G is to generate samples (designs in our case)



that resemble those from data; while D tries to distinguish be-
tween real data and generated samples. Both models improve
during training via the following minimax optimization:

min
G

max
D

V (D,G) = Ex∼Pdata [logD(x)]+

Ez∼Pz [log(1−D(G(z)))],
(1)

where Pdata is the data distribution and z ∼ Pz is the noise
that serves as G’s input. A trained generator thus can map
from a predefined noise distribution to the distribution of
designs. Due to the low dimensionality of z, we can use it to
control the geometric variation of high-dimensional designs
in design optimization. However, standard GANs do not have
a way of regularizing the noise; so it usually cannot reflect
an intuitive design variation, which is unfavorable in many
design applications. To compensate for this weakness, the
InfoGAN encourages interpretable and disentangled latent
representations by adding the latent codes c as G’s another
input and maximizing the lower bound of the mutual informa-
tion between c and G(c, z) (Chen et al. 2016). The mutual
information lower bound LI is

LI(G,Q) = Ec∼P (c),x∼G(c,z)[logQ(c|x)] +H(c), (2)

where H(c) is the entropy of the latent codes, and Q is the
auxiliary distribution for approximating P (c|x). The Info-
GAN’s training objective becomes:

min
G,Q

max
D

Ex∼Pdata [logD(x)]+

Ec∼Pc,z∼Pz [log(1−D(G(c, z)))]− λLI(G,Q),
(3)

where λ is a weight parameter. In practice, H(c) is usually
treated as a constant as Pc is fixed.

Design under Uncertainty
Design under uncertainty aims to account for stochastic vari-
ations in engineering design (e.g., material, geometry, and
operating conditions) to identify optimal designs that are
robust or reliable (Maute 2014). Two common approaches
are robust design optimization (RDO) and reliability-based
design optimization (RBDO). RDO approaches simultane-
ously maximize the deterministic performance (or minimize
the cost) and minimize the sensitivity of the performance
(or cost) over random variables. The problem is typically
formulated as (Chen and Chen 2011):

min
x

J(ξ,u(x)) = µ(C(x,u(x))) + kσ(C(x,u(x))), (4)

where x is the design variable, ξ is the random variable;
u is the state variable involved with the physics of inter-
est, C is the deterministic cost function. The mean cost is
µ(C(x,u(x)) =

∫
ξ
p(ξ)C(x,u(x))dξ and the variance is

σ(C(x,u(x)))2 =
∫
ξ
p(ξ)[C(x,u(x) − µ(C(x,u(x))]2dξ.

k is the tuning parameter that adjusts the trade-off between
the mean and variance of the cost function.

RBDO methods exploit stochastic methods to perform
design optimization for a specified level of risk and reliability.
A typical formulation reads (Maute 2014):

min
x

Pr(C(x,u(x)) ≥ C∗)

s.t.: Pr(fm < 0) ≤ α∗
(5)

where C∗ is a tolerable threshold, fm < 0 denotes failure
in the system of interest, and α∗ is the maximum acceptable
failure probability.

Both approaches have facilitated design optimization un-
der geometric uncertainty for various levels of geometric
complexity (i.e., size, shape, and topology). Among them,
design optimization with topology variation under geomet-
ric uncertainty has been regarded as highly challenging due
to modeling of topological uncertainty, propagation thereof,
stochastic design sensitivity analysis, and others (Chen and
Chen 2011). Our proposed model can overcome this chal-
lenge by using a deep generative model to learn arbitrary
typologies and uncertainty distributions. We will demonstrate
this capability using a real-world design example.

Methodology
Let Inom and Ifab denotes the datasets of nominal and fabri-
cated designs, respectively:

Inom =
{
x(1)

nom, ...,x
(N)
nom

}
Ifab =

{(
x
(1,1)
fab , ...,x

(1,M)
fab

)
, ...,

(
x
(N,1)
fab , ...,x

(N,M)
fab

)}
,

where x
(i,j)
fab is the j-th realization (fabrication) of the i-

th nominal design. The goals are to 1) learn a lower-
dimensional, compact representation c of nominal designs
to allow accelerated design optimization and 2) learn the
conditional distribution P (xfab|c) to allow the quantification
of manufacturing uncertainty at any given nominal design
(represented by c).

To achieve these two goals, we propose a generative ad-
versarial network shown in Fig. 1a. Its generator G generates
fabricated designs when feeding in the parent latent vector cp,
the child latent vector cc, and noise z; whereas it generates
nominal designs simply by setting cc = 0. By doing this, we
can control the generated nominal designs through cp and
the generated fabricated designs through cc. Given the pair
of generated nominal and fabricated designs G(cp,0, z) and
G(cp, cc, z), the discriminator D predicts whether the pair
is generated or drawn from data (i.e., Inom and Ifab). Simi-
lar to InfoGAN, we also predict the conditional distribution
Q(cp, cc|xnom,xfab) to promote disentanglement of latent
spaces and ensure the latent spaces capture major geometric
variability (Chen, Chiu, and Fuge 2020). The GAN is trained
using the following loss function:

min
G,Q

max
D

Exnom,xfab [logD(xnom,xfab)]+

Ecp,cc,z[log(1−D(G(cp,0, z), G(cp, cc, z)))]−
λEcp,cc,z[logQ(cp, cc|G(cp,0, z), G(cp, cc, z))].

(6)

As a result, G decouples the variability of the nominal and
the fabricated designs by using cp to represent the nominal
design (Goal 1) and cc to represent the fabricated design of
any nominal design. By fixing cp and sampling from the prior
distribution of cc, we can produce the conditional distribution
P (xfab|cp) = P (G(cp, cc, z)|cp) (Goal 2).

The trained generator allows us to sample fabricated de-
signs given any nominal design, simply by sampling the
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Figure 1: Illustration of proposed Generative Adversarial Network-based Design under Uncertainty Framework (GAN-DUF).

low-dimensional cc with a fixed cp representing the nominal
design (Fig. 1b). We can then evaluate the objective(s) (e.g.,
performance, quality, or properties) of these generated fab-
ricated designs using computational methods (i.e., physics
simulation). The resulted distribution of objective(s) allows
us to quantify the uncertainty for the nominal design. Note
that the proposed framework is agnostic to both the type of
designs (e.g., how designs are represented or what geometric
variability is presented) and downstream tasks like optimiza-
tion. We can integrate the evaluated uncertainty into opti-
mization frameworks including robust optimization, where
we simultaneously optimize mean objective(s) and minimize
the influence of uncertainty (Wang et al. 2019) (Fig. 1c), as
well as reliability-based optimization, where we optimize the
objective(s) subject to constraints such as failure probability
or reliability index (Moustapha and Sudret 2019). The solu-
tion is expected to maintain high real-world performance or
confidence of reliability even under fabrication imperfection.

Experimental Results
We use the following two real-world robust design examples
to demonstrate the effectiveness of our proposed framework.

Airfoil Design
An airfoil is the cross-sectional shape of an airplane wing
or a propeller/rotor/turbine blade. The shape of the airfoil
determines the aerodynamic performances of a wing or a
blade. We use the UIUC airfoil database1 as our nominal
design dataset Inom. Please refer to Appendix A for the pre-
processing of Inom and the creation of the fabricated design
dataset Ifab. The final dataset contains 1,528 nominal designs
and 10 fabricated designs per nominal design. Note that due
to the fact that similar nominal designs also have similar fab-
ricated designs, we may need even fewer fabricated designs
as training data. Studying the minimum required size of the
fabricated design dataset might be an interesting future work.

We trained the proposed GAN on Inom and Ifab. Please
refer to Appendix B for details on the model architecture

1http://m-selig.ae.illinois.edu/ads/coord database.html

and training. We performed a parametric study to quantify
the design space coverage and the uncertainty modeling per-
formance of our trained models under different parent and
child latent dimension settings. Details on the experimental
settings and results are included in Appendix D. Based on
the parametric study, we set the parent and the child latent
dimensions of 7 and 5, respectively, when performing design
optimization. The objective is to maximize the lift-to-drag ra-
tio CL/CD (please refer to Appendix C for details on design
performance evaluation). We compared two scenarios:
1. Standard (nominal) optimization, where we only consider

the deterministic performance of the nominal design. The
objective is expressed as maxcp f(G(cp,0,0)).

2. Robust design optimization, which accounts for the perfor-
mance variation caused by manufacturing uncertainty. The
objective is expressed as maxcp

Qτ (f(G(cp, cc,0))|cp),
where Qτ denotes the conditional τ -quantile. We set
τ = 0.05 in this example.

In each scenario, we performed Bayesian optimization
(BO) to find cp. We evaluate 21 initial samples of cp se-
lected by Latin hypercube sampling (LHS) (McKay, Beck-
man, and Conover 2000) and 119 sequentially selected sam-
ples based on BO’s acquisition function of expected improve-
ment (EI) (Jones, Schonlau, and Welch 1998). In standard
optimization, we evaluate the nominal design performance
f(G(cp,0,0)) at each sampled point. In robust design opti-
mization, we estimate the quantile of fabricated design per-
formances f(G(cp, cc,0)) by Monte Carlo (MC) sampling
using 100 randomly sampled cc ∼ P (cc) at each cp. Figure 2
shows the optimal solutions and the distributions of ground-
truth fabricated design performances2 of these solutions. By
accounting for manufacturing uncertainty, the quantile values
for performances after fabrication are improved for the ro-
bust optimal design x∗

robust, compared to the standard optimal
design x∗

std, even though the nominal performance of x∗
robust

is worse than x∗
std. This result illustrates the possibility that

the solution discovered by standard optimization can have
2“Ground-truth fabricated design” refers to designs created by

the same means by which the designs from Ifab were created.
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Figure 2: Solutions for the airfoil design example.

high nominal performance but is likely to possess low perfor-
mance when it is fabricated. The robust design optimization
enabled by GAN-DUF can avoid this risk.

Optical Metasurface Absorber Design
Optical metasurfaces are artificially engineered structures that
can support exotic light propagation using subwavelength in-
clusions (Chen, Taylor, and Yu 2016; Bukhari, Vardaxoglou,
and Whittow 2019). Optical metasurface absorbers (Liu et al.
2017) have applications including medical imaging, sensing,
and wireless communications. In this work, the key func-
tionality of interest is large energy absorbance at a range of
incident wave frequencies. Based on the method described
in Appendix A, we created 1,000 nominal designs and 10
fabricated designs per nominal design (Fig. 3a).

As mentioned in the Background section, optimizing de-
signs with varying topology under geometric uncertainty has
been regarded as highly challenging (Chen and Chen 2011).
GAN-DUF can handle this problem by modeling the un-
certainty using the proposed generative adversarial network.
Details on the model architectures and training can be found
in Appendix B. Figure 3b shows nominal and fabricated de-
signs randomly generated from the trained generator with a
parent and a child latent dimensions of 5 and 10, respectively.
We performed a similar parametric study, as in the airfoil
design example, to quantify the design space coverage of the
trained models under varying parent latent dimensions.

During the design optimization stage, we set the parent
and the child latent dimensions to be 5 and 10, respectively.
The objective is to maximize the overall absorbance over
a range of frequencies (please refer to Appendix C for de-
tails). We compared standard optimization with robust design
optimization. Due to the higher cost of evaluating the ob-
jective, we used fewer evaluations than in the airfoil design
case. In each scenario, we performed BO with 15 initial LHS
samples and 85 sequentially selected samples based on the
acquisition strategy of EI. The quantile of fabricated design
performances at each cp was estimated from 20 MC samples.
Figure 4 shows the optimal solutions and the distributions of
ground-truth fabricated design performances for these solu-
tions. We observe similar patterns as in the airfoil design case,
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Figure 3: Metasurface designs randomly drawn from training
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Figure 4: Solutions for the metasurface design example.

where the standard optimization finds the solution with higher
nominal performance, while robust optimization enabled by
GAN-DUF finds the solution with higher performances (in
general) after fabrication. Note that the effect of robust de-
sign optimization is more significant on metasurface designs
(Fig. 4b) than airfoil designs (Fig. 2b), which indicates a
difference in the levels of variation in design performance
sensitivity to manufacturing uncertainties. This difference
can be caused by various factors such as the variance in nom-
inal designs and the physics governing design performances.

Conclusion
We proposed GAN-DUF to facilitate geometric design under
manufacturing uncertainty. It contains a novel deep genera-
tive model that simultaneously learns a compact representa-
tion of nominal designs and the conditional distribution of
fabricated designs given any nominal design. The proposed
framework is generalizable as it does not make any assump-
tion on the type of geometric representation or uncertainty.
We applied GAN-DUF on two real-world engineering de-
sign examples and showed its capability in finding the design
solution that is more likely to possess a better performance
after fabrication. Built on these preliminary results, our fu-
ture work will 1) perform more tests to quantify GAN-DUF’s
performance on different design under uncertainty scenarios
and 2) use real fabricated designs as training and test data.



Appendix A: Dataset Creation
In this appendix, we describe how we build the datasets of
fabricated designs and nominal designs.

Nominal Designs
Airfoil Design. The original UIUC database contains in-
valid airfoil shapes and the number of surface coordinates
representing each airfoil is inconsistent. Therefore, we used
the preprocessed data from Chen, Chiu, and Fuge (2020) so
that outliers are removed and each airfoil is represented by
192 surface points (i.e., xnom ∈ R192×2).

Optical Metasurface Absorber Design. The nominal de-
sign dataset builds on three topological motifs — I-beam,
cross, and square ring (Larouche et al. 2012; Azad et al.
2016). We create nominal designs by randomly interpolating
the level-set fields of these baselines (Whiting et al. 2020). As
a result, each design is stored as 64× 64 level-set values (i.e.,
xnom ∈ R64×64). We can obtain final designs by thresholding
the level-set fields. Building on a given set of baselines, this
shape generation scheme allows a unit cell population that is
topologically diverse.

Fabricated Designs
Ideally, we can take the nominal designs from Inom, fabricate
them, and use the fabricated designs as data. To save time
and cost, we simulate the fabrication effects by deforming
the geometry of nominal designs based on the following
approaches.

Airfoil Design. We simulate the effect of manufacturing un-
certainty by randomly perturbing the free-form deformation
(FFD) control points of each airfoil design from Inom (Seder-
berg and Parry 1986). Specifically, the original FFD control
points fall on a 3× 8 grid and are computed as follows:

Pl,m
nom =

(
xmin

nom +
l

7
(xmax

nom − xmin
nom), y

min
nom +

m

2
(ymax

nom − ymin
nom)

)
,

l = 0, ..., 7 and m = 0, ..., 2,
(7)

where xmin
nom, xmax

nom, ymin
nom, and ymax

nom define the 2D minimum
bounding box of the design xnom. To create fabricated de-
signs, we add Gaussian noise ϵ ∼ N (0, 0.02) to the y-
coordinates of control points except those at the left and
the right ends. This results in a set of deformed control points
{Pl,m

fab |l = 0, ..., 7;m = 0, ..., 2}. The airfoil shape also de-
forms with the new control points and is considered as a
fabricated design. The surface points of fabricated airfoils
are expressed as

xfab(u, v) =

7∑
l=0

2∑
m=0

B7
l (u)B

2
m(v)Pl,m

fab , (8)

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1 are parametric coordinates,
and the n-degree Bernstein polynomials Bn

i (u) =
(
n
i

)
ui(1−

u)n−i. We set the parametric coordinates based on the surface
points of the nominal shape:

(u,v) =

(
xnom − xmin

nom

xmax
nom − xmin

nom

,
ynom − ymin

nom

ymax
nom − ymin

nom

)
. (9)

Perturbing nominal designs via FFD ensures that the de-
formed (fabricated) shapes are still continuous, which con-
forms to reality.

Optical Metasurface Absorber Design. Similar to the
airfoil design example, we randomly perturb a set of 12× 12
FFD control points in both x and y directions with white
Gaussian noise that has a standard deviation of 1 pixel. This
leads to the distortion of the 64×64 grid coordinates at all the
pixels, together with the level-set value at each pixel. We then
interpolate a new level-set field as the fabricated (distorted)
design. To account for the limited precision of fabrication,
we further apply a Gaussian filter with a standard deviation
of 2 to smooth out sharp, non-manufacturable features.

Note that how well the simulated manufacturing uncer-
tainty resembles the real-world uncertainty is not central to
this proof of concept study. We treat the simulated uncer-
tainty as the real uncertainty only to demonstrate our design
under uncertainty framework. In the ideal scenario, we can
directly use the real-world fabricated designs to build Ifab
and our proposed framework can still model the fabricated
design distribution give sufficient data, since the framework
is agnostic to the form of uncertainty. However, one needs
to use sufficient amount of data and appropriate dimensions
for the latent vectors. For example, more fabricated design
data and a higher-dimensional child latent vector are possibly
required if the fabricated designs have a higher variation.

Appendix B: Model Architectures and Training
In this appendix, we describe the model architectures and
training configurations used in both examples.

Airfoil Design. We set the parent latent vector to have a
uniform prior distribution U(0,1) (so that we can search
in a bounded space during the design optimization stage),
whereas both the child latent vector and the noise have nor-
mal prior distributions N (0, 0.5I). We fixed the noise di-
mension to 10, and experimented using different parent/child
latent dimensions (please see Appendix D for the paramet-
ric study). The generator/discriminator architecture and the
training configurations were set according to Chen, Chiu, and
Fuge (2020). During training, we set both the generator’s and
the discriminator’s learning rate to 0.0001. We trained the
model for 20,000 steps with a batch size of 32.

Optical Metasurface Absorber Design. Same as the air-
foil example, we set the parent latent vector to have a uniform
prior distribution, while both the child latent vector and the
noise have normal prior distributions. Again, we fixed the
noise dimension to 10. The generator and the discriminator
architectures are shown in Fig. 5. The discriminator predicts
both the discriminative distribution D(xnom,xfab) and the
auxiliary distribution Q(cp, cc|xnom,xfab). During training,
we set both the generator’s and the discriminator’s learning
rate to 0.0001. We trained the model for 50,000 steps with a
batch size of 32.

Appendix C: Design Performance Evaluation
During design optimization, the design performance is treated
as the objective and needs to be evaluated at each iteration.
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Figure 5: Generator and discriminator architectures in the
metasurface design example.

In this appendix, we describe the details of the design perfor-
mance evaluation for both examples.

Airfoil Design. An airfoil’s aerodynamic performance is
normally assessed by its lift and drag, which can be computed
via a computational fluid dynamics (CFD) solver. In this
paper, we used SU2 (Economon et al. 2016) as the CFD
solver. The final performance is evaluated by the lift-to-drag
ratio CL/CD.

Optical Metasurface Absorber Design. A unit cell of
metasurface is made of a dielectric with relative permittivity
2.88-0.09i where i is the imaginary unit i =

√
−1. Periodic

boundary condition is imposed to the boundary of the anal-
ysis domain. The performance metric, energy absorbance,
is defined as A(f) = 1 − T (f) = 1 − |S11(f)|2, where f
is the excitation frequency of an x-polarized incident wave
(8-9 THz in this work), T is the transmission, and S11 is a

component of the S-parameter matrix that characterizes an
electrical signal in a complex network. To achieve broad-
band functionality, we formulate the objective function as
the sum of energy absorbance at individual frequencies (i.e.,
J =

∑nf

i=1 A(fi), where nf is the number of equidistant
frequencies at which absorbance is to be observed).

Appendix D: Parametric Study
We conducted parametric studies to investigate the effects of
the parent and the child latent dimensions on the generative
performances (we fix the noise dimension to 10). Particularly,
we care about two performances: (1) how well the parent
latent representation can cover nominal designs, and (2) how
well the performance distributions of fabricated designs are
approximated. The experimental settings and results are de-
scribed as follows.

Airfoil Design. We evaluated the first performance (i.e.,
nominal design coverage) via a fitting test, where we found
the parent latent vector that minimizes the Euclidean distance
between the generated nominal design and a target nomi-
nal design sampled from the dataset (i.e., fitting error). We
use SLSQP as the optimizer and set the number of random
restarts to 3 times the parent latent dimension. We repeated
this fitting test for 100 randomly sampled target designs under
each parent latent dimension setting. A parent latent repre-
sentation with good coverage of the nominal design data
will result in low fitting errors for most target designs. Fig-
ure 6a indicates that a parent latent dimension of 7 achieves
relatively large design coverage (low fitting errors). We eval-
uated the second performance (i.e., fabricated design perfor-
mance approximation) by measuring the Wasserstein distance
between two conditional distributions — P (f(xfab)|xnom)
and P (f(G(cp, cc, z))|xnom), where f denotes the objective
function. In this example, f is the simulation that computes
the lift-to-drag ratio CL/CD. For each generated nominal
design xnom, we created 100 “simulated” fabricated designs
as xfab, in the same way we create training data. We also
generated the same number of fabricated designs using the
trained generator. We compute the Wasserstein distance be-
tween these two sets of samples. We repeated this test for 30
randomly generated nominal designs under each child latent
dimension setting. Figure 6b shows that when the child latent
dimension is 5, we have relatively low Wasserstein distances
with the smallest variation (the parent latent dimension was
fixed to 7). When the child latent dimension further increases
to 10, the uncertainty of the Wasserstein distances increase,
possibly due to the higher dimensionality. Note that the train-
ing data only contains 10 fabricated designs per nominal
design, while at the test phase we use many more samples per
nominal design to faithfully approximate the conditional dis-
tributions. We do not need that many samples at the training
phase because the generative model does not learn indepen-
dent conditional distributions for each nominal design, but
can extract information across all nominal designs.

Optical Metasurface Absorber Design. We performed a
fitting test to study the effect of the parent latent dimension
on the design space coverage of GANs. Same as in the airfoil
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Figure 6: Parametric study for the airfoil design example.
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Figure 7: Parametric study for the metasurface design exam-
ple.

design case, we use SLSQP as the optimizer and set the num-
ber of random restarts to 3 times the parent latent dimension.
Here the fitting error is the Euclidean distance between the
level-set fields of the generated nominal design and a target
nominal design sampled from the dataset. Under each par-
ent latent dimension setting, we randomly select 100 target
designs. Figure 7 indicates that a parent latent dimension of
5 achieves sufficiently large design coverage, while further
increasing the parent latent dimension cannot improve the
coverage.
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