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ABSTRACT

In high-stakes domains such as clinical reporting, legal analysis, and policy drafting,
large language models (LLMs) are increasingly tasked with generating extended,
fact-rich narratives rather than isolated sentences. Accurately quantifying uncer-
tainty in these long-form outputs is essential for ensuring their reliability. Prior
approaches either assign a single confidence score to an entire paragraph, often
using other LLMs or assess factual consistency by comparing discrete atomic facts
derived from the paragraphs across multiple generations. Some recent methods
also incorporate graph-based representations, modeling fact–paragraph structures
as bipartite entailment graphs and derive uncertainty from node centrality of the
facts. However, these methods overlook the interdependencies among atomic facts
within a paragraph, as well as the explicit organizational, structural and semantic
variation across multiple paragraphs generated by an LLM for the same query,
thereby missing a key source of uncertainty inherent specifically to long-form
generation. In this work, we introduce GAUSS (Graph-Assisted Uncertainty Quan-
tification using Structure and Semantics for Long-Form Generation in LLMs), a
principled framework for measuring uncertainty in long-form LLM outputs through
graph-based alignment. Each generated paragraph is modeled as a semantic graph,
where nodes represent atomic facts about the paragraph and edges capture inter-fact
relationships. We hypothesize that uncertainty arises from structural and semantic
discrepancies among these graphs across different generated paragraph samples.
GAUSS formalizes this intuition by computing an uncertainty score as the expected
alignment cost between the semantic graph of an anchor paragraph and those of
alternative reference paragraphs generated by the LLM. By jointly capturing both
semantic content and structural coherence of the generated texts, GAUSSmoves
beyond coarse sentence-level scores to offer a more interpretable and theoreti-
cally grounded approach to uncertainty quantification. Our code is available at
https://github.com/sourceuser-1/Code.

1 INTRODUCTION
Large Language Models (LLMs) are increasingly used in high-stakes domains requiring strong factual
accuracy [23, 9, 10, 11, 7]. While they excel at fluent long-form generation, their outputs often
exhibit hallucinations and inconsistencies. This makes reliable uncertainty quantification essential in
critical settings. While recent advances in uncertainty quantification (UQ) have made progress on
short-form generation using semantic features, conformal calibration, and entropy-based metrics [8,
12, 21, 4, 22, 6, 15, 16], these methods remain constrained to isolated sentences or atomic facts.
Long-form generation, as produced by LLMs is inherently paragraphic in nature: it weaves together
multiple atomic facts in a structured, interdependent manner. These facts are not merely co-located;
they exhibit logical flow, hierarchical relationships, and latent semantic dependencies. Traditional
UQ techniques, which assess uncertainty in isolation or via entropy over discrete outputs [15, 16],
struggle to capture such organization. Recent work [29, 13, 30] has sought to extend UQ to long-form
generation by decomposing paragraphs into atomic facts, evaluating each via entailment models or
consistency checks, and aggregating the results into a paragraph-level score. However, treating facts
as independent units ignores the structural coherence that underpins long-form content. Logical flow,
contextual dependencies, and the nuanced arrangement of facts are discarded, leading to coarse and
potentially misleading uncertainty estimates. Reliable, interpretable UQ for long-form generation
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demands moving beyond ‘bag-of-facts’ analyses toward representations that reflect the structure and
semantics of entire paragraphs.
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Figure 1: GAUSS decomposes paragraphs into atomic facts and represents each as a semantic graph,
capturing both factual semantics and inter-fact relations. Uncertainty is computed via graph alignment
between an anchor and the remaining reference graphs. In contrast, [14] uses a single bipartite graph
and centrality over fact–paragraph entailments, while [29] relies on external LLMs and ignores
intra-paragraph structure.
To build reliable and interpretable UQ for long-form generation, we argue that uncertainty should
be grounded in both the internal organization and semantic meaning of the paragraphs themselves.
In this regard, we propose GAUSS (Graph-Assisted Uncertainty quantification using Structure and
Semantics for Long Form Generations in LLMs), a principled framework for modeling uncertainty
in long-form LLM outputs through graph-based representations (see Figure 1). In GAUSS, each
generated paragraph is first decomposed into its constituent atomic facts, which are represented
as nodes in a semantic graph. Edges between these nodes encode pairwise semantic relationships,
capturing dependencies among factual elements. This graph-based abstraction serves two key roles:
(i) it preserves the symbolic structure inherent in long-form text, and (ii) it embeds the semantic
content of individual atomic facts. To quantify uncertainty, GAUSS compares the semantic graph of a
generated paragraph against those of other candidate generations, measuring structural and semantic
deviations using a graph alignment distance. In doing so, GAUSS offers a structure-aware approach
to UQ in long form generation. A recent graph-based approach [14] represents atomic fact–paragraph
interactions using a single bipartite entailment graph and quantifies fact-level uncertainty via graph
centrality metrics such as closeness (see Figure 1). [14] model fact level uncertainty through
relationships between facts and paragraphs across generations, without explicitly capturing the rich
internal organization/ coherence of atomic facts in individual paragraphs. In contrast, GAUSS takes
a fundamentally different approach: it constructs a separate semantic graph for each paragraph,
with nodes representing atomic facts and edges encoding semantic and structural dependencies.
This per-paragraph semantic graph modeling enables GAUSS to assess uncertainty at the generated
paragraph level by directly comparing structure and meaning across generations, thus yielding more
interpretable uncertainty estimates. Furthermore, unlike [14], GAUSS offers theoretical guarantees
(such as robustness to embedding variation and convergence bounds), and extends naturally to atomic-
level uncertainty (GAUSS-atomic), content filtering applications etc (see Appendix Sections 2–3).
Thus, our key contributions are:

1. We introduce a semantic-graph representation that simultaneously encodes the meaning of
each atomic fact and the relational dependencies among them to capture both content and
structure in long-form paragraphs.

2. We propose GAUSS, a structure and semantics-aware framework for uncertainty quantifica-
tion in long-form generation, which estimates uncertainty via fused Gromov–Wasserstein
graph alignment distance between semantic graphs.
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3. We theoretically establish the Lipschitz continuity of both the graph alignment distance
and the resulting uncertainty measure under semantic and structural perturbations, ensuring
robustness to small graph structure and semantic embedding variations in the generated text.

4. We derive exponential convergence bounds for the uncertainty measure in terms of the
number of sampled paragraphs and the consistency of the generating LLM, demonstrating
that reliable uncertainty estimates can be obtained with modest sample sizes.
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Figure 2: An anchor paragraph and three references diverge in semantics and structure. GAUSS
uses graph-based structural + semantic costs to produce steadily increasing uncertainty (left),
whereas semantic-only baselines (right) give inconsistent scores, highlighting the need for joint
structure–semantics comparison.

2 MOTIVATION

We posit that uncertainty in long-form generation should reflect the variability in how atomic factual
units (atomic facts) within the generated paragraphs are represented and semantically interconnected.
To operationalize this concept, consider a scenario wherein an LLM generates multiple paragraphs in
response to the same query for a long-form answer. We can designate one paragraph as the anchor and
all others as reference paragraphs and decompose each generated paragraph into its constituent atomic
facts. Consequently, uncertainty in paragraph generation can be assessed by examining the structural
and semantic discrepancies between the atomic facts of the anchor and reference paragraphs.

To analyze such differences rigorously, we represent each paragraph as a semantic graph, where
nodes encode the meaning of individual atomic facts, while edges quantify semantic relationships
between them. This structured representation enables us to capture not only the content of a paragraph
but also the relational fabric that holds it together. By comparing these graphs across generations,
we obtain an interpretable measure of uncertainty, one that reflects both the semantic variation and
organizational shifts inherent to long-form language generation.

Figure 2 shows three reference paragraphs that have been constructed so as to gradually diverge
from an anchor in both meaning and structure. Methods like LUQ [30] and Gen-Binary [29] treat
long-form uncertainty purely as semantic agreement : either by averaging entailment scores over
atomic facts or by querying another LLM for fact support (between anchor facts and other reference
paragraphs), thus overlooking how the paragraphs’ symbolic structure interacts with their content. In
contrast, GAUSS encodes each paragraph as a graph, jointly capturing the inherent structure (atomic
fact interdependices) and semantics (atomic fact semantics). By examining the three scenarios in
Figure 2, we highlight how this graph-based comparison more faithfully quantifies uncertainty.

• Reference Facts 1: The reference facts closely mirror the anchor facts with minor wording
differences. Here, our approach correctly identifies slight structural and semantic varia-
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tions, consistently demonstrated across comparative methods (GAUSS , Gen-Binary[29],
LUQ[30]).

• Reference Facts 2: These facts retain overall semantic congruence with the anchor, but
differ significantly in their organization, lacking direct one-to-one correspondence with the
anchor facts. Unlike approaches relying solely on aggregate semantic similarity, GAUSS
explicitly captures variations in generation style and structure, yielding a higher uncertainty
score. Conversely, Gen-Binary underestimates uncertainty and fails to recognize different
organization style as it solely relies on just the overall semantics.

• Reference Facts 3: This scenario introduces significant alterations in both semantics and
structure (through contradictory information and extraneous content) in comparison to
the anchor facts. Our method accurately identifies these substantial deviations, reflecting
increased structural and semantic costs and thereby a higher uncertainty measure.

This example demonstrates our method’s sensitivity to nuanced variations in paragraph semantics,
structure, and style. In contrast, Gen-Binary [29], which focuses solely on overall semantics, fails to
detect organizational differences, overlooking uncertainties evident in reference facts 2. Similarly,
LUQ [30], by disregarding structural organization, does not accurately capture the progression of
uncertainty across reference facts. Unlike these methods, GAUSS consistently reflects a monotonic
increase in uncertainty across the progressively varying reference paragraphs, emphasizing the
need for a structure and semantic aware uncertainty quantification technique for long-form LLM
generation.

3 BACKGROUND

Although it has not yet been applied to uncertainty quantification in long-form generations by LLMs,
graph-based optimal transport (OT) [17, 26] offers a principled framework for comparing structured
data such as graphs, by aligning the nodes of two graphs based on both structural relationships
and feature-level similarity. While classical OT aligns distributions over Euclidean spaces, graph
alignment requires accounting for relational dependencies between nodes.

Let G1 = (V1, E1, C1, ℓf ) and G2 = (V2, E2, C2, ℓf ) be two graphs, where Vi and Ei represent
the nodes and edges of the graphs respectively. C1 ∈ R|V1|×|V1| and C2 ∈ R|V2|×|V2| are structure
matrices encoding pairwise node relations (e.g., shortest path, adjacency etc), and ℓf is the node
feature mapping function. The goal in graph based OT is to align the two graphs G1 and G2 based on
both the structural and semantic similarity. The fused Gromov–Wasserstein distance (graph alignment
distance) Dα [26, 28], compares both structure and features via:

Dα(G1, G2) = min
π∈Π

∑
i,j,k,ℓ

[
(1− α) m

(
ℓf (i), ℓf (j)

)︸ ︷︷ ︸
semantic cost

+ α |C1(i, k)− C2(j, ℓ)|︸ ︷︷ ︸
structural cost

]
πij πkℓ ,

subject to Π =

π ∈ [0, 1]|V1|×|V2|

∣∣∣∣∣∣
|V2|∑
j=1

πij = 1,

|V1|∑
i=1

πij = 1


(3.1)

where m(·, ·) is a feature cost function (e.g., cosine distance), and α ∈ [0, 1] trades off structural and
feature alignment. The coupling π can be seen as the mapping from the nodes of G1 to nodes of G2.

4 GRAPH BASED UNCERTAINTY QUANTIFICATION FOR LONG FORM
GENERATION

4.1 OVERVIEW OF THE LONG FORM GENERATION UNCERTAINTY ESTIMATION FRAMEWORK

We begin by outlining the core pipeline of GAUSS before detailing each component of the framework.

To quantify the long-form uncertainty associated with a given query q and language model M, we
first sample N independent paragraph-length responses:

{Pi}Ni=1 ∼ M(q).

4
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From these, we designate one paragraph Pa as the anchor, and treat the remaining N − 1 paragraphs
{Pr}r ̸=a as references. Each paragraph Pi is decomposed into a set of atomic facts FPi

using
a factual decomposition model Matomic, and is subsequently represented as a semantic graph
Gi = (Vi, Ei, Ci, ℓf ), where nodes encode the atomic facts and edges capture semantic dependencies.

To assess the variability of generations around the anchor, we compute the alignment distance
Dα(Ga, Gr) between the anchor graph Ga and each reference graph Gr. The final uncertainty score
for query q is given by the mean alignment cost:

U(q) =
1

N − 1

∑
r ̸=a

Dα(Ga, Gr). (4.1)

Intuitively, U(q) captures the average structural and semantic deviation between the anchor and
reference paragraphs—higher values indicate greater generation variability and, thus, higher uncer-
tainty. We describe the construction of semantic graphs in Section 4.2, the computation of alignment
distances in Section 4.3, and the theoretical properties of the uncertainty measure in Section 4.4. A
full overview of the GAUSS pipeline is provided in Algorithm 1.

4.2 REPRESENTING PARAGRAPHS AS SEMANTIC GRAPHS

To capture both the semantic content and the internal relational structure within a paragraph Pi,
we represent it as a semantic graph Gi = (Vi, Ei, Ci, ℓf ). The construction of the semantic graph
proceeds in three stages:

Step 1: Atomic Fact Extraction. We begin by decomposing paragraph Pi into its constituent
atomic facts:

FPi
= Matomic(Pi) = {f1, f2, . . . , fni

},

using a prompted model Matomic following prior work [27, 19, 29, 30]. Each fk denotes a standalone
factual statement derived from Pi. Further implementation details for prompting Matomic are
provided in the Appendix.

Step 2: Node Construction and Semantic Embedding. Each atomic fact fk ∈ FPi
is treated as a

node vk in the vertex set Vi, so that Vi = {v1, . . . , vni}. To encode the semantic meaning of each
node, we use a sentence embedding model Msentence to compute:

ℓf (vk) = Msentence(fk) ∈ Rd.

𝒊

𝒌

𝒋

𝒍

𝐺𝑎 Graph 𝐺𝑟  Graph

Feature: 𝑙𝑓(𝑣𝑗)

Feature: 𝑙𝑓(𝑣𝑘)
Feature: 𝑙𝑓(𝑣𝑙)

Feature: 𝑙𝑓(𝑣𝑖)

Structure: 𝐶𝑎 𝑖, 𝑘
Structure: 𝐶𝑟 𝑖, 𝑘

Figure 3: The structural and feature cost while
aligning graph Ga and reference graph Gr.

Step 3: Structural Matrix Construction. To en-
code inter-fact dependencies, we define the structure
matrix Ci ∈ Rni×ni using pairwise semantic dis-
tance:

Ci(k, ℓ) = 1− cos
(
ℓf (vk), ℓf (vℓ)

)
,

where cos(·, ·) denotes cosine similarity between em-
beddings. Higher values in Ci(k, ℓ) correspond to
a weaker semantic affinity between facts fk and fℓ.
While we adopt semantic distance here, other graph-
based metrics such as graph kernels may also be more
generally used. We explore such variants in Section
4 of the Appendix.

The resulting graph Gi = (Vi, Ei, Ci, ℓf ) serves as a compact, interpretable representation of Pi and
captures both the meaning of each atomic fact and their mutual relationships, setting the stage for
principled alignment across paragraph representations.

4.3 COMPUTING ALIGNMENT DISTANCE BETWEEN SEMANTIC GRAPHS

In this subsection, we detail the computation of the alignment distance Dα(Ga, Gr) between the
anchor graph Ga and a reference graph Gr, with na and nr nodes respectively. The process involves
constructing the semantic cost matrix Mr and the structural cost tensor Lr, which jointly define the
alignment objective. An illustration is provided in Figure 3.

5
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Semantic Cost Matrix Mr . The semantic cost matrix Mr ∈ Rna×nr encodes the dissimilarity at
the feature level between the atomic facts in the anchor graph Ga and those in the reference graph
Gr. For each pair of nodes vi ∈ Ga and vj ∈ Gr, the cost entry Mr[i, j] is defined as:

Mr[i, j] = 1− cos
(
ℓf (vi), ℓf (vj)

)
· Mentail

(
ℓf (vi), Pr

)
, (4.2)

where Mentail(ℓf (vi), Pr) ∈ {0, 1} is the output of model that determines whether the atomic fact
ℓf (vi) is supported by the reference paragraph Pr. Implementation details and prompting strategies
for Mentail are provided in the Appendix.

This formulation combines both local and global signals: the cosine similarity reflects the local
semantic alignment between atomic facts, while the entailment signal serves as a global gating
mechanism—suppressing alignment when the reference paragraph lacks the corresponding factual
support. Together, they ensure that only semantically and contextually consistent node alignments
are favored in the downstream graph matching process.

Structural Cost Tensor Lr. The structural cost tensor Lr ∈ Rna×na×nr×nr measures alignment
consistency between the internal topologies of the two semantic graphs. Recall that each structure
matrix Ca or Cr is computed as:

C(i, k) = 1− cos
(
ℓf (vi), ℓf (vk)

)
,

which reflects the semantic dissimilarity between atomic fact embeddings within a graph. Given this,
we define the structural cost tensor as:

Lr[i, j, k, ℓ] = |Ca(i, k)− Cr(j, ℓ) | , (4.3)

which penalizes mismatches in the relative connectivity of node pairs (i, k) in Ga and (j, ℓ) in Gr.

Final Alignment Distance. With the semantic cost matrix Mr and the structural cost tensor Lr

defined, the alignment distance between Ga and Gr, Dα(Ga, Gr) is computed as:

Dα(Ga, Gr) = min
π∈Π

∑
i,j,k,ℓ

[
(1− α)Mr[i, j] + αLr[i, k, j, ℓ]

]
πijπkℓ,

where π is a stochastic map which aligns nodes in Ga to nodes in Gr. This alignment distance
reflects the closest possible semantic similarity and global structural coherence between the anchor
and reference graphs through the mapping π.

Algorithm 1 GAUSS
Require: Query q, language model M, number of samples N , trade-off parameter α
1: Sample Paragraphs: Generate N long-form responses {Pi}Ni=1 ∼ M(q)
2: Select Anchor: Choose one sample Pa as the anchor paragraph; set remaining {Pr}r ̸=a as reference

paragraphs
3: for each paragraph Pi do
4: Extract atomic facts FPi

5: Construct semantic graph Gi = (Vi, Ei, Ci, ℓf )
6: end for
7: for each reference graph Gr , where r ̸= a do
8: Compute alignment distance Dα(Ga, Gr)
9: end for

10: Expectation: Compute average alignment cost U(q) = 1
N−1

∑
r ̸=a Dα(Ga, Gr)

11: return U(q)

4.4 THEORETICAL PROPERTIES OF THE PROPOSED UNCERTAINTY MEASURE

In this section, we establish theoretical guarantees for the proposed uncertainty measure U(q),
defined in equation 4.1 as the mean alignment cost between an anchor graph Ga and reference
graphs {Gr}r ̸=a via the distance Dα. We first prove the Lipschitz continuity of Dα in Lemma 4.1,
and extend it to U(q) in Theorem 4.1, ensuring robustness to semantic and structural perturbations.
Theorem 4.2 further establishes exponential convergence of U(q) to its expectation, governed by
the number of reference samples and the LLM’s consistency, thus offering practical guidance on the
sampling budget required for stable uncertainty estimation.

6
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Remark 1. The following results provide continuity and convergence guarantees for the uncertainty
measure U(q), grounded in graph representations of generated paragraphs. More generally, these
properties extend to uncertainty quantification in graph generation, which we formalize below.

Suppose the anchor graph Ga has na nodes and a reference graph Gr has nr nodes. We define the
feature cost matrix Mr ∈ Rna×nr by Mr[t, h] = m

(
ℓf (t), ℓf (h)

)
, which measures the semantic

dissimilarity between node t ∈ Ga and node h ∈ Gr. We also define the structural cost tensor
Lr ∈ Rna×na×nr×nr as Lr[i, k, j, ℓ] = |Ca(i, k)− Cr(j, ℓ) | , where Ca and Cr are the structure
matrices of Ga and Gr, respectively. This tensor captures discrepancies in pairwise structural relations
across the two graphs. For our application to long-form generation, the specific definitions of Mr

and Lr are provided in Section 4.3. Together, they fully specify the inputs to the alignment distance
Dα(M

r, Lr) used in computing uncertainty.

Remark 2. For any fixed pair of graphs Ga and Gr, we use the notation Dα(Ga, Gr) interchangeably
with Dα(M

r, Lr), where Mr and Lr are the corresponding feature cost matrix and structural cost
tensor derived from Ga and Gr. Thus Dα - graph alignment distance, can be alternatively written as:

Dα(M
r, Lr) = min

π∈Π

∑
i,j,k,ℓ

[
(1− α)Mr[i, j] + αLr[i, k, j, ℓ]

]
πij πkℓ

Lemma 4.1 (Lipschitz Continuity of Alignment Distance). The alignment distance Dα(M
r, Lr) is

Lipschitz continuous with respect to both the feature cost matrix Mr and the structural cost tensor
Lr. That is for any (Mr, Lr), (M̃r, L̃r),∣∣∣Dα(M

r, Lr)−Dα(M̃r, L̃r)
∣∣∣ ≤ (1− α)∥Mr − M̃r∥∞ + α∥Lr − L̃r∥∞.

Theorem 4.1 (Lipschitz Continuity of the Proposed Uncertainty Measure). Let U(q) denote the
uncertainty score for query q with respect to a generated graph Ga as the anchor, and N − 1
independently generated graphs {Gr}r ̸=a as reference graphs, defined as

U(q) =
1

N − 1

∑
r ̸=a

Dα(M
r, Lr), (4.4)

where (Mr, Lr) are the semantic cost matrices and structural cost tensors between Ga and Gr. Then
U(q) is Lipschitz continuous with respect to the collection {Mr, Lr}r ̸=a.

Theorem 4.2 (Convergence of the Uncertainty Measure). Under general boundedness assumptions
on the alignment distances, the uncertainty score U(q) defined in Eqn (4.4) exponentially converges
around the true mean E[U(q)], specifically:

P [ |U(q)− E[U(q)]| > ϵ ] ≤ 2 exp

(
−2(N − 1)ϵ2

D2

)
,

for any ϵ and some constant D > 0 that depends on the graph generation inconsistency.

Implication of Theorems 4.1 & 4.2: The Lipschitz property of U(q) ensures that small semantic or
structural perturbations in input graphs lead to proportionally bounded changes in the uncertainty
score, making the uncertainty measure robust to noise in the structure extraction or feature embedding
process. We provide a practical illustration of the robustness of the uncertainty measure to the
embedding process in Section 5 of the Appendix. Theorem 4.2 shows that U(q) concentrates
exponentially around its expectation, enabling reliable uncertainty estimation from a modest number
of reference samples N − 1. Furthermore, for LLMs with low graph generation inconsistency
factor D, U(q) converges even faster, thus, requiring fewer samples. We provide illustrations of the
convergence behavior and inconsistency factor D, with two representative LLMs in Section 7 of the
Appendix. We provide proofs of the above theorems in Section 1 of the Appendix. We also provide a
discussion on the computational cost and runtime of GAUSS in Section 9 of the Appendix.

5 EXPERIMENTS

We evaluate our framework by comparing graph-based uncertainty to factual correctness across three
benchmarks and multiple LLMs. [Datasets] Specifically, we assess performance on: (1) 183 biogra-
phy prompts from Bios [19], verified via Wikipedia; (2) 500 open-ended queries from LongFact [27];
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and (3) 500 entity-centric samples from the WildHallu chatbot corpus [31]. [Calibration] We follow
standard practice [29, 30, 13] in evaluating uncertainty by correlating it with the truthfulness of
the generated paragraph. We posit that an LLM producing structurally and semantically divergent
responses for the same query is more likely to generate low-veracity content. Thus, a high uncertainty
score from GAUSS should correspond to lower factuality. For each query, we compute the factuality
of the anchor paragraph Pa at the atomic fact level. To accomplish this, we follow the SAFE frame-
work [27]: each atomic fact is paired with the top-ranked web search snippets given the query. Each
atomic fact is then presented to the verifier model (Qwen2-32B-Instruct [3]) alongside the web search
snippet. The verifier classifies whether the fact is supported, and we average these binary outcomes
to yield a paragraph-level factuality score.

Table 1: Uncertainty metrics (SC↓, PC↓, UCCE↓, QCCE↓) for different methods across three datasets.
Bios LongFact WildHallu

Method / Model SC↓ PC↓ UCCE↓ QCCE↓ SC↓ PC↓ UCCE↓ QCCE↓ SC↓ PC↓ UCCE↓ QCCE↓

falcon-7b-instruct
LUQ 0.0943 0.0555 0.2261 0.2372 -0.4067 -0.4135 0.2865 0.2600 -0.3385 -0.2913 0.1295 0.1864
Gen-Binary -0.1535 -0.1313 0.2110 0.1896 -0.6443 -0.6828 0.2020 0.2926 -0.7628 -0.7730 0.1654 0.2167
Dis-Rating 0.0134 0.0098 0.1645 0.2092 -0.0479 -0.0693 0.1786 0.3201 0.0418 0.0492 0.1036 0.3223
Dis-Single -0.1571 -0.2625 0.1388 0.3349 0.0164 0.0991 0.2216 0.4512 0.0102 0.0240 0.1530 0.5153
Centrality -0.2670 -0.0683 0.1316 0.1769 -0.0795 -0.1813 0.2162 0.3044 -0.5441 -0.4955 0.1683 0.2385
GAUSS -0.4118 -0.3321 0.168 0.1845 -0.6555 -0.6915 0.1817 0.2199 -0.7565 -0.7616 0.1470 0.1978

llama3-8b-instruct
LUQ -0.0395 -0.0546 0.1053 0.1316 -0.0894 -0.0452 0.2397 0.2959 -0.4682 -0.3939 0.2160 0.2723
Gen-Binary -0.5986 -0.5909 0.1582 0.1256 -0.3731 -0.3974 0.1919 0.2726 -0.6567 -0.6995 0.2198 0.2740
Dis-Rating -0.6495 -0.5372 0.0812 0.1058 -0.2931 -0.3204 0.2052 0.2610 -0.6558 -0.6779 0.2314 0.2747
Dis-Single -0.5143 -0.5060 0.1156 0.1385 -0.4184 -0.3494 0.1889 0.2938 -0.6597 -0.6936 0.2704 0.2911
Centrality -0.6423 -0.5429 0.1086 0.1608 -0.3430 -0.3379 0.2119 0.2573 -0.5833 -0.5971 0.2314 0.1883
GAUSS -0.7066 -0.708 0.1035 0.1426 -0.4433 -0.4505 0.1613 0.2535 -0.6808 -0.7144 0.2048 0.2624

qwen2-7b-instruct
LUQ -0.0658 -0.0698 0.1346 0.0857 -0.2138 -0.2378 0.2580 0.2729 -0.3944 -0.3830 0.2324 0.2838
Gen-Binary -0.5950 -0.5954 0.1487 0.1232 -0.4542 -0.4781 0.1206 0.2732 -0.6414 -0.6045 0.2097 0.3080
Dis-Rating -0.4611 -0.4535 0.1079 0.1336 -0.3501 -0.4355 0.1785 0.2656 -0.5805 -0.6726 0.1867 0.2220
Dis-Single -0.5063 -0.5204 0.1144 0.1027 -0.4463 -0.4721 0.1695 0.2806 -0.6554 -0.6367 0.1826 0.2534
Centrality -0.6342 -0.5023 0.0545 0.1490 -0.4005 -0.3164 0.2306 0.3020 -0.5069 -0.4956 0.2212 0.3081
GAUSS -0.6915 -0.7114 0.1606 0.1505 -0.4979 -0.5233 0.1403 0.2362 -0.7072 -0.7154 0.1798 0.2212

qwen2-57b-instruct
LUQ 0.0491 -0.0308 0.1263 0.0850 -0.1120 -0.0871 0.3133 0.3507 -0.3641 -0.3495 0.2900 0.3238
Gen-Binary -0.6093 -0.5975 0.1346 0.0907 -0.3328 -0.3226 0.2476 0.3715 -0.6434 -0.6681 0.2400 0.2953
Dis-Rating -0.6547 -0.5232 0.0676 0.0723 -0.3255 -0.3776 0.2038 0.3394 -0.6084 -0.6693 0.2603 0.2503
Dis-Single -0.6470 -0.6251 0.1230 0.1732 -0.3505 -0.3428 0.1934 0.3340 -0.5906 -0.6211 0.2798 0.2154
Centrality -0.5782 -0.5310 0.0844 0.1889 -0.2545 -0.1478 0.2015 0.3252 -0.3728 -0.4409 0.2448 0.3499
GAUSS -0.6991 -0.7018 0.1328 0.1092 -0.4226 -0.4615 0.1844 0.3111 -0.6852 -0.7032 0.2061 0.2043

mistral-7b-instruct
LUQ 0.0541 0.0485 0.1302 0.1914 -0.1762 -0.1768 0.2548 0.2876 -0.2108 -0.1892 0.2946 0.3382
Gen-Binary -0.5803 -0.6002 0.1613 0.1756 -0.4138 -0.4538 0.2631 0.2951 -0.6889 -0.7552 0.1774 0.2238
Dis-Rating -0.4683 -0.4083 0.1539 0.1526 -0.3548 -0.3960 0.2511 0.3349 -0.5628 -0.6362 0.1200 0.2544
Dis-Single -0.1704 -0.1286 0.0981 0.1769 0.0818 0.0281 0.1912 0.2880 -0.0899 -0.1458 0.1720 0.2970
Centrality -0.5181 -0.5456 0.0421 0.1374 -0.4118 -0.3984 0.2679 0.2645 -0.5702 -0.5549 0.2750 0.3154
GAUSS -0.6643 -0.6766 0.1443 0.1407 -0.4408 -0.4678 0.2525 0.2672 -0.6949 -0.7584 0.1784 0.2310

[Baseline Methods] We compare GAUSS against five representative baselines for long-form uncer-
tainty estimation. Sampling-based methods generate multiple paragraphs and assess uncertainty via
inter-sample disagreement. LUQ [30] (atomic variant) computes entailment probabilities between
each atomic fact in the anchor and all reference paragraphs using an MNLI model; uncertainty is
defined as one minus the average confidence. Gen-Binary [29] uses an LLM to assess factual support
for each atomic fact across references, averaging these consistency scores to yield paragraph-level un-
certainty. Single-sample methods operate on a single paragraph and query the generating LLM for in-
ternal confidence. Dis-Single [29] prompts the LLM for binary truth labels per fact, while Dis-Rating
elicits 0–10 confidence scores. In both, uncertainty is computed as one minus the average per-fact
confidence. However, all these baselines treat atomic facts independently, ignoring the structural and
semantic relationships that GAUSS explicitly models. We also compare GAUSS with Centrality [14].
To compute the uncertainty metric from [14], we use the negative of the closeness centrality score,
following the improved formulation by Wasserman and Faust. A bipartite graph is constructed over
10 generated responses and their constituent claims. To obtain a paragraph-level score, we calculate
closeness for all claims within a designated anchor paragraph and take the negative average as the final
uncertainty estimate. [Evaluation Metrics] To measure the effectiveness of the uncertainty estimates,
we use multiple evaluation metrics. Spearman correlation (SC) and Pearson correlation (PC) are used

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

to measure monotonic and linear correlations, respectively, between uncertainty scores and factuality
labels produced by [19, 27]. We also report Uniform Continuous Calibration Error (UCCE) [29]
which measures the average deviation between predicted uncertainty and 1− ground-truth factuality
across equally spaced bins: UCCE =

∑M
m=1

|Bm|
N

∣∣∣ 1
|Bm|

∑
i∈Bm

ŷi − 1
|Bm|

∑
i∈Bm

yi

∣∣∣ , where Bm

is the m-th bin, ŷi the normalized predicted uncertainty in the bin, and yi is the normalized 1−
factuality score in the bin. We additionally report Quantile Continuous Calibration Error (QCCE),
a variant of UCCE that uses quantile-based bins to ensure equal sample sizes. Lower UCCE and
QCCE indicate better calibration between uncertainty estimates and actual truthfulness. [Models]
We conduct experiments with several strong open-source Instruct LLMs, including llama3-8B [18],
Mistral-7B [20], Qwen2-7B [1], Qwen2-57B [2] and Falcon-7B [25]. [Experimental Settings] We
use the semantic-structural trade-off parameter α = 0.5 in all experiments in Table 1. The sentence
embedding model Msentence used in Eqn 4.2 is mpnet-base-v2 [24]. We employ the POT library [5]
to solve the Dα in Eqn 3.1. The Mentail used in Eqn 4.2 is Qwen2-32B-Instruct.
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Figure 4: Ablation of varying the α parameter from 0 (only semantic cost) to 1 (only structural cost).
The plots show the effect of varying α on the Spearman correlation (SC) and Pearson correlation
(PC). The combination of both structural and semantic cost is necessary for lower SC and PC values.
Table 1 demonstrates that GAUSS consistently yields the strongest negative correlation with factuality
across models and datasets, validating its effectiveness in capturing uncertainty. In particular, on
datasets like Bios and LongFact, GAUSS outperforms all baselines by a significant margin in terms
of the SC and PC. Baselines such as Gen-Binary, LUQ, Dis-Rating, and Dis-Single exhibit weaker
and inconsistent correlation, highlighting the limitations of simple LLM inferred uncertainty metrics.
The Centrality method also yields weaker correlations, underscoring the need for paragraph-level
modeling of structure and semantics in uncertainty estimation across generations. Beyond correlation,
GAUSS also maintains strong calibration performance (UCCE/QCCE), often outperforming or closely
matching the best among all methods. This balance between correlation and calibration confirms the
value of incorporating structural and semantic alignment via graph-based paragraph representation.
5.1 STRUCTURAL–SEMANTIC TRADEOFF

To assess the role of semantic and structural components in our uncertainty measure, we ablate
the fusion weight α from 0 (semantic-only) to 1 (structural-only). As shown in Figure 4, both
SC and PC correlations worsen at the extremes, with optimal performance consistently observed
for intermediate α. This confirms the complementary strengths of semantic similarity (capturing
fact-level meaning) and structural alignment (capturing inter-fact relationships). Ignoring either
leads to degraded performance, underscoring the importance of jointly modeling both for effective
uncertainty estimation in long-form generation.

6 CONCLUSION

We introduce GAUSS, a structure- and semantics-aware framework for uncertainty quantification
in long-form LLM generation. Unlike approaches that treat long-form text as a set of independent
facts, GAUSS models both the semantic content of atomic units and their interdependencies within a
paragraph to produce an uncertainty estimate. We refer the reader to the Appendix for proofs of the
theorems, experimental settings etc.
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