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Abstract

Disentangling the encodings of neural models
is a fundamental aspect for improving inter-
pretability, semantic control and downstream
task performance in Natural Language Process-
ing. Currently, most disentanglement methods
are unsupervised or rely on synthetic datasets
with known generative factors. We argue that
recurrent syntactic and semantic regularities
in textual data can be used to provide the
models with both structural biases and gener-
ative factors. We leverage the semantic struc-
tures present in a representative and semanti-
cally dense category of sentence types, defi-
nitional sentences, for training a Variational
Autoencoder to learn disentangled represen-
tations. Our experimental results show that
the proposed model outperforms unsupervised
baselines on several qualitative and quantita-
tive benchmarks for disentanglement, and it
also improves the results in the downstream
task of definition modeling.

1 Introduction

Learning disentangled representations is a funda-
mental step towards enhancing the interpretability
of the encodings in deep generative models, as
well as improving their downstream performance
and generalization ability. Disentangled represen-
tations aim to encode the fundamental structure
of the data in a more explicit manner, where in-
dependent latent variables are embedded for each
generative factor (Bengio et al., 2013).

Previous work in machine learning proposed
to learn disentangled representations by modify-
ing the ELBO objective of the Variational Autoen-
coders (VAE) (Kingma and Welling, 2014), within
an unsupervised framework (Higgins et al., 2017;
Kim and Mnih, 2018; Chen et al., 2018). On the
other hand, a more recent line of work claims the
benefits of supervision in disentanglement (Lo-
catello et al., 2019) and it advocates the importance
of designing frameworks able to exploit structures
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in the data for introducing inductive biases. In par-
allel, disentanglement approaches for NLP have
been tackling text style transfer, and evaluating the
results with extrinsic metrics, such as style transfer
accuracy (Hu et al., 2017; John et al., 2019; Cheng
et al., 2020).

While style transfer approaches investigate the
ability to disentangle and control syntactical factors
such as tense and gender, the aspect of understand-
ing and disentangling the semantic structure in lan-
guage is under-explored. Furthermore, evaluating
disentanglement is challenging, because it requires
knowledge of generative factors, leading most ap-
proaches to train on synthetic datasets (Higgins
et al., 2017; Zhang et al., 2021).

In this work, we argue that recurrent semantic
structures at sentence level can be leveraged both
as inductive biases for enhancing disentanglement
(RQ1) but also for providing meaningful genera-
tive factors that can be employed for evaluating the
degree of disentanglement (RQ2). We also inves-
tigate whether organizing the generative factors in
groups may facilitate learning and disentanglement
(RQ3). As a result, this work focuses on natural



language definitions, which are a textual resource
characterised by a principled structure in terms of
semantic roles, as demonstrated by previous work
which proposed the extraction of structural and se-
mantic patterns in this kind of data (Silva et al.,
2016, 2018).

Seeking to address the highlighted issues and an-
swer the research questions, we make the following
contributions, also depicted in Figure 1.

1) We design a supervised framework for en-
hancing disentanglement in language representa-
tions by conditioning on the information provided
by the semantic role labels (SRL) in natural lan-
guage definitions. We present two mechanisms for
injecting SRL biases into latent variables, firstly,
reconstructing both words and corresponding SRL
in a VAE, secondly, employing SRL information as
input variable for a Conditional VAE (Zhao et al.,
2017).

2) We propose the first framework for evaluating
the disentanglement properties of the encodings
on non-synthetic textual datasets. Our evaluation
framework employs semantic role labels as gen-
erative factors, enabling the measurement of sev-
eral contemporary quantitative metrics. The results
show that the proposed bias injection mechanisms
are able to increase the degree of disentanglement
of the representations.

3) We demonstrate that models trained with our
disentanglement framework are able to outperform
contemporary baselines in the downstream task of
definition modeling (Noraset et al., 2017).

2 Disentangling framework

In this section we first describe the framework
that we designed for improving disentanglement
in natural language definitions with semantic role
labels. Secondly, we present three models, shown
in Figure 2 based on the Variational Autoencoder
(VAE) (Bowman et al., 2016) for achieving disen-
tanglement.

2.1 Disentangling definitions

Definition semantic roles Our framework is
based on natural language definitions, which are
a particular type of linguistic expression, charac-
terised by high abstraction, and specific phrasal
properties. Previous work in NLP for dictionary
definitions (Silva et al., 2018) has shown that there
are categories that can be consistently found in
most definitions. In fact, Silva et al. (2018) define

precise Semantic Role Labels (SRL) for phrases
representing definitions, under the name of Defini-
tion Semantic Roles (DSR).

The example from (Silva et al., 2018) classifies
the semantic roles within "english poets who lived
in the lake district" as follows. "poets" as noun
category (supertype), "english" as quality of the
term (Differentia Quality), "who lived" as event
that the subject is involved with (differentia event),
and "in the lake district" as the location of the action
(Event location). The full DSRs proposed by Silva
et al. (2018) are reported in Table 7 in Appendix A.

Disentangling using SRL.  Our goal is to enhance
disentanglement in natural language by injecting
categorical structures into latent variables. We find
that this goal is well aligned with the findings of Lo-
catello et al. (2019), where it is claimed that a
higher degree of disentanglement may benefit from
supervision and inductive biases. Our hypothesis
is that we may leverage such semantic information
for learning representation with higher degree of
disentanglement. While in the context of this work
we use dictionary definitions as a target empirical
setting, we conjecture that these conclusions can
be extended to broader definitional sentence-types.

2.2 Definition VAEs

Unsupervised VAE The first baseline model that
we consider is the traditional variational autoen-
coder (VAE) for sentences (Bowman et al., 2016),
which operates in an unsupervised fashion, as in
Figure 2a. The unsupervised VAE employs a mul-
tivariate gaussian prior distribution p(z) and gener-
ates a sentence x with a decoder network py(z|z).
The joint distribution for the decoder is defined as
p(2)pe(x|z), which, for a sequence of tokens x of
length T result as py(z|z) = HiT:1 po(xi|x<iy 2).
The VAE objective consists into maximizing the
expectation of the log-likelihood which is defined
as ;) logpg(w). Due to the computational in-
tractability of the such expectation value, the varia-
tional distribution gy is employed to approximate
po(z|x).

As a result, an evidence lower bound Lvag
(ELBO) where [E,(,) [logpg(x)] > Lyag, is de-
rived as follows:

LTokens :Eqd,(z\:v) [Ingg (‘T|Z)} &)

— KLgg(z[2)|[p(2)

DSR supervised VAE The aim of this model is
to inject the categorical structure of the definition



tokens £ E @ tokens tokens D
- rec. loss -
(a) Unsupervised VAE

0ood

(b) Supervised VAE

roles =
tokens tokens O tokens
—_— - = O D —_—
roles roles O

- rec. loss

joint loss

(c) CVAE

Figure 2: Proposed architectures for learning disentangled representations in definitions.

semantic roles (DSR) into the latent variables, by
factorizing them into the VAE auto-encoding ob-
jective function. In order to achieve this goal, we
introduce the variable r for semantic roles, and train
the "DSR VAE", where both sentence and semantic
roles are auto-encoded. As a result, two separate
losses are produced and added together for the fi-
nal loss, as shown in Figure 2b. The ELBO for
semantic roles is defined as follows:

LRoles :Eq¢(z|7“) |:10g pg(r‘z)] 2)

— KLgy(2[r)|[p(2)
The final loss is given by Lrokens + LRoles-

Conditional VAE with SRL  For explicitly lever-
aging the definition semantic roles, we propose a
supervision mechanism based on the Conditional
VAE (CVAE) (Zhao et al., 2017), shown in Fig-
ure 2c. Similar to the previously described model,
we instantiate a VAE framework, where z is the
variable for the tokens, and r for the roles. We
perform auto-encoding for both roles and tokens,
and additionally, we condition the decoder network
on the roles. The CVAE is trained to maximize the
conditional log likelihood of = given r, which in-
volves an intractable marginalization over the latent
variable z.
The ELBO is defined as:

Lovae =Eq, (e | logpo(alz )| @)

— KLgg(z|z,7)[p(2]r)

Training The training process follows the vari-
ational autoencoding methodology (Kingma and
Welling, 2014). First, tokenization is performed in
the sentences and the roles. The Encoder network
involves feeding both first into embedding layers,
then into LSTM layers. Subsequently, two vectors
w and o are sampled with two linear layers, and the
vector z is computed with the re-parameterization
trick. Finally, the decoder network is built with
LSTM and another embedding layer, which return
the same dimension that was given as input.

3 Evaluation framework

We first present the evaluation framework that for
measuring disentanglement, then describe and jus-
tify the generative factor setup used in the experi-
ments.

3.1 DSR as generative factors

While early approaches for disentanglement in
NLP have been proposed in the context of in style
transfer applications (John et al., 2019; Cheng et al.,
2020) and are assessed purely in terms of style
transfer accuracy, evaluating the intrinsic properties
of the latent encodings is fundamental for disentan-
glement, as mentioned in several machine learning
approaches (Higgins et al., 2017; Kim and Mnih,
2018). Recently, Zhang et al. (2021) proposed a
framework for computing several popular quantita-
tive disentanglement metrics such as (Higgins et al.,
2017; Kim and Mnih, 2018) testing it on synthetic
datasets. The limitation in (Zhang et al., 2021) is
that is works only with synthetic datasets.

In this work, we propose a method where seman-
tic role labels, such as the ones provided in (Silva
et al., 2018), are used as generative factors for eval-
uating the degree of disentanglement in the encod-
ings. The framework, overview in Figure 3, consid-
ers multiple generative factors, where each factor is
composed by a number of semantic roles (for exam-
ple the factor "location" includes, origin-location,
and event-location). In this way, the dataset can
be seen as the result of a sampling of multiple gen-
erative factors, which is the same principle used
when creating synthetic datasets for disentangle-
ment. Once the generative factors are defined, the
framework is enabled to compute a number of quan-
titative metrics for disentanglement, following the
work from Zhang et al. (2021).

3.2 Semantics and Syntax groups of DSR

In order to categorize the definition semantic roles
(DSR), we consider its structural and semantic di-
mensions in terms of their contribution to either
the meaning (e.g., quality, location) or the structure
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Figure 3: Generative factors for definitions.

(e.g., main terms, modifiers) of the definition sen-
tence. We first create two DSR groups with seman-
tic and two based on syntax, to evaluate which one
would better facilitate disentanglement. For both
syntax and semantic, we then create a groups with
"supertype" DSR and one without it, in order to
understand the impact of the supertype DSR. The
importance of "supertype" is due to its contribu-
tion to both abstraction groups and its predominant
presence on the datasets analyzed (> 97%).

Group 1: Semantics with Supertype Sets the
factors in terms of their meaning, essentially ab-
stracting categories of the DSRs, including the SU-
PERTYPE DSR as a single factor. Qualification,
location, modification, declaration (statement) and
supplementation (accessory) are semantic roles of
a given term to its definition, which are described
by the DSRs. For example, "event location" and
"origin location" are inserted into the Location fac-
tor, while "purpose" and "associated fact" are in
statement.

Group 2: Syntax with Supertype Sets the fac-
tors in terms of their structural role in the definition
sentence, including the SUPERTYPE DSR as a
single factor. The ORIGIN-LOCATION DSR is
omitted due to its syntactic overlap with EVENT-
LOCATION and its low frequency in the datasets.
Typically, a "main" term is followed by a set of
modifiers (event, quality), which may be comple-
mented by accessory terms.

Group 3: Semantics without Supertype Sim-
ilar to group 1, but excluding the SUPERTYPE
DSR, and repositioning the factor from modifier
and accessory for higher abstraction. The rela-
tions of modification and supplementation (present
in group 1) are suppressed to focus on lexi-
cal semantics, moving the label ACCESSORY-

DETERMINER to the declaratory group, EVENT-
TIME to the event group and all quality related
labels to the qualification group.

Group 4: Syntax without Supertype Similar
to group 2, but excluding the SUPERTYPE DSR.
Further abstractions are not conducted, as the defi-
nition roles already offer a stable structure for sen-
tence construction.

4 Related work

Disentangled VAEs in language Early ap-
proaches in text disentanglement use VAEs with
multiple adversarial losses for style transfer (Hu
et al., 2017; John et al., 2019). More recently,
Cheng et al. (2020) propose a style transfer method
which minimizing the mutual information be-
tween the latent and the observed variable, while
Colombo et al. (2021) propose an upper bound of
mutual information for fair text classification. On
the other hand, we propose to disentangle repre-
sentation using biases provided as semantic roles
and design two VAE models to inject structural
semantic information into the representation.

Disentanglement Evaluation Vishnubhotla et al.
(2021) evaluate disentanglement in synthetic text
on various NLP tasks such as classification, re-
trieval and style transfer. Zhang et al. (2021) evalu-
ate disentanglement of various VAE models on syn-
thetic datasets where generative factors are known.
Differently from these methods, we propose a new
framework to evaluate non-synthetic natural lan-
guages, where semantic role labels are used as gen-
erative factors. We model linguistic features of nat-
ural language definitions, with the goal of exploring
the semantic properties that are encapsulated in it.

Definition models Early approaches in defini-
tion encoding include (Hill et al., 2016), which pro-



pose the first neural embedding model for dictionar-
ies, and (Bahdanau et al., 2017), which present an
RNN-based encoder decoder architecture for tex-
tual entailment and reading comprehension. More
recently, methods based on Autoencoders (Bosc
and Vincent, 2018) and transformers (Tsukagoshi
et al., 2021) have been proposed. Various ap-
proaches for the task of generating a definition from
a word (Definition Modeling) have been proposed,
including RNN-based methods (Noraset et al.,
2017), soft attention mechanisms (Gadetsky et al.,
2018), and span-based encoding schemes (Bevilac-
qua et al., 2020). The semantic aspect of natural
language definitions are explored in (Silva et al.,
2016, 2018), where the concept of definition se-
mantic roles is proposed.

5 Empirical analysis

In this section, we firstly describe the empirical
setup for experiments, secondly, we provide quali-
tative evaluation and thirdly, we measure various
quantitative metrics. Finally, we demonstrate the
capacity of the proposed models in the downstream
task of definition modeling. The full experimental
pipeline is available in a code package submitted
as supplementary material (Appendix D).

5.1 Experimental setup

Datasets Definition sentences and their respec-
tive semantic role structures are sourced from three
different datasets by (Silva et al., 2016) with the
characteristics described in Table 1. All datasets
are automatically annotated with DSR tags for each
token, using the method proposed by (Silva et al.,
2016). The datasets differ not only in sentence
length and size, but also in textual style: while
WordNet and Wiktionary sentences tend to be for-
matted as dictionary definitions, Wikipedia sen-
tences are lengthier and less adherent to a typical
definition structure.

Hyperparameter choices Experiments are con-
ducted to cover a set of 3 hyperparameters: First,
the VAE architecture used: 1) Unsupervised VAE
2) Supervised with SRL 3) CVAE with SRL. Sec-
ond, the generative factor grouping, which includes:
1) Semantic w/ supertype 2) Syntactic w/ supertype
3) Semantic w/o supertype 4) Syntactic w/o su-
pertype. Third, the dimensionality of VAE latent
representation (2): 4, 5,7, 128.

The choice of architecture allows evaluation of
the impact of DSR label conditioning in two dis-

Dataset Num sents.  Avg. length Version
Wordnet 93,699 9 WordNet 3.0
Wiktionary 464,243 8 Dec, 2016
Wikipedia 1,500,323 12 Dec, 2016

Table 1: Statistics from definition datasets.

tinct ways: as part of the autoencoding objective
function, and as a conditional variable of the de-
coder, addressing our research questions RQ1 and
RQ2. The choice of generative factor grouping
can indicate the best ways to organize the factors,
addressing RQ3.

The dimensionality of the representation is set
to match the number of generative factors, in an
attempt to force disentanglement by alignment of
each dimension to a single factor. The dimension
sizes are then defined to be 4 (alignment with group-
ings 3 and 4), 5 (alignment with grouping 2) or 7
(alignment with grouping 1). However, different
levels of disentanglement can be achieved with mis-
matching dimensions and factors. So all possible
combinations of factors and representation sizes
are tested and a size of 128 is included to evaluate
the impact of a higher number of parameters in
each grouping.

Implementation Details Neural Network hyper-
parameters are kept fixed for all quantitative ex-
periments, with the following values, based on a
previous experiment from (Shen et al., 2020). (1)
Number of hidden layers: 1, (2) Dimension of
the hidden layer: 512, (3) VAE Agr = 0.1, (4)
Epochs=20, (5) Batch size=32 for Wikipedia, 64
for the rest. All VAEs built for the experiments are
composed of a LSTM as sequence encoder, a hid-
den layer, an embedding (representation) layer, and
a LSTM decoder. Dropout (20%) is done for both
encoder and decoder inputs. To provide the inputs
and outputs for the VAESs, the definition sentences
are tokenized into sub-words with a Byte Pair En-
coding (BPE) scheme, and converted into token
embeddings with the T5 transformer model (Raffel
et al., 2020), with an embedding size of 512. The
use of transformer embeddings introduce richer se-
mantic information that can be leveraged by the
VAE in the construction of its representations.

5.2 Qualitative Evaluation

We evaluate the representations of the trained mod-
els in terms of their disentanglement, by analysing
1) traversals of the latent space, 2) encoding inter-
polation 3) encoding visualization with dimension-



a surgical procedure for one purpose
a parasitic procedure for one skull
a parasitic procedure for its content

VAE

a fictional character having close incense
a fictional name consisting by the kitchen
a fictional name consisting of the brothers

DSR

a simple scheme where members also must take minerals
a simple scheme where members also must be out in Renaissance
a simple scheme where members also specialized on a tract

CVAE

Table 2: Traversal showing disentangled and entangled
factors in Wordnet.

ality reduction.

Latent space traversals Traversal evaluation
is a standard procedure with image disentangle-
ment (Higgins et al., 2017; Kim and Mnih, 2018).
The traversal of a latent factor is obtained as the
decoding of the vectors corresponding to the latent
variables, where the evaluated factor is changed
within a fixed interval, while all others are kept
fixed. If the representation is disentangled, when
a latent factor is traversed, the decoded sentences
should only change with respect to that factor. This
means that after training the model we are able to
probe the representation for each latent variable.

In Figure 2 we report examples from Wordnet
obtained for 128 latent variables for VAE and DSR
VAE and CVAE. We observe that all models show
some degree of disentanglement, because the de-
coded sentences only change few attributes, denot-
ing control. In particular, the CVAE is the one with
the more disentangled representations, given that it
maintains the first phrase constant, and varies the
second one smoothly.

Interpolation In this experiment, we demon-
strate the ability of autoencoder models to provide
smooth transition between latent space represen-
tations of sentences (Bowman et al., 2016). In
practice, the interpolation mechanism takes two
sentences x1 and x9, and uses their posterior mean
as the latent features z; and z9, respectively. It
interpolates a path z; = 21 - (1 — t) + 2o - ¢ with
t increased from 0 to 1 by a step size of 0.1. As a
result, 9 sentences are generated on each interpola-
tion step.

In Table 3 we provide qualitative results with
latent space interpolation on Wordnet. Interest-
ingly, the DSR-supervised VAE shows ability to
paraphrase semantic concepts, for example bridg-
ing the concept of teaching and learning on the
starting sentence with the concept of train and
loading goods we find in the middle the notion

teach by repetition

1 teach by warning

2 teach by warning or repetition movements

3 teaching by communicating again

4 training with practice of a creative document

5 someone who employs a pen or rope with limited task
6 charge carried by an aircraft or commercial carrier

7 automobile street area plus to ride out and sealing

8 terminal area with seats or mass that enables passengers
9 terminal to let passengers inside or load goods or exit
terminal where trains load or unload passengers or goods

VAE

teach by repetition

1 to teach by repetition

2 to teach by repetition method on style or poetry

3 to reproduce by inspiring processes or purposes

4 to control components especially contracting processes

5 a switching technique or component of organizing information
6 a train carried out of a trap or overcharge transactions

7 a train or machine of merchant transport from others

8 vehicle with passengers full of producing items for exchange
9 terminal in which multiple vehicles drive by and carry food
terminal where trains load or unload passengers or goods

DSR VAE

Table 3: Interpolation examples in Wordnet.

Figure 4: t-SNE plot of 9370 definition representations
(128 dimensions), generated from Unsupervised VAE
(U), DSR supervision (S) and Conditional VAE (C).

of "organising information" and "control compo-
nents" which are noteworthy semantic bridges.
This type of localised semantic control provided by
the operations of traversal and interpolation over
intensional-level (definitional) sentences can poten-
tially support quasi-symbolic operations over the
latent space.

t-SNE plot ¢-SNE (t-distributed Stochastic Neigh-
bor Embedding) (Van der Maaten and Hinton,
2008) is a popular method for non-linear dimen-
sionality reduction, that allows the visualization
of complex high-dimensional feature spaces, such
as the representation space produced by a VAE.
Figure 4 presents a 2D plot of t-SNE transfor-
mations for each one of the evaluated models,
from which the clustering of DSR patterns can
be observed. While the supervision with DSR la-
bels promotes clustering of the patterns around
the center of the plot, cVAE compacts the clus-
ter on the edges, allowing better separation of
the DIFF-QUALITY+DIFF-EVENT and DIFF-
EVENT+DIFF-QUALITY patterns. From the
cVAE plot is also possible to visualise a smoother
transition between the two major patterns observed
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in the dataset: from DIFFERENTIA-QUALITY
(red) to DIFFERENTIA-EVENT (blue), with the
combination of both patterns being coloured pur-
ple/violet. UMAP transformations are also per-
formed and the plots are presented in the supple-
mental material (Appendix C).

5.3 Quantitative Evaluation

In this experiment we probe the representation
learned by the proposed VAE models using eight
popular quantitative metrics for disentanglement,
namely: z-diff (Higgins et al., 2017), z-min-
var (Kim and Mnih, 2018), Mutual Information
Gap (MIG) (Chen et al., 2018), Modularity &
Explicitness (Ridgeway and Mozer, 2018), and
from (Eastwood and Williams, 2018)(disentangle-
ment, completeness, informativeness). Further de-
tails about the metrics are provided in Appendix B.

Experimental Setup We evaluate VAE (U), DSR
VAE (S) and CVAE (C) on Wordnet (WN), Wik-
tionary (WT) and Wikipedia (WP) datasets. Evalu-
ation is performed under the framework explained
in Section 3. Each combination of VAE architec-
ture, generative factor grouping and representation
size was trained and quantitatively tested, by cal-
culating the previously mentioned disentanglement
metrics. For computing the metrics we follow the
experiments of Zhang et al. (2021).

D z-diff Z-min-var | MIG Modularity

U S C | U S C U S C | U S C

WN|70.0 69.1 77.0|48.2 50.3 53.2(.067 .057 .059|.793 .804 .765
WT |59.7 619 63.5|40.0 38.5 43.0|.112 .095 .065|.535 424 .629
WP |57.5 63.0 64.7|39.8 38.6 42.0|.046 .041 .037|.771 .745 .757

D Explicitness ~ Disentanglement Completeness Informativeness

u S ClU S c|]u § Cc|]U S C

WN |.519 .532 .527(.022 .021 .031|.013 .013 .017|.364 .361 .399
WT |.584 .593 .616|.014 .011 .013|.013 .013 .011|.377 .373 .385
WP | .545 .557 .600|.007 .007 .005|.007 .007 .004|.375 .373 .374

Table 4: Quantitative disentanglement metrics.

Analysis The results presented in Table 4 show
that across all datasets, the application of DSR
categories as biases results in a measurable im-
provement in disentanglement (RQ1) and that the
use of DSRs as generative factors produces mean-
ingful disentangled representations (RQ2). More
specifically, z-diff presents the highest and most
consistent improvement, specially with the CVAE,
indicating higher interpretability when inferring
single generative factors from the representations.
Explicitness results are also consistent, indicating
higher coverage of each factor. Improvements on
Modularity, Disentanglement Score, Completeness
and Informativeness are less consistent, indicating
that the factors share substantial information be-
tween them. On the other hand, z-min-var, MIG
counter the trend of improvement, due to the fact
that they are designed to strongly penalize non-
alignment of single pairs <factor <> latent dimen-
sion> (e.g., linear combinations). As a result, they
penalize the existence of dependency and hierarchy
relations which is present in most DSR categories,
e.g., DIFFERENTIA-EVENT — EVENT-TIME.

We analyse how semantic groupings affect dis-
entanglement in Figure 5b (RQ3). Overall, we
notice that syntax based groups have higher disen-
tanglement, indicating that it is easier to disentan-
gle syntactic phrase components. For Modularity
the result is the opposite, indicating that semantic
groupings promote higher independence between
factors. Following (Zhang et al., 2021), the values
in Figure 5b for the metrics Completeness and Dis-
entanglement score are multiplied by 10, in order
to facilitate the visualization.

Finally, we find that a low number of latent di-
mensions leads to smaller degree of disentangle-
ment. The experiments with 4,5,7 and 128 latents
are reported in Figure Sa.

5.4 Definition Generation

In this experiment, we assess the proposed VAE
models in the task of "Definition Modeling" (No-



( Word Definition Model

Unsupervised VAE

Supervised VAE

repulse
colonise

the act of making a gun

make a new or vital part

involve make a specific purpose
mitochondrion  a cell that is used to treat the blood
heat a change in the surface of a liquid

the act of moving forward

the state of being in a particular place

make a specific effect

a substance that is used to treat a body reaction
a sudden increase in the flow of heat

act in a hostile state

settle or cause to be easily removed

a specific act of making something

a cell that is a source of an organic process
a sudden increase in the temperature

Table 5: Definition generation examples for the Wordnet dataset.

Perplexity | Bleu
Data. DM VAE DSR | DM VAE DSR
WN 8859 80.36 80.27 | 9.12 1027 10.26
WT 4251 39.09 38.64 | 670 7.53 7.59
WP 13.09 1239 1247 | 11.89 1232 12.34

Table 6: Quantitative metrics for definition generation.

raset et al., 2017), where the goal is to generate a
natural language definition given the word to be
defined (definiendum).

Experimental setup During training, we adopt
the "seed" setup (Noraset et al., 2017), which in-
volves providing the definiendum concatenated
with the definition tokens as input for the model.
At generation time, the model takes as input only
the word which needs to be defined, and leverages
a trained model for computing the definition latent
encoding. Such encoding is then fed into a softmax
function and subsequently a multinomial probabil-
ity distribution is sampled for decoding the latent
variable into the final definition sentence.

We compare the proposed unsupervised and
DSR-supervised VAEs with the LSTM-based
Definition-model approach from (Gadetsky et al.,
2018), both using the "seed" setup. The CVAE is
not explored in this experiment in order to have a
more fair comparison with the Definition model.
We train the baseline and our models with similar
setups, following (Gadetsky et al., 2018). We per-
form language model pretraining on the WikiText-
103 dataset (Merity et al., 2016) for 1 epoch, then
train on the downstream dataset for 10 epochs. Ad-
ditionally, all models are initialised using Google
Word2Vec pretrained vectors, following (Gadetsky
et al., 2018).

Results We report the perplexity and Bleu (Pap-
ineni et al., 2002) results in Table 6. We observe
that the proposed variational autoencoder models
achieve an improvement on both perplexity and
Bleu compared to the RNN baseline. The DSR
VAE achieves the best perplexity and bleu on 2
out of 3 datasets while the unsupervised VAE is
the best performing model in the other cases. We

justify the success of VAE models due to their dis-
entangling properties, and also their ability to learn
smooth encodings, a benefit deriving from sam-
pling variable for re-parameterization. In particu-
lar, we attribute the success of the DSR VAE to the
additional knowledge that has been injected into its
latent variables.

Some generation examples from the Wordnet
dataset are provided in Table 5. Such examples
show that the proposed VAE models are able to
leverage the structural and semantic information of
the learned definition roles to better approximate
the defined concept. In particular, we notice some
semantically strong linguistic elements in the defi-
nitions decoded with DSR supervision, for example
DSR is the only model able to link the verb "re-
pulse” with the hostile adjective, the verb colonise
with the similar verb "settle", and the word "heat"
with temperature.

The strong performance in this definition gener-
ation task demonstrates that the disentangled repre-
sentations have provided the VAE models with sig-
nificant generalization capability, confirming that
disentangling is beneficial for various applications
tasks.

6 Discussion

We propose a novel VAE-based framework for
learning and evaluating disentangled representa-
tions in natural language definitions. We leverage
the semantic structure present in dictionaries as in-
ductive biases for improving disentanglement in
VAE:s, and as generative factors during evaluation.
Our evaluation shows, both with qualitative inves-
tigations and with quantitative metrics, that the
proposed framework is able to produce encodings
with a higher degree of disentanglement. Finally,
our models outperform existing baselines on a def-
inition modeling application, demonstrating the
generalization capabilities of disentangled repre-
sentations.
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A Definition Semantic Roles

The datasets used in our experiments are introduced
in (Silva et al., 2018). We report in Table 7 the
annotated categories.

Role Description

Supertype | the immediate or ancestral entity’s superclass

Differentia | a quality that distinguishes the entity from the

quality others under the same supertype

Differentia | an event (action, state or process) in which the

event entity participates and that is mandatory to dis-
tinguish it from the others under the same super-
type

Event the location of a differentia event

location

Event time | the time in which a differentia event happens

Origin the entity’s location of origin

location

Quality degree, frequency or manner modifiers that con-

modifier strain a differentia quality

Purpose the main goal of the entity’s existence or occur-
rence

Associated | a fact whose occurrence is/was linked to the

fact entity’s existence or occurrence

Accessory | a determiner expression that doesn’t constrain

determiner | the supertype / differentia scope

Accessory | a quality that is not essential to characterize the

quality entity

Role a particle, such as a phrasal verb complement,

particle non-contiguous to the other role components

Table 7: Semantic Role Labels for dictionary defini-

tions.

B Disentanglement Metrics

1. zg4irp accuracy (Higgins et al., 2017): The
accuracy of a predictor for p(y|z); 71)> Where

b
2dif f

is the absolute linear difference between

the inferred latent representations for a batch
B of latent vectors, written as a percentage
value. Higher values imply better disentangle-
ment.

. Zmin_var €rror (Kim and Mnih, 2018): For
a chosen factor k, data is generated with
this factor fixed but all other factors varying
randomly; their representations are obtained,
with each dimension normalised by its empir-
ical standard deviation over the full data (or
a large enough random subset); the empiri-
cal variance is taken for each dimension of
these normalised representations. Then the in-
dex of the dimension with the lowest variance
and the target index k provide one training
input/output example for the classifier. Thus,
if the representation is perfectly disentangled,
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6. Disentanglement

the empirical variance in the dimension cor-
responding to the fixed factor will be 0. The
representations are normalised so that the arg
min is invariant to rescaling of the represen-
tations in each dimension. Since both inputs
and outputs lie in a discrete space, the opti-
mal classifier is the majority-vote classifier,
and the metric is the error rate of the classifier.
Lower values imply better disentanglement.

. Mutual Information Gap (M IG) (Chen et al.,

2018): The difference between the top two
latent variables with the highest mutual in-
formation. Empirical mutual information
between a latent representation z; and a
ground truth factor vy, is estimated using
the joint distribution defined by ¢(z;,v;) =
Zgzl p(vi)p(n|vk)q(zjn). A higher mutual
information implies that z; contains a lot of
information about v, and the mutual infor-
mation is maximal if there exists a determin-
istic, invertible relationship between z; and
vg. MIG values are in the interval [0, 1],
with higher values implying better disentan-
glement.

. Modularity (Ridgeway and Mozer, 2018):

The deviation from an ideally modular case
of latent representation. If latent vector di-
mension ¢ is ideally modular, it will have high
mutual information with a single factor and
zero mutual information with all other factors.
A deviation 9; of 0 indicates perfect modu-
larity and 1 indicates that this dimension has
equal mutual information with every factor.
Thus, 1 — §; is used as a modularity score for
vector dimension i and the mean of 1 — §;
over ¢ as the modularity score for the over-
all representation. Higher values imply better
disentanglement.

. Explicitness (Ridgeway and Mozer, 2018):

Mean of the ROC area-under-the-curve
(AUCji) of a one-versus-rest logistic-
regression classifier that takes the latent vec-
tors as input and has factor values as targets,
over a factor index j and an index k on values
of factor j. Represents the coverage of the
representation, in other words, how well each
factor is represented. Higher values imply
better disentanglement.

Score (Eastwood and



Williams, 2018): The degree to which a
representation factorises or disentangles the
underlying factors of variation, with each
variable (or dimension) capturing at most
one generative factor. It is computed as
a weighted average of a disentanglement
score D; = (1 — Hg(F;.)) for each latent
dimension variable ¢;, on the relevance of
each ¢;, where Hi (P;.) denotes the entropy
and P;; denotes the ’probability’ of ¢; being
important for predicting z;. If ¢; is important
for predicting a single generative factor, the
score will be 1. If ¢; is equally important
for predicting all generative factors, the
score will be 0. Higher values imply better
disentanglement.

. Completeness Score (Eastwood and Williams,
2018): The degree to which each underlying
factor is captured by a single latent dimen-
sion variable. For a given z; it is given by
Cj = (1 — HD(PJ)), where HD<]5j) =
— 252_01 delOgDEj denotes the entropy of
the P.j distribution. If a single latent dimen-
sion variable contributes to z;’s prediction, the
score will be 1 (complete). If all code vari-
ables contribute equally to z;’s prediction, the
score will be 0 (maximally over-complete).
Higher values imply better disentanglement.

. Informativeness Score (Eastwood and
Williams, 2018): The amount of information
that a representation captures about the
underlying factors of variation. Given a
latent representation ¢, It is quantified for
each generative factor z; by the prediction
error F(z;,2;) (averaged over the dataset),
where F is an appropriate error function
and Z; = f;(c). Lower values imply better
disentanglement.
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C Further Experimental Results

UMAP plot Alternative dimensionality reduc-
tion method, used to visualise the clustering of
DSR patterns, as seen in Figure 6.

@,

)

Figure 6: UMAP plot of 9370 definition representations
(128 dimensions), generated from Unsupervised VAE
(U), DSR supervision (S) and Conditional VAE (C).

D Source code

The complete experimental pipeline is available as
supplementary software for this paper (code.7z),
and should be soon available to the public.



