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Abstract

Disentangling the encodings of neural models001
is a fundamental aspect for improving inter-002
pretability, semantic control and downstream003
task performance in Natural Language Process-004
ing. Currently, most disentanglement methods005
are unsupervised or rely on synthetic datasets006
with known generative factors. We argue that007
recurrent syntactic and semantic regularities008
in textual data can be used to provide the009
models with both structural biases and gener-010
ative factors. We leverage the semantic struc-011
tures present in a representative and semanti-012
cally dense category of sentence types, defi-013
nitional sentences, for training a Variational014
Autoencoder to learn disentangled represen-015
tations. Our experimental results show that016
the proposed model outperforms unsupervised017
baselines on several qualitative and quantita-018
tive benchmarks for disentanglement, and it019
also improves the results in the downstream020
task of definition modeling.021

1 Introduction022

Learning disentangled representations is a funda-023

mental step towards enhancing the interpretability024

of the encodings in deep generative models, as025

well as improving their downstream performance026

and generalization ability. Disentangled represen-027

tations aim to encode the fundamental structure028

of the data in a more explicit manner, where in-029

dependent latent variables are embedded for each030

generative factor (Bengio et al., 2013).031

Previous work in machine learning proposed032

to learn disentangled representations by modify-033

ing the ELBO objective of the Variational Autoen-034

coders (VAE) (Kingma and Welling, 2014), within035

an unsupervised framework (Higgins et al., 2017;036

Kim and Mnih, 2018; Chen et al., 2018). On the037

other hand, a more recent line of work claims the038

benefits of supervision in disentanglement (Lo-039

catello et al., 2019) and it advocates the importance040

of designing frameworks able to exploit structures041
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Figure 1: Left: Supervision mechanism with defini-
tion semantic roles (DSR) encoded in the latent space.
The dotted arrow represent the conditional VAE version.
Right: Evaluation framework.

in the data for introducing inductive biases. In par- 042

allel, disentanglement approaches for NLP have 043

been tackling text style transfer, and evaluating the 044

results with extrinsic metrics, such as style transfer 045

accuracy (Hu et al., 2017; John et al., 2019; Cheng 046

et al., 2020). 047

While style transfer approaches investigate the 048

ability to disentangle and control syntactical factors 049

such as tense and gender, the aspect of understand- 050

ing and disentangling the semantic structure in lan- 051

guage is under-explored. Furthermore, evaluating 052

disentanglement is challenging, because it requires 053

knowledge of generative factors, leading most ap- 054

proaches to train on synthetic datasets (Higgins 055

et al., 2017; Zhang et al., 2021). 056

In this work, we argue that recurrent semantic 057

structures at sentence level can be leveraged both 058

as inductive biases for enhancing disentanglement 059

(RQ1) but also for providing meaningful genera- 060

tive factors that can be employed for evaluating the 061

degree of disentanglement (RQ2). We also inves- 062

tigate whether organizing the generative factors in 063

groups may facilitate learning and disentanglement 064

(RQ3). As a result, this work focuses on natural 065
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language definitions, which are a textual resource066

characterised by a principled structure in terms of067

semantic roles, as demonstrated by previous work068

which proposed the extraction of structural and se-069

mantic patterns in this kind of data (Silva et al.,070

2016, 2018).071

Seeking to address the highlighted issues and an-072

swer the research questions, we make the following073

contributions, also depicted in Figure 1.074

1) We design a supervised framework for en-075

hancing disentanglement in language representa-076

tions by conditioning on the information provided077

by the semantic role labels (SRL) in natural lan-078

guage definitions. We present two mechanisms for079

injecting SRL biases into latent variables, firstly,080

reconstructing both words and corresponding SRL081

in a VAE, secondly, employing SRL information as082

input variable for a Conditional VAE (Zhao et al.,083

2017).084

2) We propose the first framework for evaluating085

the disentanglement properties of the encodings086

on non-synthetic textual datasets. Our evaluation087

framework employs semantic role labels as gen-088

erative factors, enabling the measurement of sev-089

eral contemporary quantitative metrics. The results090

show that the proposed bias injection mechanisms091

are able to increase the degree of disentanglement092

of the representations.093

3) We demonstrate that models trained with our094

disentanglement framework are able to outperform095

contemporary baselines in the downstream task of096

definition modeling (Noraset et al., 2017).097

2 Disentangling framework098

In this section we first describe the framework099

that we designed for improving disentanglement100

in natural language definitions with semantic role101

labels. Secondly, we present three models, shown102

in Figure 2 based on the Variational Autoencoder103

(VAE) (Bowman et al., 2016) for achieving disen-104

tanglement.105

2.1 Disentangling definitions106

Definition semantic roles Our framework is107

based on natural language definitions, which are108

a particular type of linguistic expression, charac-109

terised by high abstraction, and specific phrasal110

properties. Previous work in NLP for dictionary111

definitions (Silva et al., 2018) has shown that there112

are categories that can be consistently found in113

most definitions. In fact, Silva et al. (2018) define114

precise Semantic Role Labels (SRL) for phrases 115

representing definitions, under the name of Defini- 116

tion Semantic Roles (DSR). 117

The example from (Silva et al., 2018) classifies 118

the semantic roles within "english poets who lived 119

in the lake district" as follows. "poets" as noun 120

category (supertype), "english" as quality of the 121

term (Differentia Quality), "who lived" as event 122

that the subject is involved with (differentia event), 123

and "in the lake district" as the location of the action 124

(Event location). The full DSRs proposed by Silva 125

et al. (2018) are reported in Table 7 in Appendix A. 126

Disentangling using SRL Our goal is to enhance 127

disentanglement in natural language by injecting 128

categorical structures into latent variables. We find 129

that this goal is well aligned with the findings of Lo- 130

catello et al. (2019), where it is claimed that a 131

higher degree of disentanglement may benefit from 132

supervision and inductive biases. Our hypothesis 133

is that we may leverage such semantic information 134

for learning representation with higher degree of 135

disentanglement. While in the context of this work 136

we use dictionary definitions as a target empirical 137

setting, we conjecture that these conclusions can 138

be extended to broader definitional sentence-types. 139

2.2 Definition VAEs 140

Unsupervised VAE The first baseline model that 141

we consider is the traditional variational autoen- 142

coder (VAE) for sentences (Bowman et al., 2016), 143

which operates in an unsupervised fashion, as in 144

Figure 2a. The unsupervised VAE employs a mul- 145

tivariate gaussian prior distribution p(z) and gener- 146

ates a sentence x with a decoder network pθ(x|z). 147

The joint distribution for the decoder is defined as 148

p(z)pθ(x|z), which, for a sequence of tokens x of 149

length T result as pθ(x|z) =
∏T
i=1 pθ(xi|x<i, z). 150

The VAE objective consists into maximizing the 151

expectation of the log-likelihood which is defined 152

as Ep(x) log pθ(x). Due to the computational in- 153

tractability of the such expectation value, the varia- 154

tional distribution qθ is employed to approximate 155

pθ(z|x). 156

As a result, an evidence lower bound LVAE 157

(ELBO) where Ep(x)[log pθ(x)] ≥ LVAE, is de- 158

rived as follows: 159

LTokens =Eqφ(z|x)
[
log pθ(x|z)

]
(1) 160

− KLqφ(z|x)||p(z) 161

DSR supervised VAE The aim of this model is 162

to inject the categorical structure of the definition 163

2



E D
tokens tokens

rec. loss

(a) Unsupervised VAE

E D
tokens tokens

roles

joint loss

(b) Supervised VAE

E D
tokens tokens

roles

rec. loss

roles

(c) CVAE

Figure 2: Proposed architectures for learning disentangled representations in definitions.

semantic roles (DSR) into the latent variables, by164

factorizing them into the VAE auto-encoding ob-165

jective function. In order to achieve this goal, we166

introduce the variable r for semantic roles, and train167

the "DSR VAE", where both sentence and semantic168

roles are auto-encoded. As a result, two separate169

losses are produced and added together for the fi-170

nal loss, as shown in Figure 2b. The ELBO for171

semantic roles is defined as follows:172

LRoles =Eqφ(z|r)
[
log pθ(r|z)

]
(2)173

− KLqφ(z|r)||p(z)174

The final loss is given by LTokens + LRoles.175

Conditional VAE with SRL For explicitly lever-176

aging the definition semantic roles, we propose a177

supervision mechanism based on the Conditional178

VAE (CVAE) (Zhao et al., 2017), shown in Fig-179

ure 2c. Similar to the previously described model,180

we instantiate a VAE framework, where x is the181

variable for the tokens, and r for the roles. We182

perform auto-encoding for both roles and tokens,183

and additionally, we condition the decoder network184

on the roles. The CVAE is trained to maximize the185

conditional log likelihood of x given r, which in-186

volves an intractable marginalization over the latent187

variable z.188

The ELBO is defined as:189

LCVAE =Eqφ(z|r,x)
[
log pθ(x|z, r)

]
(3)190

− KLqφ(z|x, r)||p(z|r)191

Training The training process follows the vari-192

ational autoencoding methodology (Kingma and193

Welling, 2014). First, tokenization is performed in194

the sentences and the roles. The Encoder network195

involves feeding both first into embedding layers,196

then into LSTM layers. Subsequently, two vectors197

µ and σ are sampled with two linear layers, and the198

vector z is computed with the re-parameterization199

trick. Finally, the decoder network is built with200

LSTM and another embedding layer, which return201

the same dimension that was given as input.202

3 Evaluation framework 203

We first present the evaluation framework that for 204

measuring disentanglement, then describe and jus- 205

tify the generative factor setup used in the experi- 206

ments. 207

3.1 DSR as generative factors 208

While early approaches for disentanglement in 209

NLP have been proposed in the context of in style 210

transfer applications (John et al., 2019; Cheng et al., 211

2020) and are assessed purely in terms of style 212

transfer accuracy, evaluating the intrinsic properties 213

of the latent encodings is fundamental for disentan- 214

glement, as mentioned in several machine learning 215

approaches (Higgins et al., 2017; Kim and Mnih, 216

2018). Recently, Zhang et al. (2021) proposed a 217

framework for computing several popular quantita- 218

tive disentanglement metrics such as (Higgins et al., 219

2017; Kim and Mnih, 2018) testing it on synthetic 220

datasets. The limitation in (Zhang et al., 2021) is 221

that is works only with synthetic datasets. 222

In this work, we propose a method where seman- 223

tic role labels, such as the ones provided in (Silva 224

et al., 2018), are used as generative factors for eval- 225

uating the degree of disentanglement in the encod- 226

ings. The framework, overview in Figure 3, consid- 227

ers multiple generative factors, where each factor is 228

composed by a number of semantic roles (for exam- 229

ple the factor "location" includes, origin-location, 230

and event-location). In this way, the dataset can 231

be seen as the result of a sampling of multiple gen- 232

erative factors, which is the same principle used 233

when creating synthetic datasets for disentangle- 234

ment. Once the generative factors are defined, the 235

framework is enabled to compute a number of quan- 236

titative metrics for disentanglement, following the 237

work from Zhang et al. (2021). 238

3.2 Semantics and Syntax groups of DSR 239

In order to categorize the definition semantic roles 240

(DSR), we consider its structural and semantic di- 241

mensions in terms of their contribution to either 242

the meaning (e.g., quality, location) or the structure 243
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PURPOSE
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Group 4: Syntax

Figure 3: Generative factors for definitions.

(e.g., main terms, modifiers) of the definition sen-244

tence. We first create two DSR groups with seman-245

tic and two based on syntax, to evaluate which one246

would better facilitate disentanglement. For both247

syntax and semantic, we then create a groups with248

"supertype" DSR and one without it, in order to249

understand the impact of the supertype DSR. The250

importance of "supertype" is due to its contribu-251

tion to both abstraction groups and its predominant252

presence on the datasets analyzed (≥ 97%).253

Group 1: Semantics with Supertype Sets the254

factors in terms of their meaning, essentially ab-255

stracting categories of the DSRs, including the SU-256

PERTYPE DSR as a single factor. Qualification,257

location, modification, declaration (statement) and258

supplementation (accessory) are semantic roles of259

a given term to its definition, which are described260

by the DSRs. For example, "event location" and261

"origin location" are inserted into the Location fac-262

tor, while "purpose" and "associated fact" are in263

statement.264

Group 2: Syntax with Supertype Sets the fac-265

tors in terms of their structural role in the definition266

sentence, including the SUPERTYPE DSR as a267

single factor. The ORIGIN-LOCATION DSR is268

omitted due to its syntactic overlap with EVENT-269

LOCATION and its low frequency in the datasets.270

Typically, a "main" term is followed by a set of271

modifiers (event, quality), which may be comple-272

mented by accessory terms.273

Group 3: Semantics without Supertype Sim-274

ilar to group 1, but excluding the SUPERTYPE275

DSR, and repositioning the factor from modifier276

and accessory for higher abstraction. The rela-277

tions of modification and supplementation (present278

in group 1) are suppressed to focus on lexi-279

cal semantics, moving the label ACCESSORY-280

DETERMINER to the declaratory group, EVENT- 281

TIME to the event group and all quality related 282

labels to the qualification group. 283

Group 4: Syntax without Supertype Similar 284

to group 2, but excluding the SUPERTYPE DSR. 285

Further abstractions are not conducted, as the defi- 286

nition roles already offer a stable structure for sen- 287

tence construction. 288

4 Related work 289

Disentangled VAEs in language Early ap- 290

proaches in text disentanglement use VAEs with 291

multiple adversarial losses for style transfer (Hu 292

et al., 2017; John et al., 2019). More recently, 293

Cheng et al. (2020) propose a style transfer method 294

which minimizing the mutual information be- 295

tween the latent and the observed variable, while 296

Colombo et al. (2021) propose an upper bound of 297

mutual information for fair text classification. On 298

the other hand, we propose to disentangle repre- 299

sentation using biases provided as semantic roles 300

and design two VAE models to inject structural 301

semantic information into the representation. 302

Disentanglement Evaluation Vishnubhotla et al. 303

(2021) evaluate disentanglement in synthetic text 304

on various NLP tasks such as classification, re- 305

trieval and style transfer. Zhang et al. (2021) evalu- 306

ate disentanglement of various VAE models on syn- 307

thetic datasets where generative factors are known. 308

Differently from these methods, we propose a new 309

framework to evaluate non-synthetic natural lan- 310

guages, where semantic role labels are used as gen- 311

erative factors. We model linguistic features of nat- 312

ural language definitions, with the goal of exploring 313

the semantic properties that are encapsulated in it. 314

Definition models Early approaches in defini- 315

tion encoding include (Hill et al., 2016), which pro- 316
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pose the first neural embedding model for dictionar-317

ies, and (Bahdanau et al., 2017), which present an318

RNN-based encoder decoder architecture for tex-319

tual entailment and reading comprehension. More320

recently, methods based on Autoencoders (Bosc321

and Vincent, 2018) and transformers (Tsukagoshi322

et al., 2021) have been proposed. Various ap-323

proaches for the task of generating a definition from324

a word (Definition Modeling) have been proposed,325

including RNN-based methods (Noraset et al.,326

2017), soft attention mechanisms (Gadetsky et al.,327

2018), and span-based encoding schemes (Bevilac-328

qua et al., 2020). The semantic aspect of natural329

language definitions are explored in (Silva et al.,330

2016, 2018), where the concept of definition se-331

mantic roles is proposed.332

5 Empirical analysis333

In this section, we firstly describe the empirical334

setup for experiments, secondly, we provide quali-335

tative evaluation and thirdly, we measure various336

quantitative metrics. Finally, we demonstrate the337

capacity of the proposed models in the downstream338

task of definition modeling. The full experimental339

pipeline is available in a code package submitted340

as supplementary material (Appendix D).341

5.1 Experimental setup342

Datasets Definition sentences and their respec-343

tive semantic role structures are sourced from three344

different datasets by (Silva et al., 2016) with the345

characteristics described in Table 1. All datasets346

are automatically annotated with DSR tags for each347

token, using the method proposed by (Silva et al.,348

2016). The datasets differ not only in sentence349

length and size, but also in textual style: while350

WordNet and Wiktionary sentences tend to be for-351

matted as dictionary definitions, Wikipedia sen-352

tences are lengthier and less adherent to a typical353

definition structure.354

Hyperparameter choices Experiments are con-355

ducted to cover a set of 3 hyperparameters: First,356

the VAE architecture used: 1) Unsupervised VAE357

2) Supervised with SRL 3) CVAE with SRL. Sec-358

ond, the generative factor grouping, which includes:359

1) Semantic w/ supertype 2) Syntactic w/ supertype360

3) Semantic w/o supertype 4) Syntactic w/o su-361

pertype. Third, the dimensionality of VAE latent362

representation (z): 4, 5, 7, 128.363

The choice of architecture allows evaluation of364

the impact of DSR label conditioning in two dis-365

Dataset Num sents. Avg. length Version
Wordnet 93,699 9 WordNet 3.0
Wiktionary 464,243 8 Dec, 2016
Wikipedia 1,500,323 12 Dec, 2016

Table 1: Statistics from definition datasets.

tinct ways: as part of the autoencoding objective 366

function, and as a conditional variable of the de- 367

coder, addressing our research questions RQ1 and 368

RQ2. The choice of generative factor grouping 369

can indicate the best ways to organize the factors, 370

addressing RQ3. 371

The dimensionality of the representation is set 372

to match the number of generative factors, in an 373

attempt to force disentanglement by alignment of 374

each dimension to a single factor. The dimension 375

sizes are then defined to be 4 (alignment with group- 376

ings 3 and 4), 5 (alignment with grouping 2) or 7 377

(alignment with grouping 1). However, different 378

levels of disentanglement can be achieved with mis- 379

matching dimensions and factors. So all possible 380

combinations of factors and representation sizes 381

are tested and a size of 128 is included to evaluate 382

the impact of a higher number of parameters in 383

each grouping. 384

Implementation Details Neural Network hyper- 385

parameters are kept fixed for all quantitative ex- 386

periments, with the following values, based on a 387

previous experiment from (Shen et al., 2020). (1) 388

Number of hidden layers: 1, (2) Dimension of 389

the hidden layer: 512, (3) VAE λKL = 0.1, (4) 390

Epochs=20, (5) Batch size=32 for Wikipedia, 64 391

for the rest. All VAEs built for the experiments are 392

composed of a LSTM as sequence encoder, a hid- 393

den layer, an embedding (representation) layer, and 394

a LSTM decoder. Dropout (20%) is done for both 395

encoder and decoder inputs. To provide the inputs 396

and outputs for the VAEs, the definition sentences 397

are tokenized into sub-words with a Byte Pair En- 398

coding (BPE) scheme, and converted into token 399

embeddings with the T5 transformer model (Raffel 400

et al., 2020), with an embedding size of 512. The 401

use of transformer embeddings introduce richer se- 402

mantic information that can be leveraged by the 403

VAE in the construction of its representations. 404

5.2 Qualitative Evaluation 405

We evaluate the representations of the trained mod- 406

els in terms of their disentanglement, by analysing 407

1) traversals of the latent space, 2) encoding inter- 408

polation 3) encoding visualization with dimension- 409
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VA
E a surgical procedure for one purpose

a parasitic procedure for one skull
a parasitic procedure for its content

D
SR

a fictional character having close incense
a fictional name consisting by the kitchen
a fictional name consisting of the brothers

C
VA

E a simple scheme where members also must take minerals
a simple scheme where members also must be out in Renaissance
a simple scheme where members also specialized on a tract

Table 2: Traversal showing disentangled and entangled
factors in Wordnet.

ality reduction.410

Latent space traversals Traversal evaluation411

is a standard procedure with image disentangle-412

ment (Higgins et al., 2017; Kim and Mnih, 2018).413

The traversal of a latent factor is obtained as the414

decoding of the vectors corresponding to the latent415

variables, where the evaluated factor is changed416

within a fixed interval, while all others are kept417

fixed. If the representation is disentangled, when418

a latent factor is traversed, the decoded sentences419

should only change with respect to that factor. This420

means that after training the model we are able to421

probe the representation for each latent variable.422

In Figure 2 we report examples from Wordnet423

obtained for 128 latent variables for VAE and DSR424

VAE and CVAE. We observe that all models show425

some degree of disentanglement, because the de-426

coded sentences only change few attributes, denot-427

ing control. In particular, the CVAE is the one with428

the more disentangled representations, given that it429

maintains the first phrase constant, and varies the430

second one smoothly.431

Interpolation In this experiment, we demon-432

strate the ability of autoencoder models to provide433

smooth transition between latent space represen-434

tations of sentences (Bowman et al., 2016). In435

practice, the interpolation mechanism takes two436

sentences x1 and x2, and uses their posterior mean437

as the latent features z1 and z2, respectively. It438

interpolates a path zt = z1 · (1 − t) + z2 · t with439

t increased from 0 to 1 by a step size of 0.1. As a440

result, 9 sentences are generated on each interpola-441

tion step.442

In Table 3 we provide qualitative results with443

latent space interpolation on Wordnet. Interest-444

ingly, the DSR-supervised VAE shows ability to445

paraphrase semantic concepts, for example bridg-446

ing the concept of teaching and learning on the447

starting sentence with the concept of train and448

loading goods we find in the middle the notion449

VA
E

teach by repetition
1 teach by warning
2 teach by warning or repetition movements
3 teaching by communicating again
4 training with practice of a creative document
5 someone who employs a pen or rope with limited task
6 charge carried by an aircraft or commercial carrier
7 automobile street area plus to ride out and sealing
8 terminal area with seats or mass that enables passengers
9 terminal to let passengers inside or load goods or exit
terminal where trains load or unload passengers or goods

D
SR

VA
E

teach by repetition
1 to teach by repetition
2 to teach by repetition method on style or poetry
3 to reproduce by inspiring processes or purposes
4 to control components especially contracting processes
5 a switching technique or component of organizing information
6 a train carried out of a trap or overcharge transactions
7 a train or machine of merchant transport from others
8 vehicle with passengers full of producing items for exchange
9 terminal in which multiple vehicles drive by and carry food
terminal where trains load or unload passengers or goods

Table 3: Interpolation examples in Wordnet.

Figure 4: t-SNE plot of 9370 definition representations
(128 dimensions), generated from Unsupervised VAE
(U), DSR supervision (S) and Conditional VAE (C).

of "organising information" and "control compo- 450

nents" which are noteworthy semantic bridges. 451

This type of localised semantic control provided by 452

the operations of traversal and interpolation over 453

intensional-level (definitional) sentences can poten- 454

tially support quasi-symbolic operations over the 455

latent space. 456

t-SNE plot t-SNE (t-distributed Stochastic Neigh- 457

bor Embedding) (Van der Maaten and Hinton, 458

2008) is a popular method for non-linear dimen- 459

sionality reduction, that allows the visualization 460

of complex high-dimensional feature spaces, such 461

as the representation space produced by a VAE. 462

Figure 4 presents a 2D plot of t-SNE transfor- 463

mations for each one of the evaluated models, 464

from which the clustering of DSR patterns can 465

be observed. While the supervision with DSR la- 466

bels promotes clustering of the patterns around 467

the center of the plot, cVAE compacts the clus- 468

ter on the edges, allowing better separation of 469

the DIFF-QUALITY+DIFF-EVENT and DIFF- 470

EVENT+DIFF-QUALITY patterns. From the 471

cVAE plot is also possible to visualise a smoother 472

transition between the two major patterns observed 473
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Figure 5: Metrics mean grouped.

in the dataset: from DIFFERENTIA-QUALITY474

(red) to DIFFERENTIA-EVENT (blue), with the475

combination of both patterns being coloured pur-476

ple/violet. UMAP transformations are also per-477

formed and the plots are presented in the supple-478

mental material (Appendix C).479

5.3 Quantitative Evaluation480

In this experiment we probe the representation481

learned by the proposed VAE models using eight482

popular quantitative metrics for disentanglement,483

namely: z-diff (Higgins et al., 2017), z-min-484

var (Kim and Mnih, 2018), Mutual Information485

Gap (MIG) (Chen et al., 2018), Modularity &486

Explicitness (Ridgeway and Mozer, 2018), and487

from (Eastwood and Williams, 2018)(disentangle-488

ment, completeness, informativeness). Further de-489

tails about the metrics are provided in Appendix B.490

Experimental Setup We evaluate VAE (U), DSR491

VAE (S) and CVAE (C) on Wordnet (WN), Wik-492

tionary (WT) and Wikipedia (WP) datasets. Evalu-493

ation is performed under the framework explained494

in Section 3. Each combination of VAE architec-495

ture, generative factor grouping and representation496

size was trained and quantitatively tested, by cal-497

culating the previously mentioned disentanglement498

metrics. For computing the metrics we follow the499

experiments of Zhang et al. (2021).500

501

D z-diff z-min-var ↓ MIG Modularity
U S C U S C U S C U S C

WN 70.0 69.1 77.0 48.2 50.3 53.2 .067 .057 .059 .793 .804 .765
WT 59.7 61.9 63.5 40.0 38.5 43.0 .112 .095 .065 .535 .424 .629
WP 57.5 63.0 64.7 39.8 38.6 42.0 .046 .041 .037 .771 .745 .757
D Explicitness Disentanglement Completeness Informativeness ↓

U S C U S C U S C U S C
WN .519 .532 .527 .022 .021 .031 .013 .013 .017 .364 .361 .399
WT .584 .593 .616 .014 .011 .013 .013 .013 .011 .377 .373 .385
WP .545 .557 .600 .007 .007 .005 .007 .007 .004 .375 .373 .374

Table 4: Quantitative disentanglement metrics.

Analysis The results presented in Table 4 show 502

that across all datasets, the application of DSR 503

categories as biases results in a measurable im- 504

provement in disentanglement (RQ1) and that the 505

use of DSRs as generative factors produces mean- 506

ingful disentangled representations (RQ2). More 507

specifically, z-diff presents the highest and most 508

consistent improvement, specially with the CVAE, 509

indicating higher interpretability when inferring 510

single generative factors from the representations. 511

Explicitness results are also consistent, indicating 512

higher coverage of each factor. Improvements on 513

Modularity, Disentanglement Score, Completeness 514

and Informativeness are less consistent, indicating 515

that the factors share substantial information be- 516

tween them. On the other hand, z-min-var, MIG 517

counter the trend of improvement, due to the fact 518

that they are designed to strongly penalize non- 519

alignment of single pairs <factor↔ latent dimen- 520

sion> (e.g., linear combinations). As a result, they 521

penalize the existence of dependency and hierarchy 522

relations which is present in most DSR categories, 523

e.g., DIFFERENTIA-EVENT→ EVENT-TIME. 524

We analyse how semantic groupings affect dis- 525

entanglement in Figure 5b (RQ3). Overall, we 526

notice that syntax based groups have higher disen- 527

tanglement, indicating that it is easier to disentan- 528

gle syntactic phrase components. For Modularity 529

the result is the opposite, indicating that semantic 530

groupings promote higher independence between 531

factors. Following (Zhang et al., 2021), the values 532

in Figure 5b for the metrics Completeness and Dis- 533

entanglement score are multiplied by 10, in order 534

to facilitate the visualization. 535

Finally, we find that a low number of latent di- 536

mensions leads to smaller degree of disentangle- 537

ment. The experiments with 4,5,7 and 128 latents 538

are reported in Figure 5a. 539

5.4 Definition Generation 540

In this experiment, we assess the proposed VAE 541

models in the task of "Definition Modeling" (No- 542
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Word Definition Model Unsupervised VAE Supervised VAE
repulse the act of making a gun the act of moving forward act in a hostile state
colonise make a new or vital part the state of being in a particular place settle or cause to be easily removed
involve make a specific purpose make a specific effect a specific act of making something
mitochondrion a cell that is used to treat the blood a substance that is used to treat a body reaction a cell that is a source of an organic process
heat a change in the surface of a liquid a sudden increase in the flow of heat a sudden increase in the temperature

Table 5: Definition generation examples for the Wordnet dataset.

Perplexity ↓ Bleu
Data DM VAE DSR DM VAE DSR
WN 88.59 80.36 80.27 9.12 10.27 10.26
WT 42.51 39.09 38.64 6.70 7.53 7.59
WP 13.09 12.39 12.47 11.89 12.32 12.34

Table 6: Quantitative metrics for definition generation.

raset et al., 2017), where the goal is to generate a543

natural language definition given the word to be544

defined (definiendum).545

Experimental setup During training, we adopt546

the "seed" setup (Noraset et al., 2017), which in-547

volves providing the definiendum concatenated548

with the definition tokens as input for the model.549

At generation time, the model takes as input only550

the word which needs to be defined, and leverages551

a trained model for computing the definition latent552

encoding. Such encoding is then fed into a softmax553

function and subsequently a multinomial probabil-554

ity distribution is sampled for decoding the latent555

variable into the final definition sentence.556

We compare the proposed unsupervised and557

DSR-supervised VAEs with the LSTM-based558

Definition-model approach from (Gadetsky et al.,559

2018), both using the "seed" setup. The CVAE is560

not explored in this experiment in order to have a561

more fair comparison with the Definition model.562

We train the baseline and our models with similar563

setups, following (Gadetsky et al., 2018). We per-564

form language model pretraining on the WikiText-565

103 dataset (Merity et al., 2016) for 1 epoch, then566

train on the downstream dataset for 10 epochs. Ad-567

ditionally, all models are initialised using Google568

Word2Vec pretrained vectors, following (Gadetsky569

et al., 2018).570

Results We report the perplexity and Bleu (Pap-571

ineni et al., 2002) results in Table 6. We observe572

that the proposed variational autoencoder models573

achieve an improvement on both perplexity and574

Bleu compared to the RNN baseline. The DSR575

VAE achieves the best perplexity and bleu on 2576

out of 3 datasets while the unsupervised VAE is577

the best performing model in the other cases. We578

justify the success of VAE models due to their dis- 579

entangling properties, and also their ability to learn 580

smooth encodings, a benefit deriving from sam- 581

pling variable for re-parameterization. In particu- 582

lar, we attribute the success of the DSR VAE to the 583

additional knowledge that has been injected into its 584

latent variables. 585

Some generation examples from the Wordnet 586

dataset are provided in Table 5. Such examples 587

show that the proposed VAE models are able to 588

leverage the structural and semantic information of 589

the learned definition roles to better approximate 590

the defined concept. In particular, we notice some 591

semantically strong linguistic elements in the defi- 592

nitions decoded with DSR supervision, for example 593

DSR is the only model able to link the verb "re- 594

pulse" with the hostile adjective, the verb colonise 595

with the similar verb "settle", and the word "heat" 596

with temperature. 597

The strong performance in this definition gener- 598

ation task demonstrates that the disentangled repre- 599

sentations have provided the VAE models with sig- 600

nificant generalization capability, confirming that 601

disentangling is beneficial for various applications 602

tasks. 603

6 Discussion 604

We propose a novel VAE-based framework for 605

learning and evaluating disentangled representa- 606

tions in natural language definitions. We leverage 607

the semantic structure present in dictionaries as in- 608

ductive biases for improving disentanglement in 609

VAEs, and as generative factors during evaluation. 610

Our evaluation shows, both with qualitative inves- 611

tigations and with quantitative metrics, that the 612

proposed framework is able to produce encodings 613

with a higher degree of disentanglement. Finally, 614

our models outperform existing baselines on a def- 615

inition modeling application, demonstrating the 616

generalization capabilities of disentangled repre- 617

sentations. 618
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A Definition Semantic Roles763

The datasets used in our experiments are introduced764

in (Silva et al., 2018). We report in Table 7 the765

annotated categories.

Role Description
Supertype the immediate or ancestral entity’s superclass
Differentia
quality

a quality that distinguishes the entity from the
others under the same supertype

Differentia
event

an event (action, state or process) in which the
entity participates and that is mandatory to dis-
tinguish it from the others under the same super-
type

Event
location

the location of a differentia event

Event time the time in which a differentia event happens
Origin
location

the entity’s location of origin

Quality
modifier

degree, frequency or manner modifiers that con-
strain a differentia quality

Purpose the main goal of the entity’s existence or occur-
rence

Associated
fact

a fact whose occurrence is/was linked to the
entity’s existence or occurrence

Accessory
determiner

a determiner expression that doesn’t constrain
the supertype / differentia scope

Accessory
quality

a quality that is not essential to characterize the
entity

Role
particle

a particle, such as a phrasal verb complement,
non-contiguous to the other role components

Table 7: Semantic Role Labels for dictionary defini-
tions.

766

B Disentanglement Metrics767

1. zdiff accuracy (Higgins et al., 2017): The768

accuracy of a predictor for p(y|zbdiff ), where769

zbdiff is the absolute linear difference between770

the inferred latent representations for a batch771

B of latent vectors, written as a percentage772

value. Higher values imply better disentangle-773

ment.774

2. zmin_var error (Kim and Mnih, 2018): For775

a chosen factor k, data is generated with776

this factor fixed but all other factors varying777

randomly; their representations are obtained,778

with each dimension normalised by its empir-779

ical standard deviation over the full data (or780

a large enough random subset); the empiri-781

cal variance is taken for each dimension of782

these normalised representations. Then the in-783

dex of the dimension with the lowest variance784

and the target index k provide one training785

input/output example for the classifier. Thus,786

if the representation is perfectly disentangled,787

the empirical variance in the dimension cor- 788

responding to the fixed factor will be 0. The 789

representations are normalised so that the arg 790

min is invariant to rescaling of the represen- 791

tations in each dimension. Since both inputs 792

and outputs lie in a discrete space, the opti- 793

mal classifier is the majority-vote classifier, 794

and the metric is the error rate of the classifier. 795

Lower values imply better disentanglement. 796

3. Mutual Information Gap (MIG) (Chen et al., 797

2018): The difference between the top two 798

latent variables with the highest mutual in- 799

formation. Empirical mutual information 800

between a latent representation zj and a 801

ground truth factor vk, is estimated using 802

the joint distribution defined by q(zj , vk) = 803∑N
n=1 p(vk)p(n|vk)q(zj |n). A higher mutual 804

information implies that zj contains a lot of 805

information about vk, and the mutual infor- 806

mation is maximal if there exists a determin- 807

istic, invertible relationship between zj and 808

vk. MIG values are in the interval [0, 1], 809

with higher values implying better disentan- 810

glement. 811

4. Modularity (Ridgeway and Mozer, 2018): 812

The deviation from an ideally modular case 813

of latent representation. If latent vector di- 814

mension i is ideally modular, it will have high 815

mutual information with a single factor and 816

zero mutual information with all other factors. 817

A deviation δi of 0 indicates perfect modu- 818

larity and 1 indicates that this dimension has 819

equal mutual information with every factor. 820

Thus, 1− δi is used as a modularity score for 821

vector dimension i and the mean of 1 − δi 822

over i as the modularity score for the over- 823

all representation. Higher values imply better 824

disentanglement. 825

5. Explicitness (Ridgeway and Mozer, 2018): 826

Mean of the ROC area-under-the-curve 827

(AUCjk) of a one-versus-rest logistic- 828

regression classifier that takes the latent vec- 829

tors as input and has factor values as targets, 830

over a factor index j and an index k on values 831

of factor j. Represents the coverage of the 832

representation, in other words, how well each 833

factor is represented. Higher values imply 834

better disentanglement. 835

6. Disentanglement Score (Eastwood and 836
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Williams, 2018): The degree to which a837

representation factorises or disentangles the838

underlying factors of variation, with each839

variable (or dimension) capturing at most840

one generative factor. It is computed as841

a weighted average of a disentanglement842

score Di = (1 − HK(Pi.)) for each latent843

dimension variable ci, on the relevance of844

each ci, where HK(Pi.) denotes the entropy845

and Pij denotes the ’probability’ of ci being846

important for predicting zj . If ci is important847

for predicting a single generative factor, the848

score will be 1. If ci is equally important849

for predicting all generative factors, the850

score will be 0. Higher values imply better851

disentanglement.852

7. Completeness Score (Eastwood and Williams,853

2018): The degree to which each underlying854

factor is captured by a single latent dimen-855

sion variable. For a given zj it is given by856

Cj = (1 − HD(P̃ .j)), where HD(P̃ .j) =857

−
∑D−1

d=0 P̃djlogDP̃ij denotes the entropy of858

the P̃ .j distribution. If a single latent dimen-859

sion variable contributes to zj’s prediction, the860

score will be 1 (complete). If all code vari-861

ables contribute equally to zj’s prediction, the862

score will be 0 (maximally over-complete).863

Higher values imply better disentanglement.864

8. Informativeness Score (Eastwood and865

Williams, 2018): The amount of information866

that a representation captures about the867

underlying factors of variation. Given a868

latent representation c, It is quantified for869

each generative factor zj by the prediction870

error E(zj , ẑj) (averaged over the dataset),871

where E is an appropriate error function872

and ẑj = fj(c). Lower values imply better873

disentanglement.874

C Further Experimental Results 875

UMAP plot Alternative dimensionality reduc- 876

tion method, used to visualise the clustering of 877

DSR patterns, as seen in Figure 6. 878

Figure 6: UMAP plot of 9370 definition representations
(128 dimensions), generated from Unsupervised VAE
(U), DSR supervision (S) and Conditional VAE (C).

D Source code 879

The complete experimental pipeline is available as 880

supplementary software for this paper (code.7z), 881

and should be soon available to the public. 882
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