
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SMOOTHING DILOCO WITH PRIMAL AVERAGING FOR
FASTER TRAINING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Generalized Primal Averaging (GPA), an extension of Nesterov’s
method in its primal averaging formulation, that addresses key limitations of re-
cent averaging-based optimizers such as DiLoCo and Schedule-Free (SF). These
two recent algorithmic approaches improve the performance of base optimizers
such as AdamW through distinct averaging strategies. Schedule-Free explicitly
averages iterates at every step, while DiLoCo performs implicit averaging by pe-
riodically aggregating trajectories, called pseudo-gradients, to update the model
parameters. This periodic averaging introduces a two-loop structure, increasing
its memory requirements and number of hyperparameters to tune. To address
these limitations, GPA smoothens DiLoCo in the non-distributed setting by aver-
aging iterates at every iteration using two interpolation constants. When applied
to language model pre-training, GPA consistently outperforms DiLoCo while re-
moving the two-loop structure, simplifying hyperparameter tuning and reducing
memory overhead to just a single additional buffer. Furthermore, we prove that
for any base optimizer with regret bounded by O(

√
T ), where T is the number

of iterations, GPA can match or exceed the convergence guarantee of the original
optimizer, depending on the choice of the interpolation constants.

1 INTRODUCTION

As large language models (LLMs) demonstrate increasingly remarkable capabilities at scale
(Achiam et al., 2023; Llama Team, 2024; Liu et al., 2024a), the pre-training phase has become
one of the most expensive stages in the language model training pipeline, often costing hundreds
of millions of dollars per run. This significant investment has driven the development of training
algorithms and optimizers that enhance the efficiency, scalability, and robustness of language model
pre-training.

One significant area of research is on the design of training algorithms for scalable distributed learn-
ing. Among these, the DiLoCo algorithm has emerged as the leading practical approach (Douillard
et al., 2023; Liu et al., 2024b; Douillard et al., 2025; Charles et al., 2025). Notably, DiLoCo is
capable of outperforming AdamW even in a non-distributed setup.

DiLoCo’s consistent improvements over AdamW stem from its novel combination of the Nesterov
optimizer with the Lookahead method (Zhang et al., 2019). By periodically combining accumulated
weight updates into pseudo-gradients and applying Nesterov momentum, DiLoCo achieves sub-
stantial efficiency gains; for instance, when applied to AdamW on a 160 million parameter language
model, this approach delivers speedups up to 38%; see Figure 1b.

A particularly intriguing behavior of DiLoCo is that its performance improves as the number of
inner steps increases. With each base optimizer step, DiLoCo’s outer weights drift farther from
the inner weights, similar to meta learning optimizers such as Reptile (Nichol & Schulman, 2018)
and First-Order MAML (Finn et al., 2017). In DiLoCo, updates to the outer weights occur only
at periodic intervals, causing information from the data to be integrated in a discontinuous, choppy
manner rather than smoothly at every iteration. This restriction on information flow to the outer
weights appears unnecessary from an optimization perspective, yet counterintuitively improves its
performance; see Figure 1a.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 4 8 16 32 64

3.25

3.3

3.35

3.4

3.45

3.5

3.55

Effective Number of Inner Steps

V
a
li
d
a
ti
o
n
L
o
ss

LLama-160M (C4) - Comparison across effective number of inner steps

AdamW Baseline
DiLoCo-AdamW
GPA-AdamW

(a) Both GPA and DiLoCo using AdamW as their base opti-
mizer significantly outperform a strong AdamW baseline for
training a 160M parameter Llama model. Notably, increasing
the number of inner steps (up to 16) improves the performance
of DiLoCo. Unlike DiLoCo, GPA updates the parameters at
every step, but uses a heuristic to choose its interpolation con-
stants to match the number of inner steps for DiLoCo.

4 8 16 32 64
0

10

20

30

40

23.2

33.37
34.78

32.64
29.74

32.32

38.17 38.24

33.83

30.73

Effective Number of Inner Steps

S
p
ee
d
u
p
(%

)

DiLoCo GPA

(b) Speedup achieved by DiLoCo and GPA
in reducing the number of steps to reach
AdamW’s final validation loss, across differ-
ent effective numbers of inner steps. GPA and
DiLoCo attain the highest speedup of 38.24%
and 34.78% respectively for the same interval
of 16.

Figure 1: Comparison of validation loss and speedup for AdamW, DiLoCo, and GPA.

Concurrently, another line of optimizer research focuses on the design of weight- or iterate-
averaging-based algorithms. One such optimizer, Schedule-Free, recently won the AlgoPerf Al-
gorithmic Efficiency challenge self-tuning track (Dahl et al., 2023; Defazio et al., 2024). Its core
novelty lies in computing gradients at a point that interpolates between the uniform average of
past weights and the current weights. This interpolation step allows Schedule-Free to propagate
information into the average weights at every iteration. Empirically, Schedule-Free matches the
performance obtained by using learning rate schedules without using any schedule explicitly, while
providing stronger theoretical last-iterate convergence guarantees similar to Polyak-Ruppert averag-
ing (Ruppert, 1988; Polyak, 1990; Polyak & Juditsky, 1992).

In this paper, we argue that these two lines of work – DiLoCo and Schedule-Free – are closely
related, and can be generalized and improved through a unified framework of primal averaging.
Specifically, our contributions are as follows:

• We propose a generalization of Nesterov’s method in its primal averaging formulation that
we call Generalized Primal Averaging (GPA), which smooths DiLoCo by averaging at
every step.

• In contrast to DiLoCo, GPA eliminates the two-loop structure, and thereby only requires
a single additional buffer, has less hyperparameters to tune, and demonstrates more stable
training behavior.

• We also provide theoretical justification for GPA through convergence guarantees that
demonstrate improved convergence over the base optimizer under certain circumstances
with particular choices of the interpolation constants;

• Our preliminary experiments show that GPA consistently outperforms non-distributed
DiLoCo and AdamW on dense 160 million parameter language models. GPA demonstrates
a convergence speedup of up to 38% in terms of steps taken to achieve the target validation
loss of AdamW baseline.

2 BACKGROUND

We frame language model pre-training as the expected risk minimization problem

min
x∈Rn

F (x) = Eξ∼D [f(x; ξ)] , (1)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where ξ ∼ D is drawn from an underlying stationary data distribution D. We assume that each
optimizer step has access to the stochastic minibatch gradient g(x(t); ξ(t)) ∈ ∂f(x(t); ξ(t)) evaluated
at each iteration t on a minibatch of data ξ(t), over a total of T steps.1

We also assume that the base optimizer is of the form x(t+1) = x(t) + γ(t)d(t) with learning rate
γ(t) > 0 and search direction d(t) ∈ Rn. The search direction is most commonly defined as
d(t) = −H(t)m(t), where m(t) ∈ Rn is a gradient estimator, and H(t) ∈ Rn×n is a symmetric
positive definite preconditioner matrix. This includes popular methods such as SGD, Adam, Sham-
poo, SOAP, AdEMAMix, or Muon for different choices of m(t) and H(t) (Robbins & Monro, 1951;
Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023; Vyas et al., 2024; Jordan et al., 2024; Pagliardini
et al., 2025; Eschenhagen et al., 2025).

2.1 DIFFERENT FORMULATIONS OF NESTEROV

Despite Nesterov’s importance in optimization for deep learning, there is substantial confusion in
the literature regarding its formulation, as it can be written in at least seven different ways (Defazio,
2019). These formulations are equivalent in the sense that a direct mapping exists between them,
but they may not return the same iterate.

For instance, Nesterov’s method was popularized for deep learning in Sutskever’s formulation
(Sutskever et al., 2013), which presents the algorithm as:

b(t) = µb(t−1) − γ(t)g(x(t) + µb(t−1); ξ(t)),

x(t+1) = x(t) + b(t),
(2)

where µ > 0 is the momentum hyperparameter and b(t) ∈ Rn is the momentum buffer initialized
at b(0) = 0. An alternative formulation, which we call the modern formulation, is used by software
libraries such as PyTorch2 and JAX3 due to its ease of use:

b(t) = µb(t−1) + g(x(t); ξ(t)),

x(t+1) = x(t) − γ(t)[µb(t) + g(x(t); ξ(t))].
(3)

In both formulations, we maintain a momentum buffer that averages gradients seen throughout the
training process. Unlike Sutskever’s formulation (equation 2), the modern formulation (equation 3)
uses the iterate x(t) directly for the gradient computation, rather than the ancillary point x(t) +
µb(t−1), simplifying its practical implementation. If we run both formulations side-by-side with the
same seed, they will evaluate gradients at exactly the same point, but the validation loss at the iterate
x(t) of each method will differ due to its different definition.

Our approach instead builds upon a third form, which we call the primal averaging formulation
(Lan, 2012):

y(t) = µx(t) + (1− µ)z(t),

z(t+1) = z(t) − γ(t)g(y(t); ξ(t)),

x(t+1) = µx(t) + (1− µ) z(t+1),

(4)

with µ ∈ [0, 1). Unlike the Sutskever and modern formulations framed in equations 2 and 3, the pri-
mal averaging formulation in equation 4 explicitly names two iterate sequences: a sequence where
the gradients (or more generally, the search directions) are computed at, i.e., the gradient computa-
tion sequence {y(t)}Tt=1, as well as another sequence used for model evaluation that accumulates a
running average of updated iterates {z(t)}Tt=1, i.e., the model evaluation sequence {x(t)}Tt=1. Since
y(t) interpolates the smoothed sequence x(t) and unsmoothed sequence z(t), it increases the con-
tribution of the gradient update to y(t) compared to x(t). This explicit formulation is convenient
for implementation and theoretical analysis, and naturally leads to a view of acceleration as built

1We assume that f is convex for the convergence analysis, but we verify its performance on non-convex,
possibly non-smooth functions.

2https://docs.pytorch.org/docs/2.8/generated/torch.optim.SGD.html
3https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd

3

https://docs.pytorch.org/docs/2.8/generated/torch.optim.SGD.html
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

upon iterate averaging, rather than from the physics-inspired intuition of gradient averaging behind
momentum that is more commonly introduced.

We summarize the relationship between the modern and primal averaging formulations in Proposi-
tion 1 below.
Proposition 1. Given fixed learning rates γprimal, γmodern > 0, Nesterov’s primal averaging for-
mulation (equation 4) is equivalent to Nesterov’s modern formulation (equation 3) in the sense that

y
(t)
primal = x

(t)
modern and b

(t)
modern =

1

(1− µ) γprimal

(
x
(t)
primal − x

(t+1)
primal

)
, (5)

when µprimal = µmodern = µ and (1− µ) γprimal = γmodern.

The proof of this simple statement is rather technical, so we defer it to Appendix C.

It is important to note that the equivalence between the primal averaging and modern formulations
of Nesterov acceleration holds only when the learning rates are fixed. When learning rate schedules
are introduced, achieving this equivalence would require the momentum parameter to vary with each
iteration. Furthermore, the restriction on the choice of µ differs between the modern and primal
averaging formulations. These distinctions highlight that formulations based on gradient averaging
versus iterate averaging produce different perspectives for hyperparameter tuning, which can have a
significant impact on the algorithm’s practical performance.

2.2 NON-DISTRIBUTED DILOCO AND ITS WEAKNESSES

DiLoCo was originally introduced as a distributed algorithm for cross-datacenter training (Douillard
et al., 2023). In the non-distributed setup, it computes multiple inner steps of the base optimizer on
the model weights, then applies Nesterov (equation 3) on the pseudo-gradient, which is defined as
the difference between the current and updated model parameters. This notably requires storing two
additional optimizer states of the same shape as the model parameters: the momentum buffer b(t) as
well as the current model parameters x(t) (also known as the outer weights) as it is being updated
by the base optimizer (applied to the inner weights). DiLoCo’s handling of the fast inner weights
and slow outer weights can be interpreted as a modified Lookahead method that applies Nesterov
acceleration to the outer weight updates (Zhang et al., 2019). The method was recently analyzed in
Khaled et al. (2025).

A simplified version of non-distributed DiLoCo with H inner steps of the base optimizer can be
described as:

p(t) = x(t) − BaseOptIteration(x(t); {γ(j)}Hj=1, H)

b(t) = µb(t−1) + p(t)

x(t+1) = x(t) − γ̃[µb(t) + p(t)],

(6)

where γ̃ > 0 is the outer learning rate and BaseOptIteration applies H iterations of the base
optimizer to the iterate x(t) with inner learning rates {γ(j)}Hj=1. While DiLoCo originally introduced
AdamW as the base optimizer, DiLoCo generalizes to other optimizers such as Muon (Thérien et al.,
2025). A complete description of the algorithm is provided in Appendix B.

This specific application of Nesterov with multiple base optimizer steps is capable of surpassing
the performance of the baseline optimizer, which also explains DiLoCo’s ability to match the syn-
chronous baseline, such as AdamW, in the distributed setting. This finding is surprising because
applying Nesterov solely to the search direction at each iteration (equivalent to applying solely a
single base optimizer step) cannot achieve the same performance gains.

However, this two-level structure is undesirable. From an algorithmic perspective, one would prefer
to average iterates on-the-fly, as opposed to averaging trajectories that implicitly contain multiple
iterations of the base optimizer. From the users’ perspective, the two-level structure introduces
an additional copy of the model weights required to compute the pseudo-gradient, and introduces
additional hyperparameters to tune, e.g., the inner and outer learning rates, momentum, and number
of inner steps. Lastly, from the distributed training perspective, DiLoCo couples the number of
inner steps as a hyperparameter for both local SGD as well as for the modified Nesterov algorithm,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

causing the algorithm’s performance to counterintuitively improve as the number of base optimizer
steps increases. We would expect that communicating more often should always be beneficial.

These challenges motivate the development of a new algorithm that removes the two-level structure
while offering a separate hyperparameter that can smoothly average the observed iterates at every
iteration.

2.3 SCHEDULE-FREE LEARNING

In parallel, Schedule-Free learning (SF) (Defazio et al., 2024) is a recently proposed method that
wraps any base optimizer using a variant of the primal averaging formulation of Nesterov’s method
(equation 4) for hyperparameter-free learning:

y(t) = µx(t) + (1− µ)z(t)

z(t+1) = z(t) − γg(y(t); ξ(t))

x(t+1) =
t

t+ 1
x(t) +

(
1− t

t+ 1

)
z(t+1).

(7)

Originally designed to eliminate the need for manually specified learning rate schedules, Schedule-
Free has demonstrated the surprising ability to not only match, but even surpass the practical per-
formance of the original base optimizer. This is done by decoupling the momentum hyperparameter
used in the x(t) and y(t) sequences, unlike the standard primal averaging formulation of Nesterov
(equation 4). Through the choice of µ, the method interpolates between uniform Polyak-Ruppert
averaging and stochastic primal averaging (Ruppert, 1988; Polyak, 1990; Tao et al., 2018).

Ignoring the hyperparameter-free learning problem, one could alternatively replace uniform averag-
ing with exponential moving averaging of the iterates (Morales-Brotons et al., 2024). This suggests
a different generalization that can recover and extend Nesterov acceleration while offering the po-
tential flexibility necessary to remove the two-level structure in DiLoCo.

3 GENERALIZED PRIMAL AVERAGING (GPA)

By decoupling the constants for the model evaluation and gradient computation sequences in Nes-
terov’s primal averaging formulation (equation 4) and leveraging the observation of using exponen-
tial moving averaging in place of uniform averaging in Schedule-Free (equation 7), we introduce the
Generalized Primal Averaging (GPA) framework:

y(t) = µyx
(t) + (1− µy)z

(t)

z(t+1) = z(t) − γ(t)g(y(t); ξ(t))

x(t+1) = µxx
(t) + (1− µx) z

(t+1).

(8)

Here, µx ∈ [0, 1) and µy ∈ [0, 1] are independent hyperparameters that separately control the degree
of interpolation used in maintaining the model evaluation sequence x(t) and gradient computation
sequence y(t). The additional parameter µx serves as a smoothening or exponential moving average
parameter that replaces Polyak-Ruppert averaging in Schedule-Free and plays a similar role to the
number of inner steps in DiLoCo. By replacing Polyak-Ruppert averaging with exponential moving
averaging, GPA is not inherently schedule-free and requires the use of a learning rate schedule. The
complete pseudocode for a general base optimizer is provided in Algorithm 1.

The choice of µx and µy enables GPA to interpolate between stochastic primal averaging, exponen-
tial moving averages of the iterates, and no iterate averaging. Specifically, when µy = 1, x(t) = y(t)

and we recover stochastic primal averaging; for µy = 0, x(t) and z(t) = y(t) become decoupled and
we recover exponential moving averaging of the iterates. When µx = 0, x(t) = y(t) = z(t) for any
choice of µy , and GPA reverts back to the base optimizer.

Unlike DiLoCo, which is built around (pseudo-)gradient averaging (see equation 6), GPA is defined
based on the primal or iterate averaging framework, and removes the inner-outer loop by averaging
iterates at every step. We argue that this provides a more precise characterization of the method.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Generalized Primal Averaging (GPA)

1: Input: Initial iterate x(1), learning rate schedule γ(t) > 0, weight decay λ ≥ 0, interpolation
parameters µx, µy ∈ [0, 1), base optimizer BaseOpt.

2: z(1) = x(1)

3: for t = 1, ..., T do
4: y(t) = µyx

(t) + (1− µy)z
(t) ▷ Update gradient computation point y(t).

5: g(t) ∈ ∂f(y(t); ξ(t)) ▷ Gradient is evaluated at y(t).
6: d(t) = BaseOpt(g(t)) ▷ Compute base optimizer’s search direction.
7: z(t+1) = (1− γ(t)λ)z(t) + γ(t)d(t) ▷ Update z(t) iterate.
8: x(t+1) = µxx

(t) + (1− µx) z
(t+1) ▷ Update weighted iterate average x(t).

9: end for
10: Return x(T )

For example, the primal averaging interpretation motivates its extension to other search directions
by replacing −g(y(t); ξ(t)) with the search direction d(t) evaluated at y(t). This extension is not
intuitive from the gradient averaging perspective, as it would translate to averaging search directions
(with potentially different, evolving preconditioners) in the momentum buffer.

GPA also retains several desirable properties of the base optimizer for deep learning. Because
µx, µy ∈ [0, 1], GPA preserves modular norm bounds of the model parameters. Additionally, GPA
requires only one extra copy of the model weights for implementation – specifically, by storing y(t)

and reconstructing x(t) from y(t) and z(t) during evaluation – unlike DiLoCo, which demands more
memory overhead. Further details on these properties are provided in Appendix B.

3.1 GENERALIZED PRIMAL AVERAGING AS SMOOTHENED DILOCO

1 0 1 2 3 4 5

0

2

4
Start

Number of Inner Steps = 1

1 0 1 2 3 4 5

0

2

4
Start

Number of Inner Steps = 8

1 0 1 2 3 4 5

0

2

4
Start

Number of Inner Steps = 16

1 0 1 2 3 4 5

0

2

4
Start

Number of Inner Steps = 32

DiLoCo Outer
DiLoCo Inner
Primal Averaging

Figure 2: Comparison of DiLoCo and
GPA’s trajectories on a deterministic
quadratic problem. The outer iterates of
DiLoCo are shown as red points, and the
inner iterates as thin red lines.

As seen in Figure 1a, increasing the number of inner steps
leads to improved performance for DiLoCo in the non-
distributed setup. However, the underlying reasons for
this behavior are not understood. By examining DiLoCo
from the lens of GPA in equation 8, and comparing it to
the more restrictive Nesterov formulation in equation 4,
we can develop a deeper intuition for DiLoCo’s inner
workings.

Suppose that we increase the number of inner steps in
DiLoCo, and we want to maintain the same level of
smoothing on the average iterate x(t). One may attempt
to increase µ in Nesterov (equation 4) to decrease the
weight on the current iterate z(t+1). However, since µ
controls both the amount of smoothing in x(t) and the
amount of interpolation used to update y(t), strictly in-
creasing µ would decrease the recency of information in
y(t) by a factor of µ2, resulting in significantly different
algorithmic behavior. Numerically, we validate that tun-
ing µ in the primal averaging formulation of Nesterov is
not sufficient to reach the performance of DiLoCo; see
Appendix D.

GPA addresses this limitation by decoupling the two roles
of µ into separate hyperparameters: µx for the model
evaluation sequence and µy for the gradient computation sequence. By controlling these two in-
terpolation constants independently, we can smooth x(t) similarly without changing the amount of
information introduced into y(t).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

This intuition provides us practical guidelines for hyperparameter tuning. For example, given an
optimal number of inner steps H and momentum parameter µ in DiLoCo, we observe for GPA that

x(t+H) = µxx
(t+H−1) + (1− µx)z

(t+H) = · · · = µH
x x(t) + (1− µx)

H−1∑
k=0

µk
xz

(t+H−k).

Therefore, to match the coefficient in front of x(t) with DiLoCo, one can set µx = µ1/H while
keeping µy ≈ µ. With commonly used values µ = 0.9 and H = 32, we obtain µx ≈ 0.9967
and µy ≈ 0.9. We leverage this heuristic to determine an effective number of inner steps used in
Figure 1.

Visually, Figure 2 illustrates how the iterates of GPA follow a smoothed trajectory of the DiLoCo
iterates on a simple deterministic quadratic problem. For a small number of inner steps, the methods
closely align, but for a larger number of inner steps, their behavior diverges.

GPA not only outperforms DiLoCo, but does so with fewer hyperparameters and lower memory
requirements. While DiLoCo requires four hyperparameters, e.g., the inner and outer learning rate,
momentum hyperparameter, and number of inner steps, GPA reduces this to just three: the learning
rate and two momentum parameters. This simplification is possible because DiLoCo’s practical
performance is governed by an effective learning rate that couples the effect of the inner and outer
learning rates (γ(t) and γ̃).

4 CONVERGENCE THEORY

By utilizing the theoretical developments underpinning Schedule-Free learning, we can derive a
convergence bound for Generalized Primal Averaging given any base optimizer that has a regret
bound, using the framework of online-to-batch conversion (Cesa-Bianchi et al., 2004). We will use
the Bregman divergence of F defined as BF (a, b) = F (a)− F (b)− ⟨∇F (b), a− b⟩ for a, b ∈ Rn.

Theorem 1. Let F be a convex function, and assume that there exists a minimizer x∗ that minimizes
F . Let ξ(1), . . . , ξ(T ) be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates z(1), . . . , z(T ) from a base optimizer within the Generalized Primal Averaging framework
(Equation 8). Then for µx, µy ∈ [0, 1) and average iterate x̄(T ) = 1

T

∑T
t=1 x

(t), we have the bound

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩]

+
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
− 1

1− µy

1

T

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

1

T

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

1

T

T∑
t=1

E[BF (x
(t−1), x(t))].

Corollary 1. Assume that the base optimizer has regret guarantees
∑T

t=1 E[⟨∇F (y(t)), z(t) −
x∗⟩] = O(

√
T ). Then:

E[F (x̄(T ))− F (x∗)] = O
(

1√
T

)
.

We give some remarks on Theorem 1:

• The first row on the right-hand side of the regret bound is the average regret of the base
optimizer. This term captures the convergence rate from the base optimizer.

• The second row has a positive term, which decays at a 1/T rate, which is typically faster
than the decay of the term in the first row.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Final validation loss versus effective number of inner steps for different optimizers on
Llama 160M. For DiLoCo and GPA, the optimal (lowest) validation loss is shown in bold.

Method # Inner Steps = 8 # Inner Steps = 16 # Inner Steps = 32
AdamW 3.3561 3.3561 3.3561
DiLoCo-AdamW 3.2977 3.2804 3.3037
GPA-AdamW 3.2769 3.2595 3.2774

• All remaining Bregman divergence terms are negative and so are potentially beneficial.
Therefore, if µx and µy are chosen such that the negative terms are larger than the positive
term introduced in the second row, then GPA will converge faster than the base optimizer.
The same terms appears in the convergence guarantees for Schedule-Free methods, and
can explain when they may work better. Moreover, for strongly convex problems, such
Bregman divergences were previously used to get O(1/T ) convergence.

• Note that unlike the guarantees for Schedule-Free, our convergence bound is for the average
iterate. For the best performance, a learning rate schedule should be used and the last iterate
returned (Defazio et al., 2023).

From a high level, the convergence bound indicates that GPA will be faster than the base optimizer
when the objective function varies nonlinearly between consecutive iterates and between x(t) and
y(t).

5 EXPERIMENTS

In this section, we assess the effectiveness of GPA for language model pre-training by comparing its
performance against AdamW and DiLoCo. We use AdamW as the base optimizer for both DiLoCo
(DiLoCo-AdamW) and GPA (GPA-AdamW).

Setup and hyperparameter tuning. We evaluate AdamW, DiLoCo-AdamW, and GPA-AdamW by
pre-training a 160 million parameter Llama 3 model on the C4 dataset from scratch (Raffel et al.,
2019). We follow the Chinchilla-optimal token budget of roughly 3.2 billion tokens (Hoffmann
et al., 2022). All of our experiments are conducted on a single machine equipped with eight H100
GPUs (97GB memory). We use a batch size of 128 sequences with a sequence length of 2048
tokens, resulting in a total batch size of about 262,000 tokens.

To tune the hyperparameters, we use the following process:

• For AdamW, we fix (β1, β2) = (0.9, 0.999) and ϵ = 10−8, and sweep the learning rate
from 5 · 10−5 through 3 · 10−3.

• For DiLoCo-AdamW, we fix the inner optimizer’s hyperparameters to AdamW’s optimal
hyperparameters, and sweep the outer learning rate from [0.25, 1.0] and the outer momen-
tum from [0.7, 0.99]. We also sweep through the number of inner steps from [1, 128] with
powers of 2.

• For GPA-AdamW, we use the optimal AdamW hyperparameters, and sweep µx based on
the number of inner steps in DiLoCo (see Section 3.1). We sweep µy over a fine granular
range from [0.8, 0.999]. We also increased the learning rate when possible.

All runs use a learning rate schedule that applies linear warmup through the initial 10% of training,
then cosine decay through the rest of training to 1% of the specified learning rate. By default, we
apply gradient clipping, with a clipping factor of 1.0; weight decay is also fixed to 0.1. A summary
of the hyperparameter sweeps are provided in Table 2 in Appendix D.

Performance across number of inner steps. In Figure 1a, as we vary the (effective) number
of inner steps, we observe that DiLoCo and GPA-AdamW both outperform AdamW in terms of
validation loss, with GPA-AdamW superseding DiLoCo, except when the number of inner steps is
1. Both DiLoCo and GPA-AdamW display U-shaped behavior, improving as the number of steps
increases up to a point, then degrading as it becomes too large. In Table 1, we provide the final

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1k 2k 4k 8k 12k
3

3.5

4

4.5

5

Steps

V
al
id
at
io
n
L
o
ss

LLama-160M (C4) - Effective Inner Steps=16

AdamW (3.356)

DiLoCo-AdamW (3.2804)

GPA-AdamW (3.2595)

Figure 3: Validation loss versus steps for AdamW, DiLoCo, and GPA. For AdamW, we report the
run with the best final validation loss, even though it is less stable than runs with lower learning
rates.

validation loss values for each method at the key communication intervals of 8, 16, and 32. Both
DiLoCo and GPA share the same optimal effective number of inner steps, validating our hypothesis
on the choice of µx.

Speedup. In Figure 1b, we find that both DiLoCo and GPA significantly reduce the number of steps
required to reach AdamW’s final validation loss. DiLoCo achieves a maximum speedup of 34.78%
at an interval of 16, while GPA attains an even higher maximum speedup of 38.24% with the same
effective interval.

Convergence behavior. Figure 3 shows the validation loss curves for AdamW, DiLoCo-AdamW,
and GPA-AdamW for the case where the number of inner steps is 16. In this case, µx has been
tuned to match the number of inner steps; see Table 3 in Appendix D for details. GPA-AdamW
converges faster than both DiLoCo and AdamW throughout the entire training run. The training
curves for GPA-AdamW are also noticeably smoother and more stable compared to the other meth-
ods. Our hyperparameter sweeps reveal that GPA-AdamW can handle higher learning rates compare
to DiLoCo and AdamW, e.g., 5 · 10−3.

6 CONCLUSION

Generalized Primal Averaging (GPA) introduces independent interpolation constants for gradient
computation and model evaluation that yields a flexible optimization framework. On small-scale
dense models, this flexibility allows GPA to outperform DiLoCo, while removing the complexity of
its two-loop structure. Consequently, GPA simplifies hyperparameter tuning and reduces memory
requirements compared to DiLoCo in standard non-distributed settings.

Future work should validate GPA at scale across diverse model architectures and modalities, and
explore its compatibility with other base optimizers (e.g., Shampoo, SOAP, Muon) and hyperparam-
eter transfer techniques such as µP (Yang & Hu, 2021; Yang et al., 2022). Additionally, while our
convergence bound partially explains the empirical results, it is limited to the convex setting and
does not fully characterize when GPA can outperform the base optimizer.

Finally, GPA’s decoupling of parameters also enables new avenues for distributed training. In
DiLoCo, the number of inner steps serves as a coupled hyperparameter for both Lookahead with
Nesterov and local SGD, leading to the undesirable finding that increasing the number of inner steps
can improve convergence – contrary to standard local SGD intuition. By introducing a tunable, con-
tinuous smoothing parameter that is independent of the number of local SGD steps, GPA establishes
a new foundation for rethinking DiLoCo and related averaging-based methods, especially in their
integration with communication-efficient techniques like local SGD.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
and robustly: Scaling laws for diloco. arXiv preprint arXiv:2503.09799, 2025.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura,
Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, 2023.

Aaron Defazio. On the curved geometry of accelerated optimization. Advances in Neural Informa-
tion Processing Systems 33 (NIPS 2019), 2019.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37,
pp. 9974–10007. Curran Associates, Inc., 2024.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. DiLoCo: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
Gabriel Teston, Dave Lacey, Ross McIlroy, Jiajun Shen, et al. Streaming DiLoCo with overlap-
ping communication: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512, 2025.

Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E Turner, and Hao-Jun Michael Shi.
Purifying shampoo: Investigating shampoo’s heuristics by decomposing its preconditioner. arXiv
preprint arXiv:2506.03595, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
timization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1842–1850. PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/
gupta18a.html.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Ahmed Khaled, Satyen Kale, Arthur Douillard, Chi Jin, Rob Fergus, and Manzil Zaheer. Un-
derstanding outer optimizers in local sgd: Learning rates, momentum, and acceleration. arXiv
preprint arXiv:2509.10439, 2025.

10

https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397, 2012.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. Advances in Neural Information Processing Systems, 37:
73501–73548, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A. Rusu, Jiajun Shen, Arthur
Szlam, and Marc’Aurelio Ranzato. Asynchronous Local-SGD training for language modeling.
arXiv preprint arXiv:2401.09135, 2024b.

AI @ Meta Llama Team. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Daniel Morales-Brotons, Thijs Vogels, and Hadrien Hendrikx. Exponential moving average of
weights in deep learning: Dynamics and benefits. arXiv preprint arXiv:2411.18704, 2024.

Alex Nichol and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The AdEMAMix optimizer: Better, faster,
older. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=jj7b3p5kLY.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025.

Boris Polyak. New stochastic approximation type procedures. Avtomatica i Telemekhanika, 7:98–
107, 01 1990.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838–855, 1992.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
Report, Cornell University, 02 1988.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research. PMLR, 2013.

Wei Tao, Zhisong Pan, Gaowei Wu, and Qing Tao. Primal averaging: A new gradient evaluation
step to attain the optimal individual convergence. IEEE Transactions on Cybernetics, PP:1–11,
10 2018. doi: 10.1109/TCYB.2018.2874332.

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. MuLoCo: Muon is a
practical inner optimizer for DiLoCo. arXiv preprint arXiv:2505.23725, 2025.

11

https://openreview.net/forum?id=jj7b3p5kLY


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. SOAP: Improving and stabilizing Shampoo using Adam. arXiv
preprint arXiv:2409.11321, 2024.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E. Hinton. Lookahead optimizer: k steps
forward, 1 step back. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used an internal AI assistant for revising the grammar and wording in the paper, and used Gemini
Pro 2.5 to verify our proofs.

B ALGORITHMIC DETAILS

B.1 PSEUDOCODE FOR NON-DISTRIBUTED DILOCO / LOOKAHEAD WITH NESTEROV

We provide a complete description of non-distributed DiLoCo in Algorithm 2.

Algorithm 2 Non-Distributed DiLoCo / Lookahead with Nesterov

1: Input: Initial iterate x(1), inner learning rate schedule γ(t) > 0, constant outer learning rate
γ̃ > 0, weight decay λ ≥ 0, momentum parameter µ ∈ [0, 1), base optimizer BaseOpt.

2: x̃(1) = x(1) ▷ Initialize slow model weights.
3: b(0) = 0 ∈ Rn ▷ Initialize momentum buffer.
4: for step t = 1, ..., T do
5: Sample mini-batch ξ(t)

6: g(t) ∈ ∂f(x(t); ξ(t))
7: d(t) = BaseOpt(g(t)) ▷ Computes base optimizer’s search direction.
8: x(t+1) = (1− γ(t)λ)x(t) + γ(t)d(t) ▷ Updates inner model weights (with weight decay).
9: if t mod H = 0 then

10: g̃(t) = x̃(t) − x(t+1) ▷ Pseudo-gradient computation.
11: b(t+1) = µb(t) + p(t) ▷ Accumulates outer momentum.
12: x̃(t+1) = x̃(t) − γ̃

[
µb(t) + g̃(t)

]
▷ Nesterov-style parameter update.

13: x(t+1) = x̃(t+1) ▷ Re-initialize inner model weights.
14: else
15: x̃(t+1) = x̃(t)

16: end if
17: end for
18: Returns: x̃(T )

B.2 MEMORY-EFFICIENT FORMULATION OF GENERALIZED PRIMAL AVERAGING

The implementation of the original formulation of GPA in equation 8 requires storing two additional
copies of the model’s parameters during the optimizer step. This is because the gradient computation
occurs on the y(t) sequence, which is computed from the two other sequences x(t) and z(t). To avoid
this additional model copy, we can store y(t) instead, and recover x(t) from y(t) and z(t) during
evaluation time.

To see how this can be done, we define the memory-efficient formulation of GPA as:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t),

y(t) = µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)),

z(t+1) = z(t) − γ(t)g(y(t); ξ(t)).

(9)

This reformulation is valid only when µy > 0. In the y(t) update, the first term can be interpreted as
interpolating y(t) towards z(t). The second term is a correction term that applies a dampened update
on y(t).

Note that this formulation does not require the computation of x(t) except when necessary. There-
fore, our implementation enables a training and evaluation mode similar to neural network modules
like batch normalization that enables us to compute x(t) from y(t) and vice-versa. Specifically, when

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

switching from training to evaluation mode, we can compute x(t) from y(t) and z(t) by:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t).

Similarly, when switching from evaluation to training mode, we can recover y(t) from x(t) and z(t)

by:
y(t) = µyx

(t) + (1− µy)z
(t).

A proof of the equivalence of these two formulations is provided in Appendix C. The complete
pseudocode for arbitrary base optimizers are provided in Algorithm 3.

Algorithm 3 Memory-Efficient Generalized Primal Averaging (GPA)

1: Input: Initial iterate y(1), learning rate schedule γ(t) > 0, weight decay λ ≥ 0, interpolation
parameters µx, µy ∈ [0, 1), base optimizer BaseOpt.

2: z(1) = y(1)

3: for t = 1, ..., T do
4: g(t) ∈ ∂f(y(t); ξ(t))
5: d(t) = BaseOpt(g(t))
6: y(t) = µxy

(t) + (1− µx)z
(t) + γ(t)(1− µxµy)(d

(t) + λz(t))

7: z(t+1) = (1− γ(t)λ)z(t) − γ(t)d(t)

8: end for
9: Returns: x(T ) = 1

µy
y(T ) +

(
1− 1

µy

)
z(T ).

B.3 COMPATIBILITY WITH MODULAR NORM THEORY

Recent work on Muon and similar methods have built on modular norm theory, which suggests
that the design of optimization methods for deep learning should constrain the modular norm of the
model parameters in order to enable hyperparameter transferability and bounded Lipschitz constants
(Large et al., 2024; Jordan et al., 2024; Pethick et al., 2025). Here, we argue that GPA, by definition,
preserves these norm constraints.

To see this, assume that d(t) is the search direction for a single parameter that it is constrained with
respect to some norm, i.e., ∥d(t)∥ ≤ M for some constant M ≥ 0. (Typically, we assume it is the
RMS-to-RMS norm or similar.) We can preserve these norm constraints on the iterates produced by
GPA since:

∥y(t)∥ ≤ µy∥x(t)∥+ (1− µy)∥z(t)∥
∥z(t+1)∥ ≤ (1− λγ(t))∥z(t)∥+ γ(t)∥d(t)∥
∥x(t+1)∥ ≤ µx∥x(t)∥+ (1− µx) ∥z(t+1)∥.

Since µx, µy ∈ [0, 1], we can see that if max
{
∥x(t)∥, ∥y(t)∥, ∥z(t)∥

}
≤ M ′ for M ′ ≥ 0, then

max
{
∥x(t+1)∥, ∥y(t+1)∥, ∥z(t+1)∥

}
≤ (1−λγ(t))M ′+γ(t)M , which is the same bound we would

obtain for the base optimizer.

C PROOFS

C.1 EQUIVALENCE BETWEEN NESTEROV’S FORMULATIONS

Proposition 2. Given fixed learning rates γprimal, γmodern > 0, Nesterov’s primal averaging for-
mulation (equation 4) is equivalent to Nesterov’s modern formulation (equation 3) in the sense that

y
(t)
primal = x

(t)
modern and b

(t)
modern =

1

(1− µ) γprimal

(
x
(t)
primal − x

(t+1)
primal

)
, (10)

when µprimal = µmodern = µ and (1− µ) γprimal = γmodern.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. We can prove this by induction. For simplicity of notation, we will use xm = xmodern and
xp = xprimal and similar for all variables.

For the base case, note that the initializations z(1)p = x
(1)
p = x

(1)
m are equal. Therefore,

y(1)p = µx(1)
p + (1− µ)z(1)p = x(1)

m , (11)

as desired. In addition, since b
(1)
m = µb

(0)
m + g(x

(1)
m ; ξ(1)) = g(x

(1)
m ), we can see that:

x(1)
p − x(2)

p = (1− µ)x(1)
p − (1− µ)z(1)p

= (1− µ)(x(1)
p − z(2)p )

= (1− µ)(x(1)
p − z(1)p + γpg(y

(1)
p ; ξ(1)))

= (1− µ)γpg(y
(1)
p ; ξ(1)).

The base case for the momentum buffer b(1)m follows from rearranging the equation with equation 11
and observing that b(1)m = µb

(0)
m + g(x

(1)
m ; ξ(1)) = g(x

(1)
m ; ξ(1)).

For the inductive step, assume that equation 10 holds for t. Then from the inductive hypothesis, we
can show that:

x(t+1)
m = x(t)

m − γm[µb(t)m + g(x(t)
m ; ξ(t))]

= y(t)p − (1− µ)γp

[
µ

(
1

(1− µ)γp
(x(t)

p − x(t+1)
p )

)
+ g(y(t)p ; ξ(t))

]
= y(t)p − µ(x(t)

p − x(t+1)
p )− (1− µ)γg(y(t)p ; ξ(t)). (12)

From the primal averaging form in equation 4, we can derive that:

x(t+1)
p = µx(t)

p + (1− µ)z(t+1)
p

= µx(t)
p + (1− µ)(z(t)p − γpg(y

(t)
p ; ξ(t))

= y(t)p − (1− µ)γpg(y
(t)
p ; ξ(t)). (13)

Rearranging equation 13, we get that:

y(t)p − x(t+1)
p = (1− µ)γpg(y

(t)
p ; ξ(t)). (14)

Plugging in equation 14 into equation 12, we obtain:

x(t+1)
m = y(t)p − µ(x(t)

p − x(t+1)
p )− (y(t)p − x(t+1)

p ) = (1 + µ)x(t+1)
p − µx(t)

p . (15)

Finally, since x
(t+1)
p = µx

(t)
p + (1 − µ)z

(t)
p , (1 − µ)z

(t+1)
p = x

(t+1)
p − µx

(t)
p . Therefore, to see

x
(t+1)
m ’s equivalence to y

(t+1)
p ,

y(t+1)
p = µx(t+1)

p + (1− µ)z(t+1)
p

= µx(t+1)
p + x(t+1)

p − µx(t)
p

= (1 + µ)x(t+1)
p − µx(t)

p . (16)

Combining equations 15 and 16 gives the result.

To prove that b(t+1)
m = 1

(1−µ)γp
(x

(t+1)
p − x

(t+2)
p ), note that:

b(t+1)
m = µb(t)m + g(x(t+1)

m ; ξ(t+1)) =
µ

(1− µ)γp
(x(t)

p − x(t+1)
p ) + g(y(t+1)

p ; ξ(t+1)). (17)

To get an expression for x(t+1)
p − x

(t+2)
p , note that:

x(t+2)
p = µx(t+1)

p + (1− µ)(z(t+1)
p − γpg(y

(t+1)
p ; ξ(t+1)))

= (µx(t+1)
p + (1− µ)z(t+1)

p )− (1− µ)γpg(y
(t+1)
p ; ξ(t+1))

= y(t+1)
p − (1− µ)γpg(y

(t+1)
p ; ξ(t+1))

= ((1 + µ)x(t+1)
p − µx(t)

p )− (1− µ)γpg(y
(t+1)
p ; ξ(t+1)), (18)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where equation 18 follows from equation 16. Therefore, plugging-in equation 18 into x
(t+1)
p −x

(t+2)
p

gives:
x(t+1)
p − x(t+2)

p = −µ(x(t+1)
p − x(t)

p ) + (1− µ)γpg(y
(t+1)
p ; ξ(t+1)). (19)

The result follows from expanding equation 17 as:

b(t+1)
m =

1

(1− µ)γp

[
−µ(x(t+1)

p − x(t)
p ) + (1− µ)γpg(y

(t+1)
p ; ξ(t+1))

]
=

1

(1− µ)γp
(x(t+1)

p − x(t+2)
p ).

C.2 EQUIVALENCE BETWEEN GENERALIZED PRIMAL AVERAGING FORMULATIONS

Proposition 3. Let µy > 0. Then GPA (equation 8) is equivalent to the memory-efficient formulation
(equation 9).

Proof. Note that it is sufficient to show that:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t), (20)

y(t+1) = µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)). (21)

To prove equation 20, note that we can re-write x(t) as a function of y(t) and z(t), i.e., since

y(t) = µyx
(t) + (1− µy)z

(t)

and µy > 0, we have that

x(t) =
1

µy
y(t) +

1

µy
(µy − 1)z(t) =

1

µy
y(t) +

(
1− 1

µy

)
z(t).

To prove equation 20, we can re-write equation 20 as

µyx
(t+1) = µyz

(t+1) + (y(t+1) − z(t+1)) = y(t+1) − (1− µy)z
(t+1). (22)

Similarly, by plugging in the original x(t+1) update, i.e., x(t+1) = µxx
(t) + (1 − µx)z

(t), we also
have:

µyx
(t+1) = µy(µxx

(t) + (1− µx)z
(t)) = µxµyx

(t) + (1− µx)µyz
(t+1). (23)

Combining these two equalities in equations 22 and 23 and rearranging, we get:

y(t+1) = µxµyx
(t) + (1− µxµy)z

(t+1). (24)

Plugging-in equation 20 and the update z(t+1) = z(t) − γ(t)g(y(t); ξ(t)) from equation 8 into equa-
tion 24, we obtain:

y(t+1) = µxµy

(
1

µy
y(t) +

(
1− 1

µy

)
z(t)

)
+ (1− µxµy)(z

(t) − γ(t)g(y(t); ξ(t)))

= µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)),

as desired.

C.3 CONVERGENCE BOUNDS BASED ON ONLINE-TO-BATCH THEORY

Our proofs similarly rely on the online-to-batch conversion theory used in Defazio et al. (2024).

Lemma 1. Suppose we define w(t) as the weighting:

w(t) =

{
1 if t = 1,

(1− µx)µ
−t+1
x if t > 1.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Then the model evaluation sequence x(t) is equivalent to the weighted average:

x(t+1) =

∑t
i=1 w

(i)∑t+1
i=1 w

(i)
x(t) +

w(t+1)∑(t+1)
i=1 w(i)

z(t+1) =
w(1:t)

w(1:t+1)
x(t) +

w(t+1)

w(1:t+1)
z(t+1),

with

w(1:t) =

t∑
s=1

w(s) = µ−t+1
x .

Furthermore, x(t) can be expressed as the closed form expression:

x(t) = µt−1
x

t∑
s=1

w(s)z(s).

Theorem 2. Let F be a convex function, and assume that there exists a minimizer x∗ that minimizes
F . Let ξ(1), . . . , ξ(T ) be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates z(1), . . . , z(T ) from a base optimizer within the Generalized Primal Averaging framework
(Equation 8). Then for µx, µy ∈ [0, 1) and average iterate x̄(T ) = 1

T

∑T
t=1 x

(t), we have the bound

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩]

+
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
− 1

1− µy

1

T

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

1

T

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

1

T

T∑
t=1

E[BF (x
(t−1), x(t))].

Proof. We start with the same analysis as in the Schedule-Free work (Defazio et al., 2024). Notice
that by definition of x(t), it holds w(1:t−1)(x(t) − x(t−1)) = w(t)(z(t) − x(t)). Therefore,

w(1:t)F (x(t))− w(1:t−1)F (x(t−1))− w(t)F (x∗)

= w(1:t−1)(F (x(t))− F (x(t−1))) + w(t)(F (x(t))− F (x∗))

= w(1:t−1)(⟨∇F (x(t)), x(t) − x(t−1)⟩ −BF (x
(t−1), x(t))) + w(t)(F (x(t))− F (x∗))

= w(t)⟨∇F (x(t)), z(t) − x(t)⟩ − w(1:t−1)BF (x
(t−1), x(t)) + w(t)(F (x(t))− F (x∗)).

Next, we observe that by definition of y(t), it holds z(t) − y(t) =
µy

1−µy
(y(t) − x(t)), and, thus,

⟨∇F (x(t)), z(t) − x(t)⟩
= ⟨∇F (x(t))−∇F (y(t)), z(t) − y(t)⟩+ ⟨∇F (y(t)), z(t) − y(t)⟩
+ ⟨∇F (x(t)), y(t) − x(t)⟩

=
µy

1− µy
⟨∇F (x(t))−∇F (y(t)), y(t) − x(t)⟩+ F (x∗)− F (y(t))−BF (x∗, y

(t)) + ⟨∇F (y(t)), z(t) − x∗⟩

+ F (y(t))− F (x(t))−BF (y
(t), x(t))

≤ − µy

1− µy
(BF (x

(t), y(t)) +BF (y
(t), x(t))) + F (x∗)− F (x(t))−BF (y

(t), x(t)) + ⟨∇F (y(t)), z(t) − x∗⟩

= − µy

1− µy
BF (x

(t), y(t))− 1

1− µy
BF (y

(t), x(t)) + F (x∗)− F (x(t)) + ⟨∇F (y(t)), z(t) − x∗⟩,

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where the inequality step used −BF (x∗, y
(t)) ≤ 0, which follows from convexity of F . Plugging

this back, we obtain

w(1:t)F (x(t))− w(1:t−1)F (x(t−1))− w(t)F (x∗)

≤ −w(t) µy

1− µy
BF (x

(t), y(t))− w(t)

1− µy
BF (y

(t), x(t)) + w(t)(F (x∗)− F (x(t)))

+ w(t)⟨∇F (y(t)), z(t) − x∗⟩ − w(1:t−1)BF (x
(t−1), x(t)) + w(t)(F (x(t))− F (x∗))

= w(t)⟨∇F (y(t)), z(t) − x∗⟩ −
w(t)

1− µy
BF (y

(t), x(t))

− w(t)µy

1− µy
BF (x

(t), y(t))− w(1:t−1)BF (x
(t−1), x(t)). (25)

We may adapt this bound to our setting by using an exponentially increasing weighting sequence,
given by Lemma 1. Using those weights, we have simplified expressions for the following quantities:

w(1:t)

w(t)
=

µ−t+1
x

(1− µx)µ
−t+1
x

=
1

1− µx
,

w(1:t−1)

w(t)
=

µ
−(t−1)+1
x

(1− µx)µ
−t+1
x

=
µx

1− µx
,

with a special case for the first iterate w(1:1)

w(1) = 1 and w(1:t−1)

w(1) = 0.

To obtain an average regret bound, we divide Equation 25 by w(t), take expectation, and sum from
1 to T . The left-hand side is a telescoping sum, which we can simplify as follows:

T∑
t=1

[
w(1:t)

w(t)
E[F (x(t))]− w(1:t−1)

w(t)
E[F (x(t−1))]

]
− TF (x∗)

= F (x(1))− w(1:1)

w(2)
F (x(1)) +

1

1− µx

T∑
t=2

E[F (x(t))]− µx

1− µx

T−1∑
t=2

E[F (x(t))]− TF (x∗)

= F (x(1))− 1

(1− µx)µ
−1
x

F (x(1)) +
1

1− µx
E[F (x(T ))] +

T−1∑
t=2

(
1

1− µx
− µx

1− µx

)
E[F (x(t))]− TF (x∗)

= F (x(1))− µx

1− µx
F (x(1)) +

1

1− µx
E[F (x(T ))] +

T−1∑
t=2

(
1

1− µx
− µx

1− µx

)
E[F (x(t))]− TF (x∗)

= − µx

1− µx
F (x(1)) +

µx

1− µx
E[F (x(T ))] +

T∑
t=1

E[F (x(t))]− TF (x∗).

Plugging-in this simplified expression, moving the extra F (x(1)) − F (x(t)) term to the right-hand
side, and simplifying gives:

T∑
t=1

E
[
F (x(t))− F (x∗)

]
≤

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩] +
µx

1− µx
E
[
F (x(1))− F (x(T ))

]
− 1

1− µy

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

T∑
t=1

E[BF (xt−1, x
(t))].

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We get a bound on the average iterate x̄T =
∑T

t=1 x
(t) by dividing by T and applying Jensen’s

inequality:

E[F (x̄T )− F (x∗)] ≤
1

T
E

T∑
t=1

⟨∇F (y(t)), z(t) − x∗⟩+
µx

1− µx

1

T
E
[
F (x(1))− F (x(T ))

]
− 1

1− µy

1

T
E

T∑
t=1

BF (y
(t), x(t))− µy

1− µy

1

T
E

T∑
t=1

BF (x
(t), y(t))

− µx

1− µx

1

T
E

T∑
t=1

BF (xt−1, x
(t)).

Finally, we use F (x∗) ≤ F (x(T )) to get the claimed bound.

Corollary 2. Assume that the base optimizer has regret guarantees
∑T

t=1 E[⟨∇F (y(t)), z(t) −
x∗⟩] = O(

√
T ). Then:

E[F (x̄(T ))− F (x∗)] = O
(

1√
T

)
.

Proof. Note that we can upper bound the inequality in Theorem 1 by ignoring the negative Bregman
divergence terms, i.e.,

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩] +
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
.

The result follows from noting that the first term is O(1/
√
T ) and the second term is O(1/T ).

D EXPERIMENTAL DETAILS

D.1 COMPARISON BETWEEN GPA AND NESTEROV

In order to validate that DiLoCo’s performance can only be matched or improved upon with de-
coupled interpolation constants in GPA, we test the case where µx = µy , which corresponds
to Nesterov’s primal averaging formulation in equation 4. Here, we apply the same heuristic for
µx = µ1/H also to µy and tune the learning rate.

1k 2k 4k 8k 12k

4

6

8

10

12

Steps

V
a
li
d
at
io
n
L
os
s

LLama-160M (C4) - Effective Inner Steps=8

GPA-AdamW optimal (γ = 3e− 3, µy = 0.8, µx = 0.9869, 3.2771)

GPA-AdamW (γ = 3e− 3, µy = 0.9869, µx = 0.9869, 5.6814)

Figure 4: Comparison between Nesterov’s primal averaging formulation with coupled constants
µx = µy and GPA with decoupled constants.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In Figure 4, we observe that coupling the interpolation constants is sub-optimal, and decoupling
these coefficients is indeed necessary for optimal performance from GPA.

D.2 ADDITIONAL VALIDATION LOSS CURVES FOR DIFFERENT EFFECTIVE NUMBER OF
INNER STEPS

In Figures 5 and 6, we provide additional validation loss curves for the cases where the effective
number of inner steps equals 8 or 32, respectively. The results are generally consistent with the case
where the number of inner steps is equal to 16 in Figure 3. When the effective number of inner steps
is 32, we observe that AdamW outperforms DiLoCo for approximately the first 2,000 steps.

1k 2k 4k 8k 12k
3

3.5

4

4.5

5

Steps

V
al
id
at
io
n
L
os
s

LLama-160M (C4) - Effective Inner Steps=8

AdamW (3.356)

DiLoCo-AdamW (3.2977)

GPA-AdamW (3.2769)

Figure 5: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 8.

1k 2k 4k 8k 12k
3

3.5

4

4.5

5

Steps

V
al
id
at
io
n
L
os
s

LLama-160M (C4) - Effective Inner Steps=32

AdamW (3.356)

DiLoCo-AdamW (3.3037)

GPA-AdamW (3.2796)

Figure 6: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 32.

D.3 HYPERPARAMETER SWEEPS

In this section, we summarize the hyperparameter sweeps used in our experiments in Table 2. In
Table 3, we provide a table of conversions from optimal choices of µ and H in DiLoCo to GPA’s
choice of µx.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2: Summary of hyperparameter sweeps used in the experiments.

Hyperparameter AdamW DiLoCo-AdamW GPA-AdamW

Batch size 262K tokens 262K tokens 262K tokens
Sequence length 2048 2048 2048
Weight decay 0.1 0.1 0.1
Total training tokens 3.2B 3.2B 3.2B
Total training steps 12208 12208 12208

Inner optimizer AdamW AdamW GPA-AdamW
Inner optimizer lr 5e-5, 1e-4, 2e-4, 3e-4, 5e-4,

7e-4, 1e-3, 3e-3
5e-4, 7e-4, 1e-3, 3e-3, 5e-3,
8e-3, 1e-2, 3e-2

5e-4, 7e-4, 1e-3, 3e-3, 5e-3,
8e-3, 1e-2, 3e-2

Inner Adam β1 0.9 0.9 0.5, 0.7, 0.9
Inner Adam β2 0.999 0.999 0.999
Inner Adam ϵ 10−8 10−8 10−8

Warmup fraction 10% 10% 10%
Learning rate schedule cosine cosine cosine
Learning rate min fraction % 0.01 0.01 0.01
GPA coeff µy - - 0.8, 0.9, 0.95, 0.9740, 0.9869,

0.99, 0.9913, 0.9934,
0.9956,0.9967, 0.9978,
0.9984, 0.9989, 0.9992

GPA coeff µx - - 0.9, 0.9740, 0.9869, 0.9934,
0.9967, 0.9984, 0.9992

Outer optimizer - Nesterov -
Outer lr - 0.25, 0.5, 0.75, 1.0 -
Outer momentum - 0.7, 0.9, 0.95, 0.9913, 0.9967,

0.9984, 0.9989, 0.9992
-

Communication frequency H - 1, 8, 16, 32, 64, 128 -

Table 3: Correspondence between the number of inner steps H and momentum coefficient µdiloco

in DiLoCo and the momentum coefficient µx in GPA. The values of µx were computed using the
expression µx = µ

1/H
diloco, with µdiloco = 0.9 and H as the number of inner steps.

Number of inner steps (DiLoCo) µx (GPA)
1 0.9000
4 0.9740
8 0.9869

16 0.9934
32 0.9967
64 0.9984

128 0.9992

21


	Introduction
	Background
	Different Formulations of Nesterov
	Non-Distributed DiLoCo and its Weaknesses
	Schedule-Free Learning

	Generalized Primal Averaging (GPA)
	Generalized Primal Averaging as Smoothened DiLoCo

	Convergence Theory
	Experiments
	Conclusion
	LLM Usage
	Algorithmic Details
	Pseudocode for Non-Distributed DiLoCo / Lookahead with Nesterov
	Memory-Efficient Formulation of Generalized Primal Averaging
	Compatibility with Modular Norm Theory

	Proofs
	Equivalence Between Nesterov's Formulations
	Equivalence Between Generalized Primal Averaging Formulations
	Convergence Bounds Based On Online-to-Batch Theory

	Experimental Details
	Comparison Between GPA and Nesterov
	Additional Validation Loss Curves for Different Effective Number of Inner Steps
	Hyperparameter Sweeps


