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ABSTRACT

We propose Generalized Primal Averaging (GPA), an extension of Nesterov’s
method in its primal averaging formulation, that addresses key limitations of re-
cent averaging-based optimizers such as DiLoCo and Schedule-Free (SF). These
two recent algorithmic approaches improve the performance of base optimizers
such as AdamW through distinct averaging strategies. Schedule-Free explicitly
averages iterates at every step, while DiLoCo performs implicit averaging by pe-
riodically aggregating trajectories, called pseudo-gradients, to update the model
parameters. This periodic averaging introduces a two-loop structure, increasing
its memory requirements and number of hyperparameters to tune. To address
these limitations, GPA smoothens DiLoCo in the non-distributed setting by aver-
aging iterates at every iteration using two interpolation constants. When applied
to language model pre-training, GPA consistently outperforms DiLoCo while re-
moving the two-loop structure, simplifying hyperparameter tuning and reducing
memory overhead to just a single additional buffer. Furthermore, we prove that
for any base optimizer with regret bounded by O(

√
T ), where T is the number

of iterations, GPA can match or exceed the convergence guarantee of the original
optimizer, depending on the choice of the interpolation constants.

1 INTRODUCTION

As large language models (LLMs) demonstrate increasingly remarkable capabilities at scale
(Achiam et al., 2023; Llama Team, 2024; Liu et al., 2024a), the pre-training phase has become
one of the most expensive stages in the language model training pipeline, often costing hundreds
of millions of dollars per run. This significant investment has driven the development of training
algorithms and optimizers that enhance the efficiency, scalability, and robustness of language model
pre-training.

One significant area of research is on the design of training algorithms for scalable distributed learn-
ing. Among these, the DiLoCo algorithm has emerged as the leading practical approach (Douillard
et al., 2023; Liu et al., 2024b; Douillard et al., 2025; Charles et al., 2025). Notably, DiLoCo is
capable of outperforming AdamW even in a non-distributed setup.

DiLoCo’s consistent improvements over AdamW stem from its novel combination of the Nesterov
optimizer with the Lookahead method (Zhang et al., 2019). By periodically combining accumulated
weight updates into pseudo-gradients and applying Nesterov momentum, DiLoCo achieves sub-
stantial efficiency gains; for instance, when applied to AdamW on a 160 million parameter language
model, this approach delivers speedups up to 38%; see Figure 1b.

A particularly intriguing behavior of DiLoCo is that its performance improves as the number of
inner steps increases. With each base optimizer step, DiLoCo’s outer weights drift farther from
the inner weights, similar to meta learning optimizers such as Reptile (Nichol & Schulman, 2018)
and First-Order MAML (Finn et al., 2017). In DiLoCo, updates to the outer weights occur only
at periodic intervals, causing information from the data to be integrated in a discontinuous, choppy
manner rather than smoothly at every iteration. This restriction on information flow to the outer
weights appears unnecessary from an optimization perspective, yet counterintuitively improves its
performance; see Figure 1a.
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(a) Both GPA and DiLoCo using AdamW as their base opti-
mizer significantly outperform a strong AdamW baseline for
training a 160M parameter Llama model. Notably, increasing
the number of inner steps (up to 16) improves the performance
of DiLoCo. Unlike DiLoCo, GPA updates the parameters at
every step, but uses a heuristic to choose its interpolation con-
stants to match the number of inner steps for DiLoCo.
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(b) Speedup achieved by DiLoCo and GPA
in reducing the number of steps to reach
AdamW’s final validation loss, across differ-
ent effective numbers of inner steps. GPA and
DiLoCo attain the highest speedup of 38.24%
and 34.78% respectively for the same interval
of 16.

Figure 1: Comparison of validation loss and speedup for AdamW, DiLoCo, and GPA.

Concurrently, another line of optimizer research focuses on the design of weight- or iterate-
averaging-based algorithms. One such optimizer, Schedule-Free, recently won the AlgoPerf Al-
gorithmic Efficiency challenge self-tuning track (Dahl et al., 2023; Defazio et al., 2024). Its core
novelty lies in computing gradients at a point that interpolates between the uniform average of
past weights and the current weights. This interpolation step allows Schedule-Free to propagate
information into the average weights at every iteration. Empirically, Schedule-Free matches the
performance obtained by using learning rate schedules without using any schedule explicitly, while
providing stronger theoretical last-iterate convergence guarantees similar to Polyak-Ruppert averag-
ing (Ruppert, 1988; Polyak, 1990; Polyak & Juditsky, 1992).

In this paper, we argue that these two lines of work – DiLoCo and Schedule-Free – are closely
related, and can be generalized and improved through a unified framework of primal averaging.
Specifically, our contributions are as follows:

• We propose a generalization of Nesterov’s method in its primal averaging formulation that
we call Generalized Primal Averaging (GPA), which smooths DiLoCo by averaging at
every step.

• In contrast to DiLoCo, GPA eliminates the two-loop structure, and thereby only requires
a single additional buffer, has less hyperparameters to tune, and demonstrates more stable
training behavior.

• We also provide theoretical justification for GPA through convergence guarantees that
demonstrate improved convergence over the base optimizer under certain circumstances
with particular choices of the interpolation constants;

• Our preliminary experiments show that GPA consistently outperforms non-distributed
DiLoCo and AdamW on dense 160 million parameter language models. GPA demonstrates
a convergence speedup of up to 38% in terms of steps taken to achieve the target validation
loss of AdamW baseline.

2 BACKGROUND

We frame language model pre-training as the expected risk minimization problem

min
x∈Rn

F (x) = Eξ∼D [f(x; ξ)] , (1)

2
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where ξ ∼ D is drawn from an underlying stationary data distribution D. We assume that each
optimizer step has access to the stochastic minibatch gradient g(x(t); ξ(t)) ∈ ∂f(x(t); ξ(t)) evaluated
at each iteration t on a minibatch of data ξ(t), over a total of T steps.1

We also assume that the base optimizer is of the form x(t+1) = x(t) + γ(t)d(t) with learning rate
γ(t) > 0 and search direction d(t) ∈ Rn. The search direction is most commonly defined as
d(t) = −H(t)m(t), where m(t) ∈ Rn is a gradient estimator, and H(t) ∈ Rn×n is a symmetric
positive definite preconditioner matrix. This includes popular methods such as SGD, Adam, Sham-
poo, SOAP, AdEMAMix, or Muon for different choices of m(t) and H(t) (Robbins & Monro, 1951;
Gupta et al., 2018; Anil et al., 2020; Shi et al., 2023; Vyas et al., 2024; Jordan et al., 2024; Pagliardini
et al., 2025; Eschenhagen et al., 2025).

2.1 DIFFERENT FORMULATIONS OF NESTEROV

Despite Nesterov’s importance in optimization for deep learning, there is substantial confusion in
the literature regarding its formulation, as it can be written in at least seven different ways (Defazio,
2019). These formulations are equivalent in the sense that a direct mapping exists between them,
but they may not return the same iterate.

For instance, Nesterov’s method was popularized for deep learning in Sutskever’s formulation
(Sutskever et al., 2013), which presents the algorithm as:

b(t) = µb(t−1) − γ(t)g(x(t) + µb(t−1); ξ(t)),

x(t+1) = x(t) + b(t),
(2)

where µ > 0 is the momentum hyperparameter and b(t) ∈ Rn is the momentum buffer initialized
at b(0) = 0. An alternative formulation, which we call the modern formulation, is used by software
libraries such as PyTorch2 and JAX3 due to its ease of use:

b(t) = µb(t−1) + g(x(t); ξ(t)),

x(t+1) = x(t) − γ(t)[µb(t) + g(x(t); ξ(t))].
(3)

In both formulations, we maintain a momentum buffer that averages gradients seen throughout the
training process. Unlike Sutskever’s formulation (equation 2), the modern formulation (equation 3)
uses the iterate x(t) directly for the gradient computation, rather than the ancillary point x(t) +
µb(t−1), simplifying its practical implementation. If we run both formulations side-by-side with the
same seed, they will evaluate gradients at exactly the same point, but the validation loss at the iterate
x(t) of each method will differ due to its different definition.

Our approach instead builds upon a third form, which we call the primal averaging formulation
(Lan, 2012):

y(t) = µx(t) + (1− µ)z(t),

z(t+1) = z(t) − γ(t)g(y(t); ξ(t)),

x(t+1) = µx(t) + (1− µ) z(t+1),

(4)

with µ ∈ [0, 1). Unlike the Sutskever and modern formulations framed in equations 2 and 3, the pri-
mal averaging formulation in equation 4 explicitly names two iterate sequences: a sequence where
the gradients (or more generally, the search directions) are computed at, i.e., the gradient computa-
tion sequence {y(t)}Tt=1, as well as another sequence used for model evaluation that accumulates a
running average of updated iterates {z(t)}Tt=1, i.e., the model evaluation sequence {x(t)}Tt=1. Since
y(t) interpolates the smoothed sequence x(t) and unsmoothed sequence z(t), it increases the con-
tribution of the gradient update to y(t) compared to x(t). This explicit formulation is convenient
for implementation and theoretical analysis, and naturally leads to a view of acceleration as built

1We assume that f is convex for the convergence analysis, but we verify its performance on non-convex,
possibly non-smooth functions.

2https://docs.pytorch.org/docs/2.8/generated/torch.optim.SGD.html
3https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd
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upon iterate averaging, rather than from the physics-inspired intuition of gradient averaging behind
momentum that is more commonly introduced.

We summarize the relationship between the modern and primal averaging formulations in Proposi-
tion 1 below.
Proposition 1. Given fixed learning rates γprimal, γmodern > 0, Nesterov’s primal averaging for-
mulation (equation 4) is equivalent to Nesterov’s modern formulation (equation 3) in the sense that

y
(t)
primal = x

(t)
modern and b

(t)
modern =

1

(1− µ) γprimal

(
x
(t)
primal − x

(t+1)
primal

)
, (5)

when µprimal = µmodern = µ and (1− µ) γprimal = γmodern.

The proof of this simple statement is rather technical, so we defer it to Appendix C.

It is important to note that the equivalence between the primal averaging and modern formulations
of Nesterov acceleration holds only when the learning rates are fixed. When learning rate schedules
are introduced, achieving this equivalence would require the momentum parameter to vary with each
iteration. Furthermore, the restriction on the choice of µ differs between the modern and primal
averaging formulations. These distinctions highlight that formulations based on gradient averaging
versus iterate averaging produce different perspectives for hyperparameter tuning, which can have a
significant impact on the algorithm’s practical performance.

2.2 NON-DISTRIBUTED DILOCO AND ITS WEAKNESSES

DiLoCo was originally introduced as a distributed algorithm for cross-datacenter training (Douillard
et al., 2023). In the non-distributed setup, it computes multiple inner steps of the base optimizer on
the model weights, then applies Nesterov (equation 3) on the pseudo-gradient, which is defined as
the difference between the current and updated model parameters. This notably requires storing two
additional optimizer states of the same shape as the model parameters: the momentum buffer b(t) as
well as the current model parameters x(t) (also known as the outer weights) as it is being updated
by the base optimizer (applied to the inner weights). DiLoCo’s handling of the fast inner weights
and slow outer weights can be interpreted as a modified Lookahead method that applies Nesterov
acceleration to the outer weight updates (Zhang et al., 2019). The method was recently analyzed in
Khaled et al. (2025).

A simplified version of non-distributed DiLoCo with H inner steps of the base optimizer can be
described as:

p(t) = x(t) − BaseOptIteration(x(t); {γ(j)}Hj=1, H)

b(t) = µb(t−1) + p(t)

x(t+1) = x(t) − γ̃[µb(t) + p(t)],

(6)

where γ̃ > 0 is the outer learning rate and BaseOptIteration applies H iterations of the base
optimizer to the iterate x(t) with inner learning rates {γ(j)}Hj=1. While DiLoCo originally introduced
AdamW as the base optimizer, DiLoCo generalizes to other optimizers such as Muon (Thérien et al.,
2025). A complete description of the algorithm is provided in Appendix B.

This specific application of Nesterov with multiple base optimizer steps is capable of surpassing
the performance of the baseline optimizer, which also explains DiLoCo’s ability to match the syn-
chronous baseline, such as AdamW, in the distributed setting. This finding is surprising because
applying Nesterov solely to the search direction at each iteration (equivalent to applying solely a
single base optimizer step) cannot achieve the same performance gains.

However, this two-level structure is undesirable. From an algorithmic perspective, one would prefer
to average iterates on-the-fly, as opposed to averaging trajectories that implicitly contain multiple
iterations of the base optimizer. From the users’ perspective, the two-level structure introduces
an additional copy of the model weights required to compute the pseudo-gradient, and introduces
additional hyperparameters to tune, e.g., the inner and outer learning rates, momentum, and number
of inner steps. Lastly, from the distributed training perspective, DiLoCo couples the number of
inner steps as a hyperparameter for both local SGD as well as for the modified Nesterov algorithm,

4
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causing the algorithm’s performance to counterintuitively improve as the number of base optimizer
steps increases. We would expect that communicating more often should always be beneficial.

These challenges motivate the development of a new algorithm that removes the two-level structure
while offering a separate hyperparameter that can smoothly average the observed iterates at every
iteration.

2.3 SCHEDULE-FREE LEARNING

In parallel, Schedule-Free learning (SF) (Defazio et al., 2024) is a recently proposed method that
wraps any base optimizer using a variant of the primal averaging formulation of Nesterov’s method
(equation 4) for hyperparameter-free learning:

y(t) = µx(t) + (1− µ)z(t)

z(t+1) = z(t) − γg(y(t); ξ(t))

x(t+1) =
t

t+ 1
x(t) +

(
1− t

t+ 1

)
z(t+1).

(7)

Originally designed to eliminate the need for manually specified learning rate schedules, Schedule-
Free has demonstrated the surprising ability to not only match, but even surpass the practical per-
formance of the original base optimizer. This is done by decoupling the momentum hyperparameter
used in the x(t) and y(t) sequences, unlike the standard primal averaging formulation of Nesterov
(equation 4). Through the choice of µ, the method interpolates between uniform Polyak-Ruppert
averaging and stochastic primal averaging (Ruppert, 1988; Polyak, 1990; Tao et al., 2018).

Ignoring the hyperparameter-free learning problem, one could alternatively replace uniform averag-
ing with exponential moving averaging of the iterates (Morales-Brotons et al., 2024). This suggests
a different generalization that can recover and extend Nesterov acceleration while offering the po-
tential flexibility necessary to remove the two-level structure in DiLoCo.

3 GENERALIZED PRIMAL AVERAGING (GPA)

By decoupling the constants for the model evaluation and gradient computation sequences in Nes-
terov’s primal averaging formulation (equation 4) and leveraging the observation of using exponen-
tial moving averaging in place of uniform averaging in Schedule-Free (equation 7), we introduce the
Generalized Primal Averaging (GPA) framework:

y(t) = µyx
(t) + (1− µy)z

(t)

z(t+1) = z(t) − γ(t)g(y(t); ξ(t))

x(t+1) = µxx
(t) + (1− µx) z

(t+1).

(8)

Here, µx ∈ [0, 1) and µy ∈ [0, 1] are independent hyperparameters that separately control the degree
of interpolation used in maintaining the model evaluation sequence x(t) and gradient computation
sequence y(t). The additional parameter µx serves as a smoothening or exponential moving average
parameter that replaces Polyak-Ruppert averaging in Schedule-Free and plays a similar role to the
number of inner steps in DiLoCo. By replacing Polyak-Ruppert averaging with exponential moving
averaging, GPA is not inherently schedule-free and requires the use of a learning rate schedule. The
complete pseudocode for a general base optimizer is provided in Algorithm 1.

The choice of µx and µy enables GPA to interpolate between stochastic primal averaging, exponen-
tial moving averages of the iterates, and no iterate averaging. Specifically, when µy = 1, x(t) = y(t)

and we recover stochastic primal averaging; for µy = 0, x(t) and z(t) = y(t) become decoupled and
we recover exponential moving averaging of the iterates. When µx = 0, x(t) = y(t) = z(t) for any
choice of µy , and GPA reverts back to the base optimizer.

Unlike DiLoCo, which is built around (pseudo-)gradient averaging (see equation 6), GPA is defined
based on the primal or iterate averaging framework, and removes the inner-outer loop by averaging
iterates at every step. We argue that this provides a more precise characterization of the method.

5
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Algorithm 1 Generalized Primal Averaging (GPA)

1: Input: Initial iterate x(1), learning rate schedule γ(t) > 0, weight decay λ ≥ 0, interpolation
parameters µx, µy ∈ [0, 1), base optimizer BaseOpt.

2: z(1) = x(1)

3: for t = 1, ..., T do
4: y(t) = µyx

(t) + (1− µy)z
(t) ▷ Update gradient computation point y(t).

5: g(t) ∈ ∂f(y(t); ξ(t)) ▷ Gradient is evaluated at y(t).
6: d(t) = BaseOpt(g(t)) ▷ Compute base optimizer’s search direction.
7: z(t+1) = (1− γ(t)λ)z(t) + γ(t)d(t) ▷ Update z(t) iterate.
8: x(t+1) = µxx

(t) + (1− µx) z
(t+1) ▷ Update weighted iterate average x(t).

9: end for
10: Return x(T )

For example, the primal averaging interpretation motivates its extension to other search directions
by replacing −g(y(t); ξ(t)) with the search direction d(t) evaluated at y(t). This extension is not
intuitive from the gradient averaging perspective, as it would translate to averaging search directions
(with potentially different, evolving preconditioners) in the momentum buffer.

GPA also retains several desirable properties of the base optimizer for deep learning. Because
µx, µy ∈ [0, 1], GPA preserves modular norm bounds of the model parameters. Additionally, GPA
requires only one extra copy of the model weights for implementation – specifically, by storing y(t)

and reconstructing x(t) from y(t) and z(t) during evaluation – unlike DiLoCo, which demands more
memory overhead. Further details on these properties are provided in Appendix B.

3.1 GENERALIZED PRIMAL AVERAGING AS SMOOTHENED DILOCO
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Figure 2: Comparison of DiLoCo and
GPA’s trajectories on a deterministic
quadratic problem. The outer iterates of
DiLoCo are shown as red points, and the
inner iterates as thin red lines.

As seen in Figure 1a, increasing the number of inner steps
leads to improved performance for DiLoCo in the non-
distributed setup. However, the underlying reasons for
this behavior are not understood. By examining DiLoCo
from the lens of GPA in equation 8, and comparing it to
the more restrictive Nesterov formulation in equation 4,
we can develop a deeper intuition for DiLoCo’s inner
workings.

Suppose that we increase the number of inner steps in
DiLoCo, and we want to maintain the same level of
smoothing on the average iterate x(t). One may attempt
to increase µ in Nesterov (equation 4) to decrease the
weight on the current iterate z(t+1). However, since µ
controls both the amount of smoothing in x(t) and the
amount of interpolation used to update y(t), strictly in-
creasing µ would decrease the recency of information in
y(t) by a factor of µ2, resulting in significantly different
algorithmic behavior. Numerically, we validate that tun-
ing µ in the primal averaging formulation of Nesterov is
not sufficient to reach the performance of DiLoCo; see
Appendix D.

GPA addresses this limitation by decoupling the two roles
of µ into separate hyperparameters: µx for the model
evaluation sequence and µy for the gradient computation sequence. By controlling these two in-
terpolation constants independently, we can smooth x(t) similarly without changing the amount of
information introduced into y(t).

6
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This intuition provides us practical guidelines for hyperparameter tuning. For example, given an
optimal number of inner steps H and momentum parameter µ in DiLoCo, we observe for GPA that

x(t+H) = µxx
(t+H−1) + (1− µx)z

(t+H) = · · · = µH
x x(t) + (1− µx)

H−1∑
k=0

µk
xz

(t+H−k).

Therefore, to match the coefficient in front of x(t) with DiLoCo, one can set µx = µ1/H while
keeping µy ≈ µ. With commonly used values µ = 0.9 and H = 32, we obtain µx ≈ 0.9967
and µy ≈ 0.9. We leverage this heuristic to determine an effective number of inner steps used in
Figure 1.

Visually, Figure 2 illustrates how the iterates of GPA follow a smoothed trajectory of the DiLoCo
iterates on a simple deterministic quadratic problem. For a small number of inner steps, the methods
closely align, but for a larger number of inner steps, their behavior diverges.

GPA not only outperforms DiLoCo, but does so with fewer hyperparameters and lower memory
requirements. While DiLoCo requires four hyperparameters, e.g., the inner and outer learning rate,
momentum hyperparameter, and number of inner steps, GPA reduces this to just three: the learning
rate and two momentum parameters. This simplification is possible because DiLoCo’s practical
performance is governed by an effective learning rate that couples the effect of the inner and outer
learning rates (γ(t) and γ̃).

4 CONVERGENCE THEORY

By utilizing the theoretical developments underpinning Schedule-Free learning, we can derive a
convergence bound for Generalized Primal Averaging given any base optimizer that has a regret
bound, using the framework of online-to-batch conversion (Cesa-Bianchi et al., 2004). We will use
the Bregman divergence of F defined as BF (a, b) = F (a)− F (b)− ⟨∇F (b), a− b⟩ for a, b ∈ Rn.

Theorem 1. Let F be a convex function, and assume that there exists a minimizer x∗ that minimizes
F . Let ξ(1), . . . , ξ(T ) be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates z(1), . . . , z(T ) from a base optimizer within the Generalized Primal Averaging framework
(Equation 8). Then for µx, µy ∈ [0, 1) and average iterate x̄(T ) = 1

T

∑T
t=1 x

(t), we have the bound

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩]

+
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
− 1

1− µy

1

T

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

1

T

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

1

T

T∑
t=1

E[BF (x
(t−1), x(t))].

Corollary 1. Assume that the base optimizer has regret guarantees
∑T

t=1 E[⟨∇F (y(t)), z(t) −
x∗⟩] = O(

√
T ). Then:

E[F (x̄(T ))− F (x∗)] = O
(

1√
T

)
.

We give some remarks on Theorem 1:

• The first row on the right-hand side of the regret bound is the average regret of the base
optimizer. This term captures the convergence rate from the base optimizer.

• The second row has a positive term, which decays at a 1/T rate, which is typically faster
than the decay of the term in the first row.

7
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Table 1: Final validation loss versus effective number of inner steps for different optimizers on
Llama 160M. For DiLoCo and GPA, the optimal (lowest) validation loss is shown in bold.

Method # Inner Steps = 8 # Inner Steps = 16 # Inner Steps = 32
AdamW 3.3561 3.3561 3.3561
DiLoCo-AdamW 3.2977 3.2804 3.3037
GPA-AdamW 3.2769 3.2595 3.2774

• All remaining Bregman divergence terms are negative and so are potentially beneficial.
Therefore, if µx and µy are chosen such that the negative terms are larger than the positive
term introduced in the second row, then GPA will converge faster than the base optimizer.
The same terms appears in the convergence guarantees for Schedule-Free methods, and
can explain when they may work better. Moreover, for strongly convex problems, such
Bregman divergences were previously used to get O(1/T ) convergence.

• Note that unlike the guarantees for Schedule-Free, our convergence bound is for the average
iterate. For the best performance, a learning rate schedule should be used and the last iterate
returned (Defazio et al., 2023).

From a high level, the convergence bound indicates that GPA will be faster than the base optimizer
when the objective function varies nonlinearly between consecutive iterates and between x(t) and
y(t).

5 EXPERIMENTS

In this section, we assess the effectiveness of GPA for language model pre-training by comparing its
performance against AdamW and DiLoCo. We use AdamW as the base optimizer for both DiLoCo
(DiLoCo-AdamW) and GPA (GPA-AdamW).

Setup and hyperparameter tuning. We evaluate AdamW, DiLoCo-AdamW, and GPA-AdamW by
pre-training a 160 million parameter Llama 3 model on the C4 dataset from scratch (Raffel et al.,
2019). We follow the Chinchilla-optimal token budget of roughly 3.2 billion tokens (Hoffmann
et al., 2022). All of our experiments are conducted on a single machine equipped with eight H100
GPUs (97GB memory). We use a batch size of 128 sequences with a sequence length of 2048
tokens, resulting in a total batch size of about 262,000 tokens.

To tune the hyperparameters, we use the following process:

• For AdamW, we fix (β1, β2) = (0.9, 0.999) and ϵ = 10−8, and sweep the learning rate
from 5 · 10−5 through 3 · 10−3.

• For DiLoCo-AdamW, we fix the inner optimizer’s hyperparameters to AdamW’s optimal
hyperparameters, and sweep the outer learning rate from [0.25, 1.0] and the outer momen-
tum from [0.7, 0.99]. We also sweep through the number of inner steps from [1, 128] with
powers of 2.

• For GPA-AdamW, we use the optimal AdamW hyperparameters, and sweep µx based on
the number of inner steps in DiLoCo (see Section 3.1). We sweep µy over a fine granular
range from [0.8, 0.999]. We also increased the learning rate when possible.

All runs use a learning rate schedule that applies linear warmup through the initial 10% of training,
then cosine decay through the rest of training to 1% of the specified learning rate. By default, we
apply gradient clipping, with a clipping factor of 1.0; weight decay is also fixed to 0.1. A summary
of the hyperparameter sweeps are provided in Table 2 in Appendix D.

Performance across number of inner steps. In Figure 1a, as we vary the (effective) number
of inner steps, we observe that DiLoCo and GPA-AdamW both outperform AdamW in terms of
validation loss, with GPA-AdamW superseding DiLoCo, except when the number of inner steps is
1. Both DiLoCo and GPA-AdamW display U-shaped behavior, improving as the number of steps
increases up to a point, then degrading as it becomes too large. In Table 1, we provide the final

8
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Figure 3: Validation loss versus steps for AdamW, DiLoCo, and GPA. For AdamW, we report the
run with the best final validation loss, even though it is less stable than runs with lower learning
rates.

validation loss values for each method at the key communication intervals of 8, 16, and 32. Both
DiLoCo and GPA share the same optimal effective number of inner steps, validating our hypothesis
on the choice of µx.

Speedup. In Figure 1b, we find that both DiLoCo and GPA significantly reduce the number of steps
required to reach AdamW’s final validation loss. DiLoCo achieves a maximum speedup of 34.78%
at an interval of 16, while GPA attains an even higher maximum speedup of 38.24% with the same
effective interval.

Convergence behavior. Figure 3 shows the validation loss curves for AdamW, DiLoCo-AdamW,
and GPA-AdamW for the case where the number of inner steps is 16. In this case, µx has been
tuned to match the number of inner steps; see Table 3 in Appendix D for details. GPA-AdamW
converges faster than both DiLoCo and AdamW throughout the entire training run. The training
curves for GPA-AdamW are also noticeably smoother and more stable compared to the other meth-
ods. Our hyperparameter sweeps reveal that GPA-AdamW can handle higher learning rates compare
to DiLoCo and AdamW, e.g., 5 · 10−3.

6 CONCLUSION

Generalized Primal Averaging (GPA) introduces independent interpolation constants for gradient
computation and model evaluation that yields a flexible optimization framework. On small-scale
dense models, this flexibility allows GPA to outperform DiLoCo, while removing the complexity of
its two-loop structure. Consequently, GPA simplifies hyperparameter tuning and reduces memory
requirements compared to DiLoCo in standard non-distributed settings.

Future work should validate GPA at scale across diverse model architectures and modalities, and
explore its compatibility with other base optimizers (e.g., Shampoo, SOAP, Muon) and hyperparam-
eter transfer techniques such as µP (Yang & Hu, 2021; Yang et al., 2022). Additionally, while our
convergence bound partially explains the empirical results, it is limited to the convex setting and
does not fully characterize when GPA can outperform the base optimizer.

Finally, GPA’s decoupling of parameters also enables new avenues for distributed training. In
DiLoCo, the number of inner steps serves as a coupled hyperparameter for both Lookahead with
Nesterov and local SGD, leading to the undesirable finding that increasing the number of inner steps
can improve convergence – contrary to standard local SGD intuition. By introducing a tunable, con-
tinuous smoothing parameter that is independent of the number of local SGD steps, GPA establishes
a new foundation for rethinking DiLoCo and related averaging-based methods, especially in their
integration with communication-efficient techniques like local SGD.

9
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A LLM USAGE

We used an internal AI assistant for revising the grammar and wording in the paper, and used Gemini
Pro 2.5 to verify our proofs.

B ALGORITHMIC DETAILS

B.1 PSEUDOCODE FOR NON-DISTRIBUTED DILOCO / LOOKAHEAD WITH NESTEROV

We provide a complete description of non-distributed DiLoCo in Algorithm 2.

Algorithm 2 Non-Distributed DiLoCo / Lookahead with Nesterov

1: Input: Initial iterate x(1), inner learning rate schedule γ(t) > 0, constant outer learning rate
γ̃ > 0, weight decay λ ≥ 0, momentum parameter µ ∈ [0, 1), base optimizer BaseOpt.

2: x̃(1) = x(1) ▷ Initialize slow model weights.
3: b(0) = 0 ∈ Rn ▷ Initialize momentum buffer.
4: for step t = 1, ..., T do
5: Sample mini-batch ξ(t)

6: g(t) ∈ ∂f(x(t); ξ(t))
7: d(t) = BaseOpt(g(t)) ▷ Computes base optimizer’s search direction.
8: x(t+1) = (1− γ(t)λ)x(t) + γ(t)d(t) ▷ Updates inner model weights (with weight decay).
9: if t mod H = 0 then

10: g̃(t) = x̃(t) − x(t+1) ▷ Pseudo-gradient computation.
11: b(t+1) = µb(t) + p(t) ▷ Accumulates outer momentum.
12: x̃(t+1) = x̃(t) − γ̃

[
µb(t) + g̃(t)

]
▷ Nesterov-style parameter update.

13: x(t+1) = x̃(t+1) ▷ Re-initialize inner model weights.
14: else
15: x̃(t+1) = x̃(t)

16: end if
17: end for
18: Returns: x̃(T )

B.2 MEMORY-EFFICIENT FORMULATION OF GENERALIZED PRIMAL AVERAGING

The implementation of the original formulation of GPA in equation 8 requires storing two additional
copies of the model’s parameters during the optimizer step. This is because the gradient computation
occurs on the y(t) sequence, which is computed from the two other sequences x(t) and z(t). To avoid
this additional model copy, we can store y(t) instead, and recover x(t) from y(t) and z(t) during
evaluation time.

To see how this can be done, we define the memory-efficient formulation of GPA as:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t),

y(t) = µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)),

z(t+1) = z(t) − γ(t)g(y(t); ξ(t)).

(9)

This reformulation is valid only when µy > 0. In the y(t) update, the first term can be interpreted as
interpolating y(t) towards z(t). The second term is a correction term that applies a dampened update
on y(t).

Note that this formulation does not require the computation of x(t) except when necessary. There-
fore, our implementation enables a training and evaluation mode similar to neural network modules
like batch normalization that enables us to compute x(t) from y(t) and vice-versa. Specifically, when
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switching from training to evaluation mode, we can compute x(t) from y(t) and z(t) by:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t).

Similarly, when switching from evaluation to training mode, we can recover y(t) from x(t) and z(t)

by:
y(t) = µyx

(t) + (1− µy)z
(t).

A proof of the equivalence of these two formulations is provided in Appendix C. The complete
pseudocode for arbitrary base optimizers are provided in Algorithm 3.

Algorithm 3 Memory-Efficient Generalized Primal Averaging (GPA)

1: Input: Initial iterate y(1), learning rate schedule γ(t) > 0, weight decay λ ≥ 0, interpolation
parameters µx, µy ∈ [0, 1), base optimizer BaseOpt.

2: z(1) = y(1)

3: for t = 1, ..., T do
4: g(t) ∈ ∂f(y(t); ξ(t))
5: d(t) = BaseOpt(g(t))
6: y(t) = µxy

(t) + (1− µx)z
(t) + γ(t)(1− µxµy)(d

(t) + λz(t))

7: z(t+1) = (1− γ(t)λ)z(t) − γ(t)d(t)

8: end for
9: Returns: x(T ) = 1

µy
y(T ) +

(
1− 1

µy

)
z(T ).

B.3 COMPATIBILITY WITH MODULAR NORM THEORY

Recent work on Muon and similar methods have built on modular norm theory, which suggests
that the design of optimization methods for deep learning should constrain the modular norm of the
model parameters in order to enable hyperparameter transferability and bounded Lipschitz constants
(Large et al., 2024; Jordan et al., 2024; Pethick et al., 2025). Here, we argue that GPA, by definition,
preserves these norm constraints.

To see this, assume that d(t) is the search direction for a single parameter that it is constrained with
respect to some norm, i.e., ∥d(t)∥ ≤ M for some constant M ≥ 0. (Typically, we assume it is the
RMS-to-RMS norm or similar.) We can preserve these norm constraints on the iterates produced by
GPA since:

∥y(t)∥ ≤ µy∥x(t)∥+ (1− µy)∥z(t)∥
∥z(t+1)∥ ≤ (1− λγ(t))∥z(t)∥+ γ(t)∥d(t)∥
∥x(t+1)∥ ≤ µx∥x(t)∥+ (1− µx) ∥z(t+1)∥.

Since µx, µy ∈ [0, 1], we can see that if max
{
∥x(t)∥, ∥y(t)∥, ∥z(t)∥

}
≤ M ′ for M ′ ≥ 0, then

max
{
∥x(t+1)∥, ∥y(t+1)∥, ∥z(t+1)∥

}
≤ (1−λγ(t))M ′+γ(t)M , which is the same bound we would

obtain for the base optimizer.

C PROOFS

C.1 EQUIVALENCE BETWEEN NESTEROV’S FORMULATIONS

Proposition 2. Given fixed learning rates γprimal, γmodern > 0, Nesterov’s primal averaging for-
mulation (equation 4) is equivalent to Nesterov’s modern formulation (equation 3) in the sense that

y
(t)
primal = x

(t)
modern and b

(t)
modern =

1

(1− µ) γprimal

(
x
(t)
primal − x

(t+1)
primal

)
, (10)

when µprimal = µmodern = µ and (1− µ) γprimal = γmodern.
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Proof. We can prove this by induction. For simplicity of notation, we will use xm = xmodern and
xp = xprimal and similar for all variables.

For the base case, note that the initializations z(1)p = x
(1)
p = x

(1)
m are equal. Therefore,

y(1)p = µx(1)
p + (1− µ)z(1)p = x(1)

m , (11)

as desired. In addition, since b
(1)
m = µb

(0)
m + g(x

(1)
m ; ξ(1)) = g(x

(1)
m ), we can see that:

x(1)
p − x(2)

p = (1− µ)x(1)
p − (1− µ)z(1)p

= (1− µ)(x(1)
p − z(2)p )

= (1− µ)(x(1)
p − z(1)p + γpg(y

(1)
p ; ξ(1)))

= (1− µ)γpg(y
(1)
p ; ξ(1)).

The base case for the momentum buffer b(1)m follows from rearranging the equation with equation 11
and observing that b(1)m = µb

(0)
m + g(x

(1)
m ; ξ(1)) = g(x

(1)
m ; ξ(1)).

For the inductive step, assume that equation 10 holds for t. Then from the inductive hypothesis, we
can show that:

x(t+1)
m = x(t)

m − γm[µb(t)m + g(x(t)
m ; ξ(t))]

= y(t)p − (1− µ)γp

[
µ

(
1

(1− µ)γp
(x(t)

p − x(t+1)
p )

)
+ g(y(t)p ; ξ(t))

]
= y(t)p − µ(x(t)

p − x(t+1)
p )− (1− µ)γg(y(t)p ; ξ(t)). (12)

From the primal averaging form in equation 4, we can derive that:

x(t+1)
p = µx(t)

p + (1− µ)z(t+1)
p

= µx(t)
p + (1− µ)(z(t)p − γpg(y

(t)
p ; ξ(t))

= y(t)p − (1− µ)γpg(y
(t)
p ; ξ(t)). (13)

Rearranging equation 13, we get that:

y(t)p − x(t+1)
p = (1− µ)γpg(y

(t)
p ; ξ(t)). (14)

Plugging in equation 14 into equation 12, we obtain:

x(t+1)
m = y(t)p − µ(x(t)

p − x(t+1)
p )− (y(t)p − x(t+1)

p ) = (1 + µ)x(t+1)
p − µx(t)

p . (15)

Finally, since x
(t+1)
p = µx

(t)
p + (1 − µ)z

(t)
p , (1 − µ)z

(t+1)
p = x

(t+1)
p − µx

(t)
p . Therefore, to see

x
(t+1)
m ’s equivalence to y

(t+1)
p ,

y(t+1)
p = µx(t+1)

p + (1− µ)z(t+1)
p

= µx(t+1)
p + x(t+1)

p − µx(t)
p

= (1 + µ)x(t+1)
p − µx(t)

p . (16)

Combining equations 15 and 16 gives the result.

To prove that b(t+1)
m = 1

(1−µ)γp
(x

(t+1)
p − x

(t+2)
p ), note that:

b(t+1)
m = µb(t)m + g(x(t+1)

m ; ξ(t+1)) =
µ

(1− µ)γp
(x(t)

p − x(t+1)
p ) + g(y(t+1)

p ; ξ(t+1)). (17)

To get an expression for x(t+1)
p − x

(t+2)
p , note that:

x(t+2)
p = µx(t+1)

p + (1− µ)(z(t+1)
p − γpg(y

(t+1)
p ; ξ(t+1)))

= (µx(t+1)
p + (1− µ)z(t+1)

p )− (1− µ)γpg(y
(t+1)
p ; ξ(t+1))

= y(t+1)
p − (1− µ)γpg(y

(t+1)
p ; ξ(t+1))

= ((1 + µ)x(t+1)
p − µx(t)

p )− (1− µ)γpg(y
(t+1)
p ; ξ(t+1)), (18)

15
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where equation 18 follows from equation 16. Therefore, plugging-in equation 18 into x
(t+1)
p −x

(t+2)
p

gives:
x(t+1)
p − x(t+2)

p = −µ(x(t+1)
p − x(t)

p ) + (1− µ)γpg(y
(t+1)
p ; ξ(t+1)). (19)

The result follows from expanding equation 17 as:

b(t+1)
m =

1

(1− µ)γp

[
−µ(x(t+1)

p − x(t)
p ) + (1− µ)γpg(y

(t+1)
p ; ξ(t+1))

]
=

1

(1− µ)γp
(x(t+1)

p − x(t+2)
p ).

C.2 EQUIVALENCE BETWEEN GENERALIZED PRIMAL AVERAGING FORMULATIONS

Proposition 3. Let µy > 0. Then GPA (equation 8) is equivalent to the memory-efficient formulation
(equation 9).

Proof. Note that it is sufficient to show that:

x(t) =
1

µy
y(t) +

(
1− 1

µy

)
z(t), (20)

y(t+1) = µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)). (21)

To prove equation 20, note that we can re-write x(t) as a function of y(t) and z(t), i.e., since

y(t) = µyx
(t) + (1− µy)z

(t)

and µy > 0, we have that

x(t) =
1

µy
y(t) +

1

µy
(µy − 1)z(t) =

1

µy
y(t) +

(
1− 1

µy

)
z(t).

To prove equation 20, we can re-write equation 20 as

µyx
(t+1) = µyz

(t+1) + (y(t+1) − z(t+1)) = y(t+1) − (1− µy)z
(t+1). (22)

Similarly, by plugging in the original x(t+1) update, i.e., x(t+1) = µxx
(t) + (1 − µx)z

(t), we also
have:

µyx
(t+1) = µy(µxx

(t) + (1− µx)z
(t)) = µxµyx

(t) + (1− µx)µyz
(t+1). (23)

Combining these two equalities in equations 22 and 23 and rearranging, we get:

y(t+1) = µxµyx
(t) + (1− µxµy)z

(t+1). (24)

Plugging-in equation 20 and the update z(t+1) = z(t) − γ(t)g(y(t); ξ(t)) from equation 8 into equa-
tion 24, we obtain:

y(t+1) = µxµy

(
1

µy
y(t) +

(
1− 1

µy

)
z(t)

)
+ (1− µxµy)(z

(t) − γ(t)g(y(t); ξ(t)))

= µxy
(t) + (1− µx)z

(t) − (1− µxµy)γ
(t)g(y(t); ξ(t)),

as desired.

C.3 CONVERGENCE BOUNDS BASED ON ONLINE-TO-BATCH THEORY

Our proofs similarly rely on the online-to-batch conversion theory used in Defazio et al. (2024).

Lemma 1. Suppose we define w(t) as the weighting:

w(t) =

{
1 if t = 1,

(1− µx)µ
−t+1
x if t > 1.

16
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Then the model evaluation sequence x(t) is equivalent to the weighted average:

x(t+1) =

∑t
i=1 w

(i)∑t+1
i=1 w

(i)
x(t) +

w(t+1)∑(t+1)
i=1 w(i)

z(t+1) =
w(1:t)

w(1:t+1)
x(t) +

w(t+1)

w(1:t+1)
z(t+1),

with

w(1:t) =

t∑
s=1

w(s) = µ−t+1
x .

Furthermore, x(t) can be expressed as the closed form expression:

x(t) = µt−1
x

t∑
s=1

w(s)z(s).

Theorem 2. Let F be a convex function, and assume that there exists a minimizer x∗ that minimizes
F . Let ξ(1), . . . , ξ(T ) be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates z(1), . . . , z(T ) from a base optimizer within the Generalized Primal Averaging framework
(Equation 8). Then for µx, µy ∈ [0, 1) and average iterate x̄(T ) = 1

T

∑T
t=1 x

(t), we have the bound

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩]

+
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
− 1

1− µy

1

T

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

1

T

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

1

T

T∑
t=1

E[BF (x
(t−1), x(t))].

Proof. We start with the same analysis as in the Schedule-Free work (Defazio et al., 2024). Notice
that by definition of x(t), it holds w(1:t−1)(x(t) − x(t−1)) = w(t)(z(t) − x(t)). Therefore,

w(1:t)F (x(t))− w(1:t−1)F (x(t−1))− w(t)F (x∗)

= w(1:t−1)(F (x(t))− F (x(t−1))) + w(t)(F (x(t))− F (x∗))

= w(1:t−1)(⟨∇F (x(t)), x(t) − x(t−1)⟩ −BF (x
(t−1), x(t))) + w(t)(F (x(t))− F (x∗))

= w(t)⟨∇F (x(t)), z(t) − x(t)⟩ − w(1:t−1)BF (x
(t−1), x(t)) + w(t)(F (x(t))− F (x∗)).

Next, we observe that by definition of y(t), it holds z(t) − y(t) =
µy

1−µy
(y(t) − x(t)), and, thus,

⟨∇F (x(t)), z(t) − x(t)⟩
= ⟨∇F (x(t))−∇F (y(t)), z(t) − y(t)⟩+ ⟨∇F (y(t)), z(t) − y(t)⟩
+ ⟨∇F (x(t)), y(t) − x(t)⟩

=
µy

1− µy
⟨∇F (x(t))−∇F (y(t)), y(t) − x(t)⟩+ F (x∗)− F (y(t))−BF (x∗, y

(t)) + ⟨∇F (y(t)), z(t) − x∗⟩

+ F (y(t))− F (x(t))−BF (y
(t), x(t))

≤ − µy

1− µy
(BF (x

(t), y(t)) +BF (y
(t), x(t))) + F (x∗)− F (x(t))−BF (y

(t), x(t)) + ⟨∇F (y(t)), z(t) − x∗⟩

= − µy

1− µy
BF (x

(t), y(t))− 1

1− µy
BF (y

(t), x(t)) + F (x∗)− F (x(t)) + ⟨∇F (y(t)), z(t) − x∗⟩,

17
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where the inequality step used −BF (x∗, y
(t)) ≤ 0, which follows from convexity of F . Plugging

this back, we obtain

w(1:t)F (x(t))− w(1:t−1)F (x(t−1))− w(t)F (x∗)

≤ −w(t) µy

1− µy
BF (x

(t), y(t))− w(t)

1− µy
BF (y

(t), x(t)) + w(t)(F (x∗)− F (x(t)))

+ w(t)⟨∇F (y(t)), z(t) − x∗⟩ − w(1:t−1)BF (x
(t−1), x(t)) + w(t)(F (x(t))− F (x∗))

= w(t)⟨∇F (y(t)), z(t) − x∗⟩ −
w(t)

1− µy
BF (y

(t), x(t))

− w(t)µy

1− µy
BF (x

(t), y(t))− w(1:t−1)BF (x
(t−1), x(t)). (25)

We may adapt this bound to our setting by using an exponentially increasing weighting sequence,
given by Lemma 1. Using those weights, we have simplified expressions for the following quantities:

w(1:t)

w(t)
=

µ−t+1
x

(1− µx)µ
−t+1
x

=
1

1− µx
,

w(1:t−1)

w(t)
=

µ
−(t−1)+1
x

(1− µx)µ
−t+1
x

=
µx

1− µx
,

with a special case for the first iterate w(1:1)

w(1) = 1 and w(1:t−1)

w(1) = 0.

To obtain an average regret bound, we divide Equation 25 by w(t), take expectation, and sum from
1 to T . The left-hand side is a telescoping sum, which we can simplify as follows:

T∑
t=1

[
w(1:t)

w(t)
E[F (x(t))]− w(1:t−1)

w(t)
E[F (x(t−1))]

]
− TF (x∗)

= F (x(1))− w(1:1)

w(2)
F (x(1)) +

1

1− µx

T∑
t=2

E[F (x(t))]− µx

1− µx

T−1∑
t=2

E[F (x(t))]− TF (x∗)

= F (x(1))− 1

(1− µx)µ
−1
x

F (x(1)) +
1

1− µx
E[F (x(T ))] +

T−1∑
t=2

(
1

1− µx
− µx

1− µx

)
E[F (x(t))]− TF (x∗)

= F (x(1))− µx

1− µx
F (x(1)) +

1

1− µx
E[F (x(T ))] +

T−1∑
t=2

(
1

1− µx
− µx

1− µx

)
E[F (x(t))]− TF (x∗)

= − µx

1− µx
F (x(1)) +

µx

1− µx
E[F (x(T ))] +

T∑
t=1

E[F (x(t))]− TF (x∗).

Plugging-in this simplified expression, moving the extra F (x(1)) − F (x(t)) term to the right-hand
side, and simplifying gives:

T∑
t=1

E
[
F (x(t))− F (x∗)

]
≤

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩] +
µx

1− µx
E
[
F (x(1))− F (x(T ))

]
− 1

1− µy

T∑
t=1

E[BF (y
(t), x(t))]− µy

1− µy

T∑
t=1

E[BF (x
(t), y(t))]

− µx

1− µx

T∑
t=1

E[BF (xt−1, x
(t))].

18
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We get a bound on the average iterate x̄T =
∑T

t=1 x
(t) by dividing by T and applying Jensen’s

inequality:

E[F (x̄T )− F (x∗)] ≤
1

T
E

T∑
t=1

⟨∇F (y(t)), z(t) − x∗⟩+
µx

1− µx

1

T
E
[
F (x(1))− F (x(T ))

]
− 1

1− µy

1

T
E

T∑
t=1

BF (y
(t), x(t))− µy

1− µy

1

T
E

T∑
t=1

BF (x
(t), y(t))

− µx

1− µx

1

T
E

T∑
t=1

BF (xt−1, x
(t)).

Finally, we use F (x∗) ≤ F (x(T )) to get the claimed bound.

Corollary 2. Assume that the base optimizer has regret guarantees
∑T

t=1 E[⟨∇F (y(t)), z(t) −
x∗⟩] = O(

√
T ). Then:

E[F (x̄(T ))− F (x∗)] = O
(

1√
T

)
.

Proof. Note that we can upper bound the inequality in Theorem 1 by ignoring the negative Bregman
divergence terms, i.e.,

E[F (x̄(T ))− F (x∗)] ≤
1

T

T∑
t=1

E[⟨∇F (y(t)), z(t) − x∗⟩] +
µx

1− µx

1

T
E
[
F (x(1))− F (x∗)

]
.

The result follows from noting that the first term is O(1/
√
T ) and the second term is O(1/T ).

D EXPERIMENTAL DETAILS

D.1 COMPARISON BETWEEN GPA AND NESTEROV

In order to validate that DiLoCo’s performance can only be matched or improved upon with de-
coupled interpolation constants in GPA, we test the case where µx = µy , which corresponds
to Nesterov’s primal averaging formulation in equation 4. Here, we apply the same heuristic for
µx = µ1/H also to µy and tune the learning rate.
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LLama-160M (C4) - Effective Inner Steps=8

GPA-AdamW optimal (γ = 3e− 3, µy = 0.8, µx = 0.9869, 3.2771)

GPA-AdamW (γ = 3e− 3, µy = 0.9869, µx = 0.9869, 5.6814)

Figure 4: Comparison between Nesterov’s primal averaging formulation with coupled constants
µx = µy and GPA with decoupled constants.
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In Figure 4, we observe that coupling the interpolation constants is sub-optimal, and decoupling
these coefficients is indeed necessary for optimal performance from GPA.

D.2 ADDITIONAL VALIDATION LOSS CURVES FOR DIFFERENT EFFECTIVE NUMBER OF
INNER STEPS

In Figures 5 and 6, we provide additional validation loss curves for the cases where the effective
number of inner steps equals 8 or 32, respectively. The results are generally consistent with the case
where the number of inner steps is equal to 16 in Figure 3. When the effective number of inner steps
is 32, we observe that AdamW outperforms DiLoCo for approximately the first 2,000 steps.

1k 2k 4k 8k 12k
3

3.5

4

4.5

5

Steps

V
al
id
at
io
n
L
os
s

LLama-160M (C4) - Effective Inner Steps=8

AdamW (3.356)

DiLoCo-AdamW (3.2977)

GPA-AdamW (3.2769)

Figure 5: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 8.
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Figure 6: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 32.

D.3 HYPERPARAMETER SWEEPS

In this section, we summarize the hyperparameter sweeps used in our experiments in Table 2. In
Table 3, we provide a table of conversions from optimal choices of µ and H in DiLoCo to GPA’s
choice of µx.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 2: Summary of hyperparameter sweeps used in the experiments.

Hyperparameter AdamW DiLoCo-AdamW GPA-AdamW

Batch size 262K tokens 262K tokens 262K tokens
Sequence length 2048 2048 2048
Weight decay 0.1 0.1 0.1
Total training tokens 3.2B 3.2B 3.2B
Total training steps 12208 12208 12208

Inner optimizer AdamW AdamW GPA-AdamW
Inner optimizer lr 5e-5, 1e-4, 2e-4, 3e-4, 5e-4,

7e-4, 1e-3, 3e-3
5e-4, 7e-4, 1e-3, 3e-3, 5e-3,
8e-3, 1e-2, 3e-2

5e-4, 7e-4, 1e-3, 3e-3, 5e-3,
8e-3, 1e-2, 3e-2

Inner Adam β1 0.9 0.9 0.5, 0.7, 0.9
Inner Adam β2 0.999 0.999 0.999
Inner Adam ϵ 10−8 10−8 10−8

Warmup fraction 10% 10% 10%
Learning rate schedule cosine cosine cosine
Learning rate min fraction % 0.01 0.01 0.01
GPA coeff µy - - 0.8, 0.9, 0.95, 0.9740, 0.9869,

0.99, 0.9913, 0.9934,
0.9956,0.9967, 0.9978,
0.9984, 0.9989, 0.9992

GPA coeff µx - - 0.9, 0.9740, 0.9869, 0.9934,
0.9967, 0.9984, 0.9992

Outer optimizer - Nesterov -
Outer lr - 0.25, 0.5, 0.75, 1.0 -
Outer momentum - 0.7, 0.9, 0.95, 0.9913, 0.9967,

0.9984, 0.9989, 0.9992
-

Communication frequency H - 1, 8, 16, 32, 64, 128 -

Table 3: Correspondence between the number of inner steps H and momentum coefficient µdiloco

in DiLoCo and the momentum coefficient µx in GPA. The values of µx were computed using the
expression µx = µ

1/H
diloco, with µdiloco = 0.9 and H as the number of inner steps.

Number of inner steps (DiLoCo) µx (GPA)
1 0.9000
4 0.9740
8 0.9869

16 0.9934
32 0.9967
64 0.9984

128 0.9992
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