Under review as a conference paper at ICLR 2026

SMOOTHING DILOCO WITH PRIMAL AVERAGING FOR
FASTER TRAINING OF LLLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Generalized Primal Averaging (GPA), an extension of Nesterov’s
method in its primal averaging formulation that addresses key limitations of
recent averaging-based optimizers such as DiLoCo and Schedule-Free (SF) in
the non-distributed setting. These two recent algorithmic approaches improve
the performance of base optimizers such as AdamW through different iterate
averaging strategies. Schedule-Free explicitly averages iterates at every step,
while DiLoCo performs implicit averaging by periodically aggregating trajec-
tories, called pseudo-gradients, to update the model parameters. This periodic
averaging introduces a two-loop structure, increasing its memory requirements
and the number of hyperparameters to tune. To address these limitations, GPA
smoothens DiLoCo by averaging iterates at every iteration using two interpola-
tion constants. When applied to language model pre-training, GPA consistently
outperforms DiLLoCo while removing the two-loop structure, simplifying hyperpa-
rameter tuning and reducing memory overhead to a single additional buffer. Fur-
thermore, we prove that for any base optimizer with regret bounded by O(v/T),
where T is the number of iterations, GPA can match or exceed the convergence
guarantee of the original optimizer, depending on the choice of the interpolation
constants.

1 INTRODUCTION

As large language models (LLMs) demonstrate increasingly remarkable capabilities at scale
(Achiam et al. 2023} [Llama Team) [2024; [Liu et al., [2024a), the pre-training phase has become
one of the most expensive stages in the language model training pipeline, often costing hundreds
of millions of dollars per run. This significant investment has driven the development of train-
ing algorithms and optimizers that enhance the efficiency, scalability, and robustness of language
model pre-training. One significant area of research is the design of training algorithms for scal-
able distributed learning. Among these, the DiLoCo algorithm has emerged as the leading practical
approach (Douillard et al.| 2023} [Liu et al.,[2024b; Douillard et al.| 20255 |Charles et al., [2025)).

DiLoCo notably outperforms AdamW, even in non-distributed setups, due to its novel combination
of the Nesterov optimizer with the Lookahead method, also called Step-K Nesterov (Zhang et al.,
2019; Kallusky et al.l [2025)). The method computes a trajectory that accumulates multiple updates
from a base optimizer on an inner set of weights, called the pseudo-gradient, applies Nesterov
momentum on the pseudo-gradients to update an outer set of weights, then resets the inner set
of weights to the current outer weights. In a non-distributed setup, DiLoCo delivers substantial
efficiency gains; for instance, when applied to AdamW on a 160 million parameter language model,
this approach yields speedups up to 34.78%:; see Figure[Ib]

A particularly intriguing behavior of DiLoCo is that its performance improves as the number of
inner steps increases. With each base optimizer step, DiLoCo’s outer weights drift farther from
its inner weights, similar to meta-learning optimizers such as Reptile (Nichol & Schulman, [2018))
and First-Order MAML (Finn et al.l 2017). As a result, updates to the outer weights occur only
at periodic intervals, causing information from the data to be integrated in a discontinuous, choppy
manner rather than smoothly at every iteration. This restriction on information flow to the outer
weights appears unnecessary from an optimization perspective, yet counterintuitively improves its
performance; see Figure

Under review as a conference paper at ICLR 2026

LLama-160M (C4) - Comparison across effective number of inner steps
3.55 T T T T T
-- AdamW Baseline
35 DiLoCo-AdamW | — 40
—&— GPA-AdamW
3.45 - |
2 3.45 30
=2 £
.5 341 — 1@«
= g 20
= 3.35(_——
=
10
3.3 =
3.25| i 0 y s 16 32
L 1 1 L L Effective Number of Inner Steps
14 8 16 32 64 T3DILoColIGPA

Effective Number of Inner Steps

(a) Both GPA and DiLoCo using AdamW as their base opti- (b) Speedup achieved by DiLoCo and GPA
mizer significantly outperform a strong AdamW baseline for in reducing the number of steps to reach
training a 160M parameter Llama model. Notably, increasing AdamW'’s final validation loss, across differ-
the number of inner steps (up to 16) improves the performance ent effective numbers of inner steps. GPA and
of DiLoCo. Unlike DiLoCo, GPA updates the parameters at DiL.oCo attain the highest speedup of 38.24%
every step, but uses a heuristic to choose its interpolation con- and 34.78% respectively for the same interval
stants to match the number of inner steps for DiLoCo. of 16.

Figure 1: Comparison of validation loss and speedup for AdamW, DiLoCo, and GPA.

Concurrently, the Schedule-Free optimizer recently won the AlgoPerf Algorithmic Efficiency chal-
lenge self-tuning track (Dahl et al., [2023} |Defazio et al., [2024). Its core novelty lies in comput-
ing gradients at a point that interpolates between the uniform average of past weights and the cur-
rent weights. Empirically, Schedule-Free matches the performance obtained by using learning rate
schedules without using any schedule explicitly, while providing stronger theoretical last-iterate
convergence guarantees similar to Polyak-Ruppert averaging (Ruppert, |1988; [Polyak, |1990; |Polyak
& Juditsky, [1992).

In this paper, we argue that these two lines of work — DiLoCo and Schedule-Free — are closely related
and can be generalized and improved through a unified framework of primal averaging. Specifically,
our contributions are as follows:

* We propose a generalization of Nesterov’s method in its primal averaging formulation
called Generalized Primal Averaging (GPA), which smooths DiLoCo by incrementally av-
eraging iterates at every step.

* In contrast to DiLoCo, GPA eliminates the two-loop structure, thereby requiring only a
single additional buffer with less hyperparameters to tune. The method also demonstrates
more stable training behavior than DiL.oCo.

* Our experiments demonstrate that GPA consistently outperforms non-distributed DiL.oCo
and AdamW on dense 160 million and 1 billion parameter language models. This is further
validated on the ImageNet ViT workload.

* We also provide a theoretical justification for GPA through convergence guarantees that
demonstrate improved convergence over the base optimizer under some circumstances.

2 BACKGROUND

We frame language model pre-training as the expected risk minimization problem
min F(z) = Eewp [f (25 6)] (D

z€R"
where ¢ ~ D is drawn from an underlying stationary data distribution D. We assume that each
optimizer step has access to the stochastic minibatch gradient g(z(!); £()) € 9f(2(®); ¢(®)) evaluated
at each iteration ¢ on a minibatch of data £(*), over a total of T steps

"We assume that f is convex for the convergence analysis, but we verify its performance on non-convex,
possibly non-smooth functions.

Under review as a conference paper at ICLR 2026

We also assume that the base optimizer is of the form z(*+1) = 2(*) 1+ 4(1)q(®) with learning rate
7® > 0 and search direction d(*) € R™. The search direction is most commonly defined as
d = —H®m® where m(Y) € R™ is a gradient estimator, and H® € R™*™ is a symmetric
positive definite preconditioner matrix. This includes popular methods such as SGD, Adam, Sham-
poo, SOAP, AdEMAMix, or Muon for different choices of m® and H® (Robbins & Monro, 1951}
Kingma & Ba, 2014; (Gupta et al., 2018; [Loshchilov & Hutter, 2019; |Anil et al.l 2020; |Shi et al.,
2023} |Vyas et al., 2024} [Jordan et al.,[2024; Pagliardini et al.| [2025; [Eschenhagen et al., 2025)).

2.1 DIFFERENT FORMULATIONS OF NESTEROV MOMENTUM

Nesterov momentum has played a critical role in optimization for deep learning (Sutskever et al.,
2013). Despite its importance, there is still substantial confusion in the literature regarding Nes-
terov’s formulation, as it can be written in at least seven different ways (Defaziol 2019). These
formulations are equivalent in the sense that a direct mapping exists between them, but they may not
return the same iterate.

For instance, Nesterov’s method was popularized for deep learning in Sutskever’s formulation
(Sutskever et al.,2013)), which presents the algorithm as:

B — bt — 40 (0 bt g0y,

2D — 0 40, @

where 11 > 0 is the momentum hyperparameter and b*) € R” is the momentum buffer initialized
at b = 0. An alternative formulation, which we call the modern formulation, is used by software
libraries such as PyTorchE] and JA)ﬂ due to its ease of use:

b® = b= 4 g (2B M),
2D = 20 O [p® 4 g(2®; D))

In both formulations, we maintain a momentum buffer that averages the gradients seen throughout
the training process. However, unlike Sutskever’s formulation (equation , the modern formulation
(equation i uses the iterate 2(*) directly for the gradient computation, rather than the ancillary point
z® 4+ b1 simplifying its practical implementation. If both formulations are run side-by-side
with the same seed, they will evaluate gradients at exactly the same points, but their validation losses
at iterates z(*) for each method will differ.

3)

Our approach instead builds upon a third form, which we call the primal averaging formulation:
y® = pz® 4 (1-— u)z(t),
L) — () _ y(t)g(y(t);f(t)), 4)
2D = e ® 4 (1—p) L (+1)

with i € [0, 1). The first mention of this three-sequence form that we are aware of is by|Lan/(2012),
although it was only studied under a time-varying .

)

Unlike the Sutskever and modern formulations framed in equations [2| and [3] the primal averaging
formulation in equation [] explicitly names two iterate sequences: a sequence where the gradients
(or, more generally, the search directions) are computed at, i.e., the gradient computation sequence
{yM1T_ |, as well as another sequence used for model evaluation that accumulates a running average
of updated iterates {z("'}7_,, i.e., the model evaluation sequence {x™}_,. Since y*) interpolates
the smoothed sequence z(*) and unsmoothed sequence z(*), it increases the contribution of the gra-
dient update to y(*) compared to z(*). This explicit formulation is convenient for implementation
and theoretical analysis, and naturally leads to a view of acceleration as built upon iterate averaging,
rather than from the physics-inspired intuition of gradient averaging behind momentum that is more
commonly introduced.

We summarize the relationship between the modern and primal averaging formulations in Proposi-
tion [Tl below.

Zhttps://docs.pytorch.org/docs/2.8/generated/torch.optim.SGD.html
*https://optax.readthedocs.io/en/latest/api/optimizers. html#optax.sgd

https://docs.pytorch.org/docs/2.8/generated/torch.optim.SGD.html
https://optax.readthedocs.io/en/latest/api/optimizers.html#optax.sgd

Under review as a conference paper at ICLR 2026

Proposition 1. Given fixed learning rates Yprimal, Ymodern > 0, Nesterov’s primal averaging for-

mulation (equation[d)) is equivalent to Nesterov’s modern formulation (equation[3)) in the sense that
1

©) =g and b") = (CC(t) 20D)) &)

yprimal modern modern (1 - 'u) Yprimal primal ~ “primal
prima.

when Hprimal = Hmodern = M and (]- - /4L) Yprimal = Ymodern-

The proof of this simple statement is rather technical, so we defer it to Appendix |D} Similar formu-
lations and equivalences can be derived for Polyak momentum (Polyakl, (1964} |Defaziol 2020} Ziyin
et al.} [2020); see Appendix [B]

Remark. It is important to acknowledge that the equivalence between the primal averaging and
modern formulations of Nesterov momentum holds only when the learning rates are constant. When
learning rate schedules are introduced, achieving this equivalence would require the momentum
parameter to vary with each iteration. Furthermore, the restriction on the choice of p differs between
the modern and primal averaging formulations. These different interpretations based on gradient
averaging versus iterate averaging produce differing perspectives for hyperparameter tuning, which
can have a significant impact on the algorithm’s practical performance.

2.2 NON-DISTRIBUTED DILOCO AND ITS WEAKNESSES

DiLoCo was originally introduced as a distributed algorithm for cross-datacenter training (Douillard
et al.| 2023)). In the non-distributed setup, it computes multiple inner steps of the base optimizer on
the inner weights, then applies Nesterov (equation [3)) on the pseudo-gradient, the difference between
the previous and updated inner model weights, to the outer weights. The inner weights are then reset
to the outer weights.

DiLoCo requires storing two additional optimizer states of the same shape as the model parameters:
the momentum buffer b(*) and the current model parameters z(*) (also known as the outer weights).
DiLoCo’s handling of fast inner weights and slow outer weights can be interpreted as a modified
Lookahead method that applies Nesterov momentum to the outer weight updates (Zhang et al.,
2019). The method was recently analyzed in |[Khaled et al.| (2025), and demonstrated significant
compute factor gains in the non-distributed setting in |Kallusky et al.| (2025).

A simplified version of non-distributed DiLoCo with H inner steps of the base optimizer can be
described as:

p® =2® — BaseoptIteration(z?; {fy(j)}le, H)
b® = ppt= 4 p® (6)
2D = 2O _ F[up® 4 p®)],

where v > 0 is the outer learning rate and BaseOptIteration applies H iterations of the
base optimizer to the iterate z(*) with inner learning rates {’y(j) H . While DiLoCo originally
introduced AdamW as the base optimizer, DiLoCo has been generafized to other optimizers such as
Muon (Thérien et al., 2025). A complete description of the algorithm is provided in Appendix
As noted in [Kallusky et al.| (2025)), applying Nesterov on the pseudo-gradient with multiple base
optimizer steps is capable of surpassing the performance of the base optimizer alone, which explains
DiLoCo’s ability to match the synchronous baseline, such as AdamW, in the multi-worker setting.

Weaknesses in DiLoCo’s hierarchical framework. However, this two-level structure is undesir-
able. From an algorithmic perspective, one would prefer to average iterates on-the-fly, as opposed
to averaging trajectories that implicitly contain multiple iterations of the base optimizer. From the
users’ perspective, the two-level structure introduces an additional copy of the model weights re-
quired to compute the pseudo-gradient, and introduces additional hyperparameters to tune, e.g., the
inner and outer learning rates, momentum, and number of inner steps. Lastly, from the distributed
training perspective, DiLoCo couples the number of inner steps as a hyperparameter for both local
SGD as well as for the modified Nesterov algorithm, causing the algorithm’s performance to counter-
intuitively improve as the number of base optimizer steps increases. One would instead expect that
communicating more often should always be beneficial. These challenges motivate the development
of a new algorithm that removes the two-level structure while offering a separate hyperparameter
that can smoothly average the observed iterates at every iteration.

Under review as a conference paper at ICLR 2026

2.3 SCHEDULE-FREE LEARNING
In parallel, Schedule-Free learning (SF) (Defazio et al.| 2024) was recently proposed as a wrapper
to any base optimizer using a variant of the primal averaging formulation of Nesterov’s method

(equation) for hyperparameter-free learning:

y® = pe® 4 (1 =)2 ®

2 = 20 _ gy @) %)
t

@+ _ b @ (_7> (t+1)

x r lx + P z .

Originally designed to eliminate the need for manually specified learning rate schedules, Schedule-
Free has demonstrated the surprising ability to not only match, but even surpass the practical per-
formance of the original base optimizer. This is done by decoupling the momentum hyperparameter
used in the z(*) and y(*) sequences, unlike the standard primal averaging formulation of Nesterov
(equation). Through the choice of y, the method interpolates between uniform Polyak-Ruppert
averaging and stochastic primal averaging (Ruppertl |1988; |Polyakl |1990; [Tao et al.,2018)).

Ignoring the hyperparameter-free learning problem, one could alternatively replace uniform averag-
ing with exponential moving averaging of the iterates, which is commonly used in practice (Morales-
Brotons et al.,[2024). This alternative suggests a different generalization of Nesterov momentum that
may offer the potential flexibility necessary to reproduce DiLLoCo’s convergence gains without the
two-level structure.

3 GENERALIZED PRIMAL AVERAGING (GPA)

By decoupling the constants for the model evaluation and gradient computation sequences in Nes-
terov’s primal averaging formulation (equation[4)) and leveraging the observation of using exponen-
tial moving averaging in place of uniform averaging in Schedule-Free (equation[7), we introduce the
Generalized Primal Averaging (GPA) framework:

YO = 1,2 ® 4 (1= py)2®
D) () 0 g0) ®)
2D = e ® (1 —) 2D,

Here, p1, € [0,1) and p,, € [0,1] are independent hyperparameters that separately control the de-
gree of interpolation used to maintain the model evaluation sequence z(*) and gradient computation
sequence y*). The additional hyperparameter 1, serves as a smoothening or exponential moving
average parameter that replaces Polyak-Ruppert averaging in Schedule-Free, while j1,, controls the
amount of information flow into y*). The complete pseudocode for a general base optimizer is
provided in Algorithm [T}

Unlike the modern formulation of Nesterov momentum (equation [3) or DiLoCo (equation [6) built
on (pseudo-)gradient averaging, GPA is defined based on the primal or iterate averaging framework.
We argue that this provides a more meaningful characterization of the method. For example, the pri-
mal averaging interpretation naturally extends to other search directions by replacing —g(y(); £®)
with the search direction d*) evaluated at 3y(*). This extension is not intuitive from the gradient av-
eraging perspective, as it would translate to averaging search directions (with potentially different,
evolving preconditioners) in the momentum buffer.

Learning rate schedules. By replacing Polyak-Ruppert averaging with exponential moving aver-
aging, GPA is not inherently schedule-free and requires the use of a learning rate schedule. To see
why, observe that Polyak averaging places increasingly less weight 1/(¢ + 1) on the most recent
iterate 2(**1), which plays a similar role to learning rate scheduling (Sandler et al., 2023; Defazio
et al., 2024). GPA instead places a constant weight 1, on the most recent iterate z(!*1) by leverag-
ing an exponential moving average. This is reflected theoretically in their last-iterate convergence
properties.

Under review as a conference paper at ICLR 2026

Algorithm 1 Generalized Primal Averaging (GPA)

1: Input: Initial iterate (1), learning rate schedule v(*) > 0, weight decay A > 0, interpolation
parameters /i, i, € [0,1), base optimizer BaseOpt.

2: 2(0 =z

3: fort=1,...,T do

4 Yy = p,x® 4+ (1 — p,)2® > Update gradient computation point 3y(*).
5 g® € af(y®; M) > Gradient is evaluated at y(*).
6: d® =Baseopt(g) > Compute base optimizer’s search direction.
7 2t = (1 — (D)2 4 4B > Update z(*) iterate.
8: et = pa® 4 (1 — py,) 20D > Update weighted iterate average x(*).
9: end for

10: Return z(7)

Degenerate cases. The choice of yi, and p, enables GPA to recover different averaging methods.
When 1, = 1, z® = 4® and we recover stochastic primal averaging, or equivalently, LaProp
(Defazio, 2020; Ziyin et al.| 2020); see Appendix When g1, = 0, () and 2V = y*) become
decoupled and we recover exponential moving averaging of the iterates (Morales-Brotons et al.|

2024). When p, = 0, 2 = y® = 2 for any choice of 1, and GPA reverts to the base
optimizer.

Other properties. GPA also retains several desirable properties of the base optimizer for deep
learning. Because (i, pty, € [0, 1], GPA preserves modular norm bounds of the model parame-
ters. Additionally, GPA requires only one extra copy of the model weights for implementation —
specifically, by storing y*) and reconstructing z(*) from y*) and z(*) during evaluation — unlike
DiLoCo, which demands more memory overhead. More details on these properties are provided in

Appendix[C]

3.1 INTERPRETING GPA AS SMOOTHENED DILOCO

As seen in Figure[Ta] increasing the number of inner steps Number of Inner Steps = 8
leads to improved performance for DiLoCo in the non-
distributed setup. However, the underlying reasons for
this behavior are not understood. By examining DiLoCo 2
from the lens of GPA in equation[8]and comparing it with
the more restrictive Nesterov formulation in equation 4 e

we can develop a deeper intuition for DiLoCo’s inner 10 1 2 3 4 5
workings.

Suppose that we increase the number of inner steps in O DL Ol
DiLoCo and want to maintain the same level of smooth- e
ing on the average iterate (). One may attempt to in-
crease £ in Nesterov (equation [d) to decrease the weight
on the current iterate z(**). However, since j controls
both the amount of smoothing in z*) and the amount
of interpolation used to update y*), strictly increasing p Figure 2: Comparison of DiLoCo and
would decrease the recency of information from z®) in GPA’s trajectories on a deterministic
y®) by a factor of ;i2, resulting in significantly different quadratic problem. The outer iterates of
algorithmic behavior. Numerically, we validate that tun- DilLoCo are shown as red points, and the
ing p alone in Nesterov’s primal averaging formulation ipner iterates as thin red lines.

is not sufficient to reach the performance of DiLoCo; see

Appendix [E]

GPA addresses this limitation by decoupling the two roles of u into separate hyperparameters: i,
for the model evaluation sequence and ., for the gradient computation sequence. By controlling
these two interpolation constants independently, we can smooth z(*) similarly without changing the
amount of information introduced into y®. This smoothing is depicted in Figure [2] on a simple

Primal Averaging

Under review as a conference paper at ICLR 2026

deterministic quadratic problem. For a small number of inner steps, the methods closely align, but
for a larger number of inner steps, their behavior diverges.

Tuning GPA from DiLoCo. This intuition provides practical guidelines for converting a tuning for
DiLoCo to GPA. Given an optimal number of inner steps H and momentum parameter y in DiL.oCo,
we observe for GPA that o) = (a0 4 (1 — 1,) ST k2 (HHH=F) Therefore, to match
the coefficient in front of z(*) with DiLoCo, one can set y, = p'/# while keeping Hy ~ . With
commonly used values y = 0.9 and H = 32, we obtain p, ~ 0.9967 and p, ~ 0.9. We leverage

this heuristic to determine an effective number of inner steps used in Figure

Tradeoffs with DiLoCo. GPA not only outperforms DiLoCo, but does so with fewer hyperparame-
ters and lower memory requirements. While DiLoCo requires four hyperparameters, e.g., the inner
and outer learning rate, momentum hyperparameter, and number of inner steps, GPA reduces this to
just three: the learning rate and two momentum parameters. This simplification is possible because
DiLoCo’s practical performance is governed by an effective learning rate that couples the effect
of the inner and outer learning rates (y(*) and 7). On the other hand, GPA requires more FLOPs
per-iteration, while DiLoCo amortizes its additional compute cost across multiple inner steps.

4 EXPERIMENTS

In this section, we assess the effectiveness of GPA on both language model pre-training and
computer vision workloads. For language modeling, we compare against baselines AdamW and
DiLoCo, while for computer vision experiments we compare GPA against AdamW. For both
DiLoCo and GPA, we use AdamW as the base optimizer (DiLoCo-AdamW and GPA-AdamW,
respectively).

4.1 LANGUAGE MODEL PRE-TRAINING

We conduct experiments on two scales of Llama models: (1) 160 million parameters and (2) 1
billion parameters. These are pre-trained on the C4 dataset from scratch (Raffel et al., 2019) using
a token budget of roughly 3.2 billion and 50 billion tokens, respectively (Hoffmann et al.| [2022).
All of our small experiments are conducted on a single machine equipped with eight H1I00 GPUs
(97 GB of memory) while the large scale model experiments utilize two nodes (with a total of 16
GPUs). Comprehensive details on batch size, sequence length, and hyperparameter sweeps can be
found in Appendix[E] Note that the Llama-1B experiments are performed in an overtrained setting.

Table 1: Final validation loss versus effective number of inner steps H for different optimizers on
Llama-160M and Llama-1B models.

Llama-160M Llama-1B
Method H=8 H=16 H=32 H=16 H=32 H=64 H=128
AdamW 3.3561 3.3561 3.3561 2.6886 2.6886 2.6886 2.6886
DiLoCo-AdamW 3.2977 3.2804 3.3037 2.6835 2.6765 2.6755 2.6743
GPA-AdamW 3.2769 3.2595 3.2774 2.6828 2.6722 2.6619 2.6734

Performance across number of inner steps. In Table [T} we provide the final validation loss for
each method for different effective number of inner steps. Consistent with Figure [Ta] GPA-AdamW
supersedes both DiLoCo and AdamW, except when the number of inner steps is 1. Both DiLoCo
and GPA display U-shaped behavior with respect to the number of inner steps, and share a similar
optimal effective number of inner steps, validating our heuristic on the choice of ;..

Convergence behavior. Figure [3| shows the validation loss curves on Llama-160M for AdamW,
DiLoCo-AdamW, and GPA-AdamW for the case where the number of inner steps is 16. In this
case, /i, has been tuned to match the number of inner steps; see Table [3]in Appendix [E] for details.
GPA-AdamW converges faster than both DiLoCo and AdamW throughout the entire training run.
The training curves for GPA-AdamW are also noticeably smoother and more stable compared to the
other methods. Our hyperparameter sweeps reveal that GPA-AdamW can handle higher learning
rates compared to DiLoCo and AdamW, e.g., 5 - 1073,

Under review as a conference paper at ICLR 2026

LLama-160M (C4) - Effective Inner Steps=16

5 T T T T

—_ AdamW (3.356)
DiLoCo-AdamW (3.2804)

— GPA-AdamW (3.2595)

Validation Loss

Steps

Figure 3: Validation loss vs steps for AdamW, DiLoCo, and GPA on Llama-160M.

4.2 VISION TRANSFORMER MODEL TRAINING

To validate our method on a computer vision task, we train a ViT-S/16 model from t imm on Ima-
geNet with data augmentations from the repository (see Figure). We use 8 random seeds for the
runs. Our evaluation in both small batch (4,196) and large batch (16,384) settings indicate that GPA
outperforms AdamW by a clear margin throughout the course of training. For further details on the
hyperparameters used and performance in the large batch setting, see Appendix [E]

ImageNet, 4k batch size ImageNet, 4k batch size

©
S
N

1 — Adamw (79.56) | —— AdamW (1.929)
GPA (79.93) GPA (1.913)

Validation Accuracy
N
S N 3 & &

Train Loss

IS « o
f
|

w
/
/

/

o
o
~

Figure 4: Comparison of AdamW and GPA on ImageNet ViT-S/16 from t imm with data augmenta-
tions. The optimal configuration for both AdamW and GPA use a learning rate of 0.005 and weight
decay of 0.1.

5 CONVERGENCE THEORY

Using the theoretical developments underpinning Schedule-Free learning, we can derive a conver-
gence bound for GPA given any base optimizer that has a regret bound, using the framework of
online-to-batch conversion (Cesa-Bianchi et al [2004). We will use the Bregman divergence of F'
defined as Br(a,b) = F(a) — F(b) — (VF(b),a — b) for a,b € R™.

Theorem 1. Let F' be a convex function and assume that there exists a minimizer x, that minimizes
F. Let €V ... ¢T) be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates V)| ... 2T) from a base optimizer within the Generalized Primal Averaging framework

Under review as a conference paper at ICLR 2026

(Equation . Then for piz, 1y € [0, 1) and average iterate 1) = % Zthl x®), we have the bound

T
BF@™) - F(o.)] < 7 S BUVFG®), 20 — o) + T2 1B [F) - Fla.)

T
" 1
- ZE[BF(y(t)a 2] - 1_711? ZE[BF(I(t),)
Py 453

T
Pa 1 (t=1) (1)
- —> EB .

1—pi, T [Br(z)]

Corollary 1. Assume that the base optimizer has the regret guarantee Zle E(VEF(y®"), 2 —
z.)] = O(VT). Then:

E[F D) - F(z.)] = O (&) .

Remarks on Theorem [1

* The first term on the right-hand side of the regret bound is the average regret of the base
optimizer. This term captures the convergence rate from the base optimizer.

* The second term has a positive term, which decays at a rate of 1/7, which is typically
faster than the decay of the term in the first row.

* All remaining Bregman divergence terms are negative, and so are potentially beneficial. If
a2 and p,, are chosen such that the negative terms dominate the positive second term, then
GPA will converge faster than the base optimizer.

* The same terms appear in the convergence guarantees for Schedule-Free methods, and
can explain when they may work better. For strongly convex problems, such Bregman
divergences were used to get O(1/T) convergence.

 Unlike the guarantees for Schedule-Free, our convergence bound is for the average iterate.
For best performance, a learning rate schedule should be used and the last iterate returned
(Defazio et al., [2023)).

* Our bound indicates that GPA will be faster than the base optimizer when the objective
function varies nonlinearly between consecutive iterates and between z(*) and y®).

6 CONCLUSION

GPA introduces independent interpolation constants for the gradient computation and model evalu-
ation sequences that yield a flexible generalization of Nesterov momentum. On small-scale dense
models, this flexibility allows GPA to outperform DiLoCo, while removing the complexity of its
two-loop structure, simplifying hyperparameter tuning and reducing memory requirements in non-
distributed settings.

Future work should validate GPA at scale across diverse model architectures and modalities and
explore its compatibility with other base optimizers (e.g., Shampoo, SOAP, Muon) and hyperparam-
eter transfer techniques such as pP (Yang & Hu| 2021} |Yang et al., [2022). Additionally, while our
convergence bound partially explains the empirical results, it is limited to the convex setting and
does not fully characterize when GPA can outperform the base optimizer.

Finally, GPA’s decoupling of parameters also enables new avenues for distributed training. In
DiLoCo, the number of inner steps serves as a coupled hyperparameter for both Lookahead with
Nesterov and local SGD, leading to the undesirable finding that increasing the number of inner steps
can improve convergence — contrary to standard local SGD intuition. GPA introduces a tunable,
continuous smoothing parameter that is independent of the number of local SGD steps, laying a new
foundation for re-designing DiLoCo for cross-regional training.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050-2057, 2004.

Zachary Charles, Gabriel Teston, Lucio Dery, Keith Rush, Nova Fallen, Zachary Garrett, Arthur
Szlam, and Arthur Douillard. Communication-efficient language model training scales reliably
and robustly: Scaling laws for diloco. arXiv preprint arXiv:2503.09799, 2025.

George E. Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, Juhan
Bae, Justin Gilmer, Abel L. Peirson, Bilal Khan, Rohan Anil, Mike Rabbat, Shankar Krishnan,
Daniel Snider, Ehsan Amid, Kongtao Chen, Chris J. Maddison, Rakshith Vasudev, Michal Badura,
Ankush Garg, and Peter Mattson. Benchmarking Neural Network Training Algorithms, 2023.

Aaron Defazio. On the curved geometry of accelerated optimization. Advances in Neural Informa-
tion Processing Systems 33 (NIPS 2019), 2019.

Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules
for non-convex optimization, 2020.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and Ashok
Cutkosky. The road less scheduled. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet,
J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37,
pp- 9974-10007. Curran Associates, Inc., 2024.

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’ Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. DiLoCo: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

Arthur Douillard, Yanislav Donchev, Keith Rush, Satyen Kale, Zachary Charles, Zachary Garrett,
Gabriel Teston, Dave Lacey, Ross Mcllroy, Jiajun Shen, et al. Streaming DiLoCo with overlap-
ping communication: Towards a distributed free lunch. arXiv preprint arXiv:2501.18512, 2025.

Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E Turner, and Hao-Jun Michael Shi.
Purifying shampoo: Investigating shampoo’s heuristics by decomposing its preconditioner. arXiv
preprint arXiv:2506.03595, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126-1135. PMLR, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor op-
timization. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
1842-1850. PMLR, 10-15 Jul 2018. URL https://proceedings.mlr.press/v80/
guptal8a.html.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/\

10

https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Under review as a conference paper at ICLR 2026

Dominik Kallusky, Vinay Rao, Vishal Nandavanam, and Hao-Jun Michael Shi. Snoo: Step-k
nesterov outer optimizer-the surprising effectiveness of nesterov momentum applied to pseudo-
gradients. arXiv preprint arXiv:2510.15830, 2025.

Ahmed Khaled, Satyen Kale, Arthur Douillard, Chi Jin, Rob Fergus, and Manzil Zaheer. Un-
derstanding outer optimizers in local sgd: Learning rates, momentum, and acceleration. arXiv
preprint arXiv:2509.10439, 2025.

D. P. Kingma and Jimmy Ba. Adam: a method for stochastic optimization. In International Confer-
ence on Learning Representations, 2014.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365-397, 2012.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. Advances in Neural Information Processing Systems, 37:
73501-73548, 2024.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. DeepSeek-V3 technical report. arXiv preprint
arXiv:2412.19437, 2024a.

Bo Liu, Rachita Chhaparia, Arthur Douillard, Satyen Kale, Andrei A. Rusu, Jiajun Shen, Arthur
Szlam, and Marc’ Aurelio Ranzato. Asynchronous Local-SGD training for language modeling.
arXiv preprint arXiv:2401.09135, 2024b.

Al @ Meta Llama Team. The Llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkgb6RiCgY7.

Daniel Morales-Brotons, Thijs Vogels, and Hadrien Hendrikx. Exponential moving average of
weights in deep learning: Dynamics and benefits. arXiv preprint arXiv:2411.18704, 2024.

Alex Nichol and John Schulman. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2(3):4, 2018.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The ADEMAMix optimizer: Better, faster,
older. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=7j7b3p5kLY.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025.

Boris Polyak. New stochastic approximation type procedures. Avtomatica i Telemekhanika, 7:98—
107, 01 1990.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. Ussr compu-
tational mathematics and mathematical physics, 4(5):1-17, 1964.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM journal on control and optimization, 30(4):838-855, 1992.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400407, 1951.

David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
Report, Cornell University, 02 1988.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=jj7b3p5kLY

Under review as a conference paper at ICLR 2026

Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, and Nolan Miller. Training trajectories, mini-
batch losses and the curious role of the learning rate, 2023. URL https://arxiv.org/abs/
2301.02312.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In Proceedings of the 30th International Conference on
Machine Learning, volume 28 of Proceedings of Machine Learning Research. PMLR, 2013.

Wei Tao, Zhisong Pan, Gaowei Wu, and Qing Tao. Primal averaging: A new gradient evaluation
step to attain the optimal individual convergence. IEEE Transactions on Cybernetics, PP:1-11,
10 2018. doi: 10.1109/TCYB.2018.2874332.

Benjamin Thérien, Xiaolong Huang, Irina Rish, and Eugene Belilovsky. MuLoCo: Muon is a
practical inner optimizer for DiLoCo. arXiv preprint arXiv:2505.23725, 2025.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. SOAP: Improving and stabilizing Shampoo using Adam. arXiv
preprint arXiv:2409.11321, 2024.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. In International Conference on Machine Learning, pp. 11727-11737. PMLR, 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E. Hinton. Lookahead optimizer: k steps
forward, 1 step back. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: Separating momentum and adaptivity in
adam. arXiv preprint arXiv:2002.04839, 2020.

12

https://arxiv.org/abs/2301.02312
https://arxiv.org/abs/2301.02312

Under review as a conference paper at ICLR 2026

A LLM USAGE

We used an internal Al assistant for revising the grammar and wording in the paper, and used Gemini
Pro 2.5 to verify our proofs.

B FORMULATIONS OF POLYAK MOMENTUM

Similar to Nesterov momentum, classical or Polyak momentum also have different formulations that
are commonly used in the community. The most commonly implemented formulation (which we
call the modern formulation) is given as:

o) = b= 4 g6, ©
2D = 20 _ Op®)

The method accumulates a momentum buffer similar to Nesterov’s modern formulation (equation@,
but only updates the weights using () as opposed to ub®) + g(z(®); £1).

This formulation can be re-written in the heavy ball formulation
2D = 20 _ 4 Op®) 4 M(fﬂ(t) _ x(tfl))’ (10)
which is also equivalent to the primal averaging formulation (Defazio, |2020)

D)) 0 (0, £(0))

)

2D = p® 4 (1 —) 20D,

)

(an

Remarks.

* The LaProp algorithm (Ziyin et al., 2020) uses the heavy ball formulation to motivate the
generalization of momentum to preconditioned gradient methods by replacing the gradient
g(xz®; €®) with the search direction d*) in equation

* The primal averaging formulations for Polyak momentum (equation[T1)) and Nesterov mo-
mentum (equation |4) differ in their inclusion of the y(*) interpolated sequence, which de-
termines where the gradient is evaluated. This is also reflected in Sutskever’s formulation

(equation [2).

* Polyak momentum can therefore be recovered by setting 11, = 0 in GPA (equation).

C ALGORITHMIC DETAILS

C.1 PSEUDOCODE FOR NON-DISTRIBUTED DILOCO / LOOKAHEAD WITH NESTEROV

We provide a complete description of non-distributed DiLoCo in Algorithm

13

Under review as a conference paper at ICLR 2026

Algorithm 2 Non-Distributed DiLoCo / Lookahead with Nesterov

1: Input: Initial iterate 2(1), inner learning rate schedule (*) > 0, constant outer learning rate
4 > 0, weight decay A > 0, momentum parameter p € [0, 1), base optimizer BaseOpt.

2: 1) = (M > Initialize slow model weights.
3: b0 =0 eR” > Initialize momentum buffer.
4: forstept =1,...,T do

5: Sample mini-batch ¢(*)

6 g € of(a®ie®)

7: d® = BaseOpt (g(t)) > Computes base optimizer’s search direction.
8:) = (1 — 4O \)2® + 4B g® » Updates inner model weights (with weight decay).

9: if t mod H = 0 then

10: pt) = (1) — g(t+1) > Pseudo-gradient computation.
11: bt = b 4 p(t) > Accumulates outer momentum.
12: D =30 — 5 [pub® 4 pM)] > Nesterov-style parameter update.
13: gD = g(t+1) > Re-initialize inner model weights.
14: else

15: FHD = 7

16: b+ = p(®)

17: end if

18: end for

19: Returns: 7(T)

C.2 MEMORY-EFFICIENT FORMULATION OF GENERALIZED PRIMAL AVERAGING

The implementation of the original formulation of GPA in equation|[§]requires storing two additional
copies of the model’s parameters during the optimizer step. This is because the gradient computation
occurs on the y(*) sequence, which is computed from the two other sequences z(*) and z(*). To avoid
this additional model copy, we can store y(*) instead, and recover z® from y® and z*) during
evaluation time.

To see how this can be done, we define the memory-efficient formulation of GPA as:

ROBERINOIN (1 _ 1) L0,
Hy Hy

Y =y (1= p12)2® = (1= oy)y Vg (D5 €0),

A (0 _ 00, ¢,

12)

This reformulation is valid only when p,, > 0. In the y® update, the first term can be interpreted as

interpolating y(*) towards z(*). The second term is a correction term that applies a dampened update
(®)

on y'*.

Note that this formulation does not require the computation of z:(*) except when necessary. There-
fore, our implementation enables a training and evaluation mode similar to neural network modules
like batch normalization that enables us to compute () from y(*) and vice-versa. Specifically, when
switching from training to evaluation mode, we can compute z* from y(*) and z® by:

RO U (1 _ 1) 0
Hy Hy

Similarly, when switching from evaluation to training mode, we can recover y*) from z® and z(*)
by:

Y = uyl’(t) +(1— uy)z(t).
A proof of the equivalence of these two formulations is provided in Appendix [D] The complete

pseudocode for arbitrary base optimizers are provided in Algorithm 3]

14

Under review as a conference paper at ICLR 2026

Algorithm 3 Memory-Efficient Generalized Primal Averaging (GPA)

1: Input: Initial iterate y(), learning rate schedule v(*) > 0, weight decay A\ > 0, interpolation
parameters /i, it € [0,1), base optimizer BaseOpt.
2 = 4D
fort=1,....,T do
gt e af(yM:e®)
d® = Baseopt (¢®)
Y = pay® 4+ (1= pa)2® + 9D =) (dP 4+ A20)
2t = (1 — (D)) 2(0) — 4B)
end for

Returns: z(7) = iy(T) + (1 - i) 2(T),

YRR RN

C.3 COMPATIBILITY WITH MODULAR NORM THEORY

Recent work on Muon and similar methods have built on modular norm theory, which suggests
that the design of optimization methods for deep learning should constrain the modular norm of the
model parameters in order to enable hyperparameter transferability and bounded Lipschitz constants
(Large et al., |2024} Jordan et al.,|2024; |Pethick et al.|[2025)). Here, we argue that GPA, by definition,
preserves these norm constraints.

To see this, assume that d*) is the search direction for a single parameter that it is constrained with
respect to some norm, i.e., ||d(t) || < M for some constant M > 0. (Typically, we assume it is the
RMS-to-RMS norm or similar.) We can preserve these norm constraints on the iterates produced by
GPA since:
ly @1 < pyllz)+ (1 =)27

|20 < (1= @)1+ 7O

2V < ol ®) 4 (1= i) 20D
Since fiz, p1, € [0,1], we can see that if max {||z®|, [|[y®|, 2|} < M’ for M' > 0, then

max { ||z, |y D, 2D} < (1 My)M’ +~+® M, which is the same bound we would
obtain for the base optimizer.

D PROOFS

D.1 EQUIVALENCE BETWEEN NESTEROV’S FORMULATIONS

Proposition 2. Given fixed learning rates Yprimal, Ymodern > 0, Nesterov’s primal averaging for-
mulation (equationH)) is equivalent to Nesterov’s modern formulation (equation[3)) in the sense that

O O g p® =1 (:c(“ —x(t+1)> (13)

yprimal modern modern (1 _ 'u) Yorimal primal primal
prima.

when Hprimal = Mmodern = M and (1 - /1’) Yprimal = Ymodern-

Proof. We can prove this by induction. For simplicity of notation, we will use z,, = Tmodern and
Tp = Tprimal and similar for all variables.

For the base case, note that the initializations zg(,l) = x,(f) =zl are equal. Therefore,
upt = par) + (1=)z =l (14)

15

Under review as a conference paper at ICLR 2026

as desired. In addition, since b(l) ub(o) + g(an 1) €W = g(z Q)) we can see that:
2z :131()2) =(1—pa! () _(1—)21(71)

=u—ux“>)
= (1= w) (@) — 2 + gy eM))
= (1 — wypg(y?; 6(”)

The base case for the momentum buffer bﬁ,{) follows from rearranging the equation with equation
b = by + g(ali); €D) = g(af) €M),

For the inductive step, assume that equation [I3]holds for ¢. Then from the inductive hypothesis, we
can show that:

2D = 2O oy [1b® + g(2D); 0]
1
_ 0 (1 { < (1) _ g (t+1) > (1), (t)}
_y T €T + gy 16
o i [\ e, o)) el

=y — p(al) — 20y — (1= gy 6. ()

From the primal averaging form in equation[d] we can derive that:

2D = pa® + (1 - p){t+

and observing that

P
=) + (1= (L0 — g€
=) = (L=) wy(y”;€"). (16)
Rearranging equation[T6] we get that:
y$ — 2T = (1= gy €D). (17)
Plugging in equation[T7]into equation [T3] we obtain:
x%‘f‘l) — yét) _ ﬂ(xét) _ xét"rl)) _ (yz()t) _ x;t"rl)) — (1 + M)xét"rl) _ Mxét) (18)
Finally, since x(tﬂ) = (t) +(1- u)z,(,t), (1-— M)z;(,tﬂ) = m](fﬂ) ,uxg) Therefore, to see

(t+1), (t+1)

s equivalence to yy
D = il 4 (1 e

(41) 4 741 _ (0

= P, JTE
=1+t — pa). (19)
Combining equations[I8]and[T9] gives the result.
To prove that b\ ") = (1_107 (a:}(,Hl) g+2)), note that:
B = p(®) 4 (g (D), g(tH1)) = (1_#)7(%5}) _ xétJrl)) +g(yz()t+1);€(t+1)). (20)
P
To get an expression for x(tH) x(t+2), note that:

g™ = paf T 4 (L=) (Y = gyt
= (uaf + (1=) = (1= o (uffH;604Y)

_ y]()t-i-l) _ (_ N)'ng<y t+1);£(t+1))
= (14 @)2it = pzl) — (1 = p)ypg(yl; D), 1)

where equationfollows from equation|19} Therefore, plugging-in equationmto a:](f“) 2(,”2)
gives:

x]()tJrl) B x;}t+2) _

—p(a{TD — 20 + (1 —) gyl €. (22)

16

Under review as a conference paper at ICLR 2026

The result follows from expanding equation [20]as:

1
bl = A= {*#(:L}(f“) —)+ (1= w)ypg(ust; 600)
p
1 t+1 t+2
BT

D.2 EQUIVALENCE BETWEEN GENERALIZED PRIMAL AVERAGING FORMULATIONS

Proposition 3. Let 1, > 0. Then GPA (equation@) is equivalent to the memory-efficient formulation
(equation[I2).

Proof. Note that it is sufficient to show that:

20 — iy(t) + (1 _ 1) 2 (23)
Hy Hy
gD = iy ® (1=)2 ® — (1 = gy)y gy €0, (24)

To prove equation note that we can re-write z(*) as a function of y(t) and 2(Y), i.e., since
y = l/’/yx(t) +(1— ,U/y)z(t)

and p,, > 0, we have that

1

20— o L e Loy (1 _ 1) ()
Hy Hy Hy Hy

To prove equation @ we can re-write equation @ as
Y = gy 2 o (U — S HD) = D — (1 gy)2, (25)

Similarly, by plugging in the original z(**1) update, i.e., 1) = p,z® + (1 — p,)2z, we also
have:

1y = gy (e ® + (1= p12)2) = prapye® + (1 — pg)py 2. (26)
Combining these two equalities in equations 25| and 26| and rearranging, we get:
YD = o, e ® 4 (1 —) 2. 7)

Plugging-in equation and the update 2t = 2(1) — 1) (1) (1)) from equationinto equa-
tion 27} we obtain:

1 1
v = pepy <My(“ + (1 - u> Z(t)> + (1= prapy) (2 = 7D g(yM; ™))
Yy

Yy
= 12y + (1= p12)2 — (1 = prapry)y g(y;€0),

as desired. O

D.3 CONVERGENCE BOUNDS BASED ON ONLINE-TO-BATCH THEORY

Our proofs similarly rely on the online-to-batch conversion theory used in Defazio et al.|(2024)).

Lemma 1. Suppose we define w® as the weighting:

w® = 11 ft=1,
(1= pe) ™t ift > L.

Then the model evaluation sequence ") is equivalent to the weighted average:

t i t : t
00 = Zim @ WDy w® e
Yhiw® Y WD " T

17

Under review as a conference paper at ICLR 2026

with
W= 3t it

Furthermore, ©*) can be expressed as the closed form expression:

t
2O = 1S)50,
s=1

Theorem 2. Let F' be a convex function, and assume that there exists a minimizer ., that minimizes
F. Let €V ... ¢ be a sequence of i.i.d. random variables. Suppose that we are given arbitrary
updates V)| ... 2T) from a base optimizer within the Generalized Primal Averaging framework
(Equation . Then for piz, 1y € [0, 1) and average iterate 1) = % Zthl "), we have the bound

T
E[F(a™) ~ Fa.)] < 7 SO B{VF(®), 20 — 2,)

t=1
po 1 My _
R [F() F(x*)}
S EB(y a0 - ZE% y®)]
1—py T = ’ 1 - uy T

T
1 TZ [Bp(x -1, (t))]
— e T &

Proof. We start with the same analysis as in the Schedule-Free work (Defazio et al.,2024). Notice
that by definition of (%), it holds w™*=1) (z(®) — z(t=1)) = 4®) () — (1)) Therefore,
W F (M) — D (D) — W F(g,)

= WD FED) - FD) + w(FE?) - F(z.))

— w(lrt—l)(<vp(x(t))7x(t) — x(t—1)> — Bp(x(t_l),:c(t))) + w(t)(F(:v(t)) — F(z,))

= w® (VF(x(t)), PO x(t)> — w(lztfl)BF(x(tfl)’ x(t)) + w(t)(F(:C(t)) — F(z)).

Next, we observe that by definition of y(*), it holds z(*) — y(*) =

(y(t) — 2®), and, thus,

<VF(:v(t)), PO x(t)>
= (VF(z) = VF(y"), 2 —) + (VF(y1)), 20 — y1))
+ (VE®),y® —2®)

=< Nyﬂ (VF(x®) = VE@y®),y® — 2®) + F(z,) — Fiy®) — Bp(z.,y) + (VF(y®), 2O — 2,)
My

+ Fy®) = F(2®) = Bp(y®,2®)

< g Be() 4+ By, 2 W) + Pl — F@) — Bry®,a) + (VFE®), 20 —.)
Yy
1

T Be(y,a®) + Fla.) = F@®) + (VF(y®), 20 - a.),

_ Hy) ()
- — BF(Qj Y)_
1—py

1 —py

18

Under review as a conference paper at ICLR 2026

where the inequality step used —Bp(z,,y®) < 0, which follows from convexity of F. Plugging
this back, we obtain

w(l:t)F(m(t)) _ w(l:t—l)F(x(t—l)) _ w(t)F(:c*)

()
< —w® Y pL®)y - T g ® 2Oy 4O (F(z,) — Fz®))
1—py 1 —py
w® <VF(y(t)), PO T,) — w(litfl)BF(x(tfl),x(t)) + w(t)(F(m(t)) — F(x,))
(®
= wO(VEy®), 20 — 2,y - L Buy®,z®)
1—py
wt)NyB (z (t) y(t)) _ w(l:tfl)BF(I(tfl) :E(t)). (28)
11— Iy ’

We may adapt this bound to our setting by using an exponentially increasing weighting sequence,
given by Lemma([T} Using those weights, we have simplified expressions for the following quantities:

,w(l:t) u;tJrl 1
I TR WP T

w(1it=1) _ u;(t—1)+1 e
w® (=)™t L=

(u 1)

wi D — Tand ©o2 — 0,

with a special case for the first iterate

To obtain an average regret bound, we divide Equation 28 mby w®, take expectation, and sum from
1 to T The left-hand side is a telescoping sum, which we can simplify as follows:

> Y IO - R)| - TG
F(zM) — %F(x(l)) + ﬁ iE[()] — % TZ:_lE[F(a:(t))] — TF(x,)
= P -) ¢ L BR) TZ (= - 725) BF) - 77 (e
= F(z) - ﬁfr(gg(”) + ﬁE[F(x(T)” + jz__;l (1 fﬂm - 1“u> E[F(z\)] = TF(x.)
= 7 EE) + B iE[F(w(”)] ~TF(z.).

Plugging-in this simplified expression, moving the extra F(z(!)) — F(2(*)) term to the right-hand
side, and simplifying gives:

T T
S E[FE®) - F@.)] < Y E(VEEY), 20 o))+ 2 F [F@) - Fa™)
t=1 t=1 1= pe
ZE Br(y (t) (t) ZE (t),y<t))]
~Hy i “y t=1
u T
Yot=1

19

Under review as a conference paper at ICLR 2026

We get a bound on the average iterate T = Zthl 2" by dividing by T and applying Jensen’s
inequality:

T
1 1
Tr) — — ®)y L) _ Pz~ My _ (1)
E[F(#r) — F(a.)] < ZE ;(VF(Z/ R i [PD) = Fa™)
1 1 < T
— LIRS Be(y®,20) - LIRS p(a,)
L=py T 1 L=py T 1
pe 1o«
- —= —EZBF(xt 1, z®)
L=pa T i
Finally, we use F(z,) < F(z(T)) to get the claimed bound. O

Corollary 2. Assume that the base optimizer has regret guarantees 23:1 E[(VF(y®), 28 —

z,)] = O(VT). Then:
1

E[F(zD) - F(z,)] =0 (ﬁ) .

Proof. Note that we can upper bound the inequality in Theorem [I|by ignoring the negative Bregman
divergence terms, i.e.,

BIFGT)) S 1 S EITFOO) 20—} + 72 ZE [F) - Fe)].

The result follows from noting that the first term is O(1/+/T) and the second term is O(1/T). [

E EXPERIMENTAL DETAILS

E.1 COMPARISON BETWEEN GPA AND NESTEROV

In order to validate that DiLoCo’s performance can only be matched or improved upon with de-
coupled interpolation constants in GPA, we test the case where i, = p,, which corresponds
to Nesterov’s primal averaging formulation in equation |4} Here, we apply the same heuristic for
e = p/H and also to fy,- We show the behavior for one particular choice of learning rate 3- 1073,
but observe that the same conclusions can be drawn for other choices as well. This is closely related
to non-distributed DiLoCo with a single inner step.

LLama-160M (C4) - Effective Inner Steps=8

| | | | |
121 --- GPA-AdamW optimal (y = 3e — 3, p1, = 0.8, p, = 0.9869, 3.2771)
— GPA-AdamW (y = 3¢ — 3, 1, = 0.9869, j1,. = 0.9869, 5.6814)
" 10 |- n
8
3
g 8f 8
=
=
S .
4 |- -
| | | | |

Steps

Figure 5: Comparison between Nesterov’s primal averaging formulation with coupled constants
Hz = fy and GPA with decoupled constants.

20

Under review as a conference paper at ICLR 2026

In Figure [5] we observe that coupling the interpolation constants is sub-optimal, and decoupling
these coefficients is indeed necessary for optimal performance from GPA.

E.2 ADDITIONAL VALIDATION LOSS CURVES FOR DIFFERENT EFFECTIVE NUMBER OF
INNER STEPS

In Figures [6] and [7, we provide additional validation loss curves for the cases where the effective
number of inner steps equals 8 or 32, respectively. The results are generally consistent with the case
where the number of inner steps is equal to 16 in Figure[3] When the effective number of inner steps
is 32, we observe that AdamW outperforms DiLLoCo for approximately the first 2,000 steps.

LLama-160M (C4) - Effective Tnner Steps=8

T T

—_ AdamW (3.356)
DiLoCo-AdamW (3.2977)

— GPA-AdamW (3.2769)

Validation Loss

| | | | |
1k 2k 4k 8k 12k
Steps

Figure 6: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 8.

LLama-160M (C4) - Effective Inner Steps=32

T T

— AdamW (3.356)
DiLoCo-AdamW (3.3037)

— GPA-AdamW (3.2796)

Validation Loss

Steps

Figure 7: Validation loss versus steps for GPA, DiLoCo and AdamW when the effective number of
inner steps equals 32.

E.3 HYPERPARAMETER SWEEPS FOR LLAMA-160M

Training setup. We evaluate AdamW, DiLoCo-AdamW, and GPA-AdamW by pre-training the 160
million parameter Llama 3 model on the C4 dataset from scratch (Raffel et al., 2019). We follow the
Chinchilla-optimal token budget of roughly 3.2 billion tokens (Hoffmann et al., 2022). All of our
experiments are conducted on a single machine equipped with eight HI00 GPUs (97GB memory).
We use a batch size of 128 sequences with a sequence length of 2048 tokens, resulting in a total batch
size of about 262,144 tokens. A summary of the hyperparameter sweeps are provided in Table

Hyperparameter tuning strategy.

¢ For AdamW, we fix (£1, 32) = (0.9,0.999) and € = 10~%, and sweep the learning rate
from 5 - 10~° through 3 - 1073,

* For DiLoCo-AdamW, we fix the inner optimizer’s hyperparameters to AdamW’s optimal
hyperparameters, and sweep the outer learning rate from [0.25, 1.0] and the outer momen-
tum from [0.7,0.99]. We also sweep through the number of inner steps from [1, 128] with
powers of 2.

21

Under review as a conference paper at ICLR 2026

* For GPA-AdamW, we use the optimal AdamW hyperparameters, and sweep 1, based on
the number of inner steps in DiLoCo (see Section . We sweep (i, over a fine granular
range from [0.8,0.999]. We also increased the learning rate when possible.

All runs use a learning rate schedule that applies linear warmup through the initial 10% of training,
then cosine decay through the rest of training to 1% of the specified learning rate. By default, we
apply gradient clipping, with a clipping factor of 1.0; weight decay is also fixed to 0.1. A summary
of the hyperparameter sweeps are provided in Table 2]in Appendix [E]

Summary of hyperparameter sweeps. We summarize the hyperparameter sweeps used in our
experiments in Table 2] In Table[3] we provide a table of conversions from optimal choices of i and
H in DiLoCo to GPA’s choice of .

Table 2: Summary of hyperparameter sweeps used in the experiments.

Hyperparameter AdamW DiLoCo-AdamW GPA-AdamW

Batch size 262K tokens 262K tokens 262K tokens

Sequence length 2048 2048 2048

Weight decay 0.1 0.1 0.1

Total training tokens 3.2B 3.2B 3.2B

Total training steps 12208 12208 12208

Inner optimizer AdamW AdamW GPA-AdamW

Inner optimizer Ir Se-5, le-4, 2e-4, 3e-4, 5e-4, Se-4, 7e-4, le-3, 3e-3, 5e-3, Se-4, 7e-4, le-3, 3e-3, 5e-3,

Te-4, 1e-3, 3e-3 8e-3, le-2, 3e-2 8e-3, le-2, 3e-2

Inner Adam (31 0.9 0.9 0.5,0.7,0.9

Inner Adam S32 0.999 0.999 0.999

Inner Adam e 1078 1078 1078

‘Warmup fraction 10% 10% 10%

Learning rate schedule cosine cosine cosine

Learning rate min fraction % 0.01 0.01 0.01

GPA coeff ji, - - 0.8, 0.9, 0.95, 0.9740, 0.9869,
0.99, 0.9913, 0.9934,
0.9956,0.9967, 0.9978,
0.9984, 0.9989, 0.9992

GPA coeff (1, - - 0.9, 0.9740, 0.9869, 0.9934,
0.9967, 0.9984, 0.9992

Outer optimizer - Nesterov -

Outer Ir -
Outer momentum -

0.25,0.5,0.75, 1.0 -
0.7, 0.9, 0.95, 0.9913, 0.9967, -
0.9984, 0.9989, 0.9992

Communication frequency H - 1, 8,16, 32, 64, 128 -

Table 3: Correspondence between the number of inner steps H and momentum coefficient fi4iioco
in DiLoCo and the momentum coefficient y,, in GPA. The values of u, were computed using the

expression i, = u(lii/lfco, with ftdiloco = 0.9 and H as the number of inner steps.

Number of inner steps (DiLoCo) u, (GPA)
1 0.9000
4 0.9740
8 0.9869
16 0.9934
32 0.9967
64 0.9984
128 0.9992

E.4 HYPERPARAMETER SWEEPS FOR LLAMA-1B

Training setup. We use the same dataset as in the smaller Llama model, but train longer for 50
billion tokens. To incorporate the larger workload, we utilize two machines (total of 16 H100 GPUs)

22

Under review as a conference paper at ICLR 2026

for each experiment, with an increased global batch size of 256 sequences with a sequence length of
2048 tokens, resulting in a total batch size of about 524,288 tokens.

Hyperparameter tuning strategy.

* For AdamW, we fix (81, 52) = (0.975,0.95) since these were found to be the optimal
values for this model following a sweep across a wide grid. We set ¢ = 108, and sweep
the learning rate from 3 - 10~* through 8 - 1073,

* For DiLoCo-AdamW, we tested two sets of beta values: the tuned configuration used by
the AdamW baseline (31, f2) = (0.975,0.95) and another commonly used default from
the recent work on DiLoCo (1, 82) = (0.9,0.95) (Kallusky et al.l 2025). The rest of the
AdamW hyperparameters remain the same as the AdamW baseline. We sweep the outer
learning rate in {0.75,0.95} and the outer momentum in {0.25,0.7,0.9}. We tuned the
learning rate in {3-107%,8-10*}. (We found even larger learning rates to be unstable for
DiLoCo.) We also sweep through the number of inner steps in {8, 16, 32, 64, 128}.

* For GPA-AdamW, we provide the same two sets of beta values used for DiLoCo and keep
the rest of the AdamW hyperparameter identical as the baselines. We sweep 1, based on
the number of inner steps in DiLoCo (see Table [3) corresponding to {8, 16, 32, 64, 128}.
We tune 1, in {0.8,0.9} since these were found to be more or less robust values based on
several GPA runs. We tuned the learning rate in {3-107%,8-107%,1-1073,3-1073,5-1073}.

E.5 HYPERPARAMETER SWEEPS FOR VIT IMAGENET EXPERIMENTS

We pre-train the vit_small patchl6.224.augreg_in21k (ViT-S/16) model from t imm on
resolution 224, without fine-tuning it to the test resolution. We consider two settings based on the
value of batch size: smaller batch size 4,096 and a larger value of 16,384. We train for 300 epochs
in the smaller batch size regime, and for 200 epochs in the larger batch size regime. We tuned
the methods separately in both settings, using the average over 2 random seeds to select the best
parameters and then run the best-performing selection on 8 random seeds in total. For all methods,
we used gradient clipping with norm 1, and warmed-up the learning rate linearly over the first 5
epochs and then decayed with cosine scheduler to x0.001 of the peak learning rate.

For data augmentations, we use RandAugment with strategy “rand-m15-n2”, cutmix o = 1, mixup
with probability 0.5 and o« = 0.8, no dropout, and no label smoothing. This setup has been reported
to provide high validation accuracy values. For privacy reasons, we use the version of ImageNet-1k
with faces blurred.

Hyperparameter tuning strategy.

s For AdamW, we fix (£1, 82) = (0.9,0.999) and € = 10~8, which is standard for ImageNet
training. We tuned learning rate across values {0.001,0.003,0.005,0.007} and weight
decay across values {0.05,0.1,0.15,0.2}.

¢ For GPA-AdamW, we fix (81, 32) = (0.8,0.999) and ¢ = 10~%. We tuned weight de-
cay and learning across the same values as for AdamW. We tested values of u, from
{0.1,0.2,0.3,0.5,0.8,0.9}. While the difference between them is less than 0.5% vali-
dation accuracy, we found p,, = 0.8 to give the best results on 16,384 batch size runs and
ty = 0.1 to give the best results on 4,096 batch size.

The optimal learning rate and weight decay values were equal 0.005 and 0.1 for both methods in
both settings.

23

Under review as a conference paper at ICLR 2026

o ImageNet, 16k batch size ImageNet, 16k batch size
7
— AdamW (76.96) 71 — AdamW (2.287)
76 GPA (76.06) GPA (1.983)
6
274
e
] a5
& 724 g
s <
2 € 4
8 704 =
s
68 3
66 4 24

0 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

Figure 8: Comparison of AdamW and GPA on ImageNet ViT-S/16 from t imm with data augmen-
tations with a 16,384 batch size.

24

	Introduction
	Background
	Different Formulations of Nesterov Momentum
	Non-Distributed DiLoCo and its Weaknesses
	Schedule-Free Learning

	Generalized Primal Averaging (GPA)
	Interpreting GPA as Smoothened DiLoCo

	Experiments
	Language Model Pre-Training
	Vision Transformer Model Training

	Convergence Theory
	Conclusion
	LLM Usage
	Formulations of Polyak Momentum
	Algorithmic Details
	Pseudocode for Non-Distributed DiLoCo / Lookahead with Nesterov
	Memory-Efficient Formulation of Generalized Primal Averaging
	Compatibility with Modular Norm Theory

	Proofs
	Equivalence Between Nesterov's Formulations
	Equivalence Between Generalized Primal Averaging Formulations
	Convergence Bounds Based On Online-to-Batch Theory

	Experimental Details
	Comparison Between GPA and Nesterov
	Additional Validation Loss Curves for Different Effective Number of Inner Steps
	Hyperparameter Sweeps for Llama-160M
	Hyperparameter Sweeps for Llama-1B
	Hyperparameter Sweeps for ViT ImageNet Experiments

