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ABSTRACT

Visually localizing an image, i.e., estimating its camera pose, requires building a
scene representation that serves as a visual map. The representation we choose has
direct consequences towards the practicability of our system. Even when starting
from mapping images with known camera poses, state-of-the-art approaches still
require hours of mapping time in the worst case, and several minutes in the best.
This work raises the question whether we can achieve competitive accuracy much
faster. We introduce FastForward, a method that creates a map representation
and relocalizes a query image on-the-fly in a single feed-forward pass. At the
core, we represent multiple mapping images as a collection of features anchored
in 3D space. FastForward utilizes these mapping features to predict image-to-
scene correspondences for the query image, enabling the estimation of its camera
pose. We couple FastForward with image retrieval and achieve state-of-the-art
accuracy when compared to other approaches with minimal map preparation time.
Furthermore, FastForward demonstrates robust generalization to unseen domains,
including challenging large-scale outdoor environments.

1 INTRODUCTION

Humans understand complex 3D scenes in seconds. With a glance at a few images of any environ-
ment, we can form a mental map and reckon where each image was taken. This inherent ability
to localize in a scene allows us to navigate and understand our surroundings with ease. However,
replicating this intuitive process within an algorithm, i.e., a visual localizer, is challenging. Visual
localizers provide camera location and orientation enabling real-time applications like navigation or
Augmented Reality (AR), but they require more than just a few seconds of looking at the scene to
be able to do it (Brachmann et al., 2023).

One popular family of visual localization approaches requires knowing the structure of the scene,
and therefore, before being able to locate an image in the environment, they build a 3D model of
the scene (Humenberger et al., 2020; Sarlin et al., 2019; Sattler et al., 2016). Such structure-based
localizers find correspondences between 3D scene points and 2D query image points and solve for
the pose using algorithms like PnP-RANSAC (Gao et al., 2003; Fischler & Bolles, 1981). These
methods rely on structure-from-motion pipelines to build the 3D representation of the scene and the
runtime of every scene depends highly on the number of images, ranging from minutes to hours for
a few hundred mapping images (Schonberger & Frahm, 2016).

To address these limitations, scene coordinate regression (SCR) (Li et al., 2020; Brachmann et al.,
2017; 2023) and absolute pose regression (APR) (Kendall & Cipolla, 2017; Shavit et al., 2021;
Chen et al., 2024; 2022) methods optimize a neural network to learn an implicit representation of
the scene, inferring dense scene coordinates (SCR) or absolute poses (APR) from unseen query
images. The mapping time corresponds to the network training time, which has been reduced to
minutes in recent approaches (Brachmann et al., 2023; Chen et al., 2024). They offer accuracy
comparable to structure-based localizers but require dense training coverage and generalize poorly
to unseen areas. Alternatively, relative pose regression approaches (RPR) estimate poses between
query and retrieved images without per-scene training or 3D map preparation (Balntas et al., 2018;
Arnold et al., 2022; Zhou et al., 2020). These approaches are attractive since they significantly
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9 mapping images
Pose error: 18cm, 2.8°

3 mapping images
Pose error: 71cm, 6.4°

1 mapping image
Pose error: 73cm, 6.7°

Query Image

Figure 1: We introduce FastForward, a network that predicts query coordinates in a 3D scene space
relative to a collection of mapping images with known poses. FastForward represents the scene as
a random set of features sampled from mapping images, and returns the estimate for a query w.r.t.
all mapping images in a single feed-forward pass. From left to right, we show how results improve
when FastForward uses an increasing number of mapping images, as returned by image retrieval.
Note that we always sample the same number of mapping features, and hence, FastForward’s query
runtime and GPU memory demand remains roughly constant in all three examples.

reduce the mapping requirements by relying only on images and poses, which are obtainable via
real-time systems, e.g., SLAM (Murai et al., 2025). However, RPR methods generally lack the
accuracy of structure-based or SCR competitors. Other works propose to mitigate the RPR’s low
accuracy by triangulating local point clouds from retrieved images (Sattler et al., 2017; Torii et al.,
2019), however, their post-processing steps result in significantly longer localization run-times than
standard RPR methods.

In this work, driven by the motivation of reducing the overhead of mapping to a minimum, we
propose FastForward, a novel approach that achieves fast mapping and localization through a single
feed-forward pass. FastForward takes inspiration from recent foundation models (Kirillov et al.,
2023; Wang et al., 2024b) and scene representation networks (Jin et al., 2024a; Sitzmann et al.,
2021), which have shown strong performance and outstanding generalization capabilities across
tasks and datasets, and have pushed the boundaries of what we thought was possible just a few years
ago (Leroy et al., 2024; Wu et al., 2024). This success motivates our next question: What is the
minimal map representation that enables accurate and efficient visual localization? We claim that a
collection of image features encoding local visual appearance as well as their 3D locations within
the scene is a powerful and convenient map representation. Our architecture design is inspired
by DUSt3R (Wang et al., 2024b), but instead of taking two images as input, FastForward takes
one query image as input as well as a random sample of features from multiple posed mapping
images. Thereby, we predict accurate query 3D coordinates directly in the map coordinate system,
see Figure 1. Since FastForward has access to a collection of features spanning multiple mapping
images, it avoids the need for computing relative pose estimates between the query and multiple
mapping images, one by one. Different from binocular RPR methods that rely on heuristics for
scale-metric pose estimates (Arnold et al., 2022), FastForward transfers the correct scale directly
from the mapping poses, even enabling it to generalize to scene scales not seen during training.

We summarize our contributions as follows: 1) We demonstrate that a scene representation consist-
ing of only a few hundreds mapping features is sufficient for fast and accurate visual localization.
2) We present FastForward, a simple yet effective architecture that enables localization of an image
relative to a collection of mapping features in a single feed-forward pass. 3) A scene and scale
normalization approach within the architecture that boosts the generalization capability in domains
with different scale ranges for image localization.

2 RELATED WORK

Visual localization methods require knowing the structure of the environment, and hence, before
being able to locate a new query image in the scene, they need to define how they represent the
scene in which they want to localize.
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Structure-based Localization requires building a 3D model of the scene. These models are typi-
cally created by SfM software (Humenberger et al., 2020; Schonberger & Frahm, 2016; Pan et al.,
2024). At localization time, these approaches first establish correspondences between the query im-
age and the pre-built 3D model by keypoint matching (Lowe, 1999; Barroso-Laguna et al., 2019;
2020; Tian et al., 2020; DeTone et al., 2018), and then, solving for the query pose with a robust
estimator (Barath et al., 2019; 2020; Barath & Matas, 2021; Chum & Matas, 2005; Barroso-Laguna
et al., 2023). While these methods can be efficient at inference time (Lindenberger et al., 2023;
Wang et al., 2024c), feature triangulation with SfM can take several hours, or even days, depending
on the number of mapping images.

Scene Coordinate Regression methods regress the 3D coordinates in the scene space for the 2D
pixels of a query image (Shotton et al., 2013). The output and the input to the SCR algorithm
already establish the 2D-3D correspondences. A robust estimator can be applied as in the case of
structure-based localization to compute the query pose. Traditionally, SCR relied on random forest
(Shotton et al., 2013; Valentin et al., 2015; Brachmann et al., 2016; Cavallari et al., 2017; Cavallari
et al., 2019), but in recent years, SCR improved their accuracy by employing convolutional neural
networks (Brachmann & Rother, 2021; Cavallari et al., 2019; Li et al., 2020; Dong et al., 2022).
The map representation of the scene is implicit, and in the case of a neural network, is encoded
in its weights. One traditional limitation of SCR is the time to train such networks. Recently,
ACE (Brachmann et al., 2023) proposed a patch-based training scheme that addressed that issue
reducing the training time to 5 minutes. GLACE (Wang et al., 2024a) improves the accuracy of
ACE in large areas, but it also increases its training time to 25 minutes. NeuMap (Tang et al., 2023)
encodes a scene into a set of map codes and uses a coordinate regressor to estimate the query scene
coordinates. Their regressor network is trained per dataset, and map codes trained per scene, taking
considerable time to optimize. Furthermore, NeuMap requires a pre-built 3D model to initialize
their system. Different from SCR methods, FastForward is pre-trained on a large-scale dataset, and
requires no further scene-specific training.

Relative Pose Regression systems aim at localizing a query image by regressing the relative pose
between the query and the most similar (or top-K) mapping images (Ding et al., 2019; Zhou et al.,
2020; Winkelbauer et al., 2021; Arnold et al., 2022). Adding more mapping images enables more
precise absolute positioning through multi-view triangulation (Laskar et al., 2017; Zhou et al., 2020;
Winkelbauer et al., 2021). An attractive characteristic of RPR methods is that they do not require
any scene-specific training. Our approach shares a core principle with RPR methods: it estimates the
query pose relative to a map representation. However, while RPR methods rely on a single reference
image, we represent the map as a collection of 3D-anchored mapping features.

Semi-generalized Relative Pose Estimation methods compute the absolute pose of a query camera
relative to a generalized camera composed of multiple mapping images with known poses (Bhayani
et al., 2021; Panek et al., 2024; 2025). This formulation allows for the recovery of the absolute trans-
lation scale from additional mapping images. An efficient implementation of this approach is the
E5+1 solver, which utilizes five point correspondences between the query and one mapping image to
estimate the essential matrix, and a single additional correspondence with a second mapping image
to resolve the scale (Zheng & Wu, 2015). Such methods typically rely on RANSAC-wrapped geo-
metric solvers operating on 2D-2D image pair matches rather than exploiting the multi-view struc-
ture and relationships in a single feed-forward pass, leading to lower pose accuracy than FastForward
in unstructured or challenging scenarios.

Foundation Models. Large neural networks have seen an enormous advancement thanks to the
scalability of new architectures. These models, based on transformer networks (Vaswani et al.,
2017), are trained on large-scale datasets, and have proven to have very strong generalization capa-
bilities as well as outstanding performance. One example of these foundation models is DUSt3R
(Wang et al., 2024b), which takes two images as input and addresses different two-view problems
by simplifying them into a single task: the prediction of aligned point maps. The simplicity and
accuracy of DUSt3R have motivated many follow-up works. MASt3R (Leroy et al., 2024) builds
on top of DUSt3R by adding a descriptor head that improves correspondence accuracy through de-
scriptor matching. MASt3R-SfM (Duisterhof et al., 2024) embeds MASt3R into an SfM pipeline,
Stereo4D (Jin et al., 2024b) introduces an extension for dynamic scenes, and Wang & Agapito
(2025); Yang et al. (2025); Elflein et al. (2025); Wang et al. (2025b;a) present modifications to the
original DUSt3R to enable multi-view 3D reconstruction. Viewformer (Kulhánek et al., 2022) uses
a transformer architecture that, given multiple posed images, creates a code representation that can
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Figure 2: FastForward Architecture. FastForward uses a ViT encoder to compute features of the
query, IQ, and the mapping images. To create the map representation M, we randomly sample
N mapping features. Each mapping feature is augmented with a ray embedding that encodes its
camera’s position and viewing direction. Mapping poses are normalized by setting one pose to the
origin and defining the maximum translation in any direction to one. FastForward performs self-
and cross-attention between the query features and the map representation. The query head predicts
the 3D coordinates of the query features in the normalized space. The metric scale is recovered
by applying the scene scale factor (s). The predicted 2D-3D correspondences yield the final query
pose (PQ). During training, a mapping head also predicts 3D coordinates for the mapping features,
providing additional supervision.

be used either for novel view synthesis or image localization. Their work is primarily designed for
the novel view synthesis task and lags behind current localization baselines. Reloc3r (Dong et al.,
2024) recently demonstrated that a symmetric DUSt3R can significantly improve RPR’s accuracy.
However, Reloc3r still relies on two-view relative pose estimates. FastForward leverages a more ro-
bust multi-view scene representation, which allows it to outperform RPR methods and even achieve
competitive or superior accuracy to SCR and structure-based algorithms in certain scenarios.

3 METHOD

Given a database of posed mapping images from a scene, M = {Ik ∈ RH×W×3 | k = 1, ...,K},
our objective is to estimate the position and orientation of a new query image, IQ, with respect
to M. We define the camera pose, PQ, as the rigid transformation that maps coordinates from the
camera space to the scene space. First, we use the images in the database M to define the map
representation, which is fed into a transformer network together with query features to predict query
3D coordinates, as seen in Figure 2. At inference time, we utilize the predicted 3D coordinates to
define 2D-3D correspondences and compute the pose PQ through PnP-RANSAC (Gao et al., 2003;
Fischler & Bolles, 1981).

3.1 MAP REPRESENTATION

We aim to minimize the computational and time requirements for localizing a query image. One
shared characteristic of modern visual localization systems is extracting neural network features
from the mapping images. These features are then utilized to train a specialized neural network
(SCR), triangulate 3D points (SfM), or serve as input to a subsequent network that computes the
relative pose (RPR). Such features are a powerful representation of the scene, but they are also
heavy to process if we were to use all of them directly when localizing a new query image.
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Feature Sampling. Transformer models look at the whole image before updating its features, and
therefore, contrary to previous CNN-based feature extractors, transformers provide features with a
global context. For extracting features, we adopt a ViT encoder (Dosovitskiy et al., 2020), which
tokenizes the images and extracts features F k from Ik. The encoder produces rich features, but
also some redundant features for visual localization because similar areas in the image might not
provide new information. We show that just a few features from the images are enough to represent
the scene M. This is advantageous both during mapping and inference. During mapping, only the
image feature extraction step is required. At inference time, it scales well to a growing number of
mapping images by fixing the size of the map representation N, i.e., the total number of features
we use from the mapping images. Since we do not know which regions of the mapping images are
relevant for a new query, we randomly sample on the set of mapping features as seen in Figure 2.

Scene and Scale Normalization. Scale estimation is an ambiguous problem in 3D computer vi-
sion. When only having access to images, the information is limited to the 2D plane, and the true
distance between the cameras remains unknown (Tateno et al., 2017; Arnold et al., 2022). Multi-
image methods must distill the scale of the scene from the mapping poses to guarantee multi-view
consistency. However, this is challenging when training across multiple datasets that display differ-
ent scale ranges. To help the network generalize to new domains and exploit metric and non-metric
training data, we adopt a simple yet effective scene normalization technique. We normalize the
scene by defining one of the mapping images, I0, as the reference, and transform all other mapping
images such that P̄k = P−1

0 Pk. This places the scene at the origin of the coordinate system. The
network is tasked to predict query coordinates in the normalized scene. Furthermore, as in Guizilini
et al. (2025), we also normalize the scale of the mapping cameras. We compute the scene scale
s as the largest camera translation in any of the spatial coordinates after scene normalization, i.e.,
s = max{|x|, |y|, |z|}Kk , where t = [x, y, z]T is the translation component of the mapping pose P̄k.
We normalize all camera translations such that t̂ = [x/s, y/s, z/s]T . Once the network predicts the
3D coordinates, we multiply them by s to recover the true scale of the scene. In this way, we abstract
the task of learning metric coordinates from the poses and images. As seen in the Appendix C.1,
scale normalization makes the network more robust to scale ranges not seen during training.

Ray Encoding. To inform the network about the origin of each mapping feature fk
ij , we use a ray

encoding that represents its 3D position and orientation in the normalized scene. Specifically, we
use a Fourier encoding (Mildenhall et al., 2021) to tokenize the mapping cameras. Each camera
is parameterized as a ray vector containing the origin t̂k = [x, y, z]T , and its viewing direction
rkij = (KkRk)

−1[uij , vij , 1]
T , where uij , vij represent the center pixel of the feature token fk

ij , Kk

are the camera intrinsics, and t̂k and Rk are the translation and rotation component of the mapping
image Ik. Finally, we use an MLP layer to project the encoding to the same dimension as the feature
vector fk

ij , obtaining the ray encoding Rk
ij ∈ RN×d.

3.2 ARCHITECTURE

Encoder-Decoder. As discussed, we utilize the ViT (Dosovitskiy et al., 2020) architecture to tok-
enize the input images. We initialize the encoder with a pre-trained DUSt3R model (Wang et al.,
2024b) and freeze its weights during training. We process the image tokens through multiple ViT
blocks, composed of self-attention and MLP layers. An image I ∈ RH×W×3 results in a feature
map F ∈ RT×d, where T = H

16 × W
16 and d = 1024. The map representation is generated by sam-

pling N features from the collection of mapping features and fusing them with the ray encodings,
such that FM = {Rn + fn | n = 1, ...,N}. For the decoder, we use ViT blocks initialized from
DUSt3R and fine-tune them during training. The decoder incorporates cross-attention blocks be-
tween the self-attention and the MLP layers. The cross-attention allows the network to reason about
the structure of the scene and its relationship with the query image. This reasoning occurs within
a single forward pass, enabling the map representation to adapt based on the query image features.
We obtain the final query and mapping features as:

F̄
(T×d)
Q = DecoderQ(F

(T×d)
Q , F

(N×d)
M ), and F̄

(N×d)
M = DecoderM (F

(N×d)
M , F

(T×d)
Q ). (1)

Heads. We follow recent works (Wang et al., 2024b; Leroy et al., 2024; Yang et al., 2025) and
use a DPT head (Ranftl et al., 2021) to obtain query 3D coordinates. We observed that adding the
supervision for the mapping 3D coordinates leads to more accurate query predictions. However,
unlike the query 3D points, which need to exploit and capture the spatial structure of the scene,
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the mapping 3D coordinates are primarily used as a supervisory signal during training. Therefore,
we use a single MLP layer as the mapping head. After computing the mapping and query 3D
coordinates, we multiply them by the scale factor s to recover the metric scale of the scene.

3.3 TRAINING

The training objective follows the regression of coordinates in 3D space proposed in (Wang et al.,
2024b; Leroy et al., 2024). We define the regression loss as the Euclidean distance between predicted
(Xi) and ground-truth (X̄i) 3D coordinates as: ℓ Reg = ||Xi− X̄i||. The regression loss for the map-
ping head is constrained to the coordinates corresponding to the sampled features that created the
map representation, while the regression loss for the query head is computed on all pixels with valid
ground-truth depth values. We adopt DUSt3R’s confidence-based loss, which allows the network
to predict lower confidences in regions where predicting 3D coordinates might be challenging or
ambiguous (e.g., sky, or translucent objects). The final training objective is defined as:

ℓ Conf =
∑

v ∈ {Q, M}

∑
i ∈ D

Ciℓ
Reg(v, i)− α log(Ci), (2)

where Ci is the confidence score for pixel i, D refers either to the pixels in the query image or the
map representation, and α is a hyper-parameter controlling the regularization (Wan et al., 2018).
Please refer to Wang et al. (2024b) for further details.

4 EXPERIMENTS

Absolute Pose Estimation. At inference time, we compute the set of 2D-3D correspondences,
which define 2D pixel locations in the query image (IQ) and their corresponding 3D points in the
scene coordinate system defined by the map representation M. We filter correspondences with low
confidence scores (Ci < τ ) and set a maximum of 5,000 correspondences in PnP-RANSAC. Refer
to Appendix A for FastForward’s additional inference, training and datasets details.

Competitors. Inspired by Reloc3r (Dong et al., 2024), we group competing methods into Seen and
Unseen categories. This distinction refers to whether extensive map preparation is required before
a query can be localized. All methods assume that mapping images and their corresponding poses
are available. While some datasets, such as Cambridge (Kendall et al., 2015), require building a
SfM model to obtain these poses, others, like Wayspots (Brachmann et al., 2023), provide them in
real-time via on-device tracking systems. Even with available mapping poses, Seen methods still
require triangulating a scene (structure-based) or training a neural network (SCR). The triangulation
time for structure-based approaches is dataset-specific, ranging from minutes to hours depending
on the number of mapping images, whereas SCR methods can limit their training time to a few
minutes. In contrast, Unseen methods, such as RPR, only require a curated list of nearest-neighbors
for the query image. This image retrieval process can be performed very efficiently using compact
image-level descriptors (Revaud et al., 2019; Arandjelovic et al., 2016), which reduces the mapping
preparation time to a minimum.

4.1 WAYSPOTS DATASET

The Wayspots dataset (Brachmann et al., 2023) is composed of ten scenes, each with two aligned
scans for mapping and localization. It contains small outdoor places of interest, such as sculptures,
signs, or fountains. We compare FastForward against several state-of-the-art visual localization
methods, and, as discussed, we group them into Seen and Unseen categories based on their map
preparation requirements. The Seen group includes SCR methods like ACE (Brachmann et al.,
2023) and GLACE (Wang et al., 2024a). In the Unseen group, we report results for Reloc3r (Dong
et al., 2024) and 2D-2D feature matchers, specifically ALIKED-LightGlue (ALKD-LG) (Zhao et al.,
2023; Lindenberger et al., 2023) and RoMa (Edstedt et al., 2023) paired with the E5+1 solver (Zheng
& Wu, 2015; Panek et al., 2025) from PoseLib (Larsson & contributors, 2020). For ALKD-LG, we
report results when extracting 256 or 1,024 features on 640px images. We omit comparisons against
MASt3R since Wayspots is a subset of the Map-free (Arnold et al., 2022) training set, which was
used to train it. All Unseen methods use the same top-20 nearest-neighbor retrieval system, which
is computed in 3 seconds, requiring the extraction of image-level descriptors every 5 frames with
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Table 1: Median Pose Errors on Wayspots (Brachmann et al., 2023). We provide the median
translation and the average median rotation errors of the dataset. ALKD-LG-1k refers to a configu-
ration that extracts 1,024 keypoints per image. Best results in bold for the Unseen category.

et (m) Cubes Bears Winter Insc. Rock Tend. Map Bench Statue Lawn Avg. er (°) Latency Mapping

Se
en ACE 0.05 0.04 4.76 0.10 0.03 1.63 0.07 0.05 5.50 1.11 1.33 9.08 0.1s 5min

GLACE 0.06 0.03 5.03 0.10 0.03 1.69 0.07 0.06 5.97 1.30 1.43 8.87 0.1s 25min

U
ns

ee
n

E5+1 (ALKD-LG) 0.11 0.07 7.12 0.20 0.03 2.00 0.08 0.10 4.53 1.47 1.57 17.43 0.6s 3s
E5+1 (ALKD-LG-1k) 0.09 0.03 1.17 0.11 0.03 0.94 0.08 0.07 1.47 1.12 0.51 7.74 0.8s 3s

E5+1 (RoMa) 0.09 0.02 0.72 0.09 0.03 0.24 0.09 0.12 6.21 0.10 0.77 4.12 18.0s 3s
Reloc3r 0.32 0.06 5.01 0.13 0.04 0.81 0.08 0.15 5.76 0.69 1.31 2.04 0.6s 3s

FastForward 0.08 0.03 0.47 0.14 0.04 0.15 0.07 0.06 0.54 0.10 0.17 1.75 0.5s 3s

Table 2: Accuracy on Wayspots (Brachmann et al., 2023). We report the accuracy under the
10cm, 10° threshold. FastForward achieves the highest number of acceptable localizations for a
real-world application such as AR (Arnold et al., 2022). Best results in bold for the Unseen group.

10cm, 10°(%) Cubes Bears Winter Insc. Rock Tend. Map Bench Statue Lawn Avg. Storage

Se
en ACE 95.1 80.0 0.7 49.7 100.0 32.9 55.9 67.8 0.0 37.0 51.9 Weights

GLACE 89.6 86.4 0.0 47.9 100.0 37.0 58.3 64.1 0.0 40.4 52.4 Weights

U
ns

ee
n

E5+1 (ALKD-LG) 48.9 63.2 0.0 34.3 92.9 13.3 53.8 51.2 0.0 21.1 37.9 Images
E5+1 (ALKD-LG-1k) 52.5 89.1 2.8 45.7 96.7 37.1 54.2 53.8 0.0 33.2 46.5 Images

RoMa 53.6 98.3 0.7 53.3 99.8 40.8 56.8 43.1 0.2 48.4 49.5 Images
Reloc3r 30.6 72.1 0.0 43.8 99.0 22.9 59.2 32.6 0.0 10.9 37.1 Images

FastForward 67.8 94.8 0.4 31.2 100.0 41.4 56.8 70.1 2.7 48.6 51.4 Images

GeM-AP (Revaud et al., 2019). In contrast, the SCR methods, ACE and GLACE, require 5 and 25
minutes, respectively, to train their scene-specific networks. In FastForward, we sample N = 3, 000
mapping features, corresponding to 20% of the total features in our map representation M.

In Table 1, we see that FastForward excels in translation estimation, reporting a median error of
0.17m, while all competitors show median errors above half a meter. Furthermore, FastForward
obtains the lowest mean median rotation error. FastForward achieves these state-of-the-art results
while reducing the mapping preparation times required by SCR methods and displaying the fastest
localization time in the Unseen group. Table 2 also shows the percentage of query frames under the
10cm, 10° threshold, which determines the acceptability of an estimate for a real-world application
such as AR (Arnold et al., 2022; Barroso-Laguna et al., 2024). FastForward outperforms all Unseen
methods, including Reloc3r, which also adopts DUSt3R’s architecture and was designed for visual
localization. E5+1 with ALKD-LG and RoMa offer strong performance in scenes with good cover-
age but fail when the scene presents challenging conditions, such as far-away or opposite viewpoints,
e.g., Winter or Lawn scenes. Additionally, RoMa’s high latency (18s) is ill-suited for real-time vi-
sual localization systems; therefore, we focus our following analyses on E5+1 (ALKD-LG-1k) given
its good accuracy-latency trade-off. Regarding storage, Unseen methods only require images and
global descriptors, while SCRs store their network weights, e.g., 4MB (ACE), or 9MB (GLACE).

4.2 INDOOR6 DATASET

The Indoor6 dataset (Do et al., 2022) contains six indoor scenes that present challenges like repet-
itive or uncharacteristic areas and significant illumination changes. We also include the results of
MASt3R + Kapture (Leroy et al., 2024; Humenberger et al., 2020), an approach that requires an
initial SfM model and uses MASt3R as a 2D-2D matcher, and a variant of MASt3R that relies di-
rectly in its 3D point and matching heads instead of building a SfM model. Given the smaller scene
area compared to the Wayspots dataset, we build a retrieval system that returns the top-10 mapping
images. We use the same retrieved images for MASt3R approaches, E5+1 (ALKD-LG), Reloc3r,
and FastForward. Besides, we reduce our map representation size to N = 1, 500.

Table 3 (left) presents the median pose errors and the percentage of accepted query frames under
the 10cm, 10° and 20cm, 20° thresholds. FastForward achieves the highest acceptance rates for both
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Table 3: Results for Indoor6 (Do et al., 2022) and RIO10 (Wald et al., 2020). Results on Indoor6
shows that FastForward achieves the highest accuracy among all competitors. In RIO10, MASt3R
and FastForward report the best accuracies. We bold the best results in the Unseen group.

Indoor6 Dataset RIO10 Dataset

et (m) er (°) 10cm, 10° 20cm, 20° Mapping et (m) er (°) 10cm, 10° 20cm, 20° Mapping Latency

Se
en

MASt3R+Kapture 0.03 0.5 89.0 93.6 ∼3.5h N/A N/A 24.8 32.6 ∼4h 4.5s
ACE 0.11 1.8 57.5 68.8 5min 3.58 58.7 11.0 16.2 5min 0.1s

GLACE 0.04 0.6 86.3 92.0 25min 1.14 33.4 22.8 31.7 25min 0.1s

U
ns

ee
n

E5+1 (ALKD-LG) 0.04 0.6 80.9 89.8 8s N/A N/A 25.5 35.8 10s 0.4s
MASt3R 0.13 0.7 45.9 76.0 8s 0.17 5.5 45.1 58.2 10s 4.5s
Reloc3r 0.09 0.8 57.4 72.8 8s 0.47 9.4 21.4 32.9 10s 0.3s

FastForward 0.04 0.6 91.5 98.0 8s 0.18 5.5 40.6 59.7 10s 0.3s

thresholds among all competitors. FastForward surpasses even MASt3R + Kapture, a method that
requires extensive mapping preparation before localization. FastForward also outperforms ACE and
GLACE while reducing the mapping preparation stage to mere seconds. In the 10cm, 10◦ regime,
FastForward boosts the accuracy of MASt3R, Reloc3r and E5+1 (ALKD-LG) by 99%, 59% and
13%, respectively, improving significantly upon other RPR approaches. Since the Unseen methods
use the top-10 instead of top-20 retrieved images as in Wayspots, their latencies are reduced. For
instance, we see that FastForward and Reloc3r localizes a new query frame in only 0.3s.

4.3 RIO10 DATASET

Table 3 (right) presents the results on the RIO10 dataset (Wald et al., 2020). This dataset focuses
on long-term indoor localization across ten scenes with changing conditions, such as moved or
replaced furniture. Since the test evaluation service only allows submissions every two weeks, we
report results on the validation set.

The dynamic nature of the RIO10 dataset poses significant challenges for methods relying on
structure-based representations. As a result, MASt3R + Kapture, despite being one of the best-
performing methods overall, experiences significant performance degradation in these scenes. While
its accuracy is slightly better than SCR approaches, its median errors could not be computed because
more than half of the query pose predictions lacked sufficient correspondences for PnP-RANSAC.
E5+1 (ALKD-LG) also estimates 2D-2D matches between the query and the mapping images, re-
lying on the known structure of the scene. In some scenes, ALKD-LG failed to produce suffi-
cient correspondences for the E5+1 solver for more than half of the query estimates; hence, as in
MASt3R + Kapture, we could not compute its median pose errors. MASt3R (Unseen) achieves the
highest 10cm, 10◦ accuracy, while FastForward demonstrates the best 20cm, 20◦ accuracy. This sug-
gests that access to full images, as in MASt3R’s approach, may be beneficial when scene conditions
change, as a sparse map representation might not capture enough fine details for optimal predictions.
Nevertheless, FastForward outperforms SCR methods (ACE and GLACE), E5+1 (ALKD-LG), and
Reloc3r, demonstrating its robustness for long-term visual localization.

4.4 CAMBRIDGE LANDMARKS DATASET

The Cambridge dataset (Kendall et al., 2015) is an outdoor dataset consisting of six different
places of interest in Cambridge. We follow recent works (Dong et al., 2024; Brachmann et al.,
2023) and report results for five of these scenes. On top of previous comparisons, we compare
FastForward against several classical visual localization pipelines. In the Seen group, we include
Active Search (AS) (Sattler et al., 2016) and hLoc (Sarlin et al., 2019; 2020). In the Unseen group,
we include several additional RPR methods (Turkoglu et al., 2021; Arnold et al., 2022; Winkelbauer
et al., 2021; Dong et al., 2024). The entire retrieval index is computed in 30 seconds, requiring only
the extraction of image-level descriptors with the GeM-AP global descriptor. As in the Wayspots
outdoor benchmark, we use the top-20 retrieved images to compute the query localization. More-
over, we sample N = 3, 000 mapping features for our map representation M. Table 4 reports the
median pose errors, query latencies, and map preparation times.
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Table 4: Median Pose Errors on Cambridge Landmarks (Kendall et al., 2015). Seen methods
require triangulating the scene or training a scene-specific network before being able to localize
a new query image. Unseen methods only require a retrieval step to find the top mapping image
candidates. The retrieval step can be performed for 1,000 images in under a minute (Revaud et al.,
2019). We bold the best and underline the second best results of the Unseen group.

et (m) / er (°) Great Court King’s College Hospital Shop Facade Church Average Latency Mapping

Se
en

AS (SIFT) 0.24 / 0.1 0.13 / 0.2 0.20 / 0.4 0.04 / 0.2 0.08 / 0.3 0.14 / 0.3 0.4s
hLoc (SP+SG) 0.16 / 0.1 0.12 / 0.2 0.15 / 0.3 0.04 / 0.2 0.07 / 0.2 0.11 / 0.2 ∼1.2s ∼35min

MASt3R + Kapture 0.13 / 0.1 0.07 / 0.1 0.15 / 0.3 0.04 / 0.2 0.04 / 0.1 0.09 / 0.2 9.0s
ACE 0.44 / 0.2 0.30 / 0.4 0.30 / 0.6 0.06 / 0.3 0.20 / 0.6 0.26 / 0.4 0.1s 5min

GLACE 0.19 / 0.1 0.19 / 0.3 0.17 / 0.4 0.04 / 0.2 0.09 / 0.3 0.14 / 0.3 0.1s 25min

U
ns

ee
n

Relpose-GNN 3.20 / 2.2 0.48 / 1.0 1.14 / 2.5 0.48 / 2.5 1.52 / 3.2 1.37 / 2.3 N/A
Map-free 8.40 / 4.6 2.44 / 2.5 3.73 / 5.2 0.97 / 3.2 2.91 / 5.1 3.69 / 4.1 ∼0.2s
ExReNet 9.79 / 4.5 2.33 / 2.5 3.54 / 3.5 0.72 / 2.4 2.30 / 3.7 3.74 / 3.3 ∼0.4s

E5+1 (ALKD-LG) 0.32 / 0.1 0.16 / 0.3 0.30 / 0.6 0.05 / 0.3 0.09 / 0.3 0.18 / 0.3 1.1s ∼30s
MASt3R 5.62 / 0.5 4.71 / 0.7 4.71 / 0.7 1.14 / 0.7 3.43 / 0.7 3.90 / 0.7 9.0s
Reloc3r 0.97 / 0.6 0.41 / 0.3 0.73 / 0.6 0.14 / 0.6 0.33 / 0.6 0.52 / 0.5 0.6s

FastForward 0.62 / 0.4 0.24 / 0.4 0.26 / 0.5 0.08 / 0.4 0.14 / 0.5 0.27 / 0.4 0.5s

ALKD-LG paired with the E5+1 solver achieves the lowest median pose errors among the Un-
seen methods. Notably, it surpasses some structure-based localizers, such as ACE, despite only
requiring a retrieval step for mapping. As a method based on 2D-2D image matching, similar to
AS or MASt3R + Kapture, E5+1 (ALKD-LG) relies heavily on high structural consistency and
dense map coverage. Unlike Wayspots or RIO10, the Cambridge dataset offers these favorable
conditions, allowing explicit matching methods to excel; however, as shown in previous sections,
they struggle in more challenging or sparsely mapped environments. In Appendix C.6, we explore
various E5+1 (ALKD-LG) configurations and discuss the latency-accuracy trade-offs compared to
FastForward. Meanwhile, FastForward obtains the second-best median errors among the Unseen
methods, reducing the translation error of its closest competitor, Reloc3r, by 48%. MASt3R strug-
gles in the large-scale Cambridge scenes since they display scale ranges that are not present in its
training dataset. FastForward is trained on a subset of these datasets (refer to Appendix A for de-
tails); however, its scale normalization strategy helps FastForward to generalize well to these unseen
scale ranges. We extend the scale normalization discussion in Appendix C.1.

4.5 UNDERSTANDING FASTFORWARD

Validation Examples. We present qualitative results of FastForward on the validation datasets in
Figure 3. For these visualizations, we use 9 mapping images and a map representation with N=1,000
features, and highlight the image regions corresponding to the selected mapping features. For train-
ing and validation, instead of using image retrieval as in the localization experiments, we randomly
sample mapping images that overlap with the query image by at least 20% and not more than 85%.
We use the overlapping scores provided in DUSt3R training pairs. This ensures larger scene cov-
erage and encourages the network to learn to interpret mapping features from diverse locations.
The ground-truth camera pose is shown in green for reference, while FastForward prediction is in
blue. We also display the predicted 3D coordinates of the query points. Even though FastForward
only uses a subset of mapping features at inference time, it still exhibits robustness comparable to
DUSt3R. FastForward effectively handles repetitive patterns and symmetries by accessing only a
few mapping features, demonstrating the effectiveness of our map representations.

Runtime: Mapping vs. Querying. Structure-based relocalizers generally offer fast query times
once the scene representation is built. Consequently, structure-based methods can amortize their
high mapping costs after a certain number of queries. For instance, compared to the highly efficient
ACE baseline, the break-even point occurs at approximately 600 relocalizations. Thus, for high-
demand locations, structure-based relocalizers become computationally more efficient in the long
run. However, FastForward enables instant, on-demand relocalization for custom maps or locations
where usage is unpredictable. Service providers can leverage this flexibility to offer immediate
coverage, opting to build structured maps only for spots that demonstrate high popularity. Finally,
FastForward allows for a configurable trade-off between runtime and accuracy by varying the num-
ber of retrieved mapping images to meet the requirements of the application (see Appendix C.2).
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Figure 3: Qualitative Examples. The estimated camera pose from FastForward is shown in blue,
the ground-truth pose in green, and the mapping camera poses in gray. We visualize the predicted
3D coordinates of the query points, as well as the image patches from which the mapping fea-
tures are sampled. We use 9 mapping images and a map representation with N=1,000 features.
FastForward effectively handles symmetries and non-discriminative patterns in the scenes. Besides,
since FastForward is agnostic to the scale of the scene, it can accurately predict poses in scenes with
arbitrary scales, as demonstrated in the MegaDepth (Li & Snavely, 2018) example (bottom-left).

Limitations. Although building a retrieval index is fast, e.g., under one minute for 2,500 images
using GeM-AP (Revaud et al., 2019) on a single V100 GPU, the time to extract global descriptors
with a growing number of images is not negligible. In Table 7 (Appendix B.2), we investigate a
version of FastForward that does not rely on image retrieval but selects reference mapping images
at random or uniformly in the Wayspots dataset. This setup is much more challenging as reference
images might be less relevant to the query. We observe the accuracy dropping from 51.4% to 47.8%
(10cm, 10°). Other RPR methods suffer similarly, for example, Reloc3r’s accuracy drops from
37.1% to 19.7% without the retrieval step. Future work could explore alternative strategies for
selecting mapping images to represent the scene.

More Details and Experiments in the Appendix. Training and inference details are in Appendix A.
Appendix B.1 reports the results in the 7-Scenes dataset (Shotton et al., 2013). Appendix B.2 shows
different map representation strategies that do not require retrieval, and hence, reduce the map-
ping preparation time to zero. We discuss the benefits of our scale normalization in Appendix C.1.
Furthermore, we study the impact of the number of mapping images and the size of the map repre-
sentation N in Appendix C.2. We provide visual examples from the test set in Appendix C.4.

5 CONCLUSIONS

We have introduced FastForward, a method that enables fast mapping and localization through a sin-
gle feed-forward pass. We have demonstrated that a visual localizer can reduce its mapping prepara-
tion requirements to a simple retrieval step and still provide state-of-the-art visual localizations. We
have also shown that a sparse collection of mapping features can serve as an effective and sufficient
representation of the scene for accurate visual localization. Furthermore, we have demonstrated that
simple yet effective scene and scale normalization techniques can significantly improve visual local-
ization accuracy in out-of-domain scenes. We have shown the robustness of FastForward predictions
in multiple indoor and outdoor datasets, where each of them displayed unique challenges such as
large-scale ranges, varying illumination conditions, and dynamic scenes. Our experiments demon-
strate that we can achieve both efficient and accurate visual localization with a single feed-forward
pass. FastForward outperforms state-of-the-art RPR methods on both indoor and outdoor datasets,
while achieving higher accuracy to SCR methods on indoor datasets and superior or comparable
performance on outdoor datasets.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. NetVLAD: CNN
architecture for weakly supervised place recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5297–5307, 2016.

Eduardo Arnold, Jamie Wynn, Sara Vicente, Guillermo Garcia-Hernando, Aron Monszpart, Victor
Prisacariu, Daniyar Turmukhambetov, and Eric Brachmann. Map-free visual relocalization: Met-
ric pose relative to a single image. In European Conference on Computer Vision, pp. 690–708.
Springer, 2022.

Vassileios Balntas, Shuda Li, and Victor Prisacariu. Relocnet: Continuous metric learning relocali-
sation using neural nets. In Proceedings of the European conference on computer vision (ECCV),
pp. 751–767, 2018.

Daniel Barath and Jiri Matas. Graph-cut RANSAC: Local optimization on spatially coherent struc-
tures. IEEE transactions on pattern analysis and machine intelligence, 44(9):4961–4974, 2021.

Daniel Barath, Jiri Matas, and Jana Noskova. MAGSAC: marginalizing sample consensus. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10197–
10205, 2019.

Daniel Barath, Jana Noskova, Maksym Ivashechkin, and Jiri Matas. MAGSAC++, a fast, reliable
and accurate robust estimator. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 1304–1312, 2020.

Axel Barroso-Laguna, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Key.Net: Keypoint
detection by handcrafted and learned CNN filters. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5836–5844, 2019.

Axel Barroso-Laguna, Yannick Verdie, Benjamin Busam, and Krystian Mikolajczyk. HDD-Net:
Hybrid detector descriptor with mutual interactive learning. In Proceedings of the Asian confer-
ence on computer vision, 2020.

Axel Barroso-Laguna, Eric Brachmann, Victor Adrian Prisacariu, Gabriel J Brostow, and Daniyar
Turmukhambetov. Two-view geometry scoring without correspondences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8979–8989, 2023.

Axel Barroso-Laguna, Sowmya Munukutla, Victor Adrian Prisacariu, and Eric Brachmann. Match-
ing 2D images in 3D: Metric relative pose from metric correspondences. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4852–4863, 2024.

Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. ARKitScenes: A diverse real-world dataset for
3d indoor scene understanding using mobile RGB-D data. arXiv preprint arXiv:2111.08897,
2021.

Snehal Bhayani, Torsten Sattler, Daniel Barath, Patrik Beliansky, Janne Heikkilä, and Zuzana
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forward Structure-from-Motion. arXiv preprint arXiv:2501.14914, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. In CACM, 1981.

Xiao-Shan Gao, Xiao-Rong Hou, Jianliang Tang, and Hang-Fei Cheng. Complete solution clas-
sification for the perspective-three-point problem. IEEE transactions on pattern analysis and
machine intelligence, 25(8):930–943, 2003.

Vitor Guizilini, Muhammad Zubair Irshad, Dian Chen, Greg Shakhnarovich, and Rares Ambrus.
Zero-shot novel view and depth synthesis with multi-view geometric diffusion. arXiv preprint
arXiv:2501.18804, 2025.

Martin Humenberger, Yohann Cabon, Nicolas Guerin, Julien Morat, Vincent Leroy, Jérôme Revaud,
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APPENDIX

A TRAINING & INFERENCE DETAILS

This section provides the training parameters and datasets we used to train FastForward. Besides,
we also provide some complementary inference details to those in the main paper.

Training. FastForward is trained on a mix of indoor and outdoor datasets. We train on a subset
of the datasets used in DUSt3R/MASt3R (Wang et al., 2024b; Leroy et al., 2024), specifically:
ARKitScenes (Baruch et al., 2021), WildRGBD (Xia et al., 2024), ScanNet++ (Yeshwanth et al.,
2023), MegaDepth (Li & Snavely, 2018), BlenderMVS (Yao et al., 2020), and Map-free (Arnold
et al., 2022) (excluding the scenes in the Wayspots dataset (Brachmann et al., 2023)).

During training, we fix the number of mapping images in M to K = 5, but sample varying numbers
of features to create different map representation configurations such that N ∈ [250, 1000]. We
initialize FastForward with the public 512-DPT weights from DUSt3R.

Only the decoder and the two heads are trained, while the encoder is frozen. We train FastForward
by optimizing the loss in Equation 2 with the AdamW (Loshchilov et al., 2017) optimizer for 615k
iterations. We use a batch size of 48 and a cosine learning rate scheduler with a peak learning rate
of 1e-4 and a warmup of 30k iterations. We leverage float16 precision to improve GPU memory and
computational efficiency. Training is performed on 8 A100-40G GPUs and completes in 5 days.

We use the overlap scores from DUSt3R (Wang et al., 2024b) and MASt3R (Leroy et al., 2024) to
select the mapping images in M. We use a similar strategy to DUSt3R/MASt3R where only mapping
images that overlap with the query image are valid training candidates. We set the overlapping range
to [0.2, 0.85]. For datasets without overlapping information, e.g., WildRGBD (Xia et al., 2024), we
randomly sample the mapping images in M. We balance the outdoor and indoor datasets such that
the model is trained with a similar number of indoor and outdoor examples.

Inference. At inference time, each image is resized to 512 in its largest dimension and center
cropped to the closest aspect ratio used during training (Wang et al., 2024b). Before PnP-RANSAC,
we filter query 3D point predictions that have a low confidence value (Ci < τ , where τ = 1, 5),
and randomly subsample at least 5,000 correspondences. For the outdoor experiments, we use the
top-20 retrieved mapping images, while the top-10 mapping images for the indoor environments.

B ADDITIONAL EXPERIMENTS

B.1 7-SCENES DATASET

We present in Table 5 the median errors, accuracies, latencies, and mapping details for the 7-Scenes
dataset (Shotton et al., 2013). This dataset focuses on short-term indoor localization and provides
seven scenes with multiple mapping and query scans.

We observe that the Unseen methods perform competitively even in static scenes, where methods
based on SfM localizers or SCR networks typically excel. Among the Unseen methods, FastForward
achieves the highest acceptance rate for the 10cm, 10° threshold, while E5+1 (ALKD-LG), followed
by FastForward, gets the best accuracy under the 5cm, 5° threshold. FastForward and Reloc3r
obtain the lowest median translation error, while MASt3R slightly surpasses them in rotation error
(-0.04°). The improvement in translation error demonstrates the benefit of having access to mapping
poses at inference time, even in scenarios, i.e., indoor scenes, that were represented in the training
set of all Unseen methods. Besides the accuracy, we also report the mapping times and storage
requirements. For the retrieval system of the Unseen methods, we apply a frame rate of fifteen in the
mapping scans before building the retrieval index, i.e., only one frame every fifteen is considered
as a mapping candidate for the query image. The average number of images in the mapping scans
is 3,700, which, after our fifteen-frame sampling, becomes 250 images. This sampling removes
consecutive and redundant mapping frames and reduces the retrieval time to 7s. As discussed, the
retrieval step is a much faster mapping process than those required by Seen methods. FastForward,
as all other Unseen methods, needs to store the mapping images and their global descriptors for
retrieval. The storage cost, therefore, depends on the number of mapping images, but is generally
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Table 5: Results on 7-Scenes dataset (Shotton et al., 2013). We report the accuracies, median
errors, and mapping preparation times for each method. FastForward achieves the highest accuracies
among the Unseen methods. The Unseen methods are based on a top-10 retrieval search, and thus
they can run in just a few seconds, unlike MASt3R + Kapture, GLACE, or ACE. In the Storage
requirement, PC refers to Point Cloud, and Weights to the scene-specific network weights. Best
results in bold for the Unseen methods group.

et / er 5cm, 5° 10cm, 10° Latency Storage Map Preparation Mapping Time

Se
en

MASt3R + Kapture 0.03 / 1.06 73.7 93.5 4.5s Images + PC Point Triangulation ∼3 hours
ACE 0.01 / 0.33 97.1 99.5 0.1s Weights (4MB) Network Training 5min

GLACE 0.01 / 0.36 95.6 97.8 0.1s Weights (9MB) Network Training 25min

U
ns

ee
n E5+1 (ALKD-LG) 0.05 / 1.30 80.7 89.3 0.4s Images Retrieval

MASt3R 0.07 / 1.01 26.6 71.9 4.5s Images Retrieval
Reloc3r 0.04 / 1.02 64.3 85.9 0.3s Images Retrieval 7s

FastForward (Ours) 0.04 / 1.05 73.6 90.2 0.3s Images Retrieval

Table 6: Results on Wayspots dataset (Brachmann et al., 2023). We provide the median rotation
errors in degrees and the accuracy under the 10cm, 10° threshold. Additionally, we also include the
average median translation error and the mapping preparation time for each of the methods. ACE
and GLACE train a network for each scene in Wayspots, while Reloc3r and FastForward compute a
retrieval index that runs in 3 seconds for a Wayspots scene on a V100 GPU. In contrast to Reloc3r,
FastForward obtains a comparable accuracy to SCR methods while reducing their mapping time.
In addition, FastForward achieves the lowest rotation error. Best results in bold for the Unseen
category.

er (°) ACE GLACE E5+1 (ALKD-LG) Reloc3r FastForward
Cubes 0.7 0.8 0.8 0.9 1.1
Bears 1.1 1.0 0.9 2.2 1.1
Winter 1.1 1.4 1.0 1.4 2.2
Inscrip. 1.6 1.4 1.2 1.1 1.9
Rock 0.8 0.8 0.8 0.8 0.8

Tendrils 36.9 28.9 23.9 4.4 3.3
Map 1.1 1.1 0.9 1.1 1.0

Bench 0.7 0.7 0.7 1.0 0.7
Statue 14.3 13.0 1.6 1.9 3.9
Lawn 32.6 40.2 45.7 5.6 1.4
Avg. 9.1 8.9 7.7 2.0 1.8
et (m) 1.33 1.43 0.51 1.31 0.17

10cm, 10° (%) 51.9 52.4 46.5 37.1 51.4
Latency 0.1s 0.1s 0.8s 0.6s 0.5s
Mapping 5min 25min 3s 3s 3s

lower than that of classical methods that store large point clouds with high-dimensional descriptors.
Mapping images and point clouds can be sub-sampled to save storage if needed; however, the storage
cost of SCR methods (at least for small areas) is generally the lowest with a few MB. FastForward
is competitive to even SCR when using the variant that uniformly samples mapping images instead
of doing retrieval (see Table 7). In this case, only a fixed set of 20 images needs to be stored to
represent an entire scene.

B.2 WAYSPOTS DATASET

Additional Metrics. Table 6 shows additional metrics to the Tables 1 and 2 from the main paper.
We report the median rotation errors in the Wayspots dataset (Brachmann et al., 2023). FastForward
obtains the lowest rotation error among all competitors, even surpassing SCR methods while re-
ducing their mapping preparation time from 5 or 25 minutes to a few seconds. Furthermore, as
discussed in the main paper, FastForward significantly improves the median translation error, re-
ducing the second best error from 0.51m (E5+1 with ALKD-LG) to 0.17m. This demonstrates that
FastForward achieves more robust and stable localizations, particularly in challenging scenes. In the
10cm, 10° threshold, FastForward outperforms all Unseen methods and shows comparable accuracy
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Table 7: Map Representation results on the Wayspots dataset (Brachmann et al., 2023). We
present the results of using different strategies to select the M mapping images for the map repre-
sentation generation. All strategies use 20 mapping images and sample 20% of the features from
each image. We also report state-of-the-art methods as a reference. Random and uniform sampling
require no mapping preparation and utilize a constant map representation that can be reused for all
query images, reducing the storage requirements and the localization time. Both strategies yield
pose estimates with lower median translation errors than all competitors, and even outperform the
accuracy of Reloc3r.

et (m) er (°) 10cm, 10° (%) Mapping Time
ACE 1.33 9.1 51.9 5min

GLACE 1.43 8.9 52.4 25min
E5+1 (ALKD-LG) w/ Retrieval 0.51 7.7 46.5 3s

Reloc3r w/ Retrieval 1.31 2.0 37.1 3s

FastForward
Retrieval 0.17 1.8 51.4 3s
Random 0.31 2.7 43.9 0s
Uniform 0.19 2.3 47.8 0s

to state-of-the-art SRC localizers. The Wayspots dataset uses mapping poses from real-time SLAM
on the phone without any post-processing. In contrast, evaluation poses were bundle-adjusted via
COLMAP (Brachmann et al., 2023). Even though mapping poses are not perfect, e.g., they might
suffer drift, FastForward performs very well, showing some robustness to inaccuracies in the map-
ping process.

Map Representation. Table 7 displays the results when using different strategies to select the
mapping images that constitute the map representation M. The retrieval strategy selects the top-K
images based on global descriptor similarity; this is the baseline approach followed in all prior
experiments. We also report results for random and uniform sampling of images along the mapping
scan. While retrieval-based selection is the most accurate strategy, it requires precomputing global
descriptors and finding the closest mapping candidates at inference time. Random and uniform
sampling strategies offer two main advantages: 1) the map representation can be computed once
and reused for all query images, and 2) the mapping preparation step is eliminated since no global
descriptor extraction is needed. However, the main disadvantage is that these methods are generally
less accurate than the baseline retrieval strategy. And therefore, although the retrieval system has
possible limitations or failures, FastForward shows strong robustness and accuracy comparable to
retrieval-free methods like SCR approaches. Moreover, our random sampling strategy simulates a
retrieval failure scenario, where the system returns images unrelated to the query. Even under these
conditions, FastForward surpasses Reloc3r in accuracy and achieves lower translation errors than all
competitors.

C FASTFORWARD ANALYSES

C.1 SCALE NORMALIZATION

We train a FastForward model without the scale normalization step detailed in Section 3.1. In this
variant, we directly feed the metric translation vector to the network, allowing it to predict the 3D
coordinates in the same scale as the mapping poses. Since FastForward’s training directly optimizes
metric 3D predictions, we remove from its training the datasets that do not provide metric ground-
truth. Specifically, we remove MegaDepth (Li & Snavely, 2018) and BlenderMVS (Yao et al.,
2020). In MegaDepth, the ground-truth comes from up-to-scale SfM reconstructions. BlenderMVS
provides metric poses and depth maps depending on whether the images used to build the 3D models
had GPS information. We follow MASt3R and treat this dataset as non-metric since not all scenes
provide metric estimates. Our baseline model, i.e., FastForward with the scale normalization, does
not require scaled poses during training. Hence, we can augment our training set with datasets
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Table 8: Scale Normalization Ablation. We show the results of FastForward when the network
directly digests the mapping poses without the scale normalization proposed in Section 3.1. The
scale normalization improves the accuracy as well as the generalization capability of FastForward.

10cm, 10° / 20cm, 20° (%) Cambridge Wayspots Indoor6 RIO10 7-Scenes
w/o Scale Normalization 1.8 / 6.2 47.0 / 66.1 83.4 / 97.2 35.9 / 55.2 89.1 / 93.7

FastForward (ours) 26.7 / 53.6 51.4 / 68.7 91.5 / 98.0 40.6 / 59.7 90.2 / 95.8

Figure 4: Accuracy vs Number of Mapping
Images. We show the accuracy under the 10cm,
10°, 10cm, 1°, and 25cm, 5° thresholds as we in-
crease the number of mapping images in our map
representation. We fixed the size of the map rep-
resentation to 768 mapping features.

Figure 5: Accuracy vs Number of Mapping
Features. We fix the number of mapping im-
ages to 20 images and show how the accuracies
change as we increase the number of mapping
features that are used to create the map represen-
tation of the scene.

containing arbitrary scale ranges as long as they are consistent. Normalizing the translation vector
within FastForward allows for more diverse and accessible training data.

In Table 8, ”W/o Scale Norm.” refers to FastForward without the scale normalization. We observe
that the scale normalization is crucial when evaluating FastForward in the Cambridge Landmarks
dataset. The Cambridge dataset consist of large-scale outdoor scenes. In these scenes, the map-
ping images might be far from each other, and hence, the translation vectors fed into FastForward
(W/o Scale Norm.) might contain larger scale ranges than those seen during training. MASt3R,
even though trained with MegaDepth and BlenderMVS scenes, exhibited similar behavior in the
Cambridge dataset (refer to Table 4). While performing very competitively in all indoor datasets,
MASt3R’s accuracy in Cambridge is only 0.5% (10cm, 10° threshold). Since FastForward has ac-
cess to mapping poses at inference time, we can easily mitigate this by normalizing all translation
vectors to the unit sphere (see Section 3.1). This strategy is straightforward but also very effective,
e.g., the 10cm, 10° accuracy in the Cambridge dataset improves from 1.8% to 26.7%. Thanks to this
scale normalization, and the fact that FastForward relies on a retrieval system to turn the global pose
estimation problem into a local small-scale problem, FastForward can scale to larger areas. Lastly,
the results on the Wayspots and indoor datasets are comparable, with the scale-normalized version
performing slightly better. This aligns with our expectations, as the scale ranges of these datasets
were included in our training set.

C.2 MAP REPRESENTATION ABLATIONS

Number of Mapping Images. Figure 4 presents the results when increasing the number of images
that are used to create the map representation. We report the accuracy under the 10cm, 1°, 10cm, 10°
and 25cm, 5° thresholds in the validation set of the Map-free dataset (Arnold et al., 2022). This ex-
periment follows the evaluation protocol used in the Wayspots dataset. We localize the query images
with respect to the mapping scan, and select the mapping image candidates using a retrieval step.
Unlike the training setup, overlap information is not required for the map representation generation.
We fix the map representation size to N = 768 mapping features, equivalent to sampling 100% of
the features from a single mapping image. I.e., the map representation size remains constant re-
gardless of whether we use 1 or 30 mapping views. Accuracy rates for all thresholds improve with
an increased number of images in the map representation, demonstrating the network’s ability to

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

…

FastForward
Ground Truth

Retrieved mapping frames

Figure 6: Qualitative Examples. The estimated camera pose from FastForward is shown in blue,
and the ground-truth pose in green. The complete mapping scan is visualized in gray, with only the
mapping images selected by our retrieval step displayed. Additionally, we visualize the predicted
3D coordinates of the query points. FastForward is able to handle symmetries, opposing viewpoints,
and illumination changes. Moreover, because FastForward operates in a normalized scale space,
it can handle scenes with significant scale variations, despite not being trained on them (e.g., the
King’s College scene from the Cambridge Landmarks dataset (Kendall et al., 2015)).

incorporate multi-view information despite only a subset of the mapping features being used in the
prediction. In our previous outdoor experiments, we used 20 mapping images, which we consider a
good balance between accuracy and computational cost.

Number of Mapping Features. Figure 5 shows the results of varying the number of mapping fea-
tures used to create the map representation. All map representations are sampled from 20 mapping
images. Similar to the previous ablation study on the number of mapping images, increasing the
size of the map representation benefits the accuracy of FastForward. Interestingly, FastForward is
affected more by the number of mapping images than by the size of the map representation itself.
Accuracy under the 10cm, 10° or 25cm, 5° thresholds remain almost constant when using 150 or
3,000 mapping features. However, for finer thresholds (e.g., 10cm, 1°), FastForward benefits from
more mapping features. This suggests that FastForward can trade off accuracy on the fine thresholds
for reduced storage or computation.

C.3 RUNTIME

FastForward utilizes the same feature encoder as MASt3R and Reloc3r. However, FastForward
offers two key advantages: 1) Given multiple mapping images, FastForward processes a fixed set of
N features in the decoder, whereas MASt3R and Reloc3r require processing all the mapping-query
combinations. 2) FastForward directly provides the query 3D coordinates in the mapping scene,
eliminating the need for any additional global alignment step.

FastForward extracts features from all mapping images, and hence, as in MASt3R or Reloc3r, its
runtime depends on the number of mapping views. For instance, in the outdoor configuration (top-
20 and N = 3, 000), which is the most computationally expensive setup, FastForward estimates
the 3D coordinates of a new query image in 0.4 seconds on a V100 GPU. Given the 2D-3D corre-
spondences, we fed 5,000 correspondences to PnP-RANSAC (Larsson & contributors, 2020), which
takes 0.1 seconds on average in a Wayspots scene to predict the pose estimate. This time could be
further reduced by caching the mapping features and avoiding recomputation at inference time. Be-
sides, FastForward could potentially use a pose head to directly predict the query pose as in Wang
et al. (2025b;a) to avoid PnP. Nevertheless, FastForward provides a highly efficient solution for
both mapping and localization. For example, in a Wayspots scene, retrieval takes only 3 seconds,
allowing for mapping and localization of a new query in just 3.5 seconds.
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Table 9: Pose Estimation Strategies for MASt3R (Leroy et al., 2024). We report the median
errors and accuracy at 10cm, 10° threshold for different strategies to compute the query pose with
MASt3R. In the main paper, we report the results of the default approach proposed in MASt3R for
the localization tasks. Their default approach uses the matching and 3D point heads to predict the
2D-3D correspondences and PnP as the pose solver, which corresponds to the Matching - PnP entry
in the table below. We provide the average time across all datasets to localize a query image for the
different strategies. We also report FastForward as a reference. Best results in bold for the MASt3R
approaches.

Cambridge Indoor6 RIO10 7-Scenes

et / er Acc. et / er Acc. et / er Acc. et / er Acc. Time

MASt3R - Matching

PnP 3.90 / 0.7 0.5 0.13 / 0.7 45.9 0.17 / 5.5 45.1 0.07 / 1.0 71.9 5.6
Ess.Mat. + D.Scale 4.67 / 1.0 0.1 0.13 / 0.9 45.8 0.37 / 12.4 29.6 0.07 / 1.0 72.3 19.4

MASt3R - Direct Reg

PnP 4.01 / 0.9 0.2 0.13 / 0.7 43.8 0.21 / 5.4 35.1 0.08 / 1.2 69.2 4.7
Ess.Mat. + D.Scale 3.87 / 0.9 0.2 0.13 / 0.9 45.8 0.29 / 9.5 29.6 0.08 / 1.1 69.8 13.1

FastForward 0.27 / 0.4 26.7 0.04 / 0.6 91.5 0.18 / 5.5 40.6 0.04 / 1.1 90.2 0.4

C.4 QUALITATIVE EXAMPLES

We present qualitative results of FastForward across the different test datasets in Figure 6. As pre-
viously mentioned, our map representation is constructed using 20 mapping images for outdoor
scenes and 10 for indoor scenes, with 20% of the features sampled from each image. The ground-
truth camera pose is shown in green, and FastForward’s in blue. The mapping scan trajectory is
shown in gray, and only the mapping images selected by the retrieval step are visualized. We also
display the predicted 3D coordinates of the query points. We observe that accessing only a sub-
set of mapping features is sufficient for robust localization, even in challenging scenarios such as
scenes with significant illumination variations, repetitive patterns (e.g., white walls), symmetric ob-
jects, or opposing viewpoints. Furthermore, FastForward can handle large-scale scenes, such as
those in Cambridge, despite being trained on outdoor data limited to Map-free (Arnold et al., 2022),
MegaDepth (Li & Snavely, 2018), and BlenderMVS (Yao et al., 2020) datasets, which present small
to mid-scale ranges (Map-free) or arbitrary scales (MegaDepth / BlenderMVS). Moreover, in ad-
dition to the robustness against unseen scale ranges, FastForward demonstrates outstanding perfor-
mance on some traditional challenges, such as opposing shots. For example, the bottom-left image
from the Wayspots dataset (Lawn) illustrates that FastForward is able to estimate an accurate pose
even though the mapping scan was taken from an opposing viewpoint.

Qualitative Evaluation in the Supplementary Webpage. In addition to the visualizations in Fig-
ures 3 and 6, we provide a webpage with several videos showing FastForward localizations in ex-
treme scenarios and comparisons to direct competitors. The webpage uses two standard front-end
libraries, Bootstrap and jQuery, to control the visualization and style of the videos. These libraries
do not contain any code for analytics or user tracking. However, for convenience, all videos can be
directly accessed in the videos folder without opening the webpage.

C.5 POSE ESTIMATION WITH MAST3R

FastForward directly predicts the query scene coordinates to establish 2D-3D correspondences, en-
abling pose estimation with the PnP solver (Gao et al., 2003). In contrast, MASt3R provides a
descriptor head for estimating the keypoint matches between the image pairs, thus supporting vari-
ous correspondence estimation methods and pose solvers. In all previous experiments, we reported
MASt3R’s results using its default visual localization pipeline, which employs the PnP solver and
2D-3D correspondences derived from its matching and 3D point heads.

One alternative to PnP is to estimate the 2D-2D correspondences via only the matching head and
then compute the Essential matrix. Since the Essential matrix is up to scale, the predicted depth
maps from the 3D point head are used to recover the metric scale. We refer to this approach as
Ess.Mat + D.Scale in Table 9. For more details, we refer to Leroy et al. (2024) and Arnold et al.
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Table 10: Pose Estimation Ablations for ALIKED-LG (Zhao et al., 2023; Lindenberger et al.,
2023) with the E5+1 solver (Zheng & Wu, 2015). We report the median errors, accuracy at 10cm,
10° threshold, and the latencies for the different feature extractor and RANSAC configurations. In
the main paper, we report the results with 1,024 keypoints and 1,000 maximum RANSAC iterations
as our baseline configuration. We also report FastForward as a reference. Best results in bold for
the E5+1 (ALKD-LG) configurations.

E5+1 (ALKD-LG) Wayspots Dataset Cambridge Dataset

Num. Kpts RANSAC et (m) er (°) 10cm, 10° Latency (s) et (m) er (°) 10cm, 10° Latency (s)

1,024 1,000 0.51 7.7 46.5 0.77 0.18 0.3 37.6 1.28

512 1,000 0.69 9.2 44.3 0.63 0.19 0.3 38.0 0.90
256 1,000 1.57 17.4 37.9 0.58 0.21 0.4 35.9 0.73
128 1,000 2.70 24.6 27.8 0.56 0.23 0.4 35.0 0.63

1,024 500 0.52 8.3 46.5 0.66 0.23 0.4 37.6 0.82
1,024 100 0.68 9.6 44.2 0.57 0.23 0.4 37.5 0.76

64 100 5.72 56.0 15.6 0.54 0.31 0.5 26.7 0.54

FastForward 0.17 1.8 51.4 0.49 0.27 0.4 26.8 0.49

(2022). Besides, MASt3R is also able to compute correspondences directly from the predicted point
cloud, similar to DUSt3R (Wang et al., 2024b), without using the matching head. We refer to this
approach as direct regression (Direct Reg). The direct regression approach can be paired with either
the PnP or the Essential matrix solver.

As shown in Table 9, the PnP solver performs comparably to the Essential matrix solver, even with-
out relying on the ground-truth camera calibration of the reference view. However, a key distinction
between the solvers is the computational efficiency. The Essential matrix solver requires solving
for the essential matrix for each mapping image, significantly increasing localization time compared
to the single-run PnP approach. Furthermore, while the direct approach performs well on some
datasets, it fails on more challenging scenes, particularly those with dynamic elements, such as in
the RIO10 dataset.

C.6 POSE ESTIMATION WITH THE E5+1 SOLVER

As discussed in the main paper, the E5+1 solver recovers the absolute pose from 2D-2D correspon-
dences between the query and two or more mapping images. In Table 10, we study the trade-offs be-
tween accuracy and latency when pairing the E5+1 solver with the ALIKED-LightGlue (ALKD-LG)
feature matcher. Specifically, we vary the number of keypoints extracted by ALIKED and the max-
imum number of RANSAC iterations in the E5+1 solver, analyzing how different configurations
impact performance compared to our baseline configuration (1,024 keypoints and 1,000 iterations).

We observe that in well-structured scenes like Cambridge, just a few keypoints suffice for accurate
pose estimation. Furthermore, latency can be improved by reducing the number of RANSAC iter-
ations. Nevertheless, FastForward offers competitive results in Cambridge while remaining faster.
We evaluated a lightweight configuration (64 keypoints and 100 RANSAC iterations) to test the
latency limits of E5+1 (ALKD-LG); however, this configuration reports higher errors and latency
(0.54s) compared to FastForward (0.49s). In contrast, on the Wayspots dataset, reducing the number
of keypoints significantly degrades performance. Wayspots contains challenging scenes where 2D-
2D matchers may struggle to find stable structures; consequently, optimizing for latency severely
impacts the accuracy of the E5+1 (ALKD-LG) approach. In Wayspots, FastForward offers faster
and more accurate pose estimates than any of the proposed E5+1 (ALKD-LG) configurations.
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