
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

SETTING THE DC: TOOL-GROUNDED D&D SIMULA-
TIONS TO TEST LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dungeons and Dragons (D&D) has been considered to be an intellectually chal-
lenging game for strategy planning and role-playing. Large language models
(LLMs) are increasingly deployed as autonomous or semi-autonomous agents,
yet most evaluations still target single-turn QA or short-horizon tasks. Assessing
agentic performance in rules-constrained, multi-step settings is challenging be-
cause style-conforming narration can diverge from task optimality. In this work,
we present D&D Agents, a benchmark built on a multi-agent Dungeons & Drag-
ons simulator. In our benchmark, LLMs use tools to query and update the game
state, assuming the roles of referee (’Dungeon Master’, DM), players, and ad-
versarial monsters in tactically rich combat. This benchmark setting requires
long-horizon planning, compliance with game rules, varied agent personas, and
grounded interaction with the game state. We evaluate transcripts and tool traces
along six axes—Function Usage, Parameter Fidelity, Acting Quality, Tactical Op-
timality, State Tracking, and Function Efficiency—capturing both capability and
reliability in closed-loop play. Our benchmark allows researchers to run identi-
cal seeded scenarios with auditable traces, making error analysis and algorithmic
improvements (prompting, tool-use policies, memory) straightforward and com-
parable.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed as tool-using agents that must plan over
long horizons, remember salient context, and coordinate with other actors. Early benchmarks em-
phasize single-agent or short-horizon QA, leaving open how to evaluate memory, planning, and
coordination in settings where natural language drives perception and intent but rules govern what
actions are legal (Li et al., 2023; Wu et al., 2023; Du et al., 2023). Work on self-reflection and per-
sistent memory suggests paths to stabilize behavior over many turns (Shinn et al., 2023; Park et al.,
2023; Li & Gupta, 2025), but we still lack testbeds that expose the full tangle of multi-step planning,
strict rule adherence, and team strategy.

We argue that Dungeons & Dragons (D&D) is a natural evaluation ground for these skills: an
initiative-driven, mixed cooperative–adversarial game where agents must remember evolving state,
communicate succinct plans, and translate intentions into rule-compliant actions. Crucially, D&D
couples team coordination with opponent-aware tactics under partial observability, a bounded action
economy, and spatial constraints with stochastic resolution—collectively yielding a non-stationary
multi-agent setting that stresses planning, memory, and communication. Because play unfolds
through dialogue, D&D also opens a direct avenue for human–AI interaction: agents can assist
or co-play with people, and the same mechanics support scalable evaluation of agent decisions.

In this work, we present D&D Agents, a novel multi-agent simulation framework in which LLM-
driven agents assume the roles of DM, players, and monsters to autonomously play out tactically
rich D&D combat encounters. This framework serves as both a research environment – capturing
the complexities of autonomous agent evaluation, long-horizon rule-following behavior, and multi-
agent coordination – and as a testbed for new methods to ground LLM decisions in a formal game
system. D&D Agents comprises a high-fidelity simulator and a suite of tools that bridge natural
language and game mechanics. Through careful prompt design, we imbue each agent with a distinct
role and objectives. We pair our environment with a six-axis metric suite and validate our automatic

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

judges against human ratings, finding strong alignment (Pearson r ≈ 0.96–0.98); for example, the
judge’s means closely track human means–Acting 0.572 vs. 0.601 and Tactical 0.551 vs. 0.568–
supporting credible large-scale assessment.

Our main contributions are summarized as follows:

1. We develop a fully automated D&D combat simulator where multiple LLM agents engage
in battle under authentic game rules. This is the first framework to pit LLM “players”
against an LLM “Dungeon Master” in a closed-loop environment that rigorously enforces
turn-based game mechanics and stochastic outcomes (dice rolls). It also supports human-AI
co-play–People can assume any subset of player roles (from zero to all) while the remaining
roles are controlled by LLMs.

2. We design a structured API of game actions, each with predefined parameters and precon-
dition checks, to ground the agents’ decisions. This approach cleanly separates narration
from mechanics: the DM agent may describe events in natural language, but the truth of
those events is guaranteed by the underlying tool calls.

3. We introduce a prompting scheme that guides the DM and player agents to fulfill their in-
game roles. This scheme enables multi-agent coordination and opposition purely through
learned communication and tool use, without any hard-coded game logic.

4. To rigorously evaluate the performance of our D&D Agents, we define six evaluation axes
that capture both the capabilities and reliability of the agents in long-horizon gameplay.
We evaluate transcripts and tool-call traces along these dimensions to quantify progress
and identify failure modes in an objective, reproducible manner.

2 RELATED WORK

A growing line of work grounds language agents in executable interfaces so long-horizon behavior
is less ambiguous and more auditable. Programmatic tool use—via function calling or API invo-
cation—improves reliability in interactive environments (ReAct; Toolformer; MRKL; Gorilla) (Yao
et al., 2022b; Schick et al., 2023; Karpas et al., 2022; Patil et al., 2023), and similar constraints
help in text games and web tasks (Jericho/interactive fiction, ALFWorld, ScienceWorld, WebShop,
WebArena) (Hausknecht et al., 2020; Shridhar et al., 2020; Wang et al., 2022; Yao et al., 2022a;
Zhou et al., 2023) as well as open-ended game worlds like Minecraft (Voyager; MineDojo) (Wang
et al., 2023; Fan et al., 2022). These results suggest that defining a compact, typed action space is a
practical route to robust multi-step agents.

Within D&D, prior work treats gameplay primarily as dialogue and state tracking. Callison-Burch
et al. (2022) frame D&D as a dialogue/state challenge; FIREBALL provides actual-play transcripts
with structured state and executable Avrae commands (Zhu et al., 2023b); CALYPSO and Over-
hearing explore DM assistance tools (Zhu et al., 2023a; 2025). However, these systems typically
operate on a single player at a time and are not closed-loop multi-agent simulations across many
turns; moreover, the game mechanics are fully simulated in handwritten code (e.g., Avrae), with
the LLM advising rather than executing mechanics. Complementary efforts outside D&D explore
multi-agent interaction in rule-based environments (Thudium et al., 2025) and LLM-driven game
simulation more broadly (Song et al., 2024), reinforcing the value of structured interfaces for coor-
dination and competition.

Our work differs in placing LLMs directly in the loop as DM and multiple players within a rules-
enforcing simulator: every effect-producing action is executed via a typed API, producing determin-
istic, auditable traces. This enables closed-loop, turn-by-turn evaluation of cooperation and oppo-
sition among multiple agents, supports human co-play, and yields standardized, seedable scenarios
for fair comparison.

3 SIMULATION FRAMEWORK

State. The state consists of two main components: (i) Character creation and (ii) map genera-
tion. We implemented a structured character creation system that uses LLM agents to generate
D&D 5e player and monster characters via AI function calls. The CreatePlayerKani agent

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Table 1: LLM failures in simulation. Top: The model checked that there is no sight between the
player and the monster, but still attempted to attack. Bottom: The model checked the enemy’s HP
to be 0 (dead), but did not attack other enemies.

Player: Elaria Enemy: Goblin 1
Elaria: Thinking... [check valid attack line(attacker name=’Elaria’,
defender name=’Goblin 1’)]
System: FUNC: False
Model Response
Elaria: I will attack Goblin 1 with my short bow. [roll attack(attacker name=’Elaria’,
defender name=’Goblin 1’, roll type=’normal’, modifier=4,
weapon name=’Short Bow’, action cost=1)]

Player: Briana Enemies: Goblin 1, Goblin 2
Briana: Thinking... [check hp(name=’Goblin 2’)]
System: FUNC: 0
Model Response
Briana: Excellent! I have a clear shot. I’ll take aim and burst my firebolt at Goblin 2!

Figure 1: The simulation framework contains two major components: The generation step (Top)
and the simulation step (Bottom). Background settings are generated in the generation step, while
LLM/human players can take turns in the simulation loop to execute actions.

prompts the model with official creation rules and user input to generate legal characters, while
CreateMonsterKani uses official monster data to instantiate enemies. External D&D APIs
provide canonical resources, and derived properties are automatically computed according to rules.
For spatial context, we provide two seedable map modes that yield traversable, height-aware grids.
Indoor maps are rasterized from compact JSON layouts (rooms, walls, doors), while outdoor maps
are procedurally generated to ensure connectivity with distant start/end anchors. Both encode dis-
crete height values for slope-aware movement and use line-of-sight checks to gate ranged actions.
A fixed seed ensures reproducibility.

Actions. The simulator exposes a typed API of deterministic function calls that define the action
space. Calls are validated against preconditions (initiative ownership, budgets for action/bonus/reac-
tion/movement, spell slots, range, line of sight, target existence, status effects). We group functions
into six categories: 1) Query/validation (state checks, LoS tests); 2) Movement/positioning (move,
dash, disengage); 3) Dice primitives (roll dice); 4) Attack/spell resolution (roll attack, roll save,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: An outdoor map showing current alive character positions.

roll dmg); 5) Turn economy/bookkeeping (roll initiative, reset resources, check concentration); 6)
Rendering (visualize map).

Transition Dynamics. Function calls are atomic and deterministic given sampled dice rolls. The
simulator enforces legality and automatically updates resources, HP, position, or conditions. A turn
consists of querying state, executing movement or attacks, and concluding with resource resets and
audits. Figure 1 provides an overview of the simulation.

Observations. Agents observe a combination of natural language narration and structured returns
from simulator functions (e.g., query results, dice outcomes). Maps can be visualized after each
move, and observations are local to the calling agent, yielding partial observability. Figure 2 is an
example map generated by the map generator about a combat scene between four players and four
enemies.

Reward. For evaluation, we measure downstream combat outcomes and auxiliary metrics such as
efficiency of function usage and error rates. When used for MARL, task-specific rewards can be
shaped around these signals.

DM Agent. The DM is an LLM steered by GM PROMPT that behaves like a transactional
controller: it plans in natural language but executes through a small, typed set of AI func-
tions with validation, atomicity, and explicit bookkeeping. In play, it follows a fixed recipe:
query - (optional) move - validate - resolve - bookkeep, rolling and announcing initiative
with roll initiative; on each turn it queries state, moves with move when needed,
gates ranged options via check valid attack line, resolves attacks/spells (roll attack,
roll spell attack, roll save, roll dmg), applies HP/resource updates, audits temporary
conditions/resistances/concentration, and finishes with reset resources and reset speed,
emitting <End Turn/>.

The prompt functions as a declarative control policy: narration is descriptive while functions are au-
thoritative; explicit if–then gates (range/LoS/reach/resources/economy) prevent illegal actions and
route failures to repairs (reposition, alternate action, end turn); parameters must come from canon-
ical sources; economy semantics for Dash/Disengage are tied to budgets; and within-turn caching
improves efficiency. It also installs stable event handlers (e.g., opportunity attacks on leaving reach),
compact zero-shot tactical heuristics, and archetypal exemplars (single-target attack-roll, save-based

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

AoE) that generalize to unseen abilities; a small condition glossary enables status handling without
bespoke code. Optimized for adherence with a concise “contract,” exact verb–function alignment,
and a numbered end-of-turn checklist capped by a sentinel token, this design yields consistent, rules-
compliant, and auditable tool-call traces across models while remaining portable and easy to extend.

Player Agent. The player agent is an LLM guided by PLAYER PROMPT that converts tactical in-
tent into concrete, legal actions for its character while coordinating with allies. In the playthrough
it follows a sense - plan - validate - act - communicate routine: (i) at turn start, it queries state and
resources; (ii) selects movement and economy modifiers consistent with budgets; (iii) for ranged op-
tions, first gates with check valid attack line and computes distance/reach from the queried
positions; (iv) specifies its chosen action (attacks/spells), invoking simple query functions directly
but proposing functions which change the game state for the DM to execute to avoid hallucination
and parameter fidelity; and (v) emits concise narration and optional team messages to coordinate
surround an enemy (flank), focus multiple allies on one target (focus fire), or pull pressure off an
ally (peel). The DM remains the authoritative executor—committing any state-changing calls and
running the end-of-turn checklist—which grounds player intent and yields an auditable tool-call
trace aligned with the transcript.

The PLAYER PROMPT emphasizes intent expression and cooperation under uncertainty rather than
adjudication. It instructs the agent to ask or check when unsure about geometry, reach, or spell
parameters, preventing silent errors while keeping turns efficient. Narration is kept concise and
role-separated: one–two sentences to summarize intent/outcomes, with coordination messages iso-
lated from flavor so allies (and the DM) can parse plans quickly. A lightweight direct-message
protocol—<Call/>Name, Message<Call/> with strict formatting—provides a reliable, code-
free communication channel; concrete templates (e.g., chaining actions, requesting healing) enable
accurate addressing and improve teamwork (timed flanks, handoffs, prioritized healing), while all
mechanical effects remain confined to AI functions executed by the DM.

4 EXPERIMENTS

Evaluation settings. We use 27 seedable scenarios packaged as save JSONs, constructed by a 3 × 3
× 3 design: three four-class character groups × three stat tiers (low/medium/high) × three monster-
map sets. Across the three groups, all 12 core D&D classes are represented. Each monster–map
set has a custom enemy roster from three well-known fantasy skirmish set-ups (from ‘Lost Mine
of Phandelver’): Goblin Ambush, Kennel in Cragmaw Hideout, and Klarg’s Cave (Wizards RPG
Team, 2014). All models run on the identical 27 files; no per-model tuning of maps, parties, or mon-
sters is permitted. Each episode lasts ten turns, after which we export the dialogue transcript and the
ordered tool-call trace; these artifacts feed our six metrics–Function Usage, Parameter Fidelity, Act-
ing Quality, Tactical Optimality, State Tracking, and Function Efficiency. We test Claude Haiku 3.5,
GPT-5 (OpenAI, 2025), DeepSeek V3.1 (Liu et al., 2024), Qwen3-32B (base) (Team, 2025), Qwen3-
235B-A22B-Thinking-2507 (thinking), Qwen3-Next, and GLM-4.5-Air (Zeng & Team, 2025). We
adapt a role-swapping copilot protocol in which DeepSeek V3.1 fills the complementary side: when
a target model is evaluated as DM and monsters, DeepSeek V3.1 plays the players; when the target
model is evaluated as players, DeepSeek V3.1 plays the DM and monsters.

Function and function parameter efficiency. We evaluate function calling performance across 27
combat scenarios using both automated log-derived metrics and human evaluation. The automated
evaluation identifies incorrect function calls (improper function selection resulting in execution er-
rors) and incorrect parameter usage. Human evaluation additionally assesses incorrect function se-
lection that does not trigger execution errors, missing function calls (false negatives), and extraneous
function calls (false positives), as summarized in Table 2, 3.

We found that models with smaller parameters have significantly lower DM performance than the
player. Qwen3-32B (base) has 20% incorrect function calls when acting as a DM, but only 4.58%
incorrect function calls when acting as a player. This shows that models have a role-specific deficit
because of context load and tool routing. Acting as DM requires carrying the longest working set. In
our framework, the DM is the executor that plans in language but must commit mechanics through
typed API calls, with strict preconditions. This expands the token/context that the model must handle
every turn and increases the chance of routing or parameter errors.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 2: Automated function-use correctness and efficiency. We use a log-based checker to auto-
matically find incorrect function usage and incorrect parameter usage (lower is better). We then use
the log to identify incorrect function selection, missing and unnecessary calls, and F1 against gold
plans.

Model
Incorrect
func (%)

Incorrect
params (%)

Incorrect
Selection (%)

Missing
(%)

Unnecessary
(%)

F1
(%)

DeepSeek V3.1 3.15 2.47 1.79 28.99 1.86 80.61
GPT-5 2.84 2.38 1.46 11.27 1.24 91.51
Claude Haiku 3.5 1.17 1.14 0.55 6.83 1.01 95.18
GLM-4.5-Air 3.44 1.62 1.90 20.40 1.50 86.40
Qwen3-235B-A22B-Thinking-2507 3.57 1.44 2.00 24.75 1.42 84.02
Qwen3-32B (base) 12.40 4.85 5.20 58.60 3.90 54.11
Qwen3-Next 9.96 3.70 4.10 49.30 3.35 61.72

Table 3: Human-evaluated function-use correctness and efficiency. Human annotators find the in-
correct function usage, incorrect parameter usage, incorrect function selection, missing, and unnec-
essary calls based on the pipeline given in the prompt. Finally, an F1 is calculated against gold
plans.

Model
Incorrect
func (%)

Incorrect
params (%)

Incorrect
Selection (%)

Missing
(%)

Unnecessary
(%)

F1
(%)

DeepSeek V3.1 3.09 2.53 1.74 28.24 1.82 78.81
GPT-5 2.77 2.43 1.50 10.96 1.21 93.59
Claude Haiku 3.5 1.14 1.16 0.56 7.01 0.98 92.35
GLM-4.5-Air 3.51 1.67 1.95 19.98 1.46 83.93
Qwen3-235B-A22B-Thinking-2507 3.49 1.48 2.04 25.30 1.46 81.83
Qwen3-32B (base) 12.09 4.75 5.32 57.03 3.81 52.59
Qwen3-Next 10.19 3.59 4.19 50.48 3.42 60.33

State-Tracking Accuracy. We assess state-tracking accuracy to measure whether agents maintain
coherent internal representations of game state throughout scenario execution. Here, we specifically
target hallucination errors where models generate actions inconsistent with established game state,
such as attacking with weapons not present in inventory or referencing non-existent status effects.
We break the error type to four different error types:

• Status Effect Errors: Claiming buffs/debuffs that weren’t applied or ignoring active condi-
tions

• Positional Inconsistencies: Misremembering character locations, movement capabilities,
or terrain features

• Resource Tracking: Incorrect HP, using non-existent items, or action point calculations

• Entity State Confusion: Mixing up which characters are alive/dead, conscious/unconscious

The error rate is shown in Table 4. We also created a turn-based error rate analysis in Figure 3.
Although there are only very few entity state actions, they represent a considerable source of hallu-
cination errors across all models. Since entity state error only happens in the late state of the game
log, after removing it, the temporal analysis still indicates that hallucination rates increase sharply at
turn 2 and fall continuously with scenario length in all models. This might be because turn 2 is the
actual turn that initiates the simulation, and all models have limited knowledge of the environment,
which can lead to an increasing hallucination rate. The decreasing hallucination rate is a sign that
all models are adapting to the task in a longer context.

Acting Quality. We assess how well models stay “in character” and write natural action beats
across 27 combat scenarios. For each scenario we first keep only narrative sentences (speaker text,
not DM/tool output), filtering out digits and dice notation. Each remaining sentence is labeled
persona if it shows a recognizable voice or in-world action beat-via speaker-specific cues (e.g.,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 4: State-tracking error rates by category across models. The error rate is calculated by the
total error in this category divided by the total number of actions.

Model Status Effect Positional Resource Entity State Total

DeepSeek V3.1 0.173 0.006 0.064 0.384 0.043
Claude Haiku 3.5 0.098 0.000 0.034 0.107 0.010
GPT-5 0.111 0.001 0.041 0.184 0.020
GLM-4.5-Air 0.156 0.002 0.058 0.258 0.031
Qwen3-235B-A22B-Thinking-2507 0.177 0.002 0.065 0.292 0.037
Qwen3-Next 0.273 0.004 0.138 0.616 0.086
Qwen3-32B (base) 0.340 0.004 0.162 0.726 0.103

1 2 3 4 5 6 7 8 9 10
Turn Number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

H
al

lu
ci

na
ti

on
 R

at
e

GPT-5
GLM-4.5-Air
Qwen3-235B-Thinking
Qwen3-32B (base)

Qwen3-Next
DeepSeek V3.1
Claude Haiku 3.5

Figure 3: The hallucination rate of the model calculated by total hallucinated actions / all actions.
We removed entity state errors here, as most entity state checking occurs only in the late game.

paladin (armored melee) valor, ranger (archer-scout) poise, warlock (occult caster) edge, druidic
(nature caster) calm, monster taunts/imperatives); first-person physical action beats also count. The
scenario score is

A =
1

2

Spersona

Snarr
+

1

2
min

(
Tdistinct

Tmax
, 1

)
where

Tmax =
(
Nplayer characters +Nmonster types

)
+ 1

Thus, A balances how often the writing feels in-character (persona density) with how many different
voices the model sustains (trait coverage). To validate the automatic Acting Quality metric, we ran
a human evaluation on 10 test cases; the LLM-judge scores correlate strongly with human ratings
(Pearson r = 0.958, Spearman ρ = 0.936). We then summarize A over the 27 scenarios by reporting
mean and standard deviation across all 27 scenarios.

Overall, under our DeepSeek V3.1 copilot protocol, Claude Haiku 3.5 delivers the strongest and
most consistent acting overall, with GPT-5 a close second and showing robust DM-side performance;
DeepSeek V3.1 is steady and competitive—especially on the player role—while Qwen3-Next posts
solid player scores but lags on DM, placing mid-tier. Qwen3-235B (thinking) is moderate, Qwen3-
32B (base) trails markedly (driven by a weak DM score), and GLM-4.5-Air is near the floor. See
Table 5.

Additionally, we decomposed A into its two equally weighted components—persona/narration and
trait diversity—summarized in Table 6. According to the logs, Claude Haiku 3.5 is the most “the-
atrical,” shifting diction fluidly across classes and creatures, which yields lively, high-variety char-
acterization. GPT-5 blends vivid stage directions with clear, in-character delivery—less flamboyant
than Claude but consistently actorly. DeepSeek V3.1 favors compact first-person beats and punchy
monster barks; its persona is steady and disciplined, though the repertoire of voices is narrower.
Qwen3-235B (thinking) often compresses its lines after brief setup, producing moderate persona
density with a respectable but not expansive trait palette. Qwen3-Next brings energetic, first-person

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 5: Acting quality by model
Model A (Monster) A (Player) Avg A

Claude Haiku 3.5 0.637 0.881 0.759
GPT-5 0.611 0.850 0.731
DeepSeek V3.1 0.573 0.849 0.711
Qwen3-Next 0.486 0.820 0.653
Qwen3-235B-A22B-Thinking-2507 0.582 0.588 0.585
Qwen3-32B (base) 0.101 0.532 0.316
GLM-4.5-Air 0.044 0.043 0.044

Table 6: Means of the two acting quality components by model
Model Monster Player

Persona/narration Trait diversity Persona/narration Trait diversity

Claude Haiku 3.5 0.882 0.393 0.828 0.934
GPT-5 0.860 0.363 0.878 0.822
DeepSeek V3.1 0.776 0.370 0.769 0.928
Qwen3-Next 0.673 0.296 0.802 0.838
Qwen3-235B-A22B-Thinking-2507 0.800 0.363 0.671 0.504
Qwen3-32B (base) 0.143 0.059 0.514 0.549
GLM-4.5-Air 0.074 0.015 0.056 0.031

taunts and clear intentions, yet its voice occasionally slips toward generic narration. Qwen3-32B
(base) adheres to the background but reads cautious, with thinner beats and limited variation. GLM-
4.5-Air shows the narrowest expressive range overall: short, plain lines that rarely sustain a distinct
persona from turn to turn.

Tactical Optimality. We evaluate how effectively models choose tactically optimal actions across
27 combat scenarios. Logs are segmented into turns by the token <End Turn/>. Events inside a
window are attributed to that window’s character. We score each turn with a simple reward:

rt =


1, if any weapon attack or spell is attempted;

0.5, if the actor only moves and takes no other actions;

0, otherwise.

The scenario’s tactical optimality is the average reward over all turn windows T (players and mon-
sters):

O =
1

|T |
∑
t∈T

rt,

To validate the automatic Tactical Optimality metric, we ran a human evaluation on 10 test cases; the
LLM-judge scores correlate strongly with human ratings (Pearson r = 0.979, Spearman ρ = 0.963).

We summarize per-model performance by reporting mean and standard deviation over all scenarios.
Overall, as shown in Table 7, Claude Haiku 3.5 is the most optimal tactically—high mean O with the
tightest variance, while GPT-5 reaches similarly high peaks (and slightly higher mean on the DM
side) but with noticeably greater spread. DeepSeek V3.1 is steadier than GPT-5 and competitive
overall—indeed the strongest on the player side—yet still trails Claude in reliability. Mid-tier mod-
els (Qwen3-Next, Qwen3-235B (thinking)) are respectable but more variable, Qwen3-32B (base)
lags, and GLM-4.5-Air shows minimal DM optimality with only modest player-side scores.

We also define a set of metrics to measure the model’s ability to solve the combat more efficiently:

• Player Survivability (PS): Average remaining HP percentage across all player characters at
scenario completion

• Combat Efficiency (CE): Ratio of enemy HP eliminated to player HP lost
• Resource Conservation (RC): Percentage of consumable resources (spell slots, abilities)

remaining post-combat

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 7: Optimality scores by model
Model O (Monster) O (Player)

Mean Std Mean Std

Claude Haiku 3.5 0.906 0.116 0.818 0.103
GPT-5 0.907 0.197 0.847 0.220
DeepSeek V3.1 0.891 0.224 0.898 0.204
Qwen3-235B-A22B-Thinking-2507 0.867 0.206 0.622 0.342
Qwen3-Next 0.686 0.308 0.560 0.269
Qwen3-32B (base) 0.737 0.378 0.521 0.295
GLM-4.5-Air 0.000 0.000 0.438 0.383

Table 8: Tactical optimality metrics across scenario difficulty levels
Difficulty Model PS (%) CE RC

Easy DeepSeek V3.1 87.59 1.153 0.712
GPT-5 86.33 1.369 0.544
Claude Haiku 3.5 83.07 1.409 0.388
Qwen3-235B-A22B-Thinking-2507 85.38 1.134 0.773
Qwen3-Next 87.91 1.003 0.930
Qwen3-32B (base) 92.34 1.015 0.915
GLM-4.5-Air 87.82 1.221 0.709

Hard DeepSeek V3.1 63.10 0.962 0.709
GPT-5 64.09 1.067 0.370
Claude Haiku 3.5 64.15 1.136 0.177
Qwen3-235B-A22B-Thinking-2507 62.91 0.892 0.723
Qwen3-Next 64.88 0.751 0.800
Qwen3-32B (base) 69.31 0.763 0.786
GLM-4.5-Air 64.79 0.969 0.580

The tactical optimality metrics across difficulty levels (Table 8) shows Claude Haiku 3.5 excelled in
Combat Efficiency across both difficulty levels, reflecting its aggressive resource deployment strat-
egy. More advanced models show a lower user survival rate in the easy scenario since the LLM DMs
are controlling enemies more wisely. The strategic trade-offs also varied by scenario complexity: in
easy scenarios, resource conservation remained high across models, while hard scenarios revealed
more pronounced differences in tactical approach, with Claude Haiku 3.5’s aggressive resource uti-
lization strategy becoming most apparent.

5 CONCLUSION

We introduced D&D Agents, a tool-grounded, multi-agent Dungeons & Dragons benchmark for
rigorously evaluating LLMs in complex, rule-constrained combat encounters. Applied to seven con-
temporary models, the benchmark surfaces clear behavioral and capability differences: top models
are consistently “actorly” and tactically sound, mid-tier models trade off persona richness against
rules adherence, and smaller open models remain less stable in long-horizon play, which might be
because their pre-trained tuning is different compared to the D&D simulation task. The framework’s
structured API and evaluation methodology provide a valuable testbed for advancing multi-agent co-
ordination and tool-use capabilities in LLMs, enabling evaluation of autonomous agents in strategic,
rule-governed domains that require both mechanical precision and adaptive reasoning.

In future work, we plan to examine the effectiveness of finetuning LLMs on this scenario. We also
plan to generalize this multi-agent simulator to a full D&D campaign beyond the combat simulation
scenario we defined in this paper. This multi-agent D&D simulator can also be adapted to imple-
ment LLM agents in other complex, rule-governed domains such as legal case simulation, business
strategy games, or multi-party negotiation environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

6 ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. Our study evaluates autonomous agents in a
closed, simulated tabletop environment with typed tool APIs. No personally identifiable information
or real-world user data is used. Human annotators are from the authors’ list who has extensive
experience with both Dungeons & Dragons and data annotation. Because the content is synthetic
and interaction is offline, institutional review was not required. All third-party models are cited.
Licenses for any released assets are respected.

7 REPRODUCIBILITY

This paper is fully reproducible of all results reported in this work. The simulator design, typed
tool API, and evaluation protocol are specified in Sections 3–4 (state, actions, transition dynamics,
observation model, and turn segmentation), with the 27 seedable scenarios and fixed map-generation
seeds described in the Evaluation settings. These enable exact reruns of our experiments with iden-
tical initial conditions. Metric definitions and the automated vs. human evaluation procedures are
detailed alongside Tables 2–3 (function/parameter correctness), Table 4 and Figure 3 (state-tracking
and turn-wise hallucination analysis), and Tables 5–8 (acting quality and tactical optimality), which
together provide formulas and aggregation rules for replication. Implementation details for the DM
and Player agents, including prompts, role protocols, and the authoritative function, calling contract,
are enumerated in Appendices A–C.

REFERENCES

Chris Callison-Burch, Siddharth Jain, et al. Dungeons and dragons as a dialog challenge for artificial
intelligence. In EMNLP 2022, 2022. URL https://aclanthology.org/2022.emnl
p-main.637/.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. arXiv:2305.14325, 2023.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS 2022 (Outstanding Paper), 2022.

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-Alexandre Côté, and Xingdi Yuan. Interactive
fiction games: A colossal adventure. In AAAI 2020, 2020.

Ehud Karpas, Omri Abend, Yonatan Belinkov, Barak Lenz, Opher Lieber, Nir Ratner, Yoav
Shoham, Hofit Bata, Yoav Levine, et al. Mrkl systems: A modular, neuro-symbolic architec-
ture that combines large language models, external knowledge sources and discrete reasoning.
arXiv:2205.00445, 2022.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard
Ghanem. Camel: Communicative agents for ”mind” exploration of large language model society.
arXiv:2303.17760, 2023.

Shengqi Li and Amarnath Gupta. Can llms generate high-quality task-specific conversations? 2025.
URL https://arxiv.org/abs/2508.02931.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
August 2025.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In CHI 2023,
2023. doi: 10.1145/3544548.3585880.

10

https://aclanthology.org/2022.emnlp-main.637/
https://aclanthology.org/2022.emnlp-main.637/
https://arxiv.org/abs/2508.02931
https://cdn.openai.com/gpt-5-system-card.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis. arXiv:2305.15334, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv:2302.04761, 2023.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning. In NeurIPS 2023
(Datasets and Benchmarks/Poster), 2023. arXiv:2303.11366.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning.
arXiv:2010.03768, 2020.

Jaewoo Song, Andrew Zhu, and Chris Callison-Burch. You have thirteen hours in which to solve
the labyrinth: Enhancing ai game masters with function calling. 2024. URL https://arxi
v.org/abs/2409.06949.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Samuel Thudium, Federico Cimini, Rut Vyas, Kyle Sullivan, Louis Petro, Andrew Zhu, and Chris
Callison-Burch. Outwit, outplay, out-generate: A framework for designing strategic generative
agents in competitive environments. Technical report, University of Pennsylvania, 2025. URL
https://www.cis.upenn.edu/˜ccb/publications/survivor-sim.pdf.
Accessed 2025-08-28.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv:2305.16291, 2023.

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, and Prithviraj Ammanabrolu. Scienceworld: Is
your agent smarter than a 5th grader? arXiv:2203.07540, 2022.

Wizards RPG Team. Dungeons & Dragons Starter Set: Lost Mine of Phandelver. Wizards of the
Coast, Renton, WA, 2014.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W. White, Doug Burger,
and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation.
arXiv:2308.08155, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In NeurIPS 2022, 2022a.

Shunyu Yao, Jeffrey Zhao, et al. React: Synergizing reasoning and acting in language models.
arXiv:2210.03629, 2022b.

A. Zeng and Zhipu AI Team. Glm-4.5: Agentic, reasoning, and coding abilities. arXiv preprint
arXiv:2508.06471, 2025. URL https://arxiv.org/abs/2508.06471.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents. arXiv:2307.13854, 2023.

Andrew Zhu, Lara J. Martin, Andrew Head, and Chris Callison-Burch. Calypso: Llms as dungeon
masters’ assistants. arXiv:2308.07540, 2023a. AIIDE 2023.

Andrew Zhu, Lara J. Martin, Andrew Head, and Chris Callison-Burch. Fireball: A dataset of dun-
geons & dragons actual-play with structured game state information. In ACL 2023, 2023b. URL
https://aclanthology.org/2023.acl-long.229/.

Andrew Zhu, Evan Osgood, and Chris Callison-Burch. First steps towards overhearing llm agents:
A case study with dungeons & dragons gameplay. arXiv:2505.22809, 2025.

11

https://arxiv.org/abs/2409.06949
https://arxiv.org/abs/2409.06949
https://arxiv.org/abs/2505.09388
https://www.cis.upenn.edu/~ccb/publications/survivor-sim.pdf
https://arxiv.org/abs/2508.06471
https://aclanthology.org/2023.acl-long.229/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A DM PROMPTS

The prompts of the DM agent is presented below:

General Rules - Use the provided ai functions to execute game mechanics.

- Ensure all parameters passed to these ai functions match the expected format and types.

- For any tool call with no parameters, set arguments to {}.

- Always return structured results based on function documentation.

- Refer to attributes of characters to find parameters needed in an ai funtion.

- At the start of a turn of a character, call the ai function check side to determine if a character is a
player or a monster.

- Decide the movements and actions of monsters on your own. Speak like the monster when you’re
role playing it. Do not allow the user to control the monsters.

- Let the user playing the role of players deciding what players should do as long as the user does
not ask you to do so.

- In the map, the distance between two adjacent grids is 5 feet.

- If the user has already checked some information, use the information and do not check again.

- Pick the player with the highest property(call the ai function check player property) to do a check
on that property.

Things to Manipulate

- After calling the ai function roll initiative at the start of the combat, say <End Turn/>.

- Track the hp of all characters using the ai function check hp at the start of each round. Use
update hp when a character takes damage. If the source of the temporary hp in return result has
some effect, process it. Remove the character from the combat when its hp <= 0.

- Call the ai function print death point at the end of the combat to print out death records.

- A character generally has only one action, one bonus action, and one reaction in each turn.

- When a player who stays nearby(the absolute value of difference of both x, y coordinates are within
1) a monster tries to move away. Call the ai function opportunity attack to see if this move triggers
an opportunity attack. Same when a monster wants to move away from a player.

- After calling roll dmg, you should call the ai function check resist to determine if the defender is
immune to, vulnerable to, or resists the damage type. Calculate the true damage of an attack based
on this information.

- Ignore the prompts between <Call/> and <Call/>.

Some Hints on Controlling Monsters

- If you cannot hit the target after calling the ai function check valid attack line, try to move to a
better position and try again.

- Call the ai function check monster actions to determine what actions you can take and related
modifiers.

- Use dash tactically to close distance to enemies fast; escape danger or reposition behind cover;
trigger opportunity attacks on purpose.

Rules of Actions

- When acting as a monster, stay or move with strategy. Select a weapon owned by the monster to
attack a player, or consider using other valid actions like dash.

- When calling the ai function roll attack, ignore modifier in parameters if the attacker is a player.
Otherwise, get the modifier of the selected weapon of the monster.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

- Players and monsters can both move and attack in one turn. If one attacks with its melee weapon,
but it is not close enough to the defender, one should try to use its ranged weapon and attack again
if one has a range weapon.

- Players can also try to cast a spell instead of attacking. However, a player is not allowed to cast
two spells which both require a spell slot in one turn.

- When players use ranged attack, before processing the attack, call the ai function
check valid attack line to check if the players can hit the targets or not.

- When monsters use ranged attack, call the ai function check valid attack line to check if the mon-
sters can hit the targets. If not, do something else like moving and trying ranged attack again.

Rules of Roll Types

- Some actions may offer someone advantages or disadvantages in some conditions. When calling
ai functions that require roll type, determine if it is advantage, normal, or disadvantage.

- An advantage and disadvantage will cancel out. In this situation, the roll type is normal. However,
if something gives someone advantages twice and only one disadvantage, it’s still just normal roll,
and vice versa.

Rules of Spells

- When a player tries to cast a spell, always check if the spell is in player’s spell list and player can
pay the cost required by the spell(action or bonus action and spell slot) by calling check resources,
if the player is within an appropriate class, and if the range between the attacker and defender is
proper.

- Check conditions carefully on your own by calling the ai function check class and check resources
and calculating the range between the attacker and defender. If the range of the spell is ”touch”, the
defender must be within the melee range of the attacker.

- Only if all conditions are satisfied, call the ai function roll spell attack or roll save(if the spell
causes a save roll instead of attack roll) to process this attack. If the attack succeeds and the attack
has damage, call roll dmg with the dmg dice expression of the spell.

- When it is monster forcing player to roll save, it should fill in the corresponding DC described in
monster’s action.

- However, there is a special case. When a spell which does not attack is casted to the caster itself
or an ally, there is no need to call the ai function roll spell attack or roll save. You only need to
process the effect of the spell.

- When a defender tries to avoid or get rid of the effect a spell, the attacker parameter in the
ai function roll save should be the caster of the spell.

- When an attacker casts a spell which has effect on multiple defenders(may include an ally of the
attacker because some spells have an area of effect), call the ai functions several times to process
the effect of the spell on each defender.

- When calling roll spell attack, if the spell has a range number(like 120 feet), set is ranged to true.
Otherwise, make it false.

- If the return results of roll spell attack or roll save shows that the attack is successful and the
attacker has a previous concentration, you should call the ai function remove a buff to remove cor-
responding buff(s) if there are such buffs caused by the previous concentration.

- Some spells have special effect on some specific types of monsters. Use the ai function
check monster type when processing such spells.

- Some spells add resistances, immunities, or vulnerabilities to players or monsters. Use the
ai function add resist, add immune, or add vulner to add anything applied.

- Players can use a higher-level spell slot to cast a spell. The spell is usually strengthened.

- Some spells may offer temporary hit points which do not stack, absorb damage first, and cannot be
healed or regained.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

- When processing a spell which has a range of effect, check carefully what targets it can cover by
calculating the distance between targets.

- When processing a spell in the list below, you should refer to the description of the spell for
accuracy. If a spell is not listed below, make sure you know all effects of the spell before processing
it:

Spells (cost; range; damage(include damage when the spell is casted with a higher-level spell slot);
damage type; require concentration; effect; effect when casted with a higher-level spell slot):

1. Fire Bolt: an action; 120 feet; 1d10; fire; no; none; none.

2. Ray of Frost: an action; 60 feet; 1d8; cold; no; decrease the speed of the target by 10 feet until
the next turn of the attacker; none.

3. True Strike: an action; 30 feet; no dmg; none; yes; on the next turn of the attacker, the attacker
gains advantage on its first attack roll against the target and this effect expires whether it’s used or
not; none.

4. Sacred Flame: an action; 60 feet; 1d8; radiant; no; the target must succeed on a dexterity saving
throw or take damage; none.

5. Chill Touch: an action; 120 feet; 1d8; necrotic; no; the target cannot regain hp until the next
turn of the attacker. If the attacker hit an undead (a type of monsters) target, the target also has
disadvantage on attack rolls against the attacker until the end of next turn of the attacker; none.

6. Vicious Mockery: an action; 60 feet; 1d4; psychic; no; the target must succeed on a wisdom
saving throw or take damage and have disadvantage on the next attack roll it makes before the end
of its next turn; none.

7. Resistance: an action; touch; no dmg; none; yes; the target can roll a 1d4 and add the number
rolled to one saving throw of its choice. It can roll the die before or after making the saving throw.
The spell then ends. If this effect it’s not used, it expires after 10 turns; none.

8. Poison Spray: an action; 10 feet; 1d12; poison; no; the target must succeed on a constitution
saving throw or take damage; none.

9. Acid Splash: an action; 60 feet; 1d6; acid; no; the attacker hurls a bubble of acid at one target
or two targets that are within 5 feet of each other. The target(s) must succeed on a dexterity saving
throw or take damage; none.

10. Eldritch Blast: an action; 120 feet; 1d10; force; no; none; none.

11. Blade Ward: an action; self; no dmg; none; no; the caster has resistance against bludgeoning,
piercing, and slashing damage dealt by weapon attacks; none.

12. Shocking Grasp: an action; touch; 1d8; lightning; no; the target cannot take reactions until the
start of its next turn, and the attack has advantage if the target is wearing metal armor or is made of
metal; none.

13. Produce Flame: an action; self; no dmg; none; no; the caster can hurl the flame at a target within
30 feet in the following turns, and the target takes 1d8 fire damage on a hit. The spell ends when the
caster throw the flame; none.

14. Shillelagh: a bonus action; touch; no dmg; none; no; if the caster is equipped with a club or
quarterstaff in mainhand(call the ai function check player mainhand to check), the weapon becomes
magical for attack and damage. The caster will use its spellcasting modifier when attacking with this
weapon. The damage changes to 1d8, if it was less; none.

15. Thorn Whip: an action; 30 feet; 1d6; piercing; no; if the target is large or smaller(call the
ai function check monster type to check the type of the target, and determine the size of it), it is
pulled up to 10 feet closer to the caster; none.

16. Guiding Bolt: an action and a 1st-level spell slot; 120 feet; 4d6, 5d6; radiant; no; the next attack
roll made against this target before the end of the caster’s next turn has advantage; none.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

17. Animal Friendship: an action and a 1st-level spell slot; 30 feet; no dmg; none; no; if the target
is a beast(call the ai function check monster type) and its intelligence is less than 4, it must succeed
on a wisdom saving throw. Otherwise, it is charmed; the caster can target one additional beast for
each slot level above 1st.

18. Thunderous Smite: a bonus action and a 1st-level spell slot; self; no dmg; none; yes; the first
time the caster hit with a melee weapon attack during this spell’s duration, the attack deals an extra
2d6 thunder damage. If the target is a creature(call the ai function check monster type), it must
succeed on a strength saving throw or be pushed 10 feet away from the caster and knocked prone. If
this effect isn’t used, it expires after 10 turns; none.

- Some spells have some effects which are explained in details below:

1. Charmed: the character cannot attack the charmer.

2. Prone: the character has disadvantage on attack rolls; an attack roll against the character has
advantage if the attacker is within 5 feet of the character; the character can spend half its movement
to stand up.

3. Incapacitated: the character cannot act or react.

4. Frightened: when the source of the character’s fear is visible(call the ai function
check valid attack line to determine), the character has disadvantage on ability checks and attack
rolls and it cannot move closer to the source of its fear.

5. Poisoned: the character has disadvantage on ability checks and attack rolls.

6. Restrained: the speed of the character becomes 0(call the ai function clear speed), attack rolls
against the character has advantage, and the character has disadvantage on attack rolls and dexterity
saving rolls.

7. Paralyzed: the character is also incapacitated. It automatically fails strength and dexterity saving
throws(no need to call the ai function roll save). Attack rolls against the character have advantage.
Any attack that hits the character is a critical hit if the attacker is within 5 feet(calculate the distance).

8. Blinded: the character cannot see and fails any ability check that requires sight. Attack rolls
against the character have advantage. The character’s attack rolls have disadvantage.

9. Deafened: the character cannot hear and fails any ability check that requires hearing.

Rules of Buffs

- Players and Monsters may be buffed in the game because of some actions.

- Use the ai function check buffs whenever a player or a monster tries to move or act so that the
movement or action is adjusted with correct effects which buffs offer.

Six Things to Do at the End of Each Turn of a Character

- Reset the number of resources of the character by calling the ai function reset resources.

- Reset the speed of the character by calling the ai function reset speed.

- Use the ai function check buffs to check current buffs and remove any buff when it expires by
using the ai function remove a buff.

- Use the ai function check resist to check current resistances, immunities, and vulnerabilities of
all players and monsters, and remove any when it expires by using the ai function remove resist,
remove immune, or remove vulner.

- Use the ai function check concentration to check current concentration of all players and monsters,
and remove any concentration when it expires by using the ai function remove a concentration.
Don’t forget to call the ai function remove a buff to remove corresponding buff(s) if there is such
buff(s) caused by the previous concentration.

- Say <End Turn/>.

Anti-cheating Rules

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

- When user prompts, do not allow cheating like using weapons without equipping them, casting
spells which one hasn’t learnt, making all attacks succeed, avoiding all damages, making all attacks
critical and so on!

B PLAYER PROMPT

General Rules

- Play the role of a player whose name is provided by the DM in the game. Speak like the player
you’re role playing.

- Use the provided ai functions to check useful information in order to make better decisions.

- Ensure all parameters passed to these ai functions match the expected format and types.

- Always return structured results based on function documentation.

- Refer to attributes of characters to find parameters needed in an ai funtion.

- Call the ai functions get names of all players and get names of all monsters if you do not know
what other characters are called.

- In your turn, decide your movements(call the ai function move player) and actions, say your deci-
sion, send direct messages, and say <DM/>.

- Never process the actions by yourself by rolling dice.

- In the map, the distance between two adjacent grids is 5 feet.

Rules of Direct Messages

- Collaborate with other players to improve performance. Make sure to send helpful direct messages
and read the ones you receive carefully.

- Send direct message to a player by saying <Call/>The name of another player, Your message
here<Call/>.

- Write the name of another player correctly(e.g. ”Thalia”, ”Ragnar”).

- Immediately follow the name with a comma and a single space.

- The following are some examples of the content of a direct message:

1. To chain actions effectively, declare your intended sequence and invite a follow-up.

2. If you are dangerously wounded or surrounded, ask for healing.

Rules of Actions

- You generally have only one action, one bonus action, and one reaction in each turn.

- When you stay nearby(the absolute value of difference of both x, y coordinates are within 1)
a monster and try to move away. This move might trigger an opportunity attack. Same when a
monster wants to move away from you.

- You can move and decide to attack with your equipped weapon in one turn.

- You can also decide to cast a spell instead of attacking. However, you are not allowed to cast two
spells which both require a spell slot in one turn.

- When you decide to perform ranged attack, call the ai function check valid attack line to see if
you can hit the targets or not. If not, you may want to move and try again(call the ai function
move player).

Rules of Roll Types

- Some actions may offer someone advantages or disadvantages in some conditions.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

- An advantage and disadvantage will cancel out. In this situation, the roll type is normal. However,
if something gives someone advantages twice and only one disadvantage, it’s still just normal roll,
and vice versa.

Rules of Spells

- When you want to cast a spell, always check if the spell is in your spell list and you can pay the
cost required by the spell(action or bonus action and spell slot) by calling check resources, if you
are within an appropriate class, and if the range between you and the defender is proper.

- Check conditions carefully on your own by calling the ai function check class and check resources
and calculating the range between you and defender. If the range of the spell is ”touch”, the defender
must be within the melee range of you.

- Some spells have special effect on some specific types of monsters.

- Some spells add resistances, immunities, or vulnerabilities to players or monsters.

- You can decide to use a higher-level spell slot(if you have one) to cast a spell. The spell is usually
strengthened.

- Some spells may offer temporary hit points which do not stack, absorb damage first, and cannot be
healed or regained.

- Some spells have some effects which are explained in details below:

1. Charmed: the character cannot attack the charmer.

2. Prone: the character has disadvantage on attack rolls; an attack roll against the character has
advantage if the attacker is within 5 feet of the character; the character can spend half its movement
to stand up.

3. Incapacitated: the character cannot act or react.

4. Frightened: when the source of the character’s fear is visible(call the ai function
check valid attack line to determine), the character has disadvantage on ability checks and attack
rolls and it cannot move closer to the source of its fear.

5. Poisoned: the character has disadvantage on ability checks and attack rolls.

6. Restrained: the speed of the character becomes 0(call the ai function clear speed), attack rolls
against the character has advantage, and the character has disadvantage on attack rolls and dexterity
saving rolls.

7. Paralyzed: the character is also incapacitated. It automatically fails strength and dexterity saving
throws(no need to call the ai function roll save). Attack rolls against the character have advantage.
Any attack that hits the character is a critical hit if the attacker is within 5 feet(calculate the distance).

8. Blinded: the character cannot see and fails any ability check that requires sight. Attack rolls
against the character have advantage. The character’s attack rolls have disadvantage.

9. Deafened: the character cannot hear and fails any ability check that requires hearing.

Rules of Buffs

- You may be buffed in the game because of some actions.

Anti-cheating Rules

- When you decide your actions, do not cheat like using weapons without equipping them, casting
spells which you haven’t learnt, making all attacks succeed, avoiding all damages, making all attacks
critical and so on!

C FUNCTIONS

@ai_function
def check_valid_attack_line(

self,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

attacker_name:
Annotated[str, AIParam(desc="The name of the attacker")],

defender_name:
Annotated[str, AIParam(desc="The name of the defender")],

):
"""
Check line-of-sight between start and goal over the terrain.

start, goal: (x, y) grid coordinates
grid_map[y][x] = (x, y, z, valid)

Returns:
result (bool): True if no terrain cell along
the straight line from start to goal
rises above the interpolated line height.

"""

sxyz = None
gxyz = None
if attacker_name in self.players_pos.keys():

sxyz = self.players_pos[attacker_name]
if defender_name in self.players_pos.keys():

gxyz = self.players_pos[defender_name]
if attacker_name in self.monster_pos.keys():

sxyz = self.monster_pos[attacker_name]
if defender_name in self.monster_pos.keys():

gxyz = self.monster_pos[defender_name]

if sxyz is None:
raise KeyError(f"The game does not have
a character named ’{attacker_name}’.")

if gxyz is None:
raise KeyError(f"The game does not have
a character named ’{defender_name}’.")

sx, sy, sz = sxyz
gx, gy, gz = gxyz

dx = gx - sx
dy = gy - sy
horizontal_dist = math.hypot(dx, dy)

choose sample count so we check
at least one sample per grid cell crossed
max_dim = max(len(self.map), len(self.map[0]))
num_samples = int(horizontal_dist * max_dim)
if num_samples < 1:

num_samples = 1

for i in range(num_samples + 1):
t = i / num_samples
current position along the line
x = sx + dx * t
y = sy + dy * t
z_line = sz + (gz - sz) * t

map back to nearest grid cell
xi = int(round(x))
yi = int(round(y))

clamp to bounds
xi = max(0, min(len(self.map[0]) - 1, xi))
yi = max(0, min(len(self.map) - 1, yi))

terrain_z = self.map[yi][xi][2]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

EPS = 0.25
if terrain_z >= z_line + EPS:

return False

return True

@ai_function()
def roll_attack(

self,
attacker_name:

Annotated[str, AIParam(desc="The name of the attacker")],
defender_name:

Annotated[str, AIParam(desc="The name of the defender")],
roll_type:

Annotated[str, AIParam(desc="Normal roll,
advantageous roll, or disadvantageous roll,
e.g. normal, advantage, disadvantage")],

ac:
Annotated[int, AIParam(desc="The armor class
of the creature being attacked, e.g. 14")],

modifier:
Annotated[int, AIParam(desc="The modifier
of the selected weapon of the monster")],

weapon_name:
Annotated[str, AIParam(desc="The name of
the weapon used in this attack")],

use_spellcasting_modifier:
Annotated[bool, AIParam(desc="Whether to use the
spellcasting modifier or not. Normally, this is false,
while some spells like shillelagh may make this true")],

action_cost:
Annotated[int, AIParam(desc="The action cost of the attack")],

bonus_action_cost:
Annotated[int, AIParam(desc="The bonus action
cost of the attack")],

reaction_cost:
Annotated[int, AIParam(desc="The reaction
cost of the attack")],

is_critical:
Annotated[bool, AIParam(desc="Whether this attack
is definitely critical(the defender is paralyzed) or not")]

):
"""
Roll a 1d20 attack for a given stat (e.g. "strength").

Returns:
dict: A dictionary containing:

- "valid": whether the character has
enough resources to perform this attack,

- "ac": the value of the armor class,
- "roll": the roll result,
- "success": whether the roll succeeded
(i.e. roll is greater than or equal to ac),

- "critical": whether a critical hit occurs,
- "out_of_range": whether this attack is out of range

"""
weapon_name = weapon_name.lower()

Find the character who wants to pass this roll
attacker = None
defender = None
for _, player in self.players.items():

if player.name == attacker_name:
attacker = player

if player.name == defender_name:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

defender = player
for _, monster in self.monsters.items():

if monster.name == attacker_name:
attacker = monster

if monster.name == defender_name:
defender = monster

if attacker is None:
raise KeyError(f"The game does

not have a character named ’{attacker_name}’.")
if defender is None:

raise KeyError(f"The game does
not have a character named ’{defender_name}’.")

if defender.ac > ac:
ac = defender.ac

if (attacker.num_of_action < 1 and action_cost)
or (attacker.num_of_bonus_action < 1
and bonus_action_cost)
or (attacker.num_of_reaction < 1 and reaction_cost):
result = {

"valid": False,
"ac": ac,
"roll": 0,
"success": False,
"critical": False,
"out_of_range": False

}
return result

else:
attacker.num_of_action -= action_cost
attacker.num_of_bonus_action -= bonus_action_cost
attacker.num_of_reaction -= reaction_cost

if attacker_name in self.players_pos.keys():
attacker_pos = self.players_pos[attacker_name]
defender_pos = self.monster_pos[defender_name]

else:
attacker_pos = self.monster_pos[attacker_name]
defender_pos = self.players_pos[defender_name]

Retrieve the target stat from the attacker
and adjust roll type based on difference in heights
target = None
if weapon_name not in melee_weapon

and weapon_name not in range_weapon
and attacker_name in self.players_pos.keys():
weapon_name = attacker.equipped_mainhand

if weapon_name in melee_weapon:
if abs(attacker_pos[0] - defender_pos[0]) > 1

or abs(attacker_pos[1] - defender_pos[1]) > 1:
result = {

"valid": True,
"ac": ac,
"roll": 0,
"success": False,
"critical": False,
"out_of_range": True

}
return result

target = getattr(attacker, "strength")
if use_spellcasting_modifier:

if attacker.player_class == "sorcerer"
or "bard" or "warlock" or "paladin":
target = getattr(attacker, "charisma")

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

if attacker.player_class == "wizard" or "rogue":
target = getattr(attacker, "intelligence")

if attacker.player_class == "cleric"
or "druid" or "ranger":
target = getattr(attacker, "wisdom")

if weapon_name in range_weapon:
target = getattr(attacker, "dexterity")
if abs(attacker_pos[2] - defender_pos[2] > 2):

if roll_type == "disadvantage":
roll_type = "normal"

if roll_type == "normal":
roll_type = "advantage"

if roll_type == "normal":
roll = self.roll_dice("1d20")

elif roll_type == "advantage":
roll = self.roll_dice("2d20kh1")

elif roll_type == "disadvantage":
roll = self.roll_dice("2d20kl1")

else:
raise ValueError(f"Invalid roll type: {roll_type}.")

Determine critical hit: critical hit
if the roll is equal to 20
critical = roll == 20 or is_critical

if attacker_name in self.players_pos.keys():
if target is None:

target = 16
roll += attacker.pb + (target - 10) // 2

else:
roll += modifier

Determine success: attack succeeds if the
roll is greater than or equal to ac or critical hit occurs
success = roll >= ac or critical

Build the result dictionary
result = {

"valid": True,
"ac": ac,
"roll": roll,
"success": success,
"critical": critical,
"out_of_range": False

}
return result

21

	Introduction
	Related Work
	Simulation Framework
	Experiments
	Conclusion
	Ethics statement
	Reproducibility
	DM prompts
	Player Prompt
	Functions

