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Abstract
In this work, we show that class stability, the expected distance of an input to the decision bound-
ary, captures what classical capacity measures, such as weight norms, fail to explain. We prove
a generalization bound that improves inversely with the class stability, interpreted as a quantifi-
able notion of robustness. As a corollary, we derive a law of robustness for classification: any
interpolating model with p ≈ n parameters must be unstable, so high stability requires significant
overparameterization. Crucially, our results extend beyond smoothness assumptions and apply to
discontinuous classifiers. Preliminary experiments support our theory: empirical stability increases
with model size, while norm-based measures remain uninformative.

1. Introduction

The generalization behavior of overparameterized neural networks presents fundamental challenges
to classical statistical learning theory. Traditional complexity measures, such as parameter counts
or spectral norms of weights, form the basis of many generalization bounds, including those de-
rived from VC dimension theory and Rademacher complexity. However, these quantities do not
exhaustively explain several empirical phenomena, e.g. double descent [3] and benign overfitting
[2]. Double descent shows that the test error, after initially increasing near the interpolation thresh-
old, can improve as model size continues to grow. Similarly, the phenomenon of benign overfitting
demonstrates that models which perfectly interpolate noisy training data can nonetheless achieve
strong generalization. These findings expose the limitations of norm- and size-based complexity
measures as predictors of generalization.

An emerging perspective suggests that generalization in modern networks is governed less by
model capacity and more by the stability of predictions under input perturbations [9, 23, 25]. In the
context of regression, it has been shown that under certain distributional assumptions, low Lipschitz
constants or local smoothness of the learned function correlate with strong generalization [7]. These
results give rise to formal “laws of robustness,” linking robustness, generalization and overparame-
terization [4]. Similar insights arise from the literature on algorithmic stability [5] and flat minima
[12]. However, these theoretical results rely crucially on the assumption that the learned function
is Lipschitz, which does not hold for classifiers, whose co-domain is discrete. One could attempt
to circumvent this by studying the Lipschitz constant of the underlying score function g, where the
classifier f is obtained as f := argmax ◦ g. This approach is not informative since g can be arbi-
trarily rescaled without altering the output of f , and thus its Lipschitz constant may not reflect the

© .



THE PRICE OF ROBUSTNESS: STABLE CLASSIFIERS NEED OVERPARAMETERIZATION

geometry of the decision boundary [15]. This renders existing smoothness-based theories vacuous
in the classification setting, the most fundamental problem in deep learning.

1.1. Our contributions

Our contributions are twofold. First, we establish that the empirical Rademacher complexity of
a finite hypothesis class can be bounded in terms of the minimum class stability (Definition 2)
of its classifiers. This leads to a new generalization bound for discontinuous classifiers, which
gets tighter with increasing stability of the function class. We further show that in the classically
parameterized regime (p ≈ n), any interpolating classifier must be inherently unstable. Hence,
achieving good fitting and high class stability requires significant overparameterization. Together,
these results extend the law of robustness to classifiers and provide a unified theoretical foundation
for understanding generalization in modern deep networks.

2. Preliminaries and Notation

In this section, we provide background on the concepts of stability, generalization and isoperimetry.
We consider a binary classification setting: Let (X × {−1, 1}, µ) be a probability measure space
with X ⊂ Rd bounded and F ⊂ {f | f : X → {−1, 1}} a finite class of classifiers. The goal
is to find a stable function f ∈ F minimizing a bounded loss function ℓ over n i.i.d. samples
(xi, yi) ∼ µ. A natural loss for classification functions is the 0-1 loss ℓ0−1(y, y

′) := 1y=y′ . In this
setting, we define the distance of a sample to the decision boundary as follows.

Definition 1 (Local Stability) Let f : X → {−1, 1}. Its extension f̄ : Rd → {−1, 0, 1} is defined
by f̄(x) = f(x) for x ∈ X , and f̄(x) = 0 otherwise. We define the local stability of f at x ∈ X as:

hf (x) := inf{∥x− z∥2 : f̄(x) ̸= f̄(z), z ∈ Rd}.

To capture the average robustness of a classifier to perturbations in the input space, we define the
class stability of f as the expected local stability of f on X , following a similar approach as in [15].

Definition 2 (Class Stability) The class stability of f : X → {−1, 1} on X is given by the average
local stability with respect to the marginal distribution of µ, that is

S(f) :=

∫
X
hpf (x) dµ = E[hpf ] .

To relate class stability to generalization, we bound the population risk R(f) := E[ℓ(f(x), y)]
via the empirical loss R̂(f) := 1

n

∑n
i=1 ℓ(f(xi), yi). For bounded loss |ℓ| ≤ a, the following

standard result [1] holds with probability 1− δ over the sample

R(f)− R̂(f) ≤ 2Rn,µ(ℓ ◦ F) + a

√
2 log(2/δ)

n
, (1)

where Rn,µ(G) denotes the Rademacher complexity of a general function class G, defined as

Rn,µ(G) =
1

n
Eσi,xi

[
sup
g∈G

∣∣∣∣∣
n∑

i=1

σig(xi)

∣∣∣∣∣
]
,
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with (σi)
n
i=1 i.i.d. Rademacher random variables. If Rn,µ(ℓ ◦ F) ≤ CRn,µ(F), we obtain bounds

directly in terms of R(F). In particular, for ℓ0−1 we have C = 1
2 , whereas for L-Lipschitz losses

C = L hold, see e.g. [1, 22] for detailed explanations.
To bound Rn,µ(F) in terms of the minimum class stability of F requires concentration prop-

erties on the input distribution; we refer to Appendix A for further discussion. A natural and
widely used assumption is isoperimetry, which ensures sharp concentration for bounded Lipschitz-
continuous functions [7].

Definition 3 (Isoperimetry) A probability measure µ on X ⊂ Rd satisfies c-isoperimetry if for
any bounded L-Lipschitz f : X → R, and any t ≥ 0,

P(|f(x)− E[f ]| ≥ t) ≤ 2e−
dt2

2cL2 . (2)

Isoperimetry holds for many distributions, e.g., Gaussian measures and the volume measure on
Riemannian manifolds with positive curvature, such as the uniform measure on the sphere [7, 24].

3. A Law of Robustness for Classification

In this section, we establish a law of robustness for classification, extending stability-generalization
trade-offs to discontinuous functions. Classical results for smooth functions characterize robustness
via the Lipschitz constant, which is ill-defined for classifiers with discrete outputs. To adress this,
we adapt the general strategy of [7], presented in more detail in Appendix A, but replacing Lipschitz
continuity with the notion of class stability (Definition 2) and assuming the following:

(H1) (X,µ) is a probability measure space with µ being c-isoperimetric 1, see Definition 3;

(H2) the considered hypothesis class F is finite, that is |F| < ∞, and there exists S > 0 such that
minf∈F S(f) > S.

We first establish a bound on the Rademacher complexity in terms of our stability measure S(f).

Theorem 4 (Generalization Bound) Under Assumptions (H1) and (H2), we have:

Rn,µ(F) ≲ max

{√
1

n
,
1

S

√
c log(n)

nd
,
1

S

√
c log(|F|)

nd

}
, (3)

where ≲ means that the inequality holds up to an absolute constant independent of log(|F|), n, d, S, c.

Proof Our strategy is to apply the result of [7] to a restriction f|At(f) where f is Lipschitz, and use
isoperimetry to control the measure of the complement At(f)

c. See Appendix B for the details.

The key insight of Theorem 4, combined with the classical generalization bound (1), is that good
generalization is possible in the highly overparameterized regime for classifiers with sufficiently
high class stability. Indeed, the presence of 1/S in (3) shows that class stability impacts the effective
complexity of the model class, possibly mitigating the risks of overfitting in large models. Note that
using a uniform discretization, a finite approximation of an infinite function class parametrized over

1. It is worth noting that our framework can be readily extended to mixtures of c-isoperimetric distributions.
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a bounded subset of Rp with p parameters satisfies log(|F|) ≲ p. Therefore, when the number of
parameters p ≈ log |F| is much larger than n, the last term in (3) dominates, and the bound becomes
small as long as S scales at least as

√
p/(nd). Finally, we are in a position to deduce our law of

isoperimetry for discontinuous functions and a discontinuous loss.

Corollary 5 (Law of Robustness for Discontinuous Functions) Under Assumptions (H1) and (H2),
let us fix ε, δ ∈ (0, 1) and the loss ℓ0−1 to be the 0-1 loss. Then there exists an absolute constant
K > 0, such that under the additional assumptions that:

1. The minimal risk defined as σ2 := minf R0−1(f), satisfies σ2 ≥ ε.

2. The number of samples n is large enough such that: K√
n
< ε

3 and
√

2 log(2/δ)
n < ε/2. Fur-

thermore, we assume that p := log(|F|) ≥ n.

Then, with probability at least 1 − δ with respect to the sample, the following holds uniformly for
all f ∈ F:

R̂0−1(f) ≤ σ2 − ε =⇒ S(f) <
6K

√
c

ε

√
p

nd

Proof We briefly sketch the proof of how the law of isoperimetry follows as a corollary of the
generalization bound in Theorem 4. Let K > 0 be an absolute constant such that the inequality in
Theorem 4 holds. Let us define the threshold stability

S∗ = S∗(p, n, d, ε) :=
6K

√
c

ε

√
p

nd

Observe, that Theorem 4 implies for sufficiently large sample size n, we have

S ≥ S∗ =⇒ Rn,µ(F) ≤ ε/2. (4)

Suppose now there exists an f ∈ F that overfits, i.e. R̂0−1(f) ≤ σ2 − ε for σ2 the minimal
risk. Then, in particular, the generalization gap satisfies: R0−1(f) − R̂0−1(f) ≥ ε. Applying the
generalization inequality (1), we obtain:

Rn,µ(F) ≥ ε− a

√
2ln(2/δ)

n
≥ ε/2.

By contraposition of absolute (4), this implies with probability at least 1− δ

R̂0−1(f) ≤ σ2 − ε =⇒ S ≤ S∗, (5)

This establishes the law of isoperimetry for discontinuous classifiers and a discontinuous loss.

We conclude that, in high dimensions, achieving both low training error and high stability re-
quires overparametrization at the scale p ≈ nd. This reinforces our central message: overparame-
terization may not degrade generalization, but is necessary for achieving robustness and good fitting
in classification. Notably, modern neural networks, including LLMs [6, 8], are trained in the heavily
overparameterized regime, where parameter counts far exceed sample sizes, matching the proposed
theory. Our result may help to understand why such models can still generalize effectively.
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Figure 1: Empirical class stability S(f) (blue, left axis) and theoretical bound from Theorem 5 (red,
right axis) as a function of network width w. Results for 4-layer MLPs are in Appendix C.

4. Experiments

We empirically validate our theoretical prediction that class stability S(f) increases with model size
in interpolating networks.

Setup. We train fully connected MLPs with 4 or 8 hidden layers and hidden dimensions w ∈
{128, 256, 512, 1024} on MNIST, and w ∈ {256, 512, 1024, 2048} on CIFAR-10. All models are
trained until achieving at least 99.9% training accuracy, ensuring (almost) interpolation.

To estimate the empirical class stability S(f), we perform adversarial attacks on each input.
For an increasing sequence of perturbation radii r = (r1, . . . , rn), we gradually increase r until the
classifier’s prediction changes. The smallest successful radius is recorded as the estimated distance
to the decision boundary for that sample. We report S(f) as the average of these distances.

Results. Figures 1 and 2 show that S(f) consistently increases with model size across for
MLPs. The growth trend matches the theoretical prediction S(f) ∼

√
p/nd, supporting our law

of robustness. In contrast, standard weight norms show no consistent correlation with either model
size or generalization performance. Additional details are provided in Appendix C.

5. Limitations and Future Work

On the empirical side, it would be valuable to investigate the validity of Assumption (H1), specif-
ically the isoperimetric concentration properties of real-world datasets. Empirically testing these
properties could not only shed light on the practical relevance of our theoretical assumptions, but
may also motivate alternative concentration inequalities beyond isoperimetry, allowing for broader
applicability of our results.

A key limitation of our theoretical analysis lies in Assumption (H2), which restricts our results to
finite function classes. Extending to infinite classes is challenging due to the discontinuity of neural
network classifiers with respect to their parameters. This prevents the direct use of Lipschitz-based
discretization techniques.

To better interpret our results as statements about robustness, it is interesting to relate class
stability to the robust generalization error introduced in [17] and related concepts. Understanding
this connection is a promising direction for future work.
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Appendix A. The need for isoperimetry

Concentration inequalities are essential tools in high-dimensional probability theory, providing
bounds on the tail behavior of random variables. In this section, we outline the key strategy from
[7] for proving the law of robustness, highlighting the importance of an additional assumption on
the measure µ. As our approach extends this framework, we consider Lipschitz continuous func-
tions, employing the Lipschitz constant as a measure of robustness. In Section 3, we generalized
this strategy to handle discontinuous functions, addressing the inherent challenges of classification
tasks. The basic idea is to use Lipschitzness together with isoperimetry to bound the probability

P(∃f ∈ F : R̂(f) ≈ 0 & L(f) ≤ L∗) < δ. (6)

Thus, with probability at least 1− δ, the following holds for all f ∈ F :

R̂(f) ≈ 0 =⇒ L(f) > L∗(p, n, d). (7)

Here L∗ ≡ L∗(p, n, d) is an algebraic function of the number of parameters p = log(|F|), training
samples n, and input dimension d, satisfying L∗ ≫ 1 in the non-overparameterized regime p ≈ n.
Thus, with probability at least 1 − δ, the following holds uniformly for all f ∈ F : However, (7)
informs robustness in F only if P(∄f ∈ F : R̂(f) ≈ 0) ≤ 1− δ. Otherwise, the implication above
is vacuous, as almost no function in F achieves near-zero loss. Without imposing assumptions on
the measure µ, we can apply McDiarmid’s inequality to derive a Lipschitz-independent bound for
any function f : X → [−1, 1].

P(|f(x)− E(f)| ≥ t) ≤ 2 exp(− t2

8
) (8)

Thus, any concentration property explicitly using the Lipschitz constant, must exhibit a faster decay
rate for the regime, where L(f) ≳ 1, to yield a non-vacuous implication in (7). In particular, Mc-
Diarmid’s inequality applied to Lipschitz functions yields a tail bound exp(− t2

2diam(X 2)L2 ), which
is insufficient as it decays faster only for L < 2/diam(X ). Isoperimetry, originating in geometry,
provides an upper bound on a set’s volume in terms of its boundary’s surface area. In high dimen-
sions, this principle induces a concentration of measure, where the measure of the ϵ-neighborhood
Aε of any set A with µ(A) > 0 has measure µ(Aε) → 1, and the complementary measure decays
as exp(−cdε2). Equivalently, every bounded Lipschitz continuous function is O(1)- sub-Gaussian
(Definition 3). This concentration property enables us to bound the probability in (6), as a smaller
Lipschitz constant reduces the function’s ability to correlate strongly with the labels. Notably, (2)

decays faster than the McDiarmid bound in (8) when L < 2
√

d
c , making it effective for functions

with moderate Lipschitz constants in high-dimensional settings.

Appendix B. Generalization bound (Theorem 4)

Proof : To begin, we explore the relationship between two measures of robustness: the Lipschitz
constant L(f) and the stability measure S(f). Define the set

At(f) := {x ∈ X : hpf (x) > S(f)− t}
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and observe that for x ∈ At(f) and y ∈ X

∥f(x)− f(y)∥ ≤ 2

S(f)− t
∥x− y∥ .

In particular, f is Lipschitz continuous on At(f). Our strategy is to apply the result of [7] to the
restriction f|At(f), and use isoperimetry to control the measure of the complement At(f)

c. We rely
on two key facts:

• Fact 1: Every Lipschitz continuous function f : A → R, defined on a subset A ⊂ X of
a metric space, can be extended to a function F : X → R, preserving the same Lipschitz
constant ([18], [14]). =⇒ This allows us to apply the result in [7] to F .

• Fact 2: The local p-stability measure hpf (x) : X → R, is 2-Lipschitz continuous with respect
to the ℓp-norm ([15], Prop.7.5.). =⇒ This allows us to control P(At(f)

c).

By choosing t = S(f)/2, we ensure that the set At(f)-on which f is Lipschitz covers almost
all of the input space, with the complement At(f)

c having exponentially small measure in S2.
Specifically, using isoperimetry we obtain

P(At(f)
c) = P(S(f)− hpf (x) ≥ t) ≤ exp

(
− dt2

23c

)
= exp

(
− dS2

25c

)
.

To bound the Rademacher complexity we add and substract the Lipschitz continuous extension F
to get

Rn,µ(F) =
1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σif(xi)

∣∣∣∣∣
]

≤ 1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σiF (xi)

∣∣∣∣∣
]
+

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − F )(xi)

∣∣∣∣∣
]

≤ C1
1√
n
+ C2

1

S

√
c log(|F|)

nd
+

1

n
Eσi,xi

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

σi(f − F )(xi)

∣∣∣∣∣
]

where we used [[7], Lemma 4.1.] on the 4
S -Lipschitz function F to bound the first term. The

constants C1, C2 > 0 are absolute. To bound the second term we combine the fact that σi(F−f)(xi)
is a bounded, mean-zero and therefore sub-Gaussian variable with the fact that (F = f)|At(f). We
furthermore use the following classical lemma to get a tail bound on the sum over all training
samples.

Lemma 6 ([24], Prop.2.6.3) Let X1, ..., Xn be n independent mean-zero sub-Gaussian random
variables such that for all t ≥ 0

P
(
|Xi| ≥ t) ≤ 2 exp

(
− t2

2σ2
i

)
Then for any a ∈ Rn, we have

P
(∑

i

aiXi ≥ t
)
≤ 2 exp

(
− t2

2
∑

i σ
2
i a

2
i

)
10
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Thus, for every f ∈ F the random variable
∑n

i=1 σi(F − f)(xi) satisfies a tail bound (t > 0) of the
form

P
(
|

n∑
i=1

σi(F − f)(xi)| ≥ t) ≤ P
(
|

n∑
i=1

σi(F − f)(xi)| ≥ t|∃xi ∈ At(f)
c)nP(At(f)

c)

≤ 2nexp
(
− S2d

25c

)
exp

(
− t2

2n

)
=⇒ P

(
sup
f∈F

|
n∑

i=1

σi(F − f)(xi)| ≥ t) ≤
∑
F

P
(
|

n∑
i=1

σi(F − f)(xi)| ≥ t) ≤ CS |F|nexp
(
− t2

23n

)
Where we used a union bound in the second line and defined CS = exp

(
− S2d

25c

)
. Following the

strategy in [[24], Exercise 2.5.10] we consider two cases:

• Case 1: |F|n ≤ exp( t2

24n
)

For large enough t we get a tail bound of the form CS exp(− t2

24n
).

• Case 2: |F|n > exp( t2

24n
)

For small t the probability is trivially bounded by

CS exp
(
− t2 log(CS)

24n log(|F|n)
)
> CS exp

(
− log(CS)

)
= 1.

In particular, under the condition that

log(CS)
log(|F|n)

=
S2d
25c

log(|F|n)
< 1 (9)

we obtain the general tail bound

P
(
sup
F

|
n∑

i=1

σi(F − f)(xi)| ≥ t)
t>0
≤ CS exp

(
− t2 log(CS)

24n log(|F|n)
)
≤ 2 exp

(
− t2 log(CS)

24n log(|F|n)
)

using that CS ≤ 2. Note that the last expression bounds the probability ∀t ≥ 0. The condition 9
is always satisfied in the parameter regime of interest, namely when p ≥ n. We conclude that the
random variable sup

F
|
∑n

i=1 σi(F − f)(xi)| is sub-Gaussian with variance σ2 = 29 log(|F|n)nc
S2d

. In

particular, we can bound its expectation by

Eσi,xi
[
sup
F

|
n∑

i=1

σi(F − f)(xi)| ≥ t
]
≤ C3

√
log(|F|n)nc

S2d

for some absolute constant C3 > 0. Putting everything together, we obtain the claimed upper bound
on Rn,µ(F).

Rn,µ(F) ≤ C1
1√
n
+ (C2 + C3)

1

S

√
c log(|F|)

nd
+ C3

√
log(n)c

S2nd

11



THE PRICE OF ROBUSTNESS: STABLE CLASSIFIERS NEED OVERPARAMETERIZATION

128 256 512 1k
1.2

1.4

1.6

Width w

St
ab

ili
ty

S
(f
)

MNIST, 4 Layer

0.5

1

1.5

B
ou

nd

128 256 512 1k

0.8

1

1.2

Width w

St
ab

ili
ty

S
(f
)

CIFAR-10, 4 Layer

1

2

B
ou

nd

Figure 2: Empirical class stability S(f) (blue, left axis) and theoretical bound from Theorem 5 (red,
right axis) as a function of network width w for 4-layer MLPs.

Appendix C. Appendix: Experimental Details for Stability Measurement

Training setup. To empirically validate our robustness law, we trained fully connected MLPs
on MNIST and CIFAR-10 datasets. Each model has either 4 or 8 hidden layers with widths w ∈
{128, 256, 512, 1024} for MNIST, and w ∈ {256, 512, 1024, 2048} for CIFAR-10. All models use
ReLU activations, batch normalization, and were initialized with standard parametrization. Training
was conducted using the Adam optimizer [13] for the embedding and output layers, and the Muon
optimizer [11] for the hidden layers. Models were trained with a batch size of 256 and learning rate
10−3, until at least 99.9% training accuracy was achieved, ensuring (near) interpolation.

Parameter counts and normalization. For each model, we recorded the total number of trainable
parameters p, input dimension d, and total number of training samples n. The theoretical bound√
p/(nd) was used as a reference scale for comparison with measured stability.

Stability estimation. Class stability S(f) was computed using adversarial perturbation analysis.
We performed a suite of l2-based attacks (FGSM, PGD, DeepFool, and L2PGD [10, 16, 19]) using
the Foolbox library [21]. For each input x, we recorded the minimum perturbation norm required to
change the classifier prediction, over a grid of radii r = (0.002, 0.01, 0.05, 0.1). The final stability
score S(f) was taken as the average l2 distance across the dataset.

Implementation. Training and evaluation code is implemented in PyTorch [20]. For MLPs, im-
ages were flattened to vectors. Attack evaluations were conducted over the full dataset (train and
test).

Reproducibility. All experiments were run with multiple random seeds {0, 1, 2, 3, 4}, and mean
with standard deviation are reported.
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