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Abstract

In this work, we show that class stability, the expected distance of an input to the decision bound-
ary, captures what classical capacity measures, such as weight norms, fail to explain. In particular,
we prove a generalization bound that improves inversely with the class stability. As a corollary,
interpreting class stability as a quantifiable notion of robustness, we derive a law of robustness for
classification that extends results by Bubeck and Selke beyond smoothness assumptions to discon-
tinuous functions. Specifically, any interpolating model with p =~ n parameters on n data points
must be unstable, implying that high stability requires substantial overparameterization. Prelim-
inary experiments support this theory: empirical stability increases with model size, while tradi-
tional norm-based measures remain uninformative.

1. Introduction

The generalization behavior of overparameterized neural networks presents fundamental challenges
to classical statistical learning theory. Traditional complexity measures, such as parameter counts
or spectral norms of weights, form the basis of many generalization bounds, including those de-
rived from VC dimension theory and Rademacher complexity. However, these quantities do not
exhaustively explain several empirical phenomena, e.g., double descent [3] and benign overfitting
[2]. The occurrence of double descent illustrates that the test error, after initially increasing near
the interpolation threshold, can improve as the the model size continues to grow. Similarly, the
phenomenon of benign overfitting demonstrates that models that perfectly interpolate noisy training
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data can nonetheless achieve strong generalization. These findings expose the limitations of norm-
and size-based complexity measures as predictors of generalization.

An emerging perspective suggests that generalization in modern networks is not only governed
by model capacity but also by the stability, aka robustness, of predictions under input perturbations
[8, 22, 24]. Similar insights arise from the literature on stability for learning algorithms [5] and flat
minima [11]. In the context of regression under mild assumptions on the data distribution, a link be-
tween robustness, generalization, and overparameterization can be formally proven: small Lipschitz
constants or local smoothness of a function correlate with strong generalization [4, 7]. However, this
“law of robustness” crucially relies on the assumption that the function class is Lipschitz, making it
inadequate for classifiers, whose co-domain is discrete by design. One could attempt to circumvent
the issue by studying the Lipschitz constant of the underlying score function g, where the classi-
fier f is obtained as f := argmax o g. This approach is not informative since g can be arbitrarily
rescaled without altering the class prediction of f, and thus its Lipschitz constant may not reflect the
geometry of the decision boundary [14]. This renders existing smoothness-based theories vacuous
in the classification setting, a fundamental problem in deep learning.

1.1. Our contributions

Our contributions are twofold. First, we establish that the data-dependent Rademacher complexity
of a finite hypothesis class of classifiers can be bounded in terms of the minimum class stability
(see Definition 1). This leads to a new generalization bound for discontinuous classifiers, which
sharpens with increasing stability of the function class. Second, we further show that in the classi-
cally parameterized regime (# parameters ~ # training samples), any interpolating classifier must be
unstable. Hence, achieving almost-perfect fitting as well as high class stability requires significant
overparameterization. Together, these results extend the law of robustness to classifiers and provide
a unified theoretical foundation for understanding generalization in modern deep networks.

2. Preliminaries and Notation

Next, we provide background on the key concepts relevant to our analysis, including stability, gen-
eralization, and isoperimetry. We consider a binary classification setting: Let (X" x {—1,1}, u)
be a probability measure space with X C RY bounded and F C {f|f : X — {—1,1}} a finite
set of classifiers. The goal is to find a stable function f € F minimizing a bounded loss function
¢:{-1,1}> = R, onniid. samples (x;,3;) ~ p. A natural loss in the classification setting is
the 0-1 loss £o-1(y,y") := 1,2, . In this setup, following a similar approach as in [14], we define
the class stability of f as the expected distance of a sample to the decision boundary in X, thereby
capturing the average robustness of a classifier f to input perturbations.

Definition 1 (Local and Class Stability) For f : X — {—1,1}, denote by f : R? — {—1,0,1}
its extension given by f(x) = f(x) forx € X, and f(z) = 0 otherwise. We define the local stability
of fatx € X as:

hylw) = inf{ o — 2], : F(z) # F(2), = € BRI},

The class stability of f on X is defined as the expected local stability with respect to the marginal
distribution of p, that is,

S(£)i= | hy(o) du = Blny)
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Our goal is to relate the class stability to the Rademacher complexity of a function class, which,
in turn, connects to generalization bounds through classical results [1]. In particular, for a bounded
loss |¢| < a, the difference between the population risk Ry(f) := E[¢(f(z),y)] and the empirical
risk Ry(f) == LS~ L €(f(x;), ;) is bounded with probability at least 1 — & over the samples by

sup(Rg(f) — ﬁg(f)) <2Rp(loF)+a M, €))
feFr n

where R, #(g) denotes the Rademacher complexity of a general function class G, defined as

> oig(x) ] )

i=1
with (o;)7_; i.i.d. Rademacher random variables. To obtain a bound in (1) in terms of R,, ,(F),
note that R, ,(¢ o F) < C'R,, ,(F) holds under certain conditions on the loss, e.g., we have

sup

| —
Rnu(9) = EE o s
g

1
Rn7u(€0_1 o .7:) < Rn,u(f), i.e., C = 5, (2)

1
2
whereas for L-Lipschitz losses C' = L holds, see [1, 21] for detailed explanations. Overall, it
therefore suffices to bound R,, ,(F) in terms of the class stability of functions f € F to link gen-
eralization to stability. In other words, deriving the desired generalization bound, requires tightly
controlling how well stable functions can fit random labels, which demands structural assumptions
on the input distribution. We refer to Appendix A for further discussions on why certain assump-
tions regarding the underlying distribution are necessary. A natural and widely used condition is
isoperimetry, which ensures sharp concentration for bounded Lipschitz-continuous functions [7].

Definition 2 (Isoperimetry) A probability measure n on X C R¢ satisfies c-isoperimetry if for
any bounded L-Lipschitz function f : X — R, and any t > 0,

dt?

P(|f(x) — E[f]] 2 t) < 2e 2. 3)

Isoperimetry is, for instance, satisfied by Gaussian measures and the volume measure on Rie-
mannian manifolds with positive curvature, such as the uniform measure on the sphere [7, 23].

3. A Law of Robustness for Classification

In this section, we establish a law of robustness for classification, extending stability-generalization
trade-offs to discontinuous functions. Classical results for smooth functions characterize robustness
via the Lipschitz constant, which is ill-defined for classifiers with discrete outputs. To address this,
we adapt the general strategy of [7], presented in more detail in Appendix A, but substitute Lipschitz
continuity with the notion of class stability introduced in Definition 1, i.e., we proceed under the
following assumptions:

(H1) (X, i) is a probability space with bounded sample space X and c-isoperimetric! measure y;

1. It is worth noting that our framework can be readily extended to mixtures of c-isoperimetric distributions.
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(H2) the considered hypothesis class F of classifiers f : X — {—1,1} is finite, that is | F| < oo.

Indeed, by exploiting class stability, we construct a Lipschitz-continuous restriction of a classi-
fier to which [7, Lemma 4.1] applies. Controlling the measure of the complement via isoperimetry
then yields the following result; see Appendix B for details.

Theorem 3 (Rademacher Bound) Under assumptions (HI), (H2), suppose that mingcr S(f) >
S > 0and log |F| > n. Then, we have

1 1/clog|F|
RnM(]:)gKmax{\/;,S 7 }, 4

where K > 0 is an absolute constant independent of log | F|,n,d, S, c.

Remark 4 In comparison to [7], where the stability is measured by the minimum Lipschitz constant

of the function class, we obtain a scaling which is worse by a factor lognﬁ in the relevant regime
log | F| > n. Intuitively, this gap arises from the stronger regularity imposed by Lipschitz continuity

in contrast to class stability, which allows for jump-discontinuities, see Appendix B.

The key insight of Theorem 3, combined with the classical generalization bound (1), is that good
generalization can still be achieved in the highly overparameterized regime—provided the classi-
fiers exhibit sufficiently high class stability. Indeed, the presence of % in (4) shows that class stabil-
ity impacts the effective complexity of the model class, possibly mitigating the risks of overfitting in
large models. Note that, using a uniform discretization, a finite approximation of an infinite function
class parameterized with p parameters over a bounded subset of R satisfies log | F| € O(p). In this
sense, log | F| reflects the number of model parameters. Therefore, when the number of parameters
p ~ log|F| is much larger than n, the second term in the maximum in (4) dominates, and the bound
becomes small if S scales at least in the order of %ﬁ.

Finally, we are in a position to deduce our law of robustness for discontinuous functions, which
follows as a corollary of the Rademacher bound in Theorem 3.

Corollary 5 (Law of Robustness for Discontinuous Functions) Under Assumptions (H1), (H2),
and p = log|F| > n, let us fix ,6 € (0,1) and consider the 0-1 loss {y.;. Then there exists an
absolute constant K > 0 such that under the additional conditions

1. the minimal risk, defined as 0* := minse r Ro-;(f), satisfies 0? > ¢,

2. the number of samples n is large enough such that (i) 1= < < and (i)

vn
we have: With probability at least 1 — § with respect to the sample, the following holds uniformly
forall f € F:

210g(2/3)

g
<5

3K\c p
15 n\/;j

Remark 6 Unlike the setting in [7], which assumes Lipschitz-continuous losses, our analysis treats
the discontinuous 0-1 loss, which is more appropriate for classification problems. However, the
general proof strategy remains valid for any loss as long as one can establish a suitable bound on
the Rademacher complexity of the composed function class as in (2). Furthermore, this new result
also covers intrinsically discontinuous classifiers such as quantized neural networks and spiking
neural networks by design.

Rog(f)<o?—e = S(f) <

)
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Proof Let K > 0 be an absolute constant such that (4) holds and define the threshold stability

3K\c p
3] n\/g

Then, Theorem 3, together with condition 2(), implies that

1 1ep
RRVU(FS*) S Kmax{\/;7&kn\/a} S 6/37

where Fg, := {f € F : S(f) > S.} is the subset of functions in F with stability at least S,. Hence,
applying the generalization inequality (1), together with condition 2(i7), gives with probability 1—0:

Sy = S«(p,n,d,e) :=

A 2log(2/6 €
fSljlrp (Ro-1(f) — Ro1(f)) < 2Ry u(lo-1 0 Fs,) + gé/) <Ruu(Fs,)+ 5 <&
€fs,

where we additionally used (2) in the second step. In particular, we can bound the probability
P(Vf € Fs, : Roa(f) > 0® — ) > P(Vf € Fs. : Ro1(f) — Roa(f) <€) > 1—34,

where the first inequality follows from

Ro(f) — Roi(f) < e " 52— Ro(f) <e = Roa(f) > 0% —ec.
Decomposing this probability into two disjoint events
1 -6 <P(VfeFs, :Roi(f) >0%—¢e)=P(Vf e F:Roi(f) >0%—¢)
+P3Ef € Fe t Roa(f) <o®—¢).  (6)

enables us to easily recognize that the expression exactly characterizes the probability that the fol-
lowing implication, and thereby the result, holds uniformly for all f € F:

Roi(f) <o?—e = S(f) < S..
Indeed, the implication above holds if, for a given data sample (z;, y;)!",, either
« no function f € F satisfies Ro.;(f) < 0% — ¢, or
* any such f lies in Fg , thatis, S(f) < S,

which is the case with probability at least 1 — & due to (6). |

We conclude via (5) that achieving both low training error and high stability requires parametriza
tion at the scale p ~ n+/d, which indicates the necessity of overparameterization in high dimen-
sions. This reinforces our central message: overparameterization may not harm generalization, but
on the contrary, is necessary for achieving robustness and good fitting in classification. Notably,
modern neural networks, including large language models (LLMs) [6], are trained in heavily over-
parameterized regimes, where the parameter count far exceeds the sample size, aligning with the
proposed theory. Therefore, our result may help to understand why these models can still generalize
effectively.
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Figure 1: Empirical class stability S(f) (blue, left axis) and theoretical bound from Theorem 5 (red,
right axis) as a function of network width w o |/p.

4. Experiments

We empirically validate our theoretical prediction that class stability S( f) increases with model size
in interpolating networks.

Setup. We train fully connected MLPs with 4 hidden layers and hidden dimensions w &
{128,256, 512,1024, 2048} on MNIST and CIFAR-10. All models are trained until achieving at
least 99.9% training accuracy, ensuring (almost) interpolation.

To estimate the empirical class stability S(f), we perform adversarial attacks on each input.
For an increasing sequence of perturbation radii r = (r1, ..., 7,), we gradually increase r until the
classifier’s prediction changes. The smallest successful radius is recorded as the estimated distance
to the decision boundary for that sample. We report S( f) as the average of these distances.

Results. Figure 1 shows that, for MLPs, S(f) consistently increases with model size. The
growth trend matches the theoretical prediction S(f) ~ p/n+/d, supporting our law of robustness.
In contrast, standard weight norms show no consistent correlation with either model size or gener-
alization performance. Additional details are provided in Appendix C.

5. Limitations and Future Work

On the empirical side, it would be valuable to investigate the validity of Assumption (H1), specif-
ically the isoperimetric concentration properties of real-world datasets. Empirically testing these
properties could not only shed light on the practical relevance of our theoretical assumptions but
may also motivate alternative concentration inequalities beyond isoperimetry, allowing for broader
applicability of our results.

A key limitation of our theoretical analysis lies in Assumption (H2), which restricts our results
to finite function classes. Extending to infinite classes is challenging due to the discontinuity of
parameterized classifiers with respect to their parameters. However, we believe that discretization
of specific (infinite) classes of classifiers, where the discontinuities can be controlled, is still achiev-
able.

Lastly, to better interpret our results as statements about robustness, it is interesting to relate
class stability to the robust generalization error introduced in [15], as well as related notions of
adversarial robustness. Exploring these connections offers a promising direction for future work.
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Appendix A. The need for isoperimetry

Concentration inequalities are essential tools in high-dimensional probability theory, providing
bounds on the tail behavior of random variables. Next, we outline the key strategy from Bubeck
& Selke [7] for proving the law of robustness for regression, highlighting the importance of an ad-
ditional assumption on the measure p. The authors employ the Lipschitz constant of a function as
a measure of robustness, where a small Lipschitz constant (i.e., & 1) of the realization indicates a
robust model. The basic idea is to leverage the Lipschitz continuity of functions f : X — R in
conjunction with isoperimetric inequalities to bound the probability

P(3fe F:Ri(f)~0 A L(f) <L, <é. (7)

That is, we aim to bound the probability of observing a model that is both robust (i.e., has a small
Lipschitz constant L( f)) and fits the data well (i.e., R(f) =~ 0, meaning it nearly interpolates).
By contraposition, this implies that with probability at least 1 — ¢, the following holds for all f € F:

Ri(f) =0 = L(f) > Li(p,n,d). (8)

Here, L.(p,n,d) is an algebraic function of the number of parameters p ~ log|F| (see the para-
graph below Theorem 3 for details), the number of training samples n, and the input dimension d. It
satisfies L. (p,n,d) > 1 in the non-overparameterized regime p =~ n, thereby implying non-robust
behavior.

A key ingredient in [7] for proving (a variant of) (7) is the isoperimetry assumption on the
measure u. Isoperimetry, originating in geometry, provides an upper bound on a set’s volume in
terms of its boundary’s surface area. In high dimensions, the principle of isoperimetry induces a
concentration of measure, where the measure of the e-neighborhood A, of any set A with u(A) > 0
has measure 1 (A.) — 1, and the complementary measure decays in the order of exp(—de?). This
is equivalent to the sub-Gaussian behavior of every bounded Lipschitz-continuous function as stated
in Definition 2, yielding a concentration property for | f(x) — E(f)| that depends on the Lipschitz
constant L( f).

The induced concentration property allows us to bound the probability in (7), leveraging the
intuition that a smaller Lipschitz constant limits the function’s capacity to align with random labels.
However, it is important to note that (8) provides information about robustness within F only if

PAfe F:R(f)=0)<1—-6 <= PEfeF:R(f)=0)>0.

Otherwise, the implication becomes vacuous, as almost no function in F generalizes well, i.e.,
achieves near-zero empirical risk, to begin with. Without imposing any assumptions on p, Hoeffd-
ing’s inequality already suffices to derive a Lipschitz-independent bound for any function f : X —

[—1,1]:

P(|f(x) — E(f)| > t) < 2exp <—t2> vt > 0. ©)

Thus, to ensure that the probability in (7) remains below § while simultaneously allowing for
P3f € F : f{g( f) = 0) > 4, any concentration inequality relying on the Lipschitz constant
must exhibit a sufficiently fast decay (in comparison with (9)) in the regime L(f) 2 1. This is
necessary to yield a non-vacuous bound in (8), which allows to assess robustness by the increase of
the minimal Lipschitz constant L, even for L, > 1.

10
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For instance, McDiarmid’s inequality applied to Lipschitz functions yields a tail bound of the
order exp(— W), which is insufficient as it decays faster than the Hoeffding bound only
for L(f) < 2/diam(X), i.e., at least diam(X) < 2 is required to include the (relevant) range
L(f) > 1 of Lipschitz constants. This indicates that a certain restriction of the admissible measures
is indeed necessary to obtain non-vacuous statements, i.e., they can not be derived in full generality.

Notably, the c-isoperimetry condition (3) leads to a faster decay than the Hoeffding bound in
(9) when L(f) < Vdc~!, making it effective for functions with moderate Lipschitz constants in
high-dimensional settings. Our goal is to generalize this strategy to handle discontinuous functions,

addressing the inherent challenges of classification tasks.

Appendix B. Proof of the Rademacher bound (Theorem 3)

In the regression setting, one can assume without loss of generality that the considered regressors
are Lipschitz continuous and thereby derive insightful statements about the expected and feasible
robustness of models in a given setting. In contrast, this approach is not meaningful anymore in
the classification setting as the considered classifiers are (except for trivial cases) discontinuous
by design, i.e., they can not be captured by a finite Lipschitz constant. Thus, statements about the
robustness of classification models can not be derived via Lipschitz constants. This motivates the use
of class stability as a replacement measure in the classification setting, which, however, is (inversely)
related to Lipschitzness as highlighted and exploited in the subsequent proof of Theorem 3. For
convenience, we repeat the statement with the corresponding assumptions.

(H1) (X, ) is a probability space with bounded sample space X" and c-isoperimetric measure ;

(H2) the considered hypothesis class F of classifiers f : X — {—1,1} is finite, that is | F| < oo.

Theorem Under assumptions (H1), (H2), suppose that mingcr S(f) > S > 0 and log |F| > n.

Then, we have
1 1+/clogl|F|
uu( ) { n S n\/g

where K > 0 is an absolute constant independent of log | F|,n,d, S, c.

Proof : To begin, we explore the relationship between two measures of robustness: the Lipschitz
constant L( f) and the class stability S(f) of a f € F on the set

Af) = {z € X hp(w) > S(f) —t} for0 <t < S(f).

Observe that for 21 € Ay(f) and 9 € X

0, if f(z1) = f(z2)
>1 2
[ f(21) — f(22)]| < O — < o e — 2l
lx1 — 2] . S(f)—t
Q'W, if f(x1) # f(22)

ie., fis #—Lipschitz on A;(f) and, therefore, according to the assumption S(f) > S, any

f € Fis at least %—Lipsohitz on A;(f). Our strategy now is to apply the Rademacher bound

11
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based on Lipschitz functions of Bubeck & Selke in [7] to the restriction f|4,(y), and additionally
exploit isoperimetry to control the measure of the complement A, (f)¢. We rely on two key facts:

» Fact 1: Every Lipschitz continuous function ¢ : A — R, defined on a subset A C X of
a metric space, can be extended to a function Gy : X — R, preserving the same Lipschitz
constant ([16], [13] ) = This allows us to apply isoperimetry and thereby the result in [7,
Lemma 4.1] to the S ;-Lipschitz extension F'y of f|a,(s) (by w.l.o.g. restricting its co-domain

to [—1,1]) to obtain

1 1 1

1
Eo'uxz
vn S—t nd

Z oiFp(x;)

=1

sup
feF

for some absolute constants Cq, Cy > 0.

* Fact 2: The local stability h¢(x) : X — R, is 2-Lipschitz continuous with respect to the
ly-norm ([14, Prop. 7.5]. = This allows us to control P(A.(f)¢) via isoperimetry:

=Efhy]
2 2
B = B(S(P) ~hsto) > 0 <o~z ) = (=g ) - (0

Via Fact 1, we can bound the Rademacher complexity by

]

n

R u(F) = %EGZI’ [SUP Zaif(xi)

feF i1

< EU“x‘ sup o Fp(z:) E0'27$z sup oi(f — Ff)(x;)
feF ; s fer ; l e
1 Jelogl|F| 1. . -
<O+ 0 + BT s (S oi(f = Fp)w)| | (1)
\/» T3 o - i ; z( f)( z)

To control the last term, we subdivide X into subsets on which specific samples achieve a minimum
local stability. To that end, we fix ¢t = % (the exact value is not crucial since it will be subsumed
into the absolute constants) and define, for I C [n],

S
I — I = T ’VL,L xi > = )
A(f) Ag(f) { cx" il <= hy( )>2}

Note, that A" (f) = As(f)" and Ufep([n])AI(f) is a disjoint partition of X™. Thus, applying a
2
union bound yields for » > 0

sup
feF

—ZZP(

fEF I€P([n))

> oilf — Fy)(w:)

=1

ZO‘Z [ —Fp)(x)

=1

r><§;§: (

fEF I€P([n))

>r A xeA[(f))

>r

> i) — Fy)()

=1

z € AI(f)) P(A'(f)). (12)
We make the following observations:

12
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* By construction F; = f holds on AZ(f) forall f € F.

* As a mean-zero and bounded random variable with range [—2,2], o;(Fr — f)(x;) is (via

Hoeffding’s inequality) subgaussian with variance proxy @=(2)¢ 7( 2 _ 4 for everyi € [n], f €
F.

Using the additional fact that the sum of k£ independent subgaussian random variables with variance
proxy o2 is again subgaussian with variance proxy ko? [20], implies for I C [n] (for I = [n] the

probability is trivially zero) that
x e AY( f)> <P (

(
< 2exp (_2-4(£2—|I|))

On the other hand, we get for I C [n] via (10) that

> oilf — Fy)(x:)

i=1

>r

> oilf = Fy)(x)

icl¢

>r‘x€AI(f)>

P(Al(f)) SIP(V]'GIC; z; GAg(f)c) :P<xeA§(f)C)n_m < oxp (—ij) \Il.

Inserting in (12) and replacing the constants independent of the parameters of interest (n, | F|, d, r, S,

and |I]) by ¢1, c2 > 0 then gives
2 — |1])dS?
P | sup >r| < E E 2exp <— ra >exp <_(n||)02> .
Jer FEF 1P| n— ] ¢
n)\[n]

To simplify the above expression, we want to find the maximal term in the sum and use this worst
case as an upper bound over all terms in the sum. To that end, we introduce g : [0,n) — R by

n

ZUZ(f Fr)(xi)

i=1

r201 1

+ —(n — z)S%dc,
n—xr ¢

g(z) =

aiming to find its minima, which correspond to an upper bound on the sought worst-case term.
Differentiating g yields the extrema

réc !
9@ = g S =
T Cc1C
= @y =nkg c;—d::nia(r) (13)

We calculate the second derivatives to be ¢”(x_) > 0 and ¢”(z4) < 0, thus only z_ is a minimum.
Now, there are two cases associated with the location of z_ (taking into account that «(r) > 0 for
every r > 0).

13
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e CaseL: a(r) < n.
Then, x_ is a valid minimum in the considered range and therefore

sup
feF

T s

feF 1eP([n))\[n]

Zaz f=Fp) ()| >

=1

< 2|F|2" exp (—QTS’ chCl) = Ppy(r).

» CaselIl: a(r) > n.
Then, z_ < 0 is outside of the domain of g. However, the derivative satisfies ¢’(x) > 0 for
any 0 < x < n since x4 > n. Therefore, g necessarily takes its minimal value at z = 0 so

that
sup | » oi(f — Fy)(zi)| >
re; ndS?c,
< 2 - —
DS exp( o) (1)
feF 1eP([n)\[n]
2 dSQ
< 2|F|2" exp <—Tcl> exp <_n 02) =: Py (r).
n c
Using (13), condition a(r) > n is equivalent to r > n.S . In this range, we have P;)(r) <

P(7)(r) since

IP)(II) (nS\/62>d> = 2‘./_"|2n exXp (—2n52d0_162) — P(I) (ns ch)
c1c cic

and one verifies that P(;7y(r) decays faster than P’y (r) when further increasing r. Therefore, we

conclude that for all » > 0
n deaeq
sup r| <Ppy(r) =2|F]2"exp | —2rS : (14)
fer ¢

Further rewriting the expression, distinguishing between two cases with respect to the magnitude of
| F|2™ yields the upper bounds:

Zal f— F)(xz:)| >

=1

14



THE PRICE OF ROBUSTNESS: STABLE CLASSIFIERS NEED OVERPARAMETERIZATION

* Case 1: | F|2" < exp <7"S deogey

c

We immediately obtain via (14) that

" d
P | sup Zoi(f—Ff)(xi) >r | <2|F]2"%exp | —2rS e
fer i=1 C
< 2exp <7“S descy
c
2 deacq
<2 - S
= 2O T 3102 7V e
1
<

» Case 2: | F|2" > exp (rb\/m).

[

In this case, the probability is trivially bounded by

n 9 9 rS, [ de2ct
P | sup oi(f—Fp)(zi)| >r | <1< 2exp <—> <2exp | -2 — -
(fef ; ' A 3 3 log(|F|2™)
= ———
<1
Putting both cases together, we proved that for all » > 0
n 29, /de2c1
P | sup oi(f —Fp)(z)| >7 | <2exp | ———~—r
(fef ; ' 1)) 3log(|F|27)

This tail bound shows that sup ez [Yi"; 03(f — Fy)(x;)| is sub-exponential. Since the expected
value of any sub-exponential random variable is up to an absolute constant given by its sub-exponential
norm, which corresponds (up to a constant) to the parameter 3108(I712") i the tail bound [23], we

29 dcgcq
obtain for a constant C's > 0 that
j B s 1 [ log|F|+nlog2
—E7% | sup oi(f — Fr)(x)|| < Cs3=
n feF ; il 2 Z)] S n\/E
C

Finally, the desired bound on the Rademacher complexity follows via (11):

> oif (i) ]

|
Ropu(F) = ﬁE o

sup
feF |59
1 1 /c log|F]| 1 y/clog |F| 1 /e
<C1—=4+0Cr=\| —— + C3—~——"F— 4+ C5—4/—,
SO T TUET v 5\ a
which, with the additional assumption log |F| > n, gives the result. [ |
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B.1. Comparison to standard bound without accounting for stability

Note that the crucial expectation in the derivation, i.e., the last term in (11), can be treated without
linking it to the minimum class stability. Indeed, the expectation of the maximum of [V subgaussians
X1, ..., Xx with variance proxy o? scales as

E | max %] < o v2Iog 2]

1<i<N

see for instance [20]. Hence, in our case, as o;(f — F)(x;) is subgaussian with variance proxy 4
and therefore ", 0;(f — Fy)(x;) is subgaussian with variance proxy 4n, we obtain

Zalf Fy) x1]< 2\/5\/W<C4<\f \/W)

for some absolute constant C'y > 0. Neglecting the constants, this leads to the following comparison

to our bound in (4):
l\flog]]-"\ log\]—" g [clog | F|
S - nd

Thus, our result tightens the bound on the Rademacher complexity of the function class under the

1
n feF

isoperimentry condition provided that S is at least of the order |/ &, i.e., in the relevant overparam-

eterized range n < p = log | F| < nv/d we only need S of the order V5.

Appendix C. Appendix: Experimental Details for Stability Measurement

Training setup. To empirically validate our robustness law, we trained fully connected MLPs on
MNIST and CIFAR-10 datasets. Each model has 4 hidden layers with widths w € {128,256, 512,
1024, 2048}. All models use ReLU activations, batch normalization, and were initialized with
standard parametrization. Training was conducted using the Adam optimizer [12] for the embedding
and output layers, and the Muon optimizer [10] for the hidden layers. Models were trained with
a batch size of 256 and learning rate 1073, until at least 99.9% training accuracy was achieved,
ensuring (near) interpolation.

Parameter counts and normalization. For each model, we recorded the total number of trainable
parameters p, input dimension d, and total number of training samples n. The theoretical bound
p/ (n\/g) was used as a reference scale for comparison with the measured stability.

Stability estimation. Class stability S(f) was computed using adversarial perturbation analysis.
We performed a suite of /5-based attacks (FGSM, PGD, DeepFool, and L2PGD [9, 15, 17]) using
the Foolbox library [19]. For each input z, we recorded the minimum perturbation norm required to
change the classifier’s prediction, over a grid of radii r = (0.002,0.01, 0.05, 0.1). The final stability
score S(f) was taken as the average /2 distance across the dataset.

Implementation. Training and evaluation code is implemented in PyTorch [18]. For MLPs, im-
ages were flattened to vectors. Attack evaluations were conducted over the full dataset (train and
test).
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Reproducibility. All experiments were run with multiple random seeds {0, 1,2, 3,4}, and mean
with standard deviation are reported.
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