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ABSTRACT

Bayesian neural networks (BNN) promise to combine the predictive performance
of neural networks with principled uncertainty modeling important for safety-
critical applications and decision making. However, uncertainty estimates depend
on the choice of prior, and finding informative priors in weight-space has proven
difficult. This has motivated variational inference (VI) methods that pose priors
directly on the function generated by the BNN rather than on weights. In this
paper, we address a fundamental issue with such functions-space VI approaches
pointed out by Burt et al. (2020), who showed that the standard objective function
(ELBO) is negative infinite for many interesting priors. Our solution builds on
generalized VI (Knoblauch et al., 2019) with the regularized KL divergence (Quang,
2019). Experiments show that our inference method accurately approximates the
true Gaussian process posterior on synthetic and small real-world data sets, and
provides competitive uncertainty estimates for regression and out-of-distribution
detection compared to BNN baselines with both function and weight space priors.

1 INTRODUCTION

Neural networks have shown impressive results in many fields but fail to provide well calibrated
uncertainty estimates, which are essential in applications associated with risk, such as healthcare
(Kompa et al., 2021; Abdullah et al., 2022) or finance (Bew et al., 2019; Wong, 2023). Bayesian neural
networks (BNNs) offer to combine the scalability and predictive performance of neural networks with
principled uncertainty modeling by explicitly capturing epistemic uncertainty, a type of uncertainty
that results from learning from finite data. While the choice of prior in the Bayesian framework
strongly affects the uncertainty later obtained from the posterior, specifying informative priors on
BNN weights has proven difficult and is hypothesized to have limited their practical applicability
(Knoblauch et al., 2019; Cinquin et al., 2021; Tran et al., 2022). For instance, the default isotropic
Gaussian prior, which is often chosen for tractability rather than for the beliefs it carries (Knoblauch
et al., 2019), is known to have pathological behavior in some cases (Tran et al., 2022). A promising
approach to solve this issue is to place priors directly on the functions generated by the BNN instead
of the weights. While being technically more challenging, function-space priors allow incorporating
interpretable knowledge into the inference, for instance allowing to use the extensive Gaussian
Process (GP) literature to improve prior selection and design (Williams & Rasmussen, 2006).

A recent line of work has focused on using function-space priors in BNNs with variational inference
(VI) (Sun et al., 2019; Rudner et al., 2022b). VI is an appealing method because of its successful
application to weight-space BNNs, its flexibility in terms of approximate posterior parameterization,
and its scalability to large datasets and models (Hoffman et al., 2013; Blundell et al., 2015; Tomczak
et al., 2020). Unfortunately, two intractabilities prevent the direct application of function-space
VI to BNNs: (i) the distribution of functions generated by the BNN has no explicit density and
(ii) computing the Kullbach-Leibler (KL) divergence term in the VI objective (ELBO) involves a
supremum over infinitely many subsets. Prior work has proposed to address problem (i) by either
using implicit score function estimators (Sun et al., 2019) or linearizing the BNN (Rudner et al.,
2022b); and problem (ii) by replacing the supremum by an expectation (Sun et al., 2019), or by
estimating it from samples (Rudner et al., 2022b).

However, the problem is actually more severe. Not only is the KL divergence intractable, it is infinite
in many cases of interest (Burt et al., 2020), such as when the prior is a non-degenerate GP or a BNN
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Figure 1: Inference on synthetic data (gray circles) with Gaussian process priors of increasing
smoothness from left to right. Our method effectively adapts to the characteristics of each prior.

with a different architecture. Thus, for these situations and actually many more, the KL divergence
cannot even be approximated. As a consequence, more recent work abandons the BNN approach and
instead uses deterministic neural networks to parameterize basis functions (Ma & Hernández-Lobato,
2021) or a GP mean (Wild et al., 2022). The only prior work (Rudner et al., 2022b) on function-space
VI in BNNs that overcomes the issue pointed out by Burt et al. (2020) does so by deliberately limiting
itself to cases where the KL divergence is known to be finite (by defining the prior as the pushforward
of a weight-space distribution). Therefore, the method by Rudner et al. (2022b) suffers from the same
issues regarding prior specification as any other weight-space inference method for BNNs.

In this paper, we follow the argument by Burt et al. (2020) that VI does not provide a valid objective for
inference in BNNs with function-space priors, and we propose to apply the framework of generalized
variational inference (Knoblauch et al., 2019). We present a simple method for function space
inference with GP priors that builds on the linearized BNN setup from Rudner et al. (2022b). Our
proposal exploits that, within this linearized framework, the variational posterior induces a Gaussian
measure, and so the so-called regularized KL divergence (Quang, 2019) is well defined and finite.
The regularized KL divergence generalizes the conventional KL divergence, and it allows to use any
GP prior for which there exists an equivalent Gaussian measure on the chosen function space. While
the regularized KL divergence is still intractable, it can be consistently estimated from samples with a
known error bound. We find that our method effectively incorporates the beliefs defined by GP priors
into the inference process (see Figure 1). Our contributions are summarized below:

1. We present a new, well-defined objective for function space inference in the linearized BNN
with GP priors. The proposed method is based on generalized VI with the so-called regularized
KL divergence (Quang, 2019).

2. We analyze our method empirically on synthetic and real-world data sets, and find that it ap-
proximates the true GP posterior and provides competitive uncertainty estimates for regression
and out-of-distribution detection compared to baselines with function and weight-space priors.

The paper is structured as follows. Section 2 introduces function space variational inference in BNNs
and discusses its pathologies. Section 3 presents the regularized KL divergence and our proposed
method for generalized function-space VI (GFSVI) in BNNs. Section 4 presents experimental results
on synthetic and real-world data. We discuss related work in Section 5 and conclude in Section 6.

2 FUNDAMENTAL ISSUES WITH FUNCTION SPACE VARIATIONAL INFERENCE

In this section, we briefly state the problem setup of function-space variational inference (Subsec-
tion 2.1) and then highlight three important issues (Subsection 2.2). Section 3 proposes a solution.

2.1 PROBLEM SETUP AND NOTATION

We consider a neural network f( · ;w) with weights w ∈ Rp, and a data set D = {(xi, yi)}Ni=1 with
features xi ∈ X ⊂ Rd and associated values yi ∈ R. Bayesian Neural Networks (BNNs) require
the specification of a likelihood function p(D |w) =

∏N
i=1 p(yi | f(xi;w)) and (traditionally) a prior

p(w) on the model weights to compute the posterior distribution p(w | D) ∝ p(D |w) p(w). The
method proposed in this paper builds on variational inference (VI), which approximates p(w | D)
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with a variational distribution qϕ(w) chosen to maximize the evidence lower bound (ELBO),

L(ϕ) := Eqϕ(w)[log p(D |w)]−DKL(qϕ ∥ p) with DKL(qϕ ∥ p) := Eqϕ(w)

[
log

qϕ(w)

p(w)

]
. (1)

Here, DKL is the Kullback-Leibler (KL) divergence. At test time, we approximate the predictive distri-
bution for given features x∗ as p(y∗ |x∗) = Ep(w | D)

[
p(y∗ | f(x∗;w))

]
≈ Eqϕ(w)

[
p(y∗ | f(x∗;w))

]
.

Function space variational inference. Since weights of neural networks are not interpretable, we
abandon the weight space prior p(w) and instead pose a prior P directly on the function f( · ;w),
which we denote simply as f when there is no ambiguity. Here, the double-lined notation P denotes
a probability measure that does not admit a density since the function space is infinite-dimensional.
For the approximate posterior, we still use a variational distribution qϕ(w) to estimate the expected
log-likelihood (first term on the right-hand side of Eq. 1). However for the KL-term, we use the
pushforward of qϕ(w) along the mapping w 7→ f( · ;w), which defines the variational measure Qϕ,
resulting in the ELBO in function space,

L(ϕ) := Eqϕ(w)[log p(D |w)]−DKL(Qϕ ∥P) with DKL(Qϕ ∥P) =
∫

log

(
dQϕ

dP
(f)

)
dQϕ (2)

Here, the Raydon-Nikodym derivative dQϕ/dP generalizes the density ratio from Eq. 1. Like
Eq. 1, the ELBO in Eq. 2 is a lower bound on the evidence (Burt et al., 2020). In fact, if P is the
push-forward of p(w) then Eq. 2 is a tighter bound than Eq. 1 by the data processing inequality,
DKL(Qϕ ∥P) ≤ DKL(qϕ ∥ p). However, we motivated function space VI to avoid weight space
priors, and in this case the bound in Eq. 2 can be looser. In the next subsection, we see that the bound
becomes infinitely loose in practice, and we therefore propose a different objective in Section 3.

2.2 THREE ISSUES WITH FUNCTION SPACE VARIATIONAL INFERENCE

We highlight two issues with function space VI that were addressed in the literature (issues (i) and (ii)
below), and a third issue which we argue is more severe, and which is the focus of this paper.

Issue (i): Qϕ is intractable. We cannot express the pushforward measure Qϕ of qϕ(w) in a closed
form because the neural network is nonlinear. To mitigate this issue, previous work has proposed
using implicit score function estimators (Sun et al., 2019) or a linearized BNN (Rudner et al., 2022a;b).
Our proposal in Section 3 follows the linearized BNN approach as it only minimally modifies the
BNN, preserving most of its inductive bias (Maddox et al., 2021) while considerably simplifying the
problem by turning the pushforward of qϕ(w) into a GP. More specifically, we consider a Gaussian
variational distribution qϕ(w) = N (m,S) with parameters ϕ = {m,S}, and we define a linearized
neural network fL by linearizing f as a function of the weights around w = m,

fL(x;w) := f(x;m) + J(x,m)(w −m) where J(x,m) = ∇wf(x;w)|w=m. (3)

Thus, for w ∼ qϕ(w) we have for all x that fL(x;w) ∼ N
(
f(x;m), J(x,m)SJ(x,m)⊤

)
and

that the function fL( · , w) is a degenerate GP (since rank(J(x,m)SJ(x,m)⊤) < ∞ for any
x ∈ XM , M ∈ N),

fL ∼ GP
(
f( · ;m), J( · ,m)SJ( · ,m)⊤

)
(for w ∼ qϕ(w)). (4)

Issue (ii): computing DKL(Qϕ ∥P) is intractable. It is not obvious how to practically evaluate or
estimate a KL divergence between two measures in function space. Sun et al. (2019) showed that it
can be expressed as a supremum of KL divergences between finite-dimensional densities,

DKL(Qϕ ∥P) = sup
M∈N,x∈XM

DKL(qϕ(f(x)) ∥ p(f(x))). (5)

Here, x = (x(i))Mi=1 ∈ XM is a set of M points in feature space X , and qϕ(f(x)) and p(f(x))

are densities of the marginals of Qϕ and P on (f(x(i)))Mi=1, respectively (in our case, qϕ(f(x)) and
p(f(x)) are multivariate normal distributions since Qϕ and P are induced by GPs). To obtain a
tractable approximation of the supremum over infinitely many sets in Eq. 5, Sun et al. (2019) replace
it by an expectation and Rudner et al. (2022b) estimate it from samples.
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Issue (iii): DKL(Qϕ ∥P) is infinite in practically relevant cases. Burt et al. (2020) point out
an even more severe issue of function-space VI in BNNs: DKL(Qϕ ∥P) is in fact infinite in many
relevant cases, in particular for non-degenerate GP-priors with most parametric models including
BNNs, making approximation attempts in these cases futile. The proof in Burt et al. (2020) is
somewhat involved, but the fundamental reason for DKL(Qϕ ∥P) = ∞ is that Qϕ has support
only on a finite-dimensional submanifold of the infinite dimensional function space, while a non-
degenerate GP prior P has support on the entire function space. That such a dimensionality mismatch
can render the KL divergence infinite can already be seen in a simple finite-dimensional example:
consider the KL-divergence between two multivariate Gaussians in Rn for some n ≥ 2, one of
which has support on the entire Rn (i.e., its covariance matrix Σ1 has full rank) while the other one
has support only on a proper subspace of Rn (i.e., its covariance matrix Σ2 is singular). The KL
divergence between two multivariate Gaussians can be calculated in a closed form expression (see
Eq 8) that contains the term log(detΣ1/ detΣ2), which is infinite for singular Σ2.

We find that the fact that DKL(Qϕ ∥P) = ∞ has severe practical consequences even when the KL
divergence is only estimated from samples. It naturally explains the stability issues discussed in
Appendix D.1 of Sun et al. (2019). We discuss differences between the authors’ solution and ours at
the end of Section 3.3. Surprisingly, similar complications arise even in the setup by Rudner et al.
(2022b), which performs VI in function space with the pushforward of a weight-space prior. While
the KL divergence in this setup is technically finite because prior and variational posterior have the
same support, numerical errors lead to mismatching supports and thus to stability issues even here.

In summary, the ELBO for VI in BNNs is not a well-defined objective for a large class of interesting
function-space priors. In the next section, we propose a solution by regularizing the KL divergence.

3 GENERALIZED FUNCTION SPACE VI WITH REGULARIZED KL DIVERGENCE

At the end of Section 2.2, we pointed out that the KL divergence in the function-space ELBO (Eq. 2)
is often infinite (Burt et al., 2020). Rudner et al. (2022b) addressed this problem by restricting the
prior to be the pushforward of a weight-space distribution, which guarantees that the KL divergence
is finite but effectively resorts to weight-space priors. In this section, we propose an orthogonal
approach in which we take the infinite KL divergence as an indication that variational inference is
too restrictive if one wants to use genuine function-space priors. We instead consider generalized
variational inference (Knoblauch et al., 2019), which reinterprets the ELBO in Eq. 2 as a regularized
expected log-likelihood and explores alternative divergences for the regularizer. This is motivated by
the observation that the main assumptions underlying Bayesian inference are only loosely satisfied in
BNNs. Specifically, we propose to use the regularized KL divergence proposed by Quang (2019)
together with the linearized BNN from Rudner et al. (2022b) (see Eqs. 3 and 4). Below, we first
provide background on Gaussian measures (Subsection 3.1), which we use to introduce the regularized
KL divergence (Subsection 3.2), and we then present the proposed inference method (Subsection 3.3).

3.1 GAUSSIAN MEASURES

The regularized KL divergence defined in Section 3.2 is defined in terms of Gaussian measures,
and thus we need to verify that the GP variational posterior induced by the linearized BNN (Eq 4)
has an associated Gaussian measure. We consider the Hilbert space L2(X , ρ) of square-integrable
functions with respect to a probability measure ρ on a compact set X ⊆ Rd, with inner product
⟨f, g⟩ =

∫
X f(x)g(x)dρ(x). This is not a restrictive assumption as we can typically bound the region

in feature space that contains the data and any points where we might want to evaluate the BNN.
Definition 3.1 (Gaussian measure, Kerrigan et al. (2023), Definition 1). Let (Ω,B,P) be a probability
space. A measurable function F : Ω 7→ L2(X , ρ) is called a Gaussian random element (GRE)
if for any g ∈ L2(X , ρ) the random variable ⟨g, F ⟩ has a Gaussian distribution on R. For every
GRE F , there exists a unique mean element m ∈ L2(X , ρ) and a finite trace linear covariance
operator C : L2(X , ρ) 7→ L2(X , ρ) such that ⟨g, F ⟩ ∼ N (⟨g,m⟩, ⟨Cg, g⟩) for all g ∈ L2(X , ρ).
The pushforward of P along F denoted PF = F#P is a Gaussian (probability) measure on L2(X , ρ).

Gaussian measures generalizes Gaussian distributions to infinite-dimensional spaces where measures
do not have associated densities. Following Wild et al. (2022), we notate the Gaussian measure
obtained from the GRE F with mean element m and covariance operator C as PF = N (m,C).
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Connection to GPs. A GP f ∼ GP(µ,K) has an associated Gaussian measures in L2(X , ρ)
if its mean function satisfies µ ∈ L2(X , ρ) and its covariance function K is trace-class i.e.∫
X K(x, x)dρ(x) < ∞ (Wild et al. (2022) Theorem 1). The GP variational posterior induced

by the linearized BNN (Eq 4) satisfies both properties as neural networks are well-behaved functions
on the compact subset X , and thus induces a Gaussian measure QF

ϕ ∼ N (mQ, CQ). It turn out that
the infinite KL divergence discussed in Section 2.2 is easier to prove for Gaussian measures, and we
provide the proof in Appendix A.1.1 for the interested reader.

3.2 THE REGULARIZED KL DIVERGENCE.

We now discuss the regularized KL divergence (Quang, 2019), which we will use in Section 3.3.
Definition 3.2 (Regularized KL divergence, Quang (2022) Definition 5). Let µ1, µ2 ∈ L2(X , ρ) and
C1, C2 be bounded, self-adjoint, positive and trace-class linear operators on L2(X , ρ). Let γ ∈ R,
γ > 0 be fixed. The regularized KL divergence is defined as

Dγ
KL(N (µ1, C1) ∥N (µ2, C2)) =

1

2
⟨µ1 − µ2, (C2 + γI)−1(µ1 − µ2)⟩

+
1

2
TrX

[
(C2 + γI)−1(C1 + γI)− I

]
− 1

2
log detX

[
(C2 + γI)−1(C1 + γI)

]
(6)

For any γ > 0, the regularized KL divergence is well-defined and finite, even if the Gaussian
measures are singular (Quang, 2019), and it converges to the conventional KL divergence in the limit
of γ → 0 if the latter is well-defined (Quang, 2022, Theorem 6). Furthermore, if Gaussian measures
ν1 and ν2 are induced by GPs fi ∼ GP(µi,Ki) for i = 1, 2, then Dγ

KL(ν1 ∥ ν2) can be consistently
estimated (Quang, 2022) from a finite number M of samples using the estimator

D̂γ
KL(ν1 ∥ ν2) := DKL

(
N (m1,Σ1 + γM IM )

∣∣∣∣ N (m2,Σ2 + γM IM )
)

(7)

where mi := µi(x) and Σi := Ki(x,x) are the mean vector and covariance matrix obtained by eval-
uating µi and Ki, respectively, at measurement points x = [x(1), . . . , x(M)], x(1), . . . , x(M) i.i.d∼ ρ(x).
The KL-divergence on the right-hand side of Eq. 7 is between multivariate Gaussian distributions
p1 = N (m1,Σ

(γ)
1 ) and p2 = N (m2,Σ

(γ)
2 ) with Σ

(γ)
i = Σi + γM IM , evaluated in closed form as

DKL(p1 ∥ p2) =
1

2

[
Tr

[
(Σ

(γ)
2 )−1Σ

(γ)
1

]
−M + (m1 −m2)

⊤(Σ
(γ)
2 )−1(m1 −m2) + log

detΣ
(γ)
1

detΣ
(γ)
2

]
(8)

Quang (2022) shows that the absolute error of the estimator is bounded by O(1/M) with high
probability with constants depending on γ and properties of the GP mean and covariance functions.
We provide the exact bound in Appendix A.1.2.

3.3 GENERALIZED FUNCTION SPACE VARIATIONAL INFERENCE

We now present generalized function space variational inference (GFSVI), a simple and practical
algorithm to perform generalized variational inference in function space with GP priors. The method
starts from the function space ELBO (Eq. 2) with the linearized BNN approximation from Eq. 4
and replaces the KL divergence with the regularized KL divergence Dγ

KL discussed in Section 3.2.
Assuming a Gaussian likelihood p(D |w) =

∏N
i=1 N

(
f(xi;w), σ

2
y

)
and a Gaussian variational

distribution qϕ(w) = N (w |m,S), we thus obtain the objective function

L(ϕ) =
N∑
i=1

Eqϕ(w)

[
logN

(
yi | fL(xi;w), σ

2
y

)]
−Dγ

KL

(
QF

ϕ ∥PF
)

(9)

where QF
ϕ and PF are, respectively, the Gaussian measures corresponding to the GP variational

posterior (Eq. 4), and a GP prior fL ∼ GP(µ,K) that satisfies the conditions discussed in Section 3.1.

We maximize the objective in Eq. 9 over the mean m and covariance matrix S of the Gaussian
variational distribution qϕ(w), and over the likelihood scale parameter σy , see Algorithm 1. Note that,
unlike Rudner et al. (2022b), which uses the standard BNN and Monte-Carlo integration to estimate
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Algorithm 1: Generalized function space variational inference (GFSVI)
Input: BNN f , GP prior GP(µ,K), measurement point distribution ρ(x), γ > 0, batch size B.
Data: D = {(xi, yi)}Ni=1.
for each minibatch (xB, yB) ∼ D do

Draw measurement set x = [x(1), . . . , x(M)], x(1), . . . , x(M) i.i.d∼ ρ(x)

Calculate L(ϕ) = N
BEqϕ(w)

[
logN

(
yB | fL(xB;w), σ

2
y

)]
− D̂γ

KL

(
QF

ϕ

∣∣∣∣PF
)

// Eqs. 10 & 11
Update ϕ using a gradient step in the direction ∇ϕL(ϕ)

end

the expected log-likelihood (first term in Eq 9), we also consider the linearized BNN in this term, as
this has proven more stable during training, and it provides an analytical expression

Eqϕ(w)

[
logN

(
yi | fL(xi;w), σ

2
y

)]
= −1

2
log

(
2πσ2

y

)
− (yi − f(xi;m))2 + J(xi;m)SJ(xi;m)⊤

2σ2
y

.

(10)

We further use the consistent estimator for the regularized KL divergence

D̂γ
KL

(
QF

ϕ ∥PF
)
= DKL

(
N
(
f(x), J(x)SJ(x)⊤ + γMIM

)
∥N (µ(x),K(x,x) + γMIM )

)
(11)

with measurement points x = [x(1), . . . , x(M)], x(1), . . . , x(M) i.i.d∼ ρ(x) sampled from a probability
measure on X , and f and J are evaluated at the posterior mean m as in Eq 4.

Technical details (γ and ρ). The γ parameter both controls the magnitude of the regularized KL
divergence (see Figure 12 in Appendix) and acts as jitter. We recommend choosing γ large enough
to avoid numerical errors while remaining sufficiently small to provide strong regularization (see
Figure 10 in Appendix). Furthermore, the probability measure ρ defined with L2(X , ρ) has to assign
non-zero probability to any open set of X to regularize the BNN on all of its support. Following
Rudner et al. (2022b), we sample measurement points from a uniform distribution over X .

Differences to prior work. Both TFSVI (Rudner et al., 2022b) and FVI (Sun et al., 2019) solve
stability issues by introducing jitter/noise, which has a similar effect as the regularization in Equa-
tion (6). However, as mentioned at the end of Section 2.2, TFSVI only introduces jitter to overcome
numerical issues and is fundamentally restricted to prior specification in weight space. FVI does not
linearize the BNN, and therefore does not have access to an explicit variational measure in function
space. This severely complicates the estimation of (gradients of) the KL divergence in FVI, and the
authors resort to implicit score function estimators, which make FVI difficult to use in practice (Ma
& Hernández-Lobato, 2021). Our proposed GFSVI does not suffer from these complications as the
variational posterior is an explicit (Gaussian) measure. This allows us to estimate the (regularized)
KL divergence without sampling noise or having to use implicit score function estimators.

4 EXPERIMENTS

We evaluate our generalized function space variational inference (GFSVI) method qualitatively on
synthetic data (Subsection 4.1) and quantitatively on real-world data (Subsection 4.2). We find that
GFSVI approximates the exact Gaussian process (GP) posterior more faithfully than all our baselines,
and that it performs competitively on regression and out-of-distribution detection tasks (like in Sun
et al. (2019), we do not consider classification tasks as prior specification in function space does not
provide much advantage here). We also discuss the influence of the BNN’s inductive biases.

Baselines. We compare the proposed GFSVI method to two weight-space inference methods (mean-
field variational inference (Blundell et al., 2015) and linearized Laplace (Immer et al., 2021)) and
to two function-space inference methods (FVI (Sun et al., 2019) and TFVSI (Rudner et al., 2022b),
where the latter performs inference in function space but with the pushforward of a weight space
prior). All BNNs have the same architecture and fully-factorized Gaussian approximate posterior.
We include results for Gaussian Process (GP) (Williams & Rasmussen, 2006) when the size of the
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Figure 2: Inference on synthetic data (gray circles) using an RBF prior for function space methods
GFSVI and FVI. The proposed GFSVI provides the best approximation of the exact GP posterior.

data set allows it, and for a sparse GP (Hensman et al., 2013). We consider the GP (and sparse GP) as
gold standards as they represent the exact (or near exact) posterior for models with GP priors.

4.1 QUALITATIVE RESULTS ON SYNTHETIC DATA

We consider synthetic data with a one-dimensional feature space X = R, where the values yi are
randomly sampled around sin(2πxi) (circles in Figures 1-3, see Appendix A.2.1). The red lines in
Figures 1-3 show inferred mean functions, and green lines are sampled functions from (approximate)
posteriors. Figure 2 compares GFSVI with an RBF GP prior to all baselines and to the exact posterior.
We find that GFSVI visually matches the true posterior best. This is further supported by Figure 4
in the Appendix, which uses a Matern-1/2 prior. Figure 1 in the Introduction and Figure 6 in
the Appendix show that GFSVI notably adapts to varying prior assumptions (varying smoothness
assumptions in Figure 1 and varying length-scale in Figure 6). In addition, Figures 7 and 5 in the
Appendix show that GFSVI provides strong regularization when the data generative process is noisy,
and that it can be trained with fewer measurement points M than FVI without significant degradation.

Inductive biases. Figure 3 compares our model to the exact posterior across two different priors
and three model architectures (details in Appendix A.2.1). We find that, when using piece-wise linear
activations (ReLU), small models are prone to underfitting for smooth priors (RBF), and to collapsing
uncertainty for rough priors (Matern-1/2). By contrast, when using smooth activations (Tanh), smaller
models suffice, and they are compatible with most standard GP priors (the results shown in Figure 3
extend to RBF, Matern family, and Rational Quadratic in our experiments). We also analyzed how the
number M of measurement points affects performance. Figures 8 and 9 in the Appendix show that
capturing the properties of rough GP priors and estimating Dγ

KL with these priors requires larger M .

4.2 QUANTITATIVE RESULTS ON REAL-WORLD DATA

We evaluate GFSVI on data sets from the UCI repository (Dua & Graff, 2017) described in Table 4
in the Appendix. We perform 5-fold cross validation and report mean and standard deviation of the
scores across the test folds. When reporting results, we bold the highest score, as well as any score if
its error bar and the highest score’s error bar overlap, considering the difference to not be statistically
significant. We also report the mean rank of the methods across datasets.

Regression. We evaluate the predictive performance of our model and report the average expected
log-likelihood and average mean square error (MSE) on the test folds. Additional details are provided
in Appendix A.2.2. We find that GFSVI performs competitively on regression tasks compared to
baselines and obtains the best mean rank, matching the top performing methods on nearly all datasets
(see Table 1 and Table 5 in Appendix). In particular, we find that using GP priors in the linearized
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Figure 3: Our method requires that the Bayesian neural network (BNN) and Gaussian process (GP)
prior share similar inductive biases to provide an accurate approximation to the exact posterior.

Table 1: Test log-likelihood (higher is better) of evaluated methods on regression datasets. GFSVI
performs competitively on regression tasks compared to baselines and obtains the best mean rank.

DATASET FUNCTION SPACE PRIORS WEIGHT SPACE PRIORS GOLD STANDARDS

GFSVI (OURS) FVI TFSVI MFVI LAPLACE SPARSE GP GP

BOSTON -0.733 ± 0.321 -0.571 ± 0.253 -1.416 ± 0.103 -1.308 ± 0.117 -0.812 ± 0.458 -0.884 ± 0.408 -1.594 ± 1.243
CONCRETE -0.457 ± 0.092 -0.390 ± 0.038 -0.983 ± 0.027 -1.353 ± 0.041 -0.715 ± 0.057 -0.966 ± 0.057 -2.099 ± 0.942
ENERGY 1.319 ± 0.116 1.377 ± 0.094 0.797 ± 0.218 -0.926 ± 0.440 1.304 ± 0.096 -0.206 ± 0.060 -0.205 ± 0.050
KIN8NM -0.136 ± 0.030 -0.141 ± 0.051 -0.182 ± 0.025 -0.641 ± 0.503 -0.285 ± 0.031 -0.443 ± 0.031 -
NAVAL 3.637 ± 0.296 2.165 ± 0.433 2.758 ± 0.097 1.034 ± 0.358 3.404 ± 0.187 4.951 ± 0.032 -
POWER 0.044 ± 0.024 0.031 ± 0.048 0.007 ± 0.027 -0.003 ± 0.034 -0.002 ± 0.043 -0.100 ± 0.022 -
PROTEIN -1.036 ± 0.012 -1.045 ± 0.011 -1.010 ± 0.009 -1.112 ± 0.016 -1.037 ± 0.015 -1.035 ± 0.005 -
WINE -1.289 ± 0.090 -1.215 ± 0.016 -2.138 ± 0.495 -1.248 ± 0.040 -1.249 ± 0.055 -1.240 ± 0.083 -1.219 ± 0.079
YACHT 1.058 ± 0.180 0.545 ± 1.643 -1.187 ± 0.144 -1.638 ± 0.066 0.680 ± 0.382 -0.979 ± 0.206 -0.914 ± 0.100
WAVE 5.521 ± 0.081 6.612 ± 0.018 5.148 ± 0.261 6.883 ± 0.019 4.658 ± 0.060 4.909 ± 0.002 -
DENMARK -0.487 ± 0.028 -0.801 ± 0.012 -0.513 ± 0.028 -0.675 ± 0.015 -0.600 ± 0.018 -0.768 ± 0.002 -

MEAN RANK 1.273 1.636 1.909 2.364 1.727 - -

BNN with GFSVI yields improvements over the weight space priors used in TFSVI and that GFSVI
performs slightly better than FVI.

Table 2: Average point-wise Wasserstein-2 distance (lower is better) between exact and approximate
posterior of reported methods. GFSVI (ours) provides a more accurate approximation than FVI.

DATASET BOSTON CONCRETE ENERGY WINE YACHT MEAN RANK

GFSVI (OURS) 0.0259 ± 0.0089 0.0499 ± 0.0064 0.0035 ± 0.0008 0.0571 ± 0.0216 0.0036 ± 0.0014 1.0
FVI 0.0469 ± 0.0098 0.0652 ± 0.0083 0.0037 ± 0.0009 0.1224 ± 0.0373 0.0052 ± 0.0029 1.6

GP SPARSE 0.0074 ± 0.0050 0.0125 ± 0.0036 0.0042 ± 0.0007 0.0170 ± 0.0079 0.0035 ± 0.0017 -

Conditional sample generation. We further evaluate our inference method by comparing samples
drawn from the exact posterior with the approximate posterior obtained with our method (GFSVI).
Additional details are provided in Appendix A.2.3. We find that GFSVI approximates the exact
posterior more accurately that FVI obtaining a higher mean rank, but worse than the gold standard
sparse GP which demonstrates to be most accurate (see Table 2).

Out-of-distribution detection. We further evaluate our method by testing if its epistemic uncer-
tainty is predictive of OOD data following the setup from Malinin et al. (2020). We report the
accuracy of a single threshold to classify OOD from ID data based on the predictive uncertainty.
Additional details are provided in Appendix A.2.4. We find that GFSVI performs competitively on
OOD detection either out-performing or matching best performing baselines, and obtains the highest
mean rank (see Table 3). In particular, we find that using GP priors with GFSVI rather than weight
space priors with TFSVI is beneficial, and that GFSVI tends to improve over FVI.
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Table 3: Out-of-distribution accuracy (higher is better) of evaluated methods on regression datasets.
GFSVI (ours) performs competitively on OOD detection and obtains the highest mean rank.

DATASET FUNCTION SPACE PRIORS WEIGHT SPACE PRIORS GOLD STANDARDS

GFSVI (OURS) FVI TFSVI MFVI LAPLACE SPARSE GP GP

BOSTON 0.893 ± 0.025 0.594 ± 0.054 0.705 ± 0.239 0.521 ± 0.013 0.557 ± 0.021 0.947 ± 0.024 0.952 ± 0.006
CONCRETE 0.656 ± 0.036 0.583 ± 0.050 0.511 ± 0.008 0.605 ± 0.027 0.578 ± 0.033 0.776 ± 0.014 0.933 ± 0.010
ENERGY 0.997 ± 0.004 0.696 ± 0.037 0.997 ± 0.002 0.678 ± 0.032 0.782 ± 0.044 0.998 ± 0.003 0.998 ± 0.002
KIN8NM 0.588 ± 0.016 0.604 ± 0.051 0.576 ± 0.018 0.570 ± 0.021 0.606 ± 0.020 0.608 ± 0.031 -
NAVAL 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.919 ± 0.038 1.000 ± 0.000 1.000 ± 0.000 -
POWER 0.698 ± 0.014 0.663 ± 0.047 0.676 ± 0.019 0.636 ± 0.044 0.654 ± 0.028 0.717 ± 0.010 -
PROTEIN 0.860 ± 0.024 0.810 ± 0.050 0.841 ± 0.040 0.693 ± 0.046 0.629 ± 0.030 0.967 ± 0.001 -
WINE 0.665 ± 0.028 0.517 ± 0.009 0.549 ± 0.033 0.542 ± 0.020 0.531 ± 0.016 0.781 ± 0.031 0.787 ± 0.016
YACHT 0.616 ± 0.067 0.604 ± 0.056 0.659 ± 0.097 0.642 ± 0.079 0.612 ± 0.054 0.762 ± 0.041 0.788 ± 0.026
WAVE 0.975 ± 0.011 0.642 ± 0.008 0.835 ± 0.076 0.658 ± 0.058 0.529 ± 0.010 0.513 ± 0.002 -
DENMARK 0.521 ± 0.013 0.612 ± 0.017 0.519 ± 0.012 0.225 ± 0.007 0.529 ± 0.017 0.626 ± 0.005 -

MEAN RANK 1.182 1.545 1.456 1.909 1.909 - -

5 RELATED WORK

In this section, we review related work on function space variational inference with neural networks,
and on approximating functions-space measures with weight-space priors.

Function-space inference with neural networks. Prior work on function space VI in BNNs
has addressed issues (i) and (ii) mentioned in Section 2.2. Sun et al. (2019) address (i) (intractable
variational posterior in function space) by using implicit score function estimators, and (ii) (intractable
KL divergence) by replacing the supremum with an expectation. Rudner et al. (2022a;b) address (i)
by using a linearized the BNN (Khan et al., 2020; Immer et al., 2021; Maddox et al., 2021), and (ii)
by replacing the supremum with a maximum over a finite set of samples. Other work abandons
approximating the posterior over neural network weights altogether and instead uses a BNN only
to specify a GP prior (Ma et al., 2019), or deterministic neural networks to fit basis functions for
Bayesian linear regression (Ma & Hernández-Lobato, 2021) or the mean of a generalized sparse GP
with Wasserstein-2 metric (Wild et al., 2022). Our work combines linearized BNNs with generalized
variational inference, but we use the regularized KL divergence (Quang, 2019), which naturally
generalizes the conventional KL divergence and allows for informative GP priors.

Approximating function-space measures with weight-space priors in BNNs. Flam-Shepherd
et al. (2017); Tran et al. (2022) minimize a divergence between the BNN’s prior predictive and a GP
before performing inference on weights, while Wu et al. (2023) directly incorporate the bridging
divergence inside the inference objective. Alternatively, Pearce et al. (2020) derive BNN architectures
mirroring GPs, and Matsubara et al. (2022) use the Ridgelet transform to design weight-spaces priors
approximating a GP in function space. Another line of work considers weight-space priors which
regularize in function space by comparing the model’s predictions to those of a reference model
(Nalisnick et al., 2020) and using an empirical prior (Rudner et al., 2023).

6 DISCUSSION

As a solution to the infinite KL divergence problem in function space VI, we proposed to follow the
generalized VI framework and to substitute the KL divergence in the ELBO by the regularized KL
divergence which is always finite. We presented a simple and well-defined objective for function
space inference in the linearized BNN with GP priors based on this divergence. We demonstrated
that our method accurately approximates the true GP posterior on synthetic and small real-world data
sets, and provides competitive uncertainty estimates for regression and out-of-distribution detection
compared to BNN baselines with both function and weight space priors.

Future work should investigate adapting our method to classification, where many applications may
benefit from well-calibrated uncertainty estimates (Shamshirband et al., 2021; Krishnapriya & Karuna,
2023). One could also investigate the use of more expressive variational distributions over weights,
such as Gaussian with low-rank plus diagonal covariance proposed by Tomczak et al. (2020).
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A APPENDIX

A.1 ADDITIONAL DETAILS ON DIVERGENCES BETWEEN GAUSSIAN MEASURES

A.1.1 THE KL DIVERGENCE IS INFINITE

In this section, we show that the Kullbach-Liebler (KL) divergence between the Gaussian measures
QF

ϕ and PF , respectively induced by the linearized BNN in Eq 4 and by a non-degenerate Gaussian
process satisfying conditions given in Section 3.1, is infinite. While this has already been shown
by Burt et al. (2020), the proof is easier for Gaussian measures. We first need the Feldman-Hàjek
theorem which tells us when the KL divergence between two Gaussian measures is well defined.
Theorem 1 (Feldman-Hàjek, Quang (2022) Theorem 2, Simpson (2022) Theorem 7). Consider two
Gaussian measures µ1 = N (m1, C1) and µ2 = N (m2, C2) on L2(X , ρ). Then µ1 and µ2 are called
equivalent if and only if the following holds:

1. m1 −m2 ∈ Im(C
1/2
2 )

2. The operator T such that C1 = C
1/2
2 (I − T )C

1/2
2 is Hilbert-Schmidt, that is T has a countable

set of eigenvalues λi that satisfy λi < 1 and
∑∞

i=1 λ
2
i < ∞.

otherwise µ1 and µ2 are singular. If µ1 and µ2 are equivalent, then the Radon-Nikodym dervative
exists and DKL(µ1 ∥µ2) admits an explicit formula. Otherwise, DKL(µ1 ∥µ2) = ∞.

Let us now show that the KL divergence between QF
ϕ and PF is indeed infinite.

Proposition 1. The Gaussian measures Qϕ and P are mutually singular and DKL(QF
ϕ ||PF ) = ∞.

Proof. The proof follows from the Feldman-Hàjek theorem (Theorem 1). In our case, CQ has at most
p non-zero eigenvalues as the covariance function of the GP induced by the BNN is degenerate, while
CP has a countably infinite non-zeros eigenvalues (prior is non-degenerate as per assumption). Hence,
for the equality in condition (2) to hold, T must have eigenvalue 1 which violates the requirement that
T is Hilbert-Schmidt i.e. that its eigenvalues {λi}∞i=1 satisfy λi < 1 and

∑∞
i=1 λ

2
i < ∞. Therefore,

Qϕ and P are mutually singular and DKL(Qϕ ∥P) = ∞.

A.1.2 THE REGULARIZED KL DIVERGENCE

In this section, we provide the bound describing the asymptotic convergence of the regularized KL
divergence estimator.
Theorem 2 (Convergence of estimator, Quang (2022) Theorem 45). Assume the following:

1. Let T be a σ − compact metric space, that is T = ∪∞
i=1Ti, where T1 ⊂ T2 ⊂ · · · with each Ti

being compact.
2. ρ is a non-degenerate Borel probability measure on T, that is ρ(B) > 0 for each open set B ⊂ T .
3. K1,K2 : T × T → R are continuous, symmetric, positive definite kernels and ∃ κ1 > 0, κ2 > 0

such that
∫
T
Ki(x, x)dρ(x) ≤ κ2

i for i = 1, 2.
4. supx∈T Ki(x, x) ≤ κ2

i for i = 1, 2.
5. ηi ∼ GP (µi,Ki), where µi ∈ L2(T, v) for i = 1, 2.
6. ∃Bi > 0 such that ∥µi∥∞ ≤ Bi for i = 1, 2.

Let x = [x(1), . . . , x(M)], x(1), . . . , x(M) i.i.d∼ ρ(x). If Gaussian measures N (µi, Ci) are induced by
GPs fi ∼ GP(µi,Ki) for i = 1, 2, then for any 0 < δ < 1, with probability at least 1− δ,

|DKL(N (µ1(x),K1(x,x) +MγIM ) ∥N (µ2(x),K2(x,x) +MγIM ))

−Dγ
KL(N (µ1, C1) ∥N (µ2, C2))|

≤ 1

2γ
(B1 +B2)

2[1 + κ2
2/γ]

2 log 48
γ

M
+

√
2 log 48

γ

M


+

1

2γ2
[κ4

1 + κ4
2 + κ2

1κ
2
2(2 + κ2

2/γ)]

2 log 12
γ

M
+

√
2 log 12

γ

M

 (12)
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A.2 ADDITIONAL EXPERIMENTAL DETAILS

A.2.1 TOY EXPERIMENTS ON SYNTHETIC DATA

Generative model. We consider the following generative model for the toy data

yi = sin(2πxi) + ϵ with ϵ ∼ N
(
0, σ2

n

)
(13)

and draw xi ∼ U([−1,−0.5] ∪ [0.5, 1]). When not otherwise specified, we use σn = 0.1. On the
plots, the data points are shown as gray circles, inferred mean functions as red lines, and functions
sampled from the approximate posterior as green lines.

Setup details. In general, we consider two hidden-layer BNNs with 30 neurons per layer and
hyperbolic tangent activation (Tanh) functions. Specifically in Figure 3, the small BNN has the same
architecture as above while the large BNN has 100 neurons per layer. All the BNN baselines have the
same architecture and fully-factorized Gaussian approximate posterior. The prior scale of TFSVI
(Rudner et al., 2022b) is set to σp = 0.2 and σp = 0.75 for MFVI (Blundell et al., 2015) and Laplace
(Immer et al., 2021). Apart from the cases where the parameters of the GP prior used for GFSVI (our
method) and FVI (Sun et al., 2019) are explicitly stated, we consider a constant zero mean function
and find the parameters of the covariance function by maximizing the log-marginal likelihood from
mini-batches (Chen et al., 2021). Except where otherwise stated, we estimate the functional KL
divergences with 500 measurement points and use the regularized KL divergence with γ = 10−10.

A.2.2 REGRESSION EXPERIMENTS ON REAL DATA

Datasets and pre-processing We evaluate the predictive performance of our model on regression
datasets from the UCI repository (Dua & Graff, 2017) described in Table 4. These datasets are also
considered in Wild et al. (2022); Sun et al. (2019) but we include two additional larger ones (wave,
denmark). We perform 5-fold cross validation, leave out one fold for testing, consider 10% of the
remaining 4 folds as validation data and the rest as training data. We report mean and standard-
deviation of the per-sample average expected log-likelihood and per-sample average mean square
error on the test fold. We also report the mean rank of the methods across all datasets by assigning
rank 1 to the best scoring method as well as any method who’s error bars overlap with the highest
score’s error bars, and recursively apply this procedure to the methods not having yet been assigned a
rank. The expected log-likelihood is estimated by Monte Carlo integration when it is not available
in closed form (MFVI, TFSVI and FVI) with 100 posterior samples. We preprocess the dataset by
encoding categorical features as one-hot vectors and standardizing the features and labels.

Baseline specification We compare our GFSVI method to two weight space inference methods
(mean-field variational inference (Blundell et al., 2015) and linearized Laplace (Immer et al., 2021))
and two function space inference methods (FVI (Sun et al., 2019) and TFSVI (Rudner et al., 2022b)).
While FVI uses GP priors, TFSVI performs inference in function space but with the pushforward
to function space of the variational distribution and prior on the weights. We compute the function
space (regularized) KL divergence using a set of 500 measurement points sampled from a uniform
distribution for GFSVI and TFSVI, and 50 points drawn from a uniform distribution along with 450
samples from the training batch for FVI as specified in Sun et al. (2019). All the BNN baselines
have the same architecture and fully-factorized Gaussian approximate posterior. We also provide
results with a GP (Williams & Rasmussen, 2006) when the size of the dataset allows it, and a sparse
GP (Hensman et al., 2013). As we restrict our comparison to BNNs, we do not consider the GP and
sparse GP as baselines but rather as gold-standards. All models have a Gaussian heteroskedastic
noise model with a learned scale parameter. All the BNNs are fit using the Adam optimizer (Kingma
& Ba, 2017) using a mini-batch size of 2000 samples. We also perform early stopping when the
validation loss stops decreasing.

Model selection Hyper-parameter optimization is conducted using the Bayesian optimization tool
provided by Wandb (Biewald, 2020). BNN parameters are selected to maximize the mean expected
log-likelihood of the validation data across the 5 cross-validation folds. We optimize over prior
parameters (kernel, prior scale), learning-rate and activation function. The GP prior parameters
used with GFSVI and FVI are selected by maximizing the log-marginal likelihood from batches
as proposed by (Chen et al., 2021) and done in Sun et al. (2019). The GPs and sparse GPs kernel
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Table 4: Regression dataset description

DATASET BOSTON NAVAL POWER PROTEIN YACHT CONCRETE ENERGY KIN8NM WINE WAVE DENMARK

NUMBER SAMPLES 506 11 934 9 568 45 730 308 1 030 768 8 192 1 599 288 000 434 874
NUMBER FEATURES 13 16 4 9 6 8 8 8 11 49 2

parameters and learning-rate are selected to maximize the log-marginal likelihood of the validation
data across the 5 cross-validation folds.

Software We use the JAX (Bradbury et al., 2018) and DM-Haiku (Hennigan et al., 2020) Python
libraries to implement our Bayesian neural networks. MFVI, linearized Laplace and TFSVI were
implemented based on the information in the papers, and code for FVI was adapted to the JAX library
from the implementation provided by the authors. We further use the GPJAX Python library for
experiments involving Gaussian processes (Pinder & Dodd, 2022).

Hardware All models were fit using a single NVIDIA RTX 2080Ti GPU with 11GB of memory.

A.2.3 VARIATIONAL MEASURE EVALUATION

We further evaluate our inference method by comparing the samples drawn from the exact posterior
over functions with the approximate posterior obtained with our method (GFSVI). We follow the
setup by Wilson et al. (2022) and we compute the average per-sample Wasserstein-2 metric between
1000 samples drawn from a GP posterior with RBF kernel evaluated at the test points, and samples
from the approximate posterior of GFSVI, sparse GP and FVI evaluated at the same points and with
the same prior. We consider the boston, concrete, energy, wine and yacht datasets for which the exact
GP posterior can be computed and use the same preprocessing as for regression (see Appendix A.2.2).
We report the mean and standard deviation of the average per-example Wasserstein-2 metric across
the 5 folds of cross-validation. The Wasserstein-2 metric is computed using the Python Optimal
Transport library (Flamary et al., 2021).

Baseline specification FVI and GFSVI have the same two hidden layer neural network architecture
with 100 neurons each and hyperbolic tangent activation. These models are fit with the same learning
rate and set of context points jointly sampled from a uniform distribution over the feature space and
mini-batch of training samples. We use γ = 10−15 for the regularized KL divergence. We further
consider a sparse GP with 100 inducing points.

A.2.4 OOD DETECTION

We evaluate our method by testing if it’s epistemic uncertainty is predictive of out-of-distribution
(OOD) data following the setup from Malinin et al. (2020), taking epistemic uncertainty to be the
variance of the mean prediction with respect to samples from the posterior. We consider the test
data to be in-distribution (ID) data and a subset of the song dataset (Bertin-Mahieux et al., 2011) of
equal length and with an equal number of features as out-of-distribution (OOD) data. We first fit a
model, then evaluate the extend by which the epistemic uncertainty under the model is predictive of
the ID and OOD data using a single threshold obtained by a depth-1 decision tree fit to minimize the
classification loss. We use the same preprocessing as for regression as well as the same baselines
with the same hyper-parameters (see Appendix A.2.2). We also provide results obtained using a
GP and sparse GP as gold standard. We report the mean and standard deviation of the accuracy of
the threshold to classify OOD from ID data based on epistemic uncertainty across the 5 folds of
cross-validation.

A.3 ADDITIONAL EXPERIMENTAL RESULTS

A.3.1 UNCERTAINTY VISUALIZATION

In order to demonstrate the quality of the predictive uncertainty of our model, we present additional
plots of functions sampled from the GFSVI comparing these to samples from baselines. We further
find that GFSVI provides strong regularization when the data generative process is noisy (see Figure 7)
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and is more robust than FVI to situations where ones computational budget constrains the number of
measurement points M to be small (Figure 5). In contrast to FVI, GFSVI accurately approximates
the exact GP posterior under rough (Matern-1/2) GP priors effectively incorporating prior knowledge
defined by the GP prior to the inference process (see Figure 4). Likewise, GFSVI adapts to the
variability of the functions specified by the kernel (see Figure 6). We also find that GFSVI requires a
larger number of measurement points to capture the behavior of a rougher prior (see Figure 8).
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Figure 4: Our method (GFSVI) with a Matern-1/2 Gaussian process (GP) prior accurately approxi-
mates the exact GP posterior unlike the function space baseline (FVI). Weight space baselines do
not provide a straight-forward mechanism to incorporate prior assumptions regarding the functions
generated by BNNs and underestimate the epistemic uncertainty (MFVI, Laplace). The lower row is
identical to the one in Figure 2 in the main text and is reproduced here to make comparison easier.
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Figure 5: Our method (GFSVI) already provides a reasonable approximation to the exact posterior
with small numbers of measurement points (M=10) while function space baseline FVI requires many
more (M=100).
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Figure 6: Our method (GFSVI) allows to incorporate prior beliefs in terms of function variability
using the characteristic length-scale parameter of the Gaussian process (GP) prior. GFSVI was fit
using a GP with RBF covariance function.

A.3.2 REGRESSION

In this section we present additional regression results reporting the mean square error (MSE) of
evaluated methods across the considered baselines, see Table 5. We find that GFSVI also performs
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Figure 7: Our method (GFSVI) effectively regularizes functions generated by the Bayesian neural
network (BNN) both in settings where the generative process is very noisy (σn = 1) or not (σn = 0.1).
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Figure 8: Our method (GFSVI) captures the smooth behavior of a Gaussian process (GP) prior with
RBF covariance function even if the number of measurement points is small (N=10). However, in
that setting GFSVI fails to reproduce the rough effect of a GP prior with a Matern-1/2 covariance
function, and requires a larger amount of measurement points to do so (N=100).

Table 5: Test mean square error (MSE) of evaluated methods on regression datasets. We find that
GFSVI (ours) also performs competitively in terms of MSE compared to baselines and obtains the
best mean rank, matching best the performing methods on nearly all datasets.

DATASET FUNCTION SPACE PRIORS WEIGHT SPACE PRIORS GOLD STANDARDS

GFSVI (OURS) FVI TFSVI MFVI LAPLACE SPARSE GP GP

BOSTON 0.123 ± 0.047 0.136 ± 0.050 0.995 ± 0.206 0.532 ± 0.160 0.203 ± 0.104 0.122 ± 0.032 0.115 ± 0.045
CONCRETE 0.114 ± 0.019 0.116 ± 0.009 0.389 ± 0.035 0.698 ± 0.102 0.116 ± 0.015 0.399 ± 0.045 0.116 ± 0.016
ENERGY 0.003 ± 0.000 0.003 ± 0.001 0.003 ± 0.001 0.152 ± 0.053 0.002 ± 0.000 0.087 ± 0.011 0.087 ± 0.009
KIN8NM 0.071 ± 0.003 0.075 ± 0.008 0.073 ± 0.003 0.290 ± 0.249 0.083 ± 0.003 0.088 ± 0.005 -
NAVAL 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.007 ± 0.006 0.000 ± 0.000 0.000 ± 0.000 -
POWER 0.052 ± 0.002 0.054 ± 0.005 0.054 ± 0.003 0.058 ± 0.004 0.054 ± 0.004 0.071 ± 0.003 -
PROTEIN 0.459 ± 0.011 0.466 ± 0.010 0.429 ± 0.008 0.537 ± 0.017 0.446 ± 0.014 0.408 ± 0.003 -
WINE 0.652 ± 0.050 0.663 ± 0.020 1.297 ± 0.208 0.655 ± 0.052 0.637 ± 0.069 0.607 ± 0.074 0.585 ± 0.071
YACHT 0.003 ± 0.001 0.004 ± 0.002 0.221 ± 0.082 0.682 ± 0.313 0.002 ± 0.001 0.399 ± 0.144 0.355 ± 0.066
WAVE 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 -
DENMARK 0.155 ± 0.009 0.287 ± 0.007 0.163 ± 0.009 0.225 ± 0.007 0.194 ± 0.007 0.260 ± 0.002 -

MEAN RANK 1.182 1.545 1.545 2.182 1.182 - -

competitively in terms of MSE compared to baselines and obtains the best mean rank, matching
best the performing methods on nearly all datasets. In particular, we find that using GP priors in the
linearized BNN setup with GFSVI yields improvements over the weight space priors used in TFSVI
and that GFSVI performs slightly better than FVI. Function-space VI methods (TFSVI, GFSVI, FVI)
significantly improves over weight space VI mostly performing similarly to the linearized Laplace
approximation. Further improvement over baselines are obtained when considering GP priors with
GFSVI and FVI. Finally, GFSVI compares favorably to the GP and sparse GP.

A.3.3 ADDITIONAL PLOTS FOR KERNEL EIGENVALUE DECAY

The rate of decay of covariance operator’s eigenvalues gives important information about the smooth-
ness of stationary kernels (Williams & Rasmussen, 2006) and that increased smoothness of the kernel
leads to faster decay of eigenvalues Santin & Schaback (2016). For instance, RBF covariance operator
eigenvalues decay at near exponential rate independent of the underlying measure (Belkin, 2018) and
Matern kernels eigenvalues decay polynomialy (Chen et al., 2021). We find that the kernel evaluated
at points sampled from a uniform distribution over X share this same behavior (see Figure 9).
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Figure 9: Mean eigenvalues of the Gram matrix obtained for different kernels and for varying length-
scales over 10 draws from a uniform distribution on [−2, 2]D. The mean eigenvalues are arranged in
increasing order. The eigenvalues of the Gram matrix associated with the smooth RBF kernel decays
much faster than those of the Matern-1/2. Furthermore, the eigenvalues decay at a slower rate in high
dimensions (D=100).

A.3.4 ADDITIONAL PLOTS FOR CHOOSING γ IN Dγ
KL.

The γ parameter controls the magnitude of the regularized KL divergence (see Figure 12) and adjusts
the relative weight of the regularized KL divergence and expected log-likelihood term in the training
objective (see Figure 10). Furthermore, γ also acts as "jitter" preventing numerical errors. We
recommend choosing γ large enough to avoid numerical errors while remaining small enough to
provide strong regularization.
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Figure 10: The γ parameter of the regularized KL divergence controls the magnitude of the regularizer
in the objective and should be small enough to provide strong regularization.
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Figure 11: The BNN’s covariance adapta-
tion to the prior’s covariance rank depends
on its activation function. BNNs fit with a
RBF prior (full) show lower rank than with a
Matern-1/2 (dotted).
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Figure 12: γ explicitly controls the magnitude of
the regularized KL-divergence Dγ

KL. Rougher priors
(Matern-1/2) require more measurement points to ac-
curately estimate Dγ

KL than smooth priors (RBF).
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