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Abstract

Efficient optimization methods play a crucial role for quantum optimization and
machine learning on near-term quantum computers. Unlike classical computers,
obtaining gradients on quantum computers is costly with sample complexity scaling
with the number of parameters and measurements. In this paper, we connect
the natural gradient method in quantum optimization with Koopman operator
theory, which provides a powerful framework for predicting nonlinear dynamics.
We propose a data-driven approach for accelerating quantum optimization and
machine learning via Koopman operator learning. To predict parameter updates
on quantum computers, we develop new methods including the sliding window
dynamic mode decomposition (DMD) and the neural-network-based DMD. We
apply our methods both on simulations and real quantum hardware. We demonstrate
efficient prediction and acceleration of gradient optimization on the variational
quantum eigensolver and quantum machine learning.

1 Introduction

The fields of quantum technology and quantum computation are under rapid development in recent
years. Two promising applications of quantum technology, quantum optimization [39] and quantum
machine learning (QML) [5], have gained increased interest. The Variational Quantum Algorithm
(VQA) [7] such as the Quantum Approximate Optimization Algorithm (QAOA) [13] has been
developed for solving optimization on graphs. By benchmarking against a variety of classical
algorithms, a recent experiment on 289 qubits has demonstrated a powerful application of VQA
for classical optimization problems [12]. The Variational Quantum Eigensolver (VQE) [42, 56]
has been applied to find quantum states for understanding science in high energy physics [22, 47],
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condensed matter physics [58], and quantum chemistry [41]. In quantum machine learning, both
theoretical advantages have been investigated [19, 30, 17, 20, 10, 29], and experiments on real
quantum computers have demonstrated encouraging progress [18, 49].

In the noisy intermediate-scale quantum (NISQ) era [44], the current quantum computers suffer from
noise and the computation resources are limited. To address the issue, hybrid classical-quantum
schemes have been developed for quantum optimization and quantum machine learning, which
perform optimization and machine learning on parameterized quantum circuits with quantum features
while optimizing the circuit’s parameters through classical computers. In contrast to classical machine
learning, for which the backprogation algorithm shares the same complexity as the forward evaluation,
the hybrid scheme has much higher cost for obtaining gradients due to: (1) gradient calculation
typically has linear scaling with respect to the number of parameters; and (2) repeated measurements
are required to estimate the gradient for each parameter. Despite their popularity, gradient-based
methods on real quantum computers are computationally inefficient to implement, which limits
their applications in practice. To develop scalable and efficient optimization methods for quantum
optimization and quantum machine learning is an important open problem in the field.

Here, we propose a data-driven approach for accelerating quantum optimization and quantum machine
learning via Koopman operator learning [24]. By viewing parameter optimization on quantum
computers as a nonlinear dynamical process in the parameter space, we connect gradient dynamics in
quantum optimization to the Koopman operator theory, which has been developed to successfully
predict nonlinear dynamics through linear dynamics embedded into a higher dimensional space [6,
35, 37, 36, 48]. In particular, we find that the Koopman operator theory has a natural connection to
the quantum natural gradient method. Based on the insights of the theory, we develop new Koopman
operator learning algorithms, including the sliding window dynamic mode decomposition (SW-DMD)
and neural-network-based DMD, for quantum optimization and quantum machine learning. Our
approach is data-driven and efficiently predicts the gradient dynamics with cost that does not scale
with the number of parameters. We show the effectiveness of our algorithms for the variational
quantum eigensolver with the natural gradient and Adam [21] optimizers on quantum Ising model
simulations and demonstrate their success on a real IBM quantum computer. Furthermore, using our
methods, we accelerate quantum machine learning on the fashion-MNIST dataset.

2 Related Work

Koopman operators. Koopman operator theory [24, 57] was first proposed by Koopman and
von Neumann in early 1930s to understand dynamical systems. Dynamic mode decomposition
(DMD) [50] was developed to learn the Koopman operator under the linear dynamics assumption of
the observed data. Later, more advanced methods such as the extended-DMD based on kernel meth-
ods [3] and dictionary learning [25] were introduced to go beyond the linear dynamics assumption,
and achieved better performance. Recently, machine learning methods were integrated into Koopman
operator learning where neural networks are used to learn the mapping to high dimensional space,
in which the dynamics becomes linear [34, 27]. The machine learning Koopman operator methods
were shown to learn nonlinear differential equation dynamics successfully. Furthermore, Koopman
operator theory was applied to optimize neural network training [9, 55] and pruning [45]. These
works take the perspective of viewing the optimization process of neural networks as a nonlinear
dynamical evolution and uses dynamic mode decomposition to predict the parameter updates in the
future. In a more empirical study, [52] trained a convolutional neural network (CNN) to predict the
future weights of neural networks, trained on standard vision tasks. Recently, researchers considered
Koopman operator theory for quantum control [15] and prediction of one particle quantum system
evolution [23]. Since quantum mechanical systems provide a natural high dimensional Hilbert space
through the wave function, the theory was considered for embedding classical equations on quantum
computers for learning and solving differential equations [28, 14].

Optimization methods on quantum computers. To perform optimization on quantum computers,
gradient-free methods such as SPSA [53] and COBYLA [43] are used though they may not scale
well to quantum circuits with large number of parameters. For gradient methods, Adam is a common
choice for better scaling though its complexity scales with the number of parameters as discussed
above. There are also higher order methods such as the quantum natural gradient method [54] with
faster convergence but more challenges to realize experimentally.
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Our work. There are several important features of our work that distinguish it from the relevant
works above. First, our goal is to accelerate quantum optimization and quantum machine learning,
which compared to classical neural networks has much higher complexity of taking gradients, such
that the gain of acceleration will be much more prominent. Second, instead of predicting the gradient
dynamics directly, we focus on decreasing the loss function during the training and develop iterative
optimal prediction algorithms, which is much more flexible and effective than the one-time prediction
in the previous work [9]. Third, the previous literature on Koopman operators for neural networks
applies only the standard DMD which may not be well situated for complicated nonlinear training
dynamics. Instead, we develop and investigate the sliding window DMD (SW-DMD) and several
variants of neural-network-based DMD, including the multi-layer perceptron DMD (MLP-DMD),
MLP-SW-DMD and CNN-DMD.

3 Connecting Koopman Operator Theory and Quantum Optimization

3.1 Koopman Operator Theory

Consider a dynamical system with a collection of state variables {x(t) ∈ Rn} with a transition
function T such that x(t + 1) = T (x(t)). According to the Koopman operator theory [24], there
exists a linear operator K and a function g such that

Kg(x(t)) = g(T (x(t))) = g(x(t+ 1)) (1)

where K is the Koopman operator. While the Koopman operator generally can act on an infinite-
dimensional space, it can be represented as a Koopman matrix K ∈ Rm×m when it is constrained
to a finite dimensional invariant subspace with g : Rn → Rm. An important question in Koopman
operator theory is to search for the function g, and a number of methods have been developed to
tackle the problem [34, 27, 50, 3, 25].

3.2 Variational Quantum Eigensolver (VQE)

Consider a Hamiltonian H describing interactions in a physical system with N qubits. H is a
Hermitian operator acting on the 2N -dimesional Hilbert space for wave functions, which are l2-
normalized complex-valued vectors. The energy of the system from a wave function ψ is given by
L(ψ) = ⟨ψ,Hψ⟩. VQE encodes the wave function as ψθ by a set of parameters θ ∈ Rnparams via a
parameterized quantum circuit as the top left part of Figure 1 shows. The goal of VQE is to minimize
the loss by minimizing for θ in the following objective θ∗ = argminθ L(θ) = argminθ⟨ψθ,Hψθ⟩.
Quantum machine learning has a similar setup that targets at minimizing L(θ), and parameterized
quantum circuits in QML are called quantum neural networks. To compute the gradient for the
quantum circuit, it requires to evaluate the loss with a perturbation in each direction i, for example by
using the parameter-shift rule [38, 51] (L(θi+π/2)−L(θi−π/2))/2, which leads to anO(nparams)
computational cost per iteration. This is much more expensive than O(1) cost of backpropagation per
iteration in classical machine learning. Hence, the classical computational resources in the Koopman
operator learning, even including training neural-network-based algorithms in the following sections,
typically are much cheaper than the quantum cost.

3.3 Quantum Fisher Information and Quantum Natural Gradient

The quantum natural gradient method [54] generalizes the classical natural gradient method [1] to the
context of wave function optimization. The following nonlinear differential equation describes the
natural gradient update for parameter θ under argminθ⟨ψθ,Hψθ⟩

d

dt
θ(t) = −ηF−1∇θL(θ(t)), (2)

where η is the learning rate, and F is the quantum Fisher Information matrix given by Fij =

⟨∂ψθ

∂θi
, ∂ψθ

∂θj
⟩ − ⟨∂ψθ

∂θi
, ψθ⟩⟨ψθ,

∂ψθ

∂θj
⟩. The above equation for θ can be shown equivalent to the dynam-

ical equation of ψθ(t) with the projection operator Pψθ
on the manifold given by the parameterized

quantum circuit [16]
dψθ(t)

dt
= −Pψθ

Hψθ(t). (3)
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Figure 1: Koopman operator learning for quantum optimization and quantum machine learning. (a)
In quantum optimization and quantum machine learning, a parameterized quantum circuit processes
information, and the loss function is evaluated through measurements on a quantum computer. The
parameter updates for quantum circuit are computed by a classical optimizer. (b) The optimization
history of the parameter updates forms a time series, where for each time step the gradient optimization
complexity scales with the number of parameters as O(nparams). (c) The Koopman operator learning
takes the time series from (b) as training data to find an embedding of the original data with
approximately linear dynamics. (d) The Koopman operator predicts the parameter updates where
each step has O(1) complexity. The loss from the predicted parameters can be evaluated on quantum
computers, and the parameter θ(topt) that provides the optimal loss is used as the starting point for
the next iteration in (a).

Since H is a linear operator, Eq. 3 is close to a linear differential equation when the parametrized
quantum circuit is sufficiently expressive such that the projection is within the manifold. Viewing
the parameters θ(t) as the state variable x(t) in the Koopman theory, the wave function ψθ naturally
generated by the quantum circuit plays the role of g in Eq. 1, which makes the embedded dynamics
close to linear in the Hilbert space. The existence of ψθ and its approximate linear dynamics builds the
theoretical foundation for Koopman operator learning algorithms in optimization and the application
of parameter update acceleration.

4 Koopman Operator Learning Algorithms

4.1 Our framework: data-driven approach for accelerating optimization

Our approach is shown in Figure 1. We use a quantum computer to measure L at the initial parameter
θ(t0) of the quantum circuit. Then, we use an optimizer on a classical computer, such as Adam
to update the parameter θ, thus incrementing the optimization iteration by 1. If the optimizer is
gradient-based, for each iteration, O(nparams) additional quantum measurements are needed to
evaluate the gradient. Next, we input the updated parameters into the quantum circuit and repeat
this procedure for m steps. We acquire a time sequence θ(t0),θ(t1), ...,θ(tm). We then the apply
Koopman operator learning algorithms to the acquired data and predict the time series for nDMD steps
to obtain θ(tm+1),θ(tm+2), ...,θ(tm+nDMD

). The loss at these predicted parameters can also be
evaluated on the quantum computer, but no gradient measurement is needed. From these nDMD loss
function values and the last step from the VQE θ(tm), we find the lowest loss and the corresponding
time topt. The optimal Koopman-predicted parameter θ(topt) is then used as the initial point for the
next quantum optimization and quantum machine learning. We repeat this cycle to accelerate the loss
decrease with less resources.

4.2 Sliding Window DMD (SW-DMD)

Dynamic mode decomposition [6] uses a linear fit for the dynamics in the original space for the
column vector θ ∈ Rn as follows θ(tk+1) = Kθ(tk). We concatenate θ at successive times to obtain
two data matrices

Θ(t0) = [θ(t0) θ(t1) · · · θ(tm)], Θ(t1) = [θ(t1) θ(t2) · · · θ(tm+1)], (4)
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where Θ(t1) is the one-step time evolution of Θ(t0). In the case of approximate linear dynamics,
the matrix K is the same for all times tk, and then the DMD fit becomes Θ(t1) ≈ KΘ(t0) , where
K ∈ Rn×n. The best fit is at the minimum of the Frobenius loss

K = argmin
K

∥Θ(t1)−KΘ(t0)∥F = Θ(t1)Θ(t0)
+, (5)

where + is the pseudo-inverse.

When the dynamics of θ is not linear, we can instead consider a time-delayed embedding with a
sliding window and concatenate the steps to form an extended data matrix [11]

Φ(Θ(t0)) = [ϕ(t0) ϕ(t1) · · · ϕ(tm)] =


θ(t0) θ(t1) · · · θ(tm)
θ(t1) θ(t2) · · · θ(tm+1)

...
...

. . .
...

θ(td) θ(td+1) · · · θ(tm+d)

. (6)

Φ is generated by a sliding window of size d+ 1 at m+ 1 consecutive time steps. Each column of Φ
is a time-delayed embedding for Θ, and the different columns ϕ in Φ are embeddings at different
starting times. The time-delayed embedding captures some nonlinearity in the dynamics of θ, with

Θ(td+1) ≈ KΦ(Θ(t0)), (7)

where K ∈ Rn×n(d+1). The best fit is given by

K = argmin
K

∥Θ(td+1)−KΦ(Θ(t0))∥F = Θ(td+1)Φ(Θ(t0))
+. (8)

The used data from the acquired time series with the largest time in the above equation is θ(tm+d+1).
When making prediction, we start with θ(tm+d+2) = Kϕ(tm+1). Then we update from ϕ(tm+1)
to ϕ(tm+2) by removing the oldest data θ(tm+1) and adding the newly predicted data θ(tm+d+2).
We repeat this prediction using θ(tk+d+1) = Kϕ(tk) iteratively. Our approach is different from the
approach used by [11], as we do not perform an additional singular value decomposition before doing
DMD and our matrix K is non-square.

We denote DMD performed this way as sliding window DMD (SW-DMD). The standard DMD is a
special case of SW-DMD when the sliding window size is 1 (i.e., d = 0).

4.3 Neural DMD

General formulation. In order to improve DMD by making it more amenable to nonlinear dynam-
ics, we investigate whether Φ can be a neural network. By simply writing Φ in Eq. 8 as a neural
network, we obtain

argmin
K,α

∥Θ(td+1)−KΦα(Θ(t0))∥F , (9)

where K ∈ RNin×Nout is a linear Koopman operator, and Φα(Θ(t0)) is a nonlinear neural embed-
ding by a neural network Φα with parameters α. More specifically, Φα := NNα ◦Φ is a composition
of the neural network architecture NNα and the sliding window embedding Φ from the previous
section. The parameters K and α are trained jointly on Eq. 9 from scratch with every new batch of
optimization history by using the Adam optimizer. See hyperparameter details in Appendix C. We
use the MSE loss, which minimizes the Frobenius norm.

MLP-DMD, CNN-DMD and MLP-SW-DMD methods. We consider three natural choices for the
architecture of the neural network, which we list below. Figure 2 (a) demonstrates that our first choice
is a simple MLP. The result is MLP-DMD. The architecture is two linear layers with an ELU [8]
activation on the hidden layer and a residual connection with expansion ration 1 (higher ratios are
more prone to overfitting to the noise in the history of optimization that is used as training data to the
neural network). MLP-DMD does not use mixing of information between simulation steps, as in our
SW-DMD method. Thus, we also consider a 1D CNN encoder in Figure 2 (b) to form the CNN-DMD
method. In CNN-DMD, the simulation steps form the temporal dimension, and the parameters form
the channel dimension of the CNN. We use causal masking of the CNN kernels on the encoder
in order to avoid look-ahead bias. During the inference, we look at the history of simulated steps,
and look at the prediction of the last step. Then we recurrently feed the last step and resume the
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Figure 2: Neural network architectures for our neural-network-based DMD approaches. (a) MLP
bottleneck architecture with MSE loss for training. (b) CNN bottleneck architecture that operates on
simulations as temporal dimension and parameters as channel dimension.

predictions. The architecture is two 1D-CNN layers with bottleneck middle channel number of 1 (to
avoid overfitting) and ELU activation in between. Because DMD is a special case of SW-DMD, we
also naturally define an MLP-SW-DMD method, i.e., we simply consider our MLP-DMD method for
input obtained by window size larger than 1. We build our neural networks with Pytorch [40]. See
Appendix C for additional details.

5 Experiments

5.1 Quantum Optimization

For quantum optimization, we perform experiments for the 1D Ising model with the periodic boundary
condition and the transverse field h = 0.8 to minimize the energy and find the ground state wave
function. We perform simulations of VQE using Qiskit [2], a python framework for quantum
computation. The experimental details are in Appendices A and B.

5.1.1 Noiseless Quantum Simulations

Noiseless quantum Natural gradient simulations. In Figure 3a, when using the natural gradient,
we compare our DMD methods and the baseline standard DMD method on a 5-qubit Ising model with
the circular-entanglement RealAmplitudes ansatz and reps=1 (2 layers, 10 parameters). Solid parts of
the lines are from piecewise VQE, and the dashed lines connecting the solid parts indicate where the
DMD methods are used for acceleration. The learning rate is 0.01. We perform ntotal = 100 full
VQE iterations and use nsim = 10, nDMD = 40 for all DMD methods, and window size nSW = 6
for SW-DMD and MLP-SW-DMD. Since with the natural gradient, θ has the quantum wave function
as a natural embedding with approximately linear dynamics, Koopman operator learning can be
hypothesized to yield good prediction of dynamics. All the DMD algorithms at 30 iterations are
able to achieve an optimal loss close to the full VQE, which indicates successful acceleration of
quantum optimization. DMD and SW-DMD perform a little better than neural-network-based methods
including MLP-DMD, MLP-SW-DMD, and CNN-DMD. This could be related to over-fitting of the
neural networks for simple parameters dynamics.

Noiseless Adam simulations. Instead of the natural gradient, we show another case using the
Adam optimizer based on the vanilla gradient obtained from the parameter-shift rule. We perform
experiments on the 10-qubit Ising model with the circular-entanglement RealAmplitudes ansatz and
reps=1 (2 layers, 20 parameters). In Figure 3b, we use ntotal = 200, nsim = 10, nDMD = 90. For
SW-DMD and MLP-SW-DMD, the sliding window size is nSW = 6. The Adam learning rate is
0.01. All the DMD methods can significantly accelerate quantum optimization. The extended DMD
methods (SW-DMD, MLP-DMD, MLP-SW-DMD, CNN-DMD) have greater acceleration than the
standard DMD, which demonstrates the improved efficiency from our time-delay and neural-network
extensions.

5.1.2 Ablations

We show an ablation analysis for all DMD methods associated with nsim ∈ {7, 8, 10, 15, 20, 25, 30},
nDMD = 90, and nSW = 6 for SW-DMD and MLP-SW-DMD. We define the relative expense spent
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(a) Natural gradient 5-qubit results with nsim = 10,
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(b) Adam 10-qubit results with nsim = 10, nDMD =
90, nSW = 6 for SW-DMD and MLP-SW-DMD. For
the various DMD methods, solid parts are piecewise
VQE runs, and the dashed lines connecting them indi-
cate when the DMD prediction is applied.
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(c) Adam 10-qubit results for relative loss versus rela-
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performance, and lower relative gradient steps mean
less quantum resource cost.
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tion steps.

Figure 3: Experimental results for the quantum Ising model at h = 0.8.

on the quantum computer measured by the relative number of VQE iterations compared to the full
VQE. We define the relative gradient steps as the number of gradient steps that DMD methods utilize
compared to the full VQE gradient steps. nDMD is chosen large enough so that it does not affect the
minimum loss much. The relative loss is defined as (Lmin, VQE + DMD−Lmin, full VQE)/(Linitial, full VQE−
Lmin, full VQE). A smaller relative loss means better performance. At the same relative loss, smaller
relative gradient steps imply more acceleration of quantum optimization (e.g., relative gradient steps
at 10% indicate 10 times speedup). Figure 3c shows the relative loss versus the relative gradient steps
with the same results in Table A1 of Appendix D for better numerical resolution. The performance
of DMD methods should be compared to pure VQE (black line). The relative loss of all the DMD
methods are below the pure VQE at the same relative gradient steps, which means all the DMD
methods can successfully accelerate quantum optimization. SW-DMD and MLP-SW-DMD as time-
delay embedding extensions to the standard DMD method, all yield very significant acceleration and
have the best performances in general among all the DMD methods. MLP-DMD, MLP-SW-DMD
and CNN-DMD, as the neural-network extensions of the standard DMD, also outperform the standard
DMD.

5.1.3 Quantum Optimization on a Real Quantum Computer

We implement VQE for the 3-qubit Ising model at h = 0.8 on a real IBM quantum computer Lima
using the SPSA optimizer (learning rate 0.04 and perturbation 0.1) and 10k quantum shots. We have
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(a) Quantum machine learning architecture.

0 20 40 60 80 100
Iterations

0.6

0.7

0.8

0.9

1.0

T
es

t
ac

cu
ra

cy

DMD

SW-DMD

CNN-DMD

MLP-SW-DMD

MLP-DMD

Full QML

(b) Test accuracy of binary classification for full
QML simulation and DMD methods. For the vari-
ous DMD methods, solid parts are piecewise QML
runs, and the dashed lines connecting them indi-
cate when the DMD prediction is applied.

Figure 4: Quantum machine learning architecture and results.

applied measurement error mitigation to reduce the effect of noise on the real hardware. The ansatz
is RealAmplitudes with 2 layers (6 parameters) with linear entanglement.

With the SPSA optimizer, every iteration of update contains 1 center measurement and 2 gradient
measurements in only one random direction in the parameter space, so each iteration takes 3 measure-
ments. The smaller number of gradient measurements makes it easier to implement on near-term real
quantum computers, compared to Adam. On the other hand, using SPSA may also require a higher
number of iterations. DMD always only takes 1 center measurement without gradient measurements.

As shown in Figure 3d, on IBM Lima, we first perform a full pure VQE for 38 iterations. To mitigate
the effect of the random direction in gradient measurements, we use the first 12 VQE iterations for
Koopman training and apply SW-DMD with nSW = 8 to make prediction for 20 iterations. Early
in prediction, SW-DMD agrees with the full VQE result, and then further decreases the loss even
though higher than the full VQE loss. However, the expense of each prediction step is much less than
a VQE gradient step. It is a promising validation of our approach that SW-DMD can help reduce
the quantum resource needed in quantum optimization on a real quantum computer. Note that IBM
Lima can have a relatively big uncertainty over different experimental times, and the final difference
between the full VQE and SW-DMD could be within the experimental uncertainty in quantum lab.
On FakeLima, a noise model that mimics the real hardware Lima, we use the same setup and present
the simulated results in Appendix F. The decrease in energy of SW-DMD prediction is more efficient
on FakeLima than real Lima, which may reflect the daily fluctuation of Lima as a physical apparatus
compared to FakeLima.

5.2 Quantum Machine Learning

We use an interleaved block-encoding scheme [26, 46] for QML with its quantum neural network
architecture shown in Figure 4a and apply Koopman operator learning. We consider the task of binary
classification on a filtered Fashion-MNIST dataset with samples labeled by “T-shirt” and “ankel boot”
and implement it in Yao [33], a framework for quantum algorithms in Julia [4]. Each is downsampled
to 16× 16 pixels, and is then as an input x ∈ [0, 1]256 fed into interleaved encoding quantum gate.
The parameters θ are also encoded in the interleaved encoding quantum gate. Then the quantum
measurements are used as the output for computing the cross-entropy loss. The details of the QML
data and architecture are in Appendix G. The full QML training has ntotal = 100 iterations. We
choose nsim = 10, nDMD = 20, and nSW = 6 for SW-DMD and MLP-SW-DMD. To reduce the
number of parameters in the neural networks used in DMD including MLP-DMD, MLP-SW-DMD,
CNN-DMD, we adopt a layer-wise partition in θ with details in Appendix G. Figure 4b shows that
DMD methods can achieve good accuracy while saving quantum resources compared to full QML,
since all the lines from DMD are significantly above the full QML. This demonstrates significant
acceleration of our DMD methods for QML.
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6 Conclusion

Quantum optimization and quantum machine learning are promising for solving certain problems be-
yond the capability of classical computation. However, in the NISQ era, gradient-based optimization
on quantum computers is costly since it takes O(nparams) gradient measurements for each iteration
while the current quantum computing resources are limited. Built on the insight from Koopman
operator theory, we have developed data-driven sliding-window and neural-network based DMD
for accelerating quantum optimization and quantum machine learning. We have demonstrated the
effectiveness of our approach on both simulations and real quantum computers, and recently extended
it to various systems of larger system sizes [32]. Our work bridges the fields of machine learning and
quantum optimization and opens up opportunities for further exploration of optimization problems
through Koopman operator theory.
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mechanics and the koopman representation: A perspective on solving nonlinear dynamical
systems with quantum computers, 2022.

10



[29] J. Liu, F. Tacchino, J. R. Glick, L. Jiang, and A. Mezzacapo. Representation learning via
quantum neural tangent kernels. PRX Quantum, 3(3), aug 2022.

[30] Y. Liu, S. Arunachalam, and K. Temme. A rigorous and robust quantum speed-up in supervised
machine learning. Nature Physics, 17(9):1013–1017, jul 2021.

[31] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

[32] D. Luo, J. Shen, R. Dangovski, and M. Soljačić. Koopman operator learning for accelerating
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[35] I. Mezić. On the geometrical and statistical properties of dynamical systems: Theory and
applications.
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[48] C. W. ROWLEY, I. MEZIĆ, S. BAGHERI, P. SCHLATTER, and D. S. HENNINGSON. Spectral
analysis of nonlinear flows. Journal of Fluid Mechanics, 641:115–127, 2009.

[49] M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri, B. Peropadre, and A. Perdomo-Ortiz.
Generation of high-resolution handwritten digits with an ion-trap quantum computer. Phys. Rev.
X, 12:031010, Jul 2022.

[50] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data. Journal of
fluid mechanics, 656:5–28, 2010.

[51] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. Evaluating analytic gradients
on quantum hardware. Phys. Rev. A, 99:032331, Mar 2019.

[52] A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy. Introspection: Accelerating neural
network training by learning weight evolution. arXiv preprint arXiv:1704.04959, 2017.

[53] J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37(3):332–341, 1992.

[54] J. Stokes, J. Izaac, N. Killoran, and G. Carleo. Quantum Natural Gradient. Quantum, 4:269,
May 2020.

[55] M. E. Tano, G. D. Portwood, and J. C. Ragusa. Accelerating training in artificial neural networks
with dynamic mode decomposition, 2020.

[56] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H.
Booth, et al. The variational quantum eigensolver: a review of methods and best practices.
Physics Reports, 986:1–128, 2022.

[57] J. v. Neumann. Zur operatorenmethode in der klassischen mechanik. Annals of Mathematics,
33(3):587–642, 1932.

[58] D. Wecker, M. B. Hastings, and M. Troyer. Progress towards practical quantum variational
algorithms. Physical Review A, 92(4), oct 2015.

12



Supplementary Materials

A Setup of VQE+DMD runs

In quantum optimization of the 1D Ising model, we run VQE for nsim iterations starting from
a random initial point in the parameter space. Then, we apply DMD methods to the history of
parameters from VQE, predict the future trajectory for nDMD iterations, and evaluate the loss on the
predicted trajectory. From the nDMD evaluations, we find the minimum loss and the corresponding
point in the parameter space, and use this optimal point as the starting point of the next nsim iterations
of VQE. We then repeat the alternating runs of VQE and DMD. nsim and nDMD are hyperparameters
in our algorithm. In SW-DMD, there is an additional hyperparameter, the sliding window size nSW,
with the constraint nSW < nsim. Note that DMD is a special case of SW-DMD with nSW = 1.
We benchmark the standard DMD, and our extended SW, MLP, MLP-SW and CNN DMDs with
nsim = 10. We choose the sliding window size nSW = 6 for SW-DMD and MLP-SW-DMD. In
parallel, we also perform a pure VQE run for ntotal iterations, starting from the same initial point as
the alternating VQE+DMD runs.

B Quantum Ising Model with Transverse Field

The 1D quantum Ising model with the periodic boundary condition and transverse field h is the
Hamiltonian

H = −
N∑
i=1

Zi ⊗ Zi+1 − h

N∑
i=1

Xi, (10)

where

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
(11)

are Pauli matrices, and the subscripts on them denote which qubit they act on. The periodic boundary
condition defines the qubits at i = 1 and i = N + 1 to be identical.

C Further details on neural DMD

Optimization hyperparameter The neural network is trained from scratch by using Adam for 30k
steps with 9k steps of linear warmup from 0 to 0.001 and then cosine decay back to 0 at step 30k.

Activation Besides ELU, we also explored cosine, ReLU and tanh activations. We found ELU to
be the best which could be because: tanh suffers from vanishing gradients, ReLU biases to positive
numbers (while input phases quantum circuit parameters θ are unconstrained) and cosine is periodic.

The importance of learning rate scheduler. We train the neural network Φα from scratch every
time we obtain parameters optimization history as training data. A stable learning with well converg-
ing neural network at every single Koopman operator fitting stage is important. It is found vital to
use a cosine-decay scheduler with a linear warmup, which is typically useful in the computer vision
literature [31]. We linearly scale the learning rate from 0 to 0.001 for the first 9k steps of the neural
network optimization, and then use a cosine-decay from 0.001 to 0 until the final step at 30k.

The importance of residual connections. In our work we use a residual connection so that DMD
becomes as a special case of the neural DMD parameterization. The residual connection is indeed
very useful, as it is driven by the Koopman operator learning formulation and makes it possible for
the encoder to learn the identity. For identity encoder, MLP(-SW)-DMD or CNN-DMD become
vanilla (SW-)DMD.

D Numerical Results on Ablations

The numerical values of relative loss versus relative gradient steps for the 10-qubit quantum Ising
model Adam noiseless simulations in Figure 3c are given in Table A1. All the DMD methods can
accelerate the quantum optimization.
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Relative Gradient Steps

Method 7% 8% 10% 15% 20% 25% 30%

Pure VQE 66.6% 62.7% 55.8% 43.2% 35.5% 30.0% 24.2%

DMD 58.9% 57.7% 49.2% 35.2% 31.0% 21.0% 7.3%
SW-DMD 23.6% 9.3% 5.2% 3.7% 3.2% 4.54% 1.7%
MLP-DMD 31.4% 39.7% 41.8% 11.8% 8.6% 5.8% 3.8%
MLP-SW-DMD 33.6% 16.3% 5.3% 5.7% 2.8% 4.50% 3.9%
CNN-DMD 23.1% 39.4% 26.0% 37.1% 16.3% 5.1% 7.0%

Table A1: Relative loss (in %) as a function of the method used and the relative gradient steps (in
%). Lower relative loss is better for the 10-qubit quantum Ising model at h = 0.8 with Adam. Our
methods significantly improve the standard DMD.

E RealAmplitudes Ansatz

The RealAmplitudes ansatz from Qiskit always produces a real-valued wave function ψθ with no
imaginary part. The minimum loss of the Ising-model can always be achieved by a real-valued ψθ , so
this ansatz can help to reduce the redundancy in the functional form of ψθ and therefore, is beneficial
for our use.

With the RealAmplitudes ansatz, ψθ as a function of θ is a nonlinear function consisting of alternating
layers of the rotational gates for the Pauli matrix

Y =

[
0 −i
i 0

]
(12)

with rotation angles being the parameters θ, and controlled-X gates with no parameter. Each layer
of the rotational gates for Y has N (the number of qubits) parameters, so N times the number of
rotational layers gives the total number of parameters.

F Comparison between Real Lima and FakeLima

0 10 20 30
Steps (gradient steps + prediction steps)

−3.4

−3.2

−3.0
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Figure A1: FakeLima results.

We perform simulation using FakeLima provided in Qiskit, a noise model that mimics the real
hardware Lima, on the same 3-qubit Ising model at h = 0.8 as we do on the real Lima. The setup
we use on FakeLima is the same as the real Lima with ntotal = 38, nsim = 12, nSW = 8 with
SW-DMD. The FakeLima results shown in Figure A1 are qualitatively consistent with Figure 3d with
less fluctuation in the loss evaluation and a cleaner decrease in energy.
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G QML Data and Architecture Details

In our QML example, the quantum computer has N = 10 qubits. The interleaved encoding gate
consists of 9 layers. Each layer has a rotational layer and a linear entanglement layer. On the linear
entanglement layer, each qubit has three rotational gates for X , Z, X in a sequence. Therefore, each
layer has 30 rotational angles, and the whole QML architecture has 270 rotational angles. Since each
input example x is 256-dimensional, we only use the first 256 rotational angles to encode the input
data. The parameters θ are also encoded in the rotational angles such that the angles are x+ θ. All
the examples share the same θ.

In each quantum measurement, each qubit is in the 0-state or the 1-state, and the probability for the
qubit to be in the 0-state is between 0 and 1. We regard this probability as the probablity for the image
to be a “T-shirt”. We only use the probability on the 5th qubit (i = 5) as the output and compute the
cross-entropy loss with the labels.

We use 500 training examples and 500 test examples. During training, we use the stochastic gradient
descent optimizer with the batch size 50 and learning rate 0.05.

In neural DMD including MLP-DMD, MLP-SW-DMD, CNN-DMD, we group θ by layers in the
encoding gate. There are 9 groups with group size 30. We perform neural DMD for each group, so
that the number of parameters in the neural networks for DMD is not too large. After predicting each
group separately, we combine all groups of θ to evaluate the loss and accuracy.
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