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Abstract

As sequential learning algorithms are increasingly applied to real life, ensuring
data privacy while maintaining their utilities emerges as a timely question. In
this context, regret minimisation in stochastic bandits under ϵ-global Differential
Privacy (DP) has been widely studied. The present literature poses a significant gap
between the best-known regret lower and upper bound in this setting, though they
“match in order”. Thus, we revisit the regret lower and upper bounds of ϵ-global DP
bandits and improve both. First, we prove a tighter regret lower bound involving a
novel information-theoretic quantity characterising the hardness of ϵ-global DP in
stochastic bandits. This quantity smoothly interpolates between Kullback–Leibler
divergence and Total Variation distance, depending on the privacy budget ϵ. Then,
we choose two asymptotically optimal bandit algorithms, i.e., KL-UCB and IMED,
and propose their DP versions using a unified blueprint, i.e., (a) running in arm-
dependent phases, and (b) adding Laplace noise to achieve privacy. For Bernoulli
bandits, we analyse the regrets of these algorithms and show that their regrets
asymptotically match our lower bound up to a constant arbitrary close to 1. At the
core of our algorithms lies a new concentration inequality for sums of Bernoulli
variables under Laplace mechanism, which is a new DP version of the Chernoff
bound. Finally, our numerical experiments validate that DP-KLUCB and DP-IMED
achieve lower regret than the existing ϵ-global DP bandit algorithms.

1 Introduction

Multi-armed bandit is a classical setup of sequential decision-making under partial information,
where the agent collects more information about an environment by interacting with it. To understand
the setting, let us consider a clinical trial, where a doctor has K candidate medicines to choose
from and wants to recommend “effective” medicines to their patients. At each step t of the trial, a
new patient pt arrives, the doctor prescribes at ∈ [K] ≜ {1, . . . ,K} one of the K medicines, and
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observes the reaction of the patient to the medicine. The observations are quantified as rewards,
such that rt = 1 if the patient pt is cured and 0 otherwise. To design an algorithm recommending
“effective” medicines, the doctor can use a regret-minimising bandit algorithm [Thompson, 1933],
i.e., a bandit algorithm that aims to maximise the expected number of cured patients during the trial.

Following the trial, the doctor wants to release the trial results to the public, i.e., the sequence of
recommended medicines (a1, . . . , aT ), in order to communicate the findings. However, the doctor
fears that publishing the results may compromise the privacy of the patients who participated in
the trial. Specifically, the rewards (r1, . . . , rT ) constitute the private information that needs to be
protected, since rewards in clinical trials may reveal sensitive information about the health condition
of the patients. In addition to clinical trials, many applications of bandits, such as recommendation
systems [Silva et al., 2022], online advertisement [Chen et al., 2014], crowd-sourcing [Zhou et al.,
2014], user studies [Losada et al., 2022], hyper-parameter tuning [Li et al., 2017], communication
networks [Lindståhl et al., 2022], and pandemic mitigation [Libin et al., 2019]), involve sensitive user
data, and thus invokes the data privacy concerns. Motivated by the privacy concerns in bandits, we
study the privacy-utility trade-off in stochastic multi-armed bandits.

We adhere to Differential Privacy (DP) [Dwork and Roth, 2014] as the privacy framework, and regret
minimisation [Auer et al., 2002] in stochastic bandits as the utility measure. DP has been studied for
multi-armed bandits under different bandit settings: finite-armed stochastic [Mishra and Thakurta,
2015, Sajed and Sheffet, 2019, Zheng et al., 2020a, Hu et al., 2021, Azize and Basu, 2022, Hu and
Hegde, 2022, Azize and Basu, 2024, Wang and Zhu, 2024], adversarial [Thakurta and Smith, 2013,
Agarwal and Singh, 2017, Tossou and Dimitrakakis, 2017], linear [Hanna et al., 2022, Li et al., 2022,
Azize and Basu, 2024], contextual linear [Shariff and Sheffet, 2018, Neel and Roth, 2018, Zheng
et al., 2020b, Azize and Basu, 2024], and kernel bandits [Pavlovic et al., 2025], among others. Most
of these works were for regret minimisation, but the problem has also been explored for best-arm
identification, with fixed confidence [Azize et al., 2023, 2024] and fixed budget [Chen et al., 2024].
The problem has also been studied under three different DP trust models: (a) global DP where the
users trust the centralised decision maker [Mishra and Thakurta, 2015, Shariff and Sheffet, 2018,
Sajed and Sheffet, 2019, Azize and Basu, 2022, Hu and Hegde, 2022], (b) local DP where each user
deploys a local perturbation mechanism to send a “noisy” version of the rewards to the policy [Basu
et al., 2019, Zheng et al., 2020a,b, Han et al., 2021], and (c) shuffle DP where users still feed their data
to a local perturbation, but now they trust an intermediary to apply a uniformly random permutation
on all users’ data before sending to the central servers [Tenenbaum et al., 2021, Garcelon et al., 2022,
Chowdhury and Zhou, 2022]. In this paper, we focus on ϵ-pure DP, under a global trust model, in
stochastic finite-armed bandits, with the aim of regret minimisation.

Related Works. This problem setting has been studied by Mishra and Thakurta [2015], Sajed and
Sheffet [2019], Hu et al. [2021], Azize and Basu [2022], Hu and Hegde [2022]. All the regret upper
and lower bounds in this setting are summarised in Table 1. DP-UCB [Mishra and Thakurta, 2015]
was the first DP version of the Upper Confidence Bound (UCB) algorithm [Auer et al., 2002] that
achieved logarithmic regret. DP-UCB uses the tree-based mechanism [Dwork et al., 2010, Chan
et al., 2011] to compute privately the sum of rewards. For each arm, the tree mechanism maintains a
binary tree of depth log(T ) over the T streaming reward observations. As a result, the noise added
to the sum of rewards has a scale of O

(
log2.5(T )/ϵ

)
for rewards in [0, 1]. DP-UCB builds a high

probability upper bound on the means using the noisy sum of rewards to design a private UCB index
and yields a regret bound of O

(∑
a

log(T )
∆a

+K log2.5(T )/ϵ
)

, where ∆a is the difference between

the mean reward of an optimal arm and arm a. This upper bound has an additional log1.5(T ) factor
compared to the Ω(K log(T )/ϵ) regret lower bound, first proved by Shariff and Sheffet [2018].

DP-SE [Sajed and Sheffet, 2019] was the first DP bandit algorithm to eliminate the additional
multiplicative factor log1.5(T ) in the regret. DP-SE is a DP version of the Successive Elimination
algorithm [Even-Dar et al., 2002]. DP-SE runs in independent episodes. At each episode, the
algorithm explores a set of active arms uniformly. At the end of an episode, DP-SE eliminates
provably sub-optimal arms, but only uses the samples collected at the current episode to decide
the arms to eliminate. Due to the addition of the Laplace noise to the sum of rewards, each arm is
explored longer, resulting in the additional O (K log(T )/ϵ) in the regret.

A careful reading of DP-SE suggests that running the algorithm in independent episodes while forget-
ting the previous samples shreds the extra log1.5(T ) in the regret. These ingredients, i.e., running in
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Table 1: A summary of regret upper and lower bounds for ϵ-global DP bandits.
Regret Upper Bound Regret Lower Bound

Mishra and Thakurta [2015] O
(

K log(T )2.5

ϵ +
∑

a ̸=a∗
log(T )
∆a

)
(DP-UCB) –

Sajed and Sheffet [2019] O
(

K log(T )
ϵ +

∑
a ̸=a∗

log(T )
∆a

)
(DP-SE) Ω

(
K log(T )

ϵ

)
Hu and Hegde [2022] O

(∑
a̸=a∗

∆a log(T )
min(∆2

a,ϵ∆a)

)
(Lazy-DP-TS) –

Azize and Basu [2022] O
(∑

a̸=a∗
∆a log(T )

min(∆2
a,ϵ∆a)

)
(AdaP-UCB)

∑
a̸=a∗

∆a log(T )
min(kl(µa,µ⋆),6ϵ∆a)

Our results α
∑

a̸=a∗
∆a log(T )
dϵ(µa,µ⋆) (Thm. 2, ∀α > 1)

∑
a ̸=a∗

∆a log(T )
dϵ(µa,µ⋆) (Thm. 1)

independent phases with forgetting and adding Laplace noise, have been further adapted to UCB in Hu
et al. [2021], Azize and Basu [2022], Wu et al. [2023] and to Thompson Sampling in Hu and Hegde
[2022]. The state-of-the art regret upper bound is thusO (

∑
a log(T )/min{∆a, ϵ}). Similarly, Azize

and Basu [2022] use the same three components of doubling, forgetting, and Laplace mechanism to
propose AdaP-KLUCB that achieves a regret uppe bound of C1(τ)∆a

min{kl(µa,µ∗),C2ϵ∆a} log(T ) for τ > 3.
Though the regret of AdaP-KLUCB is order-optimal, we observe that C1(τ) and C2 are not universal
constants, i.e., may depend on the environment.

On the other hand, Azize and Basu [2022] improve the problem-dependent regret lower bound
of Shariff and Sheffet [2018] to

∑
a log(T )

∆a

min(da,6ϵta)
. Here, da is the Kullback-Leibler (KL)

indistinguishability gap for arm a characterising the hardness of non-private bandits [Lai and Robbins,
1985], and ta is a “Total Variation” (TV) version of da characterising the hardness of private bandits.
For Bernoulli bandits, ta = ∆a and da = kl(µa, µ

⋆). Under the approximation da ≈ ∆2
a, the

lower bound of Azize and Basu [2022] recovers that of Shariff and Sheffet [2018], and the regret
upper bounds of Sajed and Sheffet [2019], Azize and Basu [2022], Hu and Hegde [2022] match
approximately the lower bound. However, this approximation can be arbitrarily bad, exposing a gap
between the state-of-the-art upper and lower bounds in DP bandits. This motivates us to ask:

Q1. Can we derive matching regret upper and lower bounds up to the same constant for ϵ-global DP
bandits?

Additionally, following the triumph of doubling and forgetting as an algorithmic blueprint in DP
bandits, Hu et al. [2021] conjectured that forgetting is necessary for designing any ϵ-global DP bandit
algorithm with an optimal regret upper bound matching the lower bound. Thus, we wonder:

Q2. Is it possible to design an optimal ϵ-global DP bandit algorithm without applying forgetting?

Aim and Contributions. To address these questions, we revisit regret minimisation for Bernoulli
bandits under ϵ-global DP. Our main goal is to provide matching regret upper and lower bounds up to
the same constant. Answering this question leads to the following contributions:

1. Tighter regret lower bound: In Theorem 1, we provide a new asymptotic regret lower bound for
any consistent ϵ-global DP policy. This result is a strict improvement over the lower bound of Azize
and Basu [2022] for all ϵ. This lower bound depends on a new information-theoretic quantity dϵ
(Eq. (6)) interpolating smoothly between KL and TV depending on ϵ. This quantity also indicates a
smooth transition between high and low privacy regimes, where the impact of DP does and does not
appear, respectively. In addition to the existing techniques, our proof applies a new “double change"
of environment idea to couple the impacts of DP and bandit feedback (Lemma 1).

2. Tighter concentration inequality: In Proposition 1, we provide a DP version of Chernoff-style
concentration bound for sum of Bernoullis with added Laplace noise. dϵ naturally appears in this
bound. Also, the bound suggests that as long as the number of summed Laplace noise is negligible
compared to the number of summed Bernoullis, the effect of the noise is comparable to having
one Laplace noise in the dominant term of the bound. This bound is universally interesting for
DP literature as the concentrations of random variables and Laplace noises are commonly treated
separately unlike the coupled treatment in Proposition 1.
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3. Algorithm design and tighter regret upper bounds: Based on the concentration bound of Proposi-
tion 1, we modify the generic blueprint used by Sajed and Sheffet [2019], Azize and Basu [2022], Hu
and Hegde [2022]. We (a) get rid of “reward-forgetting” and thus sum all rewards at each phase, and
(b) develop new private indexes using dϵ. We also run the algorithms in geometrically increasing
arm-dependent batches, with ratio α > 1. We instantiate these modifications for two algorithms that
achieve constant optimal regrets withour privacy, i.e., KL-UCB and IMED, to propose DP-KLUCB
and DP-IMED (Algorithm 1). We analyse the regret of both algorithms (Theorem 2) and show
that their regret upper bounds match asymptotically the regret lower bound of Theorem 1 up to the
constant α, which can be set arbitrarily close to 1, for all bandit instances and values of ϵ.

We also validate experimentally that our algorithms DP-IMED and DP-KLUCB achieve the lowest
regret among DP bandit algorithms in the literature. Finally, in Appendix B, we extend the adaptive
continual release model of Jain et al. [2023] to bandits and show that this definition is equivalent to
the classic ϵ-global DP notion adopted in the DP bandit literature [Mishra and Thakurta, 2015, Azize
and Basu, 2022, 2024]. This result can be of independent interest.

2 Background: Regret Minimisation and Differential Privacy in Bandits

In this section, we formalise the essential components of our work, i.e., the stochastic bandit problem,
regret minimisation as a utility measure, and Differential Privacy (DP) as the privacy constraint.

Stochastic Bandits. A stochastic bandit problem is a sequential game between a policy π and a
stochastic environment ν [Thompson, 1933, Lai and Robbins, 1985]. The game is played over T
rounds, where T ∈ {1, 2, . . . } is a natural number called the horizon. At each step t ∈ {1, . . . , T},
the policy π chooses an action at ∈ [K]. The stochastic environment, which is a collection of
distributions ν ≜ (Pa : a ∈ [K]), samples a reward rt ∼ Pat and reveals it to the policy π.
The interaction between the policy π and environment ν ≜ (Pa : a ∈ [K]) over T steps induces
a probability measure on the sequence of outcomes HT ≜ (a1, r1, a2, r2, . . . , aT , rT ). Let each
Pa be a probability measure on (R,B(R)) with B being the Borel set. For each t ∈ [T ], let
Ωt = ([K]× R)t ⊂ R2t and Ft = B(Ωt). First, we formalise the definition of a policy.

Definition 1 (Policy). A policy π is a sequence (πt)
T
t=1 , where πt is a probability kernel from

(Ωt,Ft) to ([K], 2[K]). Since [K] is discrete, we adopt the convention that for a ∈ [K], πt(a |
a1, r1, . . . , at−1, rt−1) = πt({a} | a1, r1, . . . , at−1, rt−1) .

The interaction probability measure on (ΩT ,FT ) depends on the environment and the policy: (a) the
conditional distribution of action at given a1, r1, . . . , at−1, rt−1 is π(at | Ht−1), and (b) the condi-
tional distribution of reward rt given a1, r1, . . . , at−1, rt−1, at is Pat

. To construct the probability
measure, let λ be a σ-finite measure on (R,B(R)) for which Pa is absolutely continuous with respect
to λ for all a ∈ [K]. Let pa = dPa/dλ be the Radon–Nikodym derivative of Pa with respect to λ.
Letting ρ be the counting measure with ρ(B) = |B|, the density pνπ : ΩT → R can now be defined
with respect to the product measure (ρ× λ)T by

pνπ(a1, r1, . . . , aT , rT ) ≜
T∏

t=1

πt(at | a1, r1, . . . , at−1, rt−1)pat
(rt) (1)

and Pνπ(B) ≜
∫
B
pνπ(ω)(ρ× λ)T ( dω) for all B ∈ FT . So (ΩT ,FT ,Pνπ) is a probability space

over histories induced by the interaction between π and ν.

Regret minimisation. We study regret minimisation as the utility measure [Lai and Robbins, 1985].
Informally, the regret of a policy is the deficit suffered by the learner relative to the optimal policy
which knows the environment and always plays the optimal arm. Let ν = (Pa : a ∈ [K]) a bandit
instance and define µa(ν) =

∫∞
−∞ x dPa(x) the mean of arm a’s reward distribution. We assume

throughout that µa(ν) exists and is finite for all actions. Let µ⋆(ν) = maxa∈[K] µa(ν) the largest
mean among all the arms. The regret of policy π on bandit instance ν is

RegT (π, ν) ≜ Tµ⋆(ν)− Eνπ

[
T∑

t=1

rt

]
=

K∑
a=1

∆a(ν)Eνπ [Na(T )] . (2)
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where Na(T ) ≜
∑T

t=1 1 {at = a} and ∆a(ν) ≜ µ⋆(ν) − µa(ν). The expectation is taken with
respect to the probability measure Pνπ on action-reward sequences induced by the interaction of π
and ν. Hereafter, we drop the dependence on ν when the context is clear.

For many classes of bandits, it is possible to define a notion of instance-dependent optimality that
characterises the hardness of regret minimisation. Specifically, for any consistent policy π over a
class of bandits E ≜M1 × · · · ×MK , i.e., a policy π ∈ Πcons(E) verifies limT→∞

RegT (π,ν)
Tp = 0

for all ν ∈ E and all p > 0, then the regret of π on any environment ν ∈ E is lower bounded by

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a(ν)>0

∆a(ν)

KLinf(Pa, µ⋆,Ma)
, (3)

where KLinf(P, µ
⋆,M) ≜ infP ′∈M {KL(P, P ′) : µ(P ′) > µ⋆}, and KL is the Kullback-Leibler

divergence, i.e., for two probability distributions P,Q on (Ω,F), the KL divergence is KL(P,Q) ≜∫
log
(

dP
dQ (ω)

)
dP (ω) when P ≪ Q, and +∞ otherwise. The lower bound of Equation (3) is

tight for many classes of bandits, and the “KL-inf” is a fundamental quantity that characterises the
complexity of regret minimisation in bandits.

Bernoulli bandits. A Bernoulli bandit is a stochastic environment where the distribution of each
arm follows a Bernoulli distribution. Let µ ∈ [0, 1]K , then νBµ = (Bernoulli(µa) : a ∈ [K]) is a
Bernoulli environment. For Bernoulli bandits, KLinf(Pa, µ

⋆,Ma) = kl(µa, µ
⋆), where kl is the

relative entropy between Bernoullis, i.e., kl(p, q) ≜ p log(p/q) + (1 − p) log((1 − p)/(1 − q))
for p, q ∈ [0, 1] and singularities are defined by taking limits. Using the “optimism in the face of
uncertainty” principle, it is possible to design algorithms tailored for Bernoulli bandits, such as
KL-UCB [Cappé et al., 2013] or IMED [Honda and Takemura, 2015], that achieve the lower bound
of Equation (3) asymptotically, up to the same constant.

Differential Privacy (DP). DP [Dwork and Roth, 2014] guarantees that any sequence of algorithm
outputs is “essentially” equally likely to occur, regardless of the presence or absence of any individual.
The probabilities are taken over random choices made by the algorithm, and “essentially” is captured
by closeness parameters that we call privacy budgets. Formally, DP is a constraint on the class
of mechanisms, where a mechanism M is a randomised algorithm that takes as input a dataset
D ≜ {x1, . . . , xT } ∈ X T and outputs o ∼MD. The probability space is over the coin flips of the
mechanismM. Given some event E in the output space (O,F), we noteMD(E) ≜M(E|D) the
probability of observing the event E given that the input of the mechanism is D.
Definition 2 (ϵ-DP [Dwork et al., 2006]). A mechanismM satisfies ϵ-DP for a given ϵ ≥ 0, if

∀D ∼ D′, ∀E ∈ O, MD(E) ≤ eϵMD′(E), (4)

where D ∼ D′ if and only if dHam(D,D′) ≜
∑T

t=1 1 {Dt ̸= D′
t} ≤ 1, i.e., D and D′ differ by at

most one record, and are said to be neighbouring datasets.

DP is widely adopted as a privacy framework since the definition enjoys different interesting prop-
erties, and can be achieved by combining simple basic mechanisms. Hereafter, we mainly use two
important DP properties: post-processing (Proposition 4) and group privacy (Proposition 5), and we
use the Laplace mechanism (Theorem 5) to achieve DP.

Bandits under DP. We extend DP to bandits by reducing a policy π = (π1, . . . , πT ) to a “batch”
mechanismMπ [Azize and Basu, 2024]. Different ways of reducing a policy to a batch mechanism
differ on the input representation and the nature of the mechanism.

(a) In Table DP, we represent each user ut by the vector xt ≜ (xt,1, . . . , xt,K) ∈ RK of all its K
“potential rewards." This is the vector of potential rewards since the policy only observes rt ≜ xt,at

when it recommends action at. In Table DP, the induced “batch" mechanismMπ from the policy π
takes as input a table of rewards x ≜ {(xt,i)i∈[K]}t∈[T ] ∈ (RK)T , and outputs a sequence of actions
a ≜ (a1, . . . , aT ) ∈ [K]T with probabilityMπ

x (a) ≜
∏T

t=1 πt

(
at|a1, x1,a1 , . . . at−1, xt−1,at−1

)
.

This is the probability of observing (a1, . . . , aT ) when π interacts with the table of rewards x.Mπ
x is

a distribution over sequences of actions since
∑

a∈[K]T Mπ
x (a) = 1.
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(b) In View DP, the induced “batch" mechanism from the policy π takes as input a list of rewards and
outputs a sequence of actions. The difference is in the representation of the input dataset. Since in
bandits, the policy only observes the reward corresponding to the action chosen, another natural choice
for the input is a list of rewards, i.e., r ≜ {r1, . . . , rT } ∈ RT . Now, the induced “batch" mechanism
Vπ from the policy π takes as input a list of rewards r ≜ {r1, . . . , rT } ∈ RT , and outputs a sequence
of actions a ≜ (a1, . . . , aT ) ∈ [K]T , with probability Vπ

r (a) ≜
∏T

t=1 πt(at|a1, r1, . . . at−1, rt−1).
This is the probability of observing a when π interacts with r. Vπ

r is a distribution over sequences of
actions, since

∑
a∈[K]T Vπ

r (a) = 1.

Definition 3 (Table DP and View DP [Azize and Basu, 2024]). (a) A policy π satisfies ϵ-Table DP if
and only ifMπ is ϵ-DP. (b) A policy π satisfies ϵ-View DP if and only if Vπ is ϵ-DP.

Table DP and View DP have been formalised in Azize and Basu [2024], and have been used
interchangeably in the private bandit literature. For ϵ-pure, Proposition 1 in Azize and Basu [2024]
shows that these two definitions are equivalent.

Thus, we refer to any policy that verifies ϵ-Table DP or ϵ-View DP as an ϵ-global DP policy. In
Appendix B, we also extend the interactive DP definition of Jain et al. [2023] to bandits and show
that ϵ-global DP is equivalent to it. In the following, our main goal is to design an ϵ-global DP policy
that minimises the regret RegT (π, ν) on any Bernoulli environment ν.

3 Regret Lower Bound under ϵ-global DP

In this section, we present a new regret lower bound for bandits under ϵ-global DP. We compare this
result to the lower bound of Azize and Basu [2022], and provide a proof.
Theorem 1 (Regret lower bound under ϵ-global DP). For every ϵ-global DP consistent policy over
the class of Bernoulli bandits, we have

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

dϵ (µa, µ⋆)
, (5)

where
dϵ(x, y) ≜ inf

z∈[x∧y,x∨y]
{ϵ |z − x|+ kl(z, y)} , x ∈ R, y ∈ [0, 1]. (6)

For any suboptimal arm a, µ⋆ > µa and dϵ(µa, µ
⋆) = infµ∈[µa,µ⋆] {ϵ(µ− µa) + kl(µ, µ⋆)}.

Implications of Theorem 1. (a) Theorem 1 improves the lower bound of Azize and Basu [2022].
Specifically, Theorem 3 in Azize and Basu [2022] gives a lower bound

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

min{kl(µa, µ⋆), 6ϵ∆a}
. (7)

Theorem 1 is a strict improvement on the lower bound of Azize and Basu [2022] since dϵ (µa, µ
⋆) ≤

min{kl(µa, µ
⋆), ϵ∆a} ≤ min{kl(µa, µ

⋆), 6ϵ∆a}, for any ϵ, µa and µ⋆.

(b) Solving the constrained optimisation problem defining dϵ for Bernoulli variables gives

dϵ(µa, µ
⋆) =


kl (µa, µ

⋆) if ϵ ≥ log
µ⋆

µa
+ log

1− µa

1− µ⋆

kl

(
µ⋆

µ⋆ + (1− µ⋆)eϵ
, µ⋆

)
+ ϵ

(
µ⋆

µ⋆ + (1− µ⋆)eϵ
− µa

)
if not

(8)

This suggests the existence of two privacy regimes: a low privacy regime when ϵ ≥ log µ⋆

µa
+log 1−µa

1−µ⋆ ,

and a high privacy regime when ϵ ≤ log µ⋆

µa
+ log 1−µa

1−µ⋆ . In the low privacy regime, dϵ(µa, µ
⋆) just

reduces to the non-private kl (µa, µ
⋆), and privacy can be achieved for free. In the high privacy

regime, dϵ(µa, µ
⋆) can be written as the sum of two terms, i.e., a KL term between Bernoullis with

means µ⋆

µ⋆+(1−µ⋆)eϵ and µ⋆, and TV distance between Bernoullis with means µ⋆

µ⋆+(1−µ⋆)eϵ and µa.
At the limit, we have that dϵ(µa, µ

⋆) ∼ϵ→0 ϵ×∆a.
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(c) Theorem 1 can be generalised beyond Bernoulli bandits: for a class E of unstructured stochastic
bandits, i.e., E ≜M1 × · · · ×MK , the lower bound becomes

lim inf
T→∞

RegT (π, ν)

log(T )
≥

∑
a:∆a>0

∆a

dinf (Pa, µ⋆,Ma, ϵ)
, (9)

where dinf (Pa, µ
⋆,Ma, ϵ) ≜ infP ′∈Ma

{
dMa
ϵ (Pa, P

′) : µ(P ′) > µ⋆
}
, and

dMa
ϵ (Pa, P

′) ≜ inf
Q∈Ma

{ϵTV(Pa, Q) + KL(Q,P ′) : µ(Pa) ≤ µ(Q) ≤ µ(P ′)},

for Pa, P
′ ∈Ma such that µ(Pa) ≤ µ(P ′).

Key Changes in Proof Techniques. The proof improves the lower bound of Azize and Basu [2022]
by introducing a “double" change of environment. (a) The first change of environment uses the group
privacy property of the policy, and thus the TV transport. (b) The second change uses the classic
“Lai-Robbins" change of measure and thus the KL transport. By optimising for the “in-between"
environment, the double change always has smaller transport than any route led by purely KL or TV
transport. The detailed proof is in Appendix C.

4 Algorithm Design and Regret Analysis

In this section, we propose two algorithms, DP-KLUCB and DP-IMED, presented in Algorithm 1.
At the core of our algorithm design lies a new concentration bound for ϵ-DP means of Bernoulli
variables (Proposition 1). We analyse both the privacy and regret of our proposed algorithms, and
show that their regret upper bound matches the lower bound up to a constant arbitrary close to 1.

First, we start with the concentration inequality for the private mean of IID Bernoullis.

Proposition 1 (Concentration Bound of Private Mean). For µ ∈ (0, 1) and ϵ > 0, let S̃n,m =∑n
i=1 Xi +

∑m
j=1 Yj , where Xi ∼ Ber(µ) and Yj ∼ Lap(1/ϵ), be the sum of n independent

Bernoulli random variables with mean µ and m independent Laplace variables with scale 1/ϵ. Let
x ∈ [0, 1] and {nm}m∈N be a sequence such that m/nm = o(1). Then, for any a > 0 there exists a
constant Aa > 0 such that for all m ∈ N,

Pr

[
S̃nm,m

nm
≤ x

]
≤ Aae

−nm(dϵ(x,µ)−a), for x ≤ µ; Pr

[
S̃nm,m

nm
≥ x

]
≤ Aae

−nm(dϵ(x,µ)−a), for x ≥ µ .

We recall that dϵ(x, y) ≜ infz∈[x∧y,x∨y] kl(z, y) + ϵ|z − x|.

Discussions. (a) This concentration bound can be seen as a private version of the Chernoff bound
(Lemma 11), where dϵ replaces the kl in the exponent. (b) As soon as the number of summed Laplace
noises m is negligible with respect to the number of summed Bernoulli variables n, then the effect of
m on the dominant term is similar to when m = 1. (c) This concentration bound is a tighter version
of Lemma 4 in Azize and Basu [2022] with m = 1. Lemma 4 of Azize and Basu [2022] and other
works in bandits under DP [Mishra and Thakurta, 2015, Sajed and Sheffet, 2019, Hu et al., 2021, Hu
and Hegde, 2022] deal with the concentration of the noise and random variables separately– they
use an inequality Pr(X + Y ≥ a) ≤ Pr(X ≥ a) + Pr(Y ≥ 0), followed by a classic non-private
concentration bound for the first term and concentration bound of Laplace noise for the second term.
We improve this loose analysis by a coupled treatment of noise and variables.

Proof Sketch. Proposition 1 is a corollary of the general Lemma 5 that holds for any n and m. To
prove Lemma 5, we express Pr

[
S̃n,m ≥ x

]
in the form of a convolution of the sums of Bernoulli

rewards and Laplace noises. Even though we still resort to the Chernoff bound for each of the sums,
considering the convolution of sums significantly improves the bound compared with the naïve use of
the Chernoff bounds for noise and variables in S̃n,m. The complete proof is in Appendix D.

Algorithm Design. Based on Proposition 1, we propose DP-KLUCB and DP-IMED in Algorithm 1.
Both algorithms run in arm-dependent phases (Line 9 in Algorithm 1), and add Laplace noise to
achieve ϵ-global DP (Line 10 in Algorithm 1). This is similar to the algorithm design in Sajed and
Sheffet [2019], Azize and Basu [2022], Hu and Hegde [2022], with two modifications.
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Algorithm 1: DP-KLUCB and DP-IMED

Input: ϵ: privacy parameter, K: number of arms, T : horizon, {Bm}∞m=0: batch sizes
1 Pull each arm B0 times and receive rewards {{Xi,n}B0

n=1}Ki=1;
2 Compute private reward sum S̃i,0 =

∑B0

n=1 Xi,n + Yi,0 for Yi,0 ∼ Lap(1/ϵ);
3 Compute private mean µ̃i,0 = S̃i,0/B0;
4 Set arm-dependent epoch mi := 0 for each arm i ∈ [K];
5 Set cumulative pull number nmi

:= B0 for each arm i ∈ [K];
6 Set t← KB0 + 1;
7 while t ≤ T do
8 (DP-KLUCB): compute i(t) ∈ argmaxi µ̄i(t) maximising the DP-KLUCB index given by

µ̄i(t) = max

{
µ : dϵ

(
[µ̃i,mi

]10, µ
)
≤ log t

nmi

}
(10)

(DP-IMED): compute i(t) ∈ argmini Ii(t) minimising the DP-IMED index given by

Ii(t) = nmi
dϵ
(
[µ̃i,mi ]

1
0, [µ̃

∗(t)]10
)
+ log nmi , (11)

where µ̃∗(t) = maxj µ̃j,mj
and [x]10 = max{0,min{x, 1}} is the clipping of x onto [0, 1];

9 Pull arm i(t) for Bmi(t)+1 times and receive rewards {Xi(t),n}
nmi(t)+Bmi(t)+1

n=nmi(t)
+1 ;

10 Update the noisy sum S̃i(t),mi(t)+1 ← S̃i(t),mi(t)
+
∑nmi(t)+Bmi(t)+1

n=nmi(t)
+1 Xi(t),n + Yi(t),mi(t)+1

where Yi(t),mi(t)+1 ∼ Lap(1/ϵ);
11 Compute private mean µ̃i(t),mi(t)+1 = S̃i(t),mi(t)+1/nmi(t)+1;
12 Update mi(t) ← mi(t) + 1, nmi(t)

← nmi(t)
+Bmi(t)

, t← t+Bmi(t);
13 end

(a) Our algorithms do not forget rewards from previous phases. In contrast, the algorithms of
Sajed and Sheffet [2019], Azize and Basu [2022], Hu and Hegde [2022] run in adaptive and “non-
overlapping" phases. The sums of rewards are computed over non-overlapping sequences. Thus,
the rewards collected in the past phases are “thrown away” in the future phases. By running non-
overlapping phases, these algorithms avoid the use of sequential composition (Proposition 6), and use
instead the “parallel composition” property (Lemma 10) of DP to add less noise. Specifically, if the
rewards are in [0, 1], forgetting ensures that adding one Lap (1/ϵ) to each sum of rewards is enough
to make the simultaneous release of all the partial sums achieving DP. In our algorithms, we do not
forget previous private sums (Line 10 in Algorithm 1). The price of not forgetting is adding multiple
Laplace noises with scale 1/ϵ to the non-private sum. To overcome this price, we use the insights
from the concentration inequality of Proposition 1, i.e., as long as the number of added Laplace noises
is negligible with respect to the number of Bernoulli variables, the effect of the added noise on the
dominant term is similar to having one Laplace noise. This refined analysis removes forgetting.

(b) Our algorithms use new indexes, i.e. Eq. (10) and Eq. (11), inspired by Proposition 1, and are
based on the dϵ quantity appearing in the lower bound. In addition, the index of DP-KLUCB is
instantiated with an exploration bonus of log(t)/nmi

. This contrasts AdaP-KLUCB and Lazy-DP-TS,
which need an exploration bonus of roughly 3 log(t)/nmi

needed for their regret analysis.

Now, we present the privacy guarantee of our algorithms.

Proposition 2 (Privacy analysis). DP-KLUCB and DP-IMED are ϵ-global DP for rewards in [0, 1].

Proof Sketch. First, given a sequence of rewards {r1, . . . , rT } ∈ [0, 1]T and some time steps

1 = t1 < t2 < · · · < tℓ = T + 1, releasing the partial sums
{(∑tk+1−1

s=tk
rs

)
+ Yk

}ℓ−1

k=1
is ϵ-DP,

where Yk ∼ Lap(1/ϵ). This is the main privacy lemma used to design DP bandit algorithms in prior
work [Sajed and Sheffet, 2019, Azize and Basu, 2022, Hu and Hegde, 2022]. Now, by the post-

processing property of DP, we also have that releasing the sums
{(∑tk+1−1

s=1 rs

)
+
∑k

p=1 Yp

}ℓ−1

k=1
is ϵ-DP, by summing the outputs of the previous DP mechanism. Finally, DP-IMED and DP-KLUCB
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are ϵ-global DP by adaptive post-processing of the sum of rewards. The detailed proof is presented in
Appendix E.

To have a “good” regret bound, Proposition 1 suggests using a batching strategy where the number
of batches is sublinear in T . For simplicity, we chose the batch sizes Bm in Algorithm 1 such that
Bm ≈ n0α

m, i.e., a geometric sequence with initialisation n0 ∈ N and ratio α > 1. Thus, we take

Bm =

⌈
n0

αm+1 − 1

α− 1

⌉
−
⌈
n0

αm − 1

α− 1

⌉
, (12)

where ⌈x⌉ is the smallest integer no less than x. When α is an integer, Bm = n0α
m.

Theorem 2 (Regret upper bound of DP-IMED and DP-KLUCB). Assume µ⋆ < 1. Under the batch
sizes given in Equation (12) with α > 1, and for any Bernoulli bandit ν, we have

RegT (DP-IMED, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ),

RegT (DP-KLUCB, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .

Comments. (a) The regret upper bounds of DP-IMED and DP-KLUCB match asymptotically the
lower bound of Theorem 1 up to the constant α > 1, where α is the ratio of the georemetrically
increasing batch sizes Bm. This parameter α > 1 can be set arbitrarily close to 1 to match the
dominant term in the asymptotic regret lower bound. In addition, our analysis only requires that
the number of batches is sublinear in T , as seen from Proposition 1. As a result, we can also use a
polynomially increasing batch size instead of Bm ≈ αm, which fully makes the regret asymptotically
optimal. We used a geometrically increasing batch size here just for simplicity. (b) Our algorithms
strictly improve over the regret upper bounds of Azize and Basu [2022], Hu and Hegde [2022].
Also, our upper bounds are the first to show a dependence in the tighter quantity dϵ, compared to
having min{∆2

a, ϵ∆a} in the regrets for Azize and Basu [2022], Hu and Hegde [2022]. We provide
additional comments that compare our regret upper bound to that of AdaP-KLUCB in Appendix F.

Proof Sketch. The proof uses similar steps as those of Honda and Takemura [2015] for the IMED
algorithm and the reduction technique for the KL-UCB algorithm by Honda [2019] with the new
concentration inequality involving dϵ (Proposition 1). The main technical challenge is dealing with
the adaptive batching strategy in the analysis. We control this by a regret decomposition tailored for
batched pulls of arms where the property of IMED/KL-UCB index can still be naturally incorporated.
The full proof is presented in Appendix F.

Beyond Bernoulli Bandits. First, we highlight that some of our results are already valid beyond
Bernoulli bandit instances: (a) As explained in the Implications of Theorem 1, our regret lower bound
is already true for any class of distributions. (b) As expressed in Proposition 2, our algorithms are
already ϵ-DP for any distribution with bounded support on [0, 1]. This could easily be generalised to
any bounded rewards on [a, b] by multiplying the noise terms with the range (b−a). On the other hand,
the parts only valid for Bernoullis are: the concentration inequality (Proposition 1) and the regret upper
bounds (Theorem 2). It is also worth noting that the same regret upper bound of Theorem 2 is also
valid for distributions over [0, 1], since we only used the Chernoff bound for Bernoulli distributions,
which is also valid for distributions over [0, 1]. Both the concentration inequality and regret upper
bound can be extended beyond Bernoullis, to say sub-Gaussian distributions or exponential families.
However, what is less clear is whether it is possible to get matching upper and lower bounds up
to constants, like we achieve in the Bernoulli case. This represents an interesting open direction
to explore. The following takeaways from our analysis can be helpful to achieve that goal: (a) dϵ
is the information-theoretic quantity that tightly characterises the hardness of bandits with DP, (b)
forgetting is not a fundamental design choice, and (c) it is important to have a coupled treatment
of the signal and the noise to achieve tight concentration bounds, which are the building block for
algorithm design.

5 Experimental Analysis

In this section, we numerically compare the performance of our algorithms, i.e., DP-KLUCB and
DP-IMED, to ϵ-global DP algorithms from the literature: DP-SE [Sajed and Sheffet, 2019], AdaP-
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Figure 1: Evolution of the regret (mean ±2 std) over time for DP-SE, AdaP-KLUCB, Lazy-DP-TS,
DP-KLUCB, and DP-IMED for ϵ = 0.25, and Bernoulli bandits µ1 (left) and µ2 (right).

KLUCB [Azize and Basu, 2022] and Lazy-DP-TS [Hu and Hegde, 2022]. As a non-private benchmark,
we include the IMED algorithm [Honda and Takemura, 2015]. Since both AdaP-KLUCB and Lazy-
DP-TS explore each arm once, and use arm-dependent doubling, we chose n0 = 1 and α = 2 for
DP-KLUCB and DP-IMED. Also, to comply with the regret analysis in [Azize and Basu, 2022, Sajed
and Sheffet, 2019], we chose α = 3.1 in AdaP-KLUCB, and β = 1/T in DP-SE.

Setup. As in Sajed and Sheffet [2019], Azize and Basu [2022], Hu and Hegde [2022], we consider 4
different 5-arm Bernoulli environments, with specific arm-means choices. We run each algorithm 100
times for T = 106. For ϵ = 0.25, we plot the mean regret in Figure 1 for µ1 ≜ [0.75, 0.7, 0.7, 0.7, 0.7]

in the left and µ2 ≜ [0.75, 0.625, 0.5, 0.375, 0.25] in the right. In Appendix G, we present additional
results for some other environments under different budgets.

Results. DP-KLUCB and DP-IMED achieve lower regret for all Bernoulli environments and privacy
budgets under study (up to 10 times less on an average). This is explained by the fact that DP-KLUCB
and DP-IMED do not forget half of the samples, and also thanks to their tighter dϵ-based indexes.

6 Discussions and Future Works

We improve both regret lower bound (Theorem 1) and upper bounds (Theorem 2) for Bernoulli
bandits under ϵ-global DP. We introduce a new information-theoretic quantity dϵ (Equation (6)) that
tightly characterises the hardness of minimising regret under DP, and smoothly interpolates between
the KL and the TV. Our proposed algorithms share ingredients with algorithms from the literature
while alleviating the need to forget rewards as a design technique. This is thanks to a new tighter
concentration inequality for private means of Bernoullis (Proposition 1). Our results solve the open
problem of having matching upper and lower bound up to the same constant posed by Azize and
Basu [2022] and refute that forgetting is necessary for designing optimal DP bandit algorithms.

An interesting future work would be to generalise our concentration inequality, and in turn, the regret
upper bounds to general distribution families (e.g. sub-Gaussians, exponential families).
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

14



Answer: [Yes]
Justification: All our theoretical results (Theorem 1, Proposition 1, Proposition 2 and
Theorem 3) contain the full set of assumptions needed. The proof sketches and intuitions
are described in the main paper, while the detailed proofs are deferred to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed pseudo-code of our main algorithm (Algorithm 1) that
contains all the information needed to implement the algorithm. Implementation details on
our experiments are given in Section 5 and Appendix G. Also, the full code to reproduce
our figures is provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide access to the code as supplementary material. We also provide full
instructions to generate our results. As our experiments are done on synthetic data using
simulated Bernoulli distributions, there is no dataset per se.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental details are explained in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the figures reported in the paper report the empirical mean ±2 stds over
100 runs of each algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix G, we specify the compute ressources needed for the experiments.
As our algorithm is straightforward to code, and the datasets consist of simulated Bernoulli
instances, all the experiments could be reproduced using a commercial laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, our paper conforms with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Our paper improves the state-of-the-art theory results in Differentially Private
Bandit algorithms. Our algorithms are shown to preserve privacy while maintaining great
utility, this encouraging the use of such algorithms in real-word sensitive applications of
bandits.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risk. Our proposed algorithms satisfy Differential
Privacy, and are implemented only on simulated data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets. Our algorithms are implemented from
scratch and are tested on synthetic Bernoulli data.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core contributions, methods and idea do not involve the use of LLMs at
all.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Outline

The appendices are organised as follows:

• In Appendix B, we extend the adaptive continual release model of Jain et al. [2023] to
bandits, and link it to ϵ-global DP.

• In Appendix C, we provide the proof of the three lemmas used to prove the regret lower
bound of Theorem 1 and the proof of Theorem 1.

• In Appendix D, we provide the complete proof of the concentration inequality of Proposi-
tion 1.

• In Appendix E, we provide the complete proof of the privacy guarantee of Proposition 2.

• In Appendix F, we provide the complete proof of the regret upper bounds of Theorem 2.

• In Appendix G, we provide additional experimental results.

• In Appendix H, we discuss some limitations of our work.

• In Appendix I, we recall useful lemmas used throughout the paper.

B Adaptive Continual Release Model for Bandits

In this section, we extend the adaptive continual release model of Jain et al. [2023] to bandits. In
this model, the policy interacts with an adversary that chooses adaptively rewards based on previous
outputs of the policy.

In the following, we formalise the notion of an adaptive adversary from Jain et al. [2023] and call it a
“reward-feeding" adversary.

Definition 4 (Reward-Feeding Adversary). A reward-feeding adversary A is a sequence of functions
(At)

T
t=1 such that, for t ∈ {1, . . . , T},

At : a1, . . . , at → (rLt , r
R
t ) .

A “reward-feeding" adversary A is a sequence of “reward" functions that take as input the action-
history and outputs a pair of rewards (rLt , r

R
t ). The reward-feeding adversary A has two channels: a

left “standard" channel L and a right channel R. These channels are used to simulate “neighbouring"
rewards.

Precisely, to simulate “neighbouring" rewards, the interactive protocol between the policy π and the
reward-feeding adversary A has two hyper-parameters: (a) a specific “challenge" time t⋆ ∈ {1, T},
and (b) a binary b ∈ {L,R}. For steps t ̸= t⋆, the policy observes a reward coming from the
adversary’s left “standard" channel, i.e. rt = rLt . Otherwise, when t = t⋆, the policy observes a
reward from the channel corresponding to the secret binary b.

In other words, if b = L, the policy π always observes a reward from the left channel. When b = R,
the policy observes the left channel reward for all steps, except at t⋆ where the policy observes a right
channel reward. Thus, for any sequence of actions (a1, . . . , aT ) chosen by the policy π, and for any
t⋆, the sequence of rewards observed by π when b = L is neighbouring to the sequence of rewards
observed when b = R. In addition, these two sequences only differ at the reward observed at the
challenge time t⋆, and the rewards have been adaptively chosen by the adversary.

Thus, we formalise the adaptive continual release interaction as follows:
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Let b ∈ {L,R} and t⋆ ∈ {1, . . . , T}
For t = 1, . . . , T

1. The policy π selects an action

at ∼ πt(· | a1, r1, . . . , at−1, rt−1), at ∈ [K]

2. The adversary A selects an adaptively chosen pair of rewards:

(rLt , r
R
t ) = At(a1, . . . , at)

• If t ̸= t⋆:
rt = rLt

• If t = t⋆:
rt⋆ = rbt⋆

3. The policy π observes the reward rt

When this interaction is run with parameters t⋆ and b, we represent the interaction by π
b,t⋆⇔ A, and

illustrate it in Figure 2. The view of the adversary A in the interaction π
b,t⋆⇔ A is the sequence of

actions chosen by the policy π, i.e.,

Viewb,t⋆

A,π ≜ ViewA(π
b,t⋆⇔ A) ≜ (a1, . . . , aT ) .

A policy is DP in the adaptive continual release model if the view of the adversary is indistinguishable
when the interaction is run on b = L and b = R for any challenge step t⋆.
Definition 5 (DP in the Adaptive Continual Release Model).

• A policy π is (ϵ, δ)-DP in the adaptive continual release model for a given ϵ ≥ 0 and
δ ∈ [0, 1), if for all reward-feeding adversaries A, all subset of views S ⊆ [K]T ,

sup
t⋆∈{1,...,T}

Pr[ViewL,t⋆

A,π ∈ S]− eϵ Pr[ViewR,t⋆

A,π ∈ S] ≤ δ .

• A policy π is ρ-zCDP in the adaptive continual release model for a given ρ ≥ 0, if for every
α > 1, and every reward-feeding adversary A,

sup
t⋆∈{1,...,T}

Dα(ViewL,t⋆

A,π ∥ViewR,t⋆

A,π ) ≤ ρα .

Remark 1. [Expanding the View of the Reward-feeding Adversary A] For any reward-feeding
adversary A, any policy π and any t⋆ ∈ {1, . . . , T}, and any (a1, . . . , aT ) ∈ [K]T , we have for the
left view:

Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL
1 (a1)) · · · ×

πT (aT | a1,AL
1 (a1), . . . , aT−1,AL

T−1(a1, . . . , aT−1)) .

On the other hand, for the right view:

Pr[ViewR,t⋆

A,π = (a1, . . . , aT )] = π1(a1)π2(a2 | a1,AL
1 (a1)) · · · ×

πt⋆+1(at⋆+1 | a1,AL
1 (a1), . . . , at⋆ ,AR

t⋆(a1, . . . , at⋆)) · · · ×
πT (aT | a1,AL

t (a1), . . . , aT−1,AL
T−1(a1, . . . , at−1)) .

Let us define

AL,t⋆(a1, . . . , aT ) ≜ (AL
1 (a1),AL

2 (a1, a2), . . . ,AL
T (a1, . . . , aT ))

to be the list of rewards that the policy observes when the protocol is run on the left channel. Also,

AR,t⋆(a1, . . . , aT ) ≜ (AL
1 (a1), . . . ,AR

t⋆(a1, . . . , at⋆) . . .AL
T (a1, . . . , aT ))

is the list of rewards that the policy observes when the protocol is run on the right channel and t⋆.

We observe that, for any (a1, . . . , aT ) ∈ [K]T ,
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Figure 2: Interactive protocol in the adaptive continual release model between a policy π and a
reward-feeding adversary A. The protocol in Figure (a) is run with b = L, while the protocol in
Figure (b) is run with b = L. The framed part corresponds to the reward observed by the policy.

(a) Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT )).

(b) Pr[ViewR,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT )).

(c) AL,t⋆(a1, . . . , aT ) andAR,t⋆(a1, . . . , aT ) are neighbouring lists of rewards, and only differ
at the t⋆-th element.

This remark will help connect the adaptive continual release model with View DP later.

Remark 2. [Reward-feeding Adversary as a Tree Reward Input] A reward-feeding adversary can be
represented by a tree of rewards. Each node in the tree corresponds to a reward input. The tree has a
depth of size T . At depth t ∈ [T ] of the tree reside all possible rewards the policy can observe at step
t. Going from depth t to depth t+ 1 depends on the action at+1. Finally, the policy only observes the
reward corresponding to its trajectory in the tree. An example of the tree is presented in Figure 3.c
for T = 3 and K = 2.

A policy π is DP in the adaptive continual release model if and only if π is DP when interacting
with two neighbouring trees of rewards. Two trees of rewards are neighbouring if they only differ in
rewards at one depth t⋆ ∈ [T ].

Now, we relate DP in the adaptive continual release model with View DP and Table DP.
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(a) List of rewards
(b) Table of rewards

(c) Tree of rewards

Figure 3: Different reward representations for T = 3 and K = 2. The highlighted rewards are the
rewards observed by the policy for the trajectory (a1, a2, a3) = (1, 2, 1)

Proposition 3 (Link between the Adaptive Continual Release Model, View DP, and Table DP). For
any policy π, we have that

(a) π is DP in the adaptive continual release model⇒ π is Table DP.

(b) π is ϵ-DP in the adaptive continual release model⇔ π is ϵ-Table DP⇔ π is ϵ-View DP.

Proposition 3 shows that the adaptive continual release model is stronger than Table DP. For pure
ϵ-DP, the adaptive continual release model, Table DP and View DP are all equivalent.

To prove this proposition, we use the following reduction.

Reduction 1 (From table of rewards to “reward-feeding" adversaries). For a pair of reward tables
x, x’ ∈ (RK)T , we define A(x, x’) to be the “reward-feeding" adversary defined by

A(x, x’)t : a1, . . . , at → (xt,at
, x′

t,at
) .

In other words, at step t, the adversary A(x, x’) only uses the last action at and returns the at-th
column from xt on the left channel, and the at-th column from x′

t on the right channel.
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For neighbouring tables x and x’ which only differ at some step t⋆, it is possible to show that, for
every S ∈ RT , we have

• Pr[ViewL,t⋆

A(x,x’),π ∈ S] =M
π
x (S).

• Pr[ViewR,t⋆

A(x,x’),π ∈ S] =M
π
x’(S).

In other words, the batch mechanismMπ combined with neighbouring tables can be “simulated"
using a specific type of “reward-feeding" adversaries that only care about the last action from the
history.

Proof. (a) Suppose that π is DP in the adaptive continual release model.

Let t⋆ ∈ [T ], and x ∼ x′ be two tables of rewards in (RK)T that only differ at step t⋆. Using
Reduction 1, we build A(x, x′).

For this construction, we have thatMπ
x = ViewL,t⋆

A(x,x’),π andMπ
x′ = ViewR,t⋆

A(x,x’),π .

Since π is DP in the adaptive continual release model, ViewL,t⋆

A(x,x’),π and ViewL,t⋆

A(x,x’),π are indistin-
guishable. Thus,Mπ

x andMπ
x′ are indistinguishable, i.e.,Mπ is DP and π is Table DP.

(b) To prove this part, it is enough to show that ϵ-View DP implies ϵ-DP in the adaptive continual
release model.

Suppose that π is ϵ-View DP, i.e.Vπ is ϵ-DP. Let A be a “reward-feeding" adversary, and
(a1, . . . , aT ) ∈ [K]T a sequence of arms.

Using Remark 1 and the notation defined there, we have

Pr[ViewL,t⋆

A,π = (a1, . . . , aT )] = Vπ((a1, . . . , aT ) | AL,t⋆(a1, . . . , aT ))

≤ eϵVπ((a1, . . . , aT ) | AR,t⋆(a1, . . . , aT ))

= eϵ Pr[ViewL,t⋆

A,π = (a1, . . . , aT )],

where the inequality holds because Vπ is DP, and AL,t⋆(a1, . . . , aT ) and AR,t⋆(a1, . . . , aT ) are
neighbouring lists of rewards.

Finally, this means that π is ϵ-DP in the adaptive continual release model, since for pure DP, it is
enough to check the atomic events (a1, . . . , aT ).

Note that the proof breaks if we consider composite events, which are necessary for approximate DP
proofs.

Summary of the relationship between definitions. We introduced three increasingly stronger input
representations and their corresponding DP definitions: list of rewards with View DP, table of rewards
with Table DP, and tree of rewards with DP in the adaptive continual release. These representations
are summarised in Figure 3 for T = 3 and K = 2.

In general, DP in the adaptive continual release is stronger than Table DP, which is stronger than
View DP. For ϵ-pure DP, these three definitions are equivalent, with the same privacy budget ϵ. More
care is needed for other variants of DP, where going from one definition to another happens with a
loss in the privacy budgets (Proposition 1 in Azize and Basu [2022]).

C Lower Bound Proof

In this section, we present the proof of the three main lemma used to prove Theorem 1. We adopt the
same notation introduced in the proof of Theorem 1.
Lemma 1 (Controlling Pγπ(Ω ∩ L ∩A), aka Double change of environment). We show that

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P
′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
, (13)

for any a > 0.
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Proof. We have

Pγπ (Ω ∩ L ∩A)

=
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)

T∏
t=1

πt(at | a1, r1, . . . , at−1, rt−1)cat(rt, r
′
t) drt dr

′
t

(a)

≤
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)eϵdham(r,r′)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat

(rt, r
′
t) drt dr

′
t

(b)

≤ eϵ(1+α)n2TV(P2,P
′
2)
∑

a

∫
r

∫
r’
1(Ω ∩ L ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat

(rt, r
′
t) drt dr

′
t

(c)

≤ eϵ(1+α)n2TV(P2,P
′
2)
∑

a

∫
r

∫
r’
1(Ω ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)cat(rt, r

′
t) drt dr

′
t

(d)
= eϵ(1+α)n2TV(P2,P

′
2)
∑

a

∫
r’
1(Ω ∩A)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′
at
(r′t) dr

′
t

= eϵ(1+α)n2TV(P2,P
′
2)
∑

a

∫
r’
1(Ω ∩A)e

∑T
t=1 log

dP ′
at

(r′t)

dP ′′
at

(r′t)
T∏

t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′′
at
(r′t) dr

′
t

(e)

≤ eϵ(1+α)n2TV(P2,P
′
2)e(1+α)kl(µ′

2,µ
′′
2 )n2

∑
a

∫
r’
1(Ω)

T∏
t=1

πt(at | a1, r′1, . . . , at−1, r
′
t−1)p

′′
at
(r′t) dr

′
t

= e(1+α)n2(ϵTV(P2,P
′
2)+kl(µ′

2,µ
′′
2 ))Pν′′π (N2(T ) ≤ n2) ,

where:

(a) is because π is ϵ-DP;

(b) is by definition of L;

(c) is because 1(Ω ∩ L ∩A) ≤ 1(Ω ∩A);

(d) by definition of the coupling, and because Ω ∩A doesn’t depend on (rt)
T
t=1;

(e) by definition of A.

Then, using Markov inequality and the consistency of π, we get

Pν′′π (N2(T ) ≤ n2) = Pν′′π (T −N2(T ) ≥ T − n2)

= Pν′′π (N1(T ) ≥ T − n2)

≤ Eν′′π(N1(T ))

T − n2
=

O(Tα)

T − n2
,

for any a > 0, since arm 1 is sub-optimal in environment ν′′ and π is consistent.

All in all, we have that, for any a > 0,

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P
′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
.

Lemma 2 (Controlling Pγπ(Ω ∩ L ∩Ac)). Choosing n2 = n2(T ) a function such that n2(T )→∞
when T →∞, then

Pγπ(Ω ∩ L ∩Ac) = oT (1),

asymptotically in T .

Proof. First, we have

Pγπ (Ω ∩ L ∩Ac) ≤ Pγπ (Ω ∩Ac) .
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Let us introduce the notation r′a,s ≜ r′τa,s
where τa,s ≜ min{t ∈ N : Na(t) = s}. Then,

T∑
t=1

log
dP ′

at
(r′t)

dP ′′
at
(r′t)

=

N2(T )∑
s=1

log
dP ′

2(r
′
2,s)

dP ′′
2 (r

′
2,s)

=

N2(T )∑
s=1

Ws,

where Ws ≜ log
dP ′

2(r
′
2,s)

dP ′′
2 (r′2,s)

are i.i.d bounded random variables, with positive mean Eγπ[Ws] =

kl(µ′
2, µ

′′
2). This is true since under the coupling γ, the marginal of r′2,s is P ′

2.

Then, we get

Pγπ (Ω ∩Ac) ≤ Pγπ

(
∃m ≤ n2 :

m∑
s=1

Ws > (1 + α)kl(µ′
2, µ

′′
2)n2

)

≤ Pγπ

(
maxm≤n2

∑m
s=1 Ws

n2
> (1 + α)kl(µ′

2, µ
′′
2)

)
.

Using Asymptotic maximal Hoeffding inequality (Lemma 12), we have that

lim
n→∞

Pγπ

(
maxm≤n

∑m
s=1 Ws

n
> (1 + α)kl(µ′

2, µ
′′
2)

)
= 0 .

Thus, by choosing n2 = n2(T ) a function such that n2(T )→∞ when T →∞, then

Pγπ(Ω ∩ L ∩Ac) = oT (1),

asymptotically in T .

Lemma 3 (Controlling Pγπ (Ω ∩ Lc)). choosing n2 = n2(T ) a function such that n2(T ) → ∞
when T →∞, then

Pγπ (Ω ∩ Lc) = oT (1),

asymptotically in T .

Proof. First, by the construction of the couplings, only rewards coming from arm 2 are different, i.e.,

dham(r, r′) ≜
T∑

t=1

1(rt ̸= r′t) =

T∑
t=1

1(At = 2)1(rt ̸= r′t) .

Let us introduce the notation ra,s ≜ rτa,s where τa,s ≜ min{t ∈ N : Na(t) = s}. Then,

dham(r, r′) =

N2(T )∑
s=1

1(r2,s ̸= r′2,s) =

N2(T )∑
s=1

Zs,

where Zs ≜ 1(r2,s ̸= r′2,s) are i.i.d Bernoulli random variables with positive mean Eγπ[Zs] =
Pγπ(r2,s ̸= r′2,s) = TV(P2, P

′
2).

Pγπ (Ω ∩ Lc) ≤ Pγπ

(
∃m ≤ n2 :

m∑
s=1

Zs > (1 + α)n2TV(P2, P
′
2)

)

≤ Pγπ

(
maxm≤n2

∑m
s=1 Zs

n2
> (1 + α)TV(P2, P

′
2)

)
.

Using Asymptotic maximal Hoeffding inequality (Lemma 12), we have that

lim
n→∞

Pγπ

(
maxm≤n

∑m
s=1 Zs

n
> (1 + α)TV(P2, P

′
2)

)
= 0 .

Thus, by choosing n2 = n2(T ) a function such that n2(T )→∞ when T →∞, then

Pγπ (Ω ∩ Lc) = oT (1), (14)

asymptotically in T .
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C.1 Complete Proof of Theorem 1

Before providing the proof, we introduce maximal couplings.
Definition 6 (Maximal Couplings). Let P and Q be two probability distributions that share the same
σ-algebra and Π(P,Q) be the set of all couplings between P and Q. We denote by c∞(P,Q) the
maximal coupling between P and Q, i.e., the coupling that verifies for any measurable A,

P(X,Y )∼c∞(P,Q)[X ∈ A] = PX∼P[X ∈ A],P(X,Y )∼c∞(P,Q)[Y ∈ A] = PY∼Q[Y ∈ A],

P(X,Y )∼c∞(P,Q)[X ̸= Y ] = inf
c∈Π(P,Q)

P(X,Y )∼c[X ̸= Y ] = TV(P,Q) .

Finally, we are ready to present now the detailed proof of Theorem 1.

Proof of Theorem 1. Without loss of generality, suppose that we have a 2-armed Bernoulli bandit
instance ν = (P1, P2) with means (µ1, µ2) where µ1 ≥ µ2. Let π be an ϵ-global DP consistent
policy. We also introduce two other environments ν′ = (P1, P

′
2) and ν′′ = (P1, P

′′
2 ) that only differ

at the distribution of the second arm, where µ2 ≤ µ′
2 ≤ µ1 ≤ µ′′

2 , i.e., arm 1 is still optimal in
environment ν′ but is not optimal in environment ν′′.

The main idea is to control the probability of the event Ω ≜ {N2(T ) ≤ n2} in an augmented coupled
history space, for some n2 to be fine-tuned later (that may depend on the horizon T ).

Step 1: Building the coupled bandit environment γ. We build a coupled bandit environment γ of ν
and ν′. The policy π interacts with the coupled environment γ up to a given time horizon T to produce
an augmented history {(at, rt, r′t)}Tt=1. The steps of this interaction process are: (a) The probability of
choosing an action at = a at time t is dictated only by the policy πt and a1, r1, a2, r2, . . . , at−1, rt−1,
i.e., the policy ignores {r′s}t−1

s=1. (b) The distribution of pair of rewards (rt, r′t) is cat
≜ c∞(Pat

, P ′
at
)

the maximal coupling of (Pat
, P ′

at
) and is conditionally independent of the previous observed

history {(as, rs, r′s)}t−1
t=1. The distribution of the augmented history induced by the interaction of

π and the coupled environment can be defined as pγπ(a1, r1, r
′
1 . . . , aT , rT , r

′
T ) ≜

∏T
t=1 πt(at |

a1, r1, . . . , at−1, rt−1)cat
(rt, r

′
t).

Again, we introduce the notation a ≜ (a1, . . . , aT ), r ≜ (r1, . . . , rT ), and r’ ≜ (r′1, . . . , r
′
T ).

Step 2: Probability decomposition. We introduce L ≜ {dham(r, r’) ≤ (1 + α)n2TV(P2, P
′
2)},

and A ≜
{∑T

t=1 log
dP ′

at
(r′t)

dP ′′
at

(r′t)
≤ (1 + α)kl(µ′

2, µ
′′
2)n2

}
for some α > 0, where dham(r, r’) ≜∑T

t=1 1rt ̸=r′t
. Also, here for Bernoullis, we have TV(P2, P

′
2) = µ′

2 − µ2.

Event L will be used to do a change of measure from environment ν to ν′ using the group privacy
property of π, then event A will be used to do a classic “Lai-Robbins" change of measure using the
KL from environment ν′ to ν′′.

First, we start with the decomposition
Pνπ(N2(T ) ≤ n2) = Pγπ(Ω ∩ L ∩A) + Pγπ(Ω ∩ L ∩Ac) + Pγπ(Ω ∩ Lc) . (15)

Step 3: Controlling each probability. Using Lemma 1, which formalises the “double" change of
environment idea, we get

Pγπ (Ω ∩ L ∩A) ≤ e(1+α)n2(ϵTV(P2,P
′
2)+kl(µ′

2,µ
′′
2 )) O(T a)

T − n2
, (16)

for any a > 0. Using Lemma 2 and Lemma 3, we control the probabilities Pγπ(Ω ∩ L ∩ Ac) =
oT (1) and Pγπ (Ω ∩ Lc) = oT (1), for any choice of n2 = n2(T ) as a function of T such that
n2(T )→∞ when T →∞.

Step 4: Putting everything together and choosing n2. First, we chose n2 = (1−α) log(T )
ϵTV(P2,P ′

2)+kl(µ′
2,µ

′′
2 )
,

and a = α2

2 , to get exp ((1 + α)n2 (ϵTV(P2, P
′
2) + kl(µ′

2, µ
′′
2)))

O(Ta)
T−n2

= oT (1).

With this choice of n2, we have now that Pνπ(N2(T ) ≤ n2) = oT (1), and thus, using Markov
inequality, we get, for any α > 0, and all µ2 ≤ µ′

2 ≤ µ1 ≤ µ′′
2 .

Eνπ [N2(T )] ≥ n2Pνπ (N2(T ) > n2) =
(1− α) log(T )

ϵTV(P2, P ′
2) + kl(µ′

2, µ
′′
2)

(1− o(1)) .
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Finally, taking α→ 0, and the supremum over all µ′
2 ∈ [µ2, µ1] and µ′′

2 → µ1, we get the result.

D Concentration Inequality Proof

Lemma 4 (Tail Bound of Cumulative Laplacian Noise). Let Zm =
∑m

l=1 Yl where Yl ∼ Lap(1/ϵ)
are i.i.d. Laplace random variables with parameter 1/ϵ. Then, for z > 0, we have

P[Zm ≥ z] ≤ exp (−f(z)) ,

where f(z) = ϵz − 1−m log(1 +mϵz).

Proof. For a random variable Y ∼ Lap(1/ϵ), the probability density function is

fY (y) =
ϵ

2
exp(−ϵ|y|) .

The moment-generating function (MGF) is given by

MY (t) = E[exp(tY )] =
ϵ2

ϵ2 − t2
, |t| < ϵ .

The random variable Zm =
∑m

l=1 Yl is the sum of m i.i.d. Laplace random variables. The MGF of
Zm is the product of the MGFs of the individual Yl:

MZm
(t) = (MY (t))

m
.

Thus, we have

MZm
(t) =

(
ϵ2

ϵ2 − t2

)m

, |t| < ϵ .

To bound P[Zm ≥ z], we use the Chernoff bound:

P[Zm ≥ z] ≤ inf
0<t<ϵ

E[exp(tZm − tz)]

= inf
0<t<ϵ

exp (−tz)MZm
(t)

= inf
0<t<ϵ

exp

(
−tz +m log

(
ϵ2

ϵ2 − t2

))
= inf

0<t<ϵ
exp

(
−tz −m log

(
1− t2

ϵ2

))
.

Consider

ft(z) = tz +m log

(
1− t2

ϵ2

)
.

Letting t = ϵ
√
1− c ∈ (0, ϵ) for c = 1 ∧ 1/(mϵz) we have

ft(z) = ϵz
√
1− c+m log c

≥ ϵz − ϵzc+m log(1 ∧ 1/(mϵz))
(
by
√
1− c ≥ 1− c for c ≤ 1

)
= ϵz − (ϵz ∧ 1/m) +m log(1 ∧ 1/(mϵz))

≥ ϵz − 1−m log(1 ∨mϵz)

≥ ϵz − 1−m log(1 +mϵz) .

Then, we have
ft(z) ≥ ϵz − 1−m log(1 +mϵz) = f(z),

for z ≥ 0. Thus, we obtain
P[Zm ≥ z] ≤ exp (−f(z)) .
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Lemma 5 (Concentration bound of private summation). For µ ∈ (0, 1) and ϵ > 0, let

S̃n,m =

n∑
i=1

Xi +

m∑
j=1

Yj , Xi ∼ Ber(µ), Yj ∼ Lap(1/ϵ)

be the sum of independent n Bernoulli random variables (RVs) with mean µ and m Laplace RVs with
scale 1/ϵ. Then, for x ≥ nµ

Pr
[
S̃n,m ≥ x

]
≤ Aϵ(n,m, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

µ

}
+ e(1 +mϵ(x− nµ))m + 1 .

Similarly, for x ≤ nµ,

Pr
[
S̃n,m ≤ x

]
≤ Aϵ(m,n, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (nµ− x) max
y∈[x/n,µ]

{
e(1 +mϵ(yn− x))m log

1

1− µ

}
+ e(1 +mϵ(nµ− x))m + 1 .

Proof of Lemma 5. For µ ∈ (0, 1) and ϵ > 0, the private summation can be written as

S̃n,m =

n∑
i=1

Xi +

m∑
j=1

Yj , Xi ∼ Ber(µ), Yj ∼ Lap(1/ϵ) . (17)

Re-define the non-private summation and the sum of the noise by

Sn =

n∑
i=1

Xi, Zm =

m∑
j=1

Yj (18)

and denote density of Zm by fm(z). Then, we can upper bound the probability by

Pr
[
S̃n,m ≥ x

]
= Pr [Sn + Zm ≥ x]

=

∫ ∞

−∞
fm(z) Pr[Sn ≥ x− z]dz

=

∫ 0

−∞
fm(z) Pr[Sn ≥ x− z]dz +

∫ ∞

0

fm(z) Pr[Sn ≥ x− z]dz

≤
∫ 0

−∞
fm(z) Pr[Sn ≥ x]dz +

∫ ∞

0

fm(z) Pr[Sn ≥ x− z]dz

=
1

2
Pr[Sn ≥ x]︸ ︷︷ ︸

(I)

+

∫ ∞

0

fm(z) Pr[Sn ≥ x− z]dz︸ ︷︷ ︸
(II)

. (19)

Here, Pr[Sn ≥ x − z] can be upper bounded by Chernoff bound. Let P̄ (x − z) be such an upper
bound. Then, from Lemma 11, we have

P̄ (x− z) = e−n·kl((x−z)/n,µ), for x− z ≥ nµ . (20)

Based on this upper bound, we can bound the second term in (19):

(II) =
∫ ∞

0

fm(z) Pr[Sn ≥ x− z]dz
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≤
∫ ∞

0

fm(z)P̄ (x− z)dz

= [−Fm(z)P̄ (x− z)]∞0 +

∫ ∞

0

Fm(z)(−P̄ ′(x− z))dz (integration by parts)

= Fm(0)P̄ (x) +

∫ ∞

0

Fm(z)(−P̄ ′(x− z))dz

=
1

2
P̄ (x) +

∫ ∞

0

Fm(z)(−P̄ ′(x− z))dz, (21)

where Fm(z) =
∫∞
z

fm(z)dz = Pr[Zm ≥ z] is the (complement) cumulative distribution. From
Lemma 4, we have

Fm(z) = Pr[Zm ≥ z] ≤ exp (−f(z)) ,
where f(z) = ϵz − 1−m log(1 +mϵz). Thus, we can bound the second term in (21):∫ ∞

0

Fm(z)(−P̄ ′(x− z))dz

=

∫ x−nµ

0

Fm(z)(−P̄ ′(x− z))dz +

∫ ∞

x−nµ

Fm(z)(−P̄ ′(x− z))dz (Fm(z) is decreasing)

≤
∫ x−nµ

0

Fm(z)(−P̄ ′(x− z))dz + Fm(x− nµ)

∫ ∞

x−nµ

(−P̄ ′(x− z))dz

=

∫ x−nµ

0

Fm(z)(−P̄ ′(x− z))dz + Fm(x− nµ)P̄ (nµ)

≤
∫ x−nµ

0

e−f(z)(−P̄ ′(x− z))dz + e−f(x−nµ) · 1 . (22)

We now focus on bounding the first term in RHS of the last inequality. Observe that

−P̄ ′(z) = kl′(z/n, µ)e−n·kl(z/n,µ), (23)

where kl′(x, y) = ∂kl(x,y)
∂x is the derivative with respect to the first argument. Then, for x− z ≥ nµ,

we have∫ x−nµ

0

e−f(z)(−P̄ ′(x− z))dz

=

∫ x−nµ

0

e(1 +mϵz)mkl′((x− z)/n, µ)e−ϵze−n·kl((x−z)/n,µ)dz

=

∫ x/n

µ

ne(1 +mϵ(x− yn))mkl′(y, µ)e−ϵ(x−yn)e−n·kl(y,µ)dy ( let y := (x− z)/n)

≤e− infy∈[µ,x/n]{ϵ(x−yn)+n·kl(y,µ)}
∫ x/n

µ

ne(1 +mϵ(x− yn))mkl′(y, µ)dy

≤e−n·dϵ(x/n,µ)

∫ x/n

µ

ne(1 +mϵ(x− µn))mkl′(y, µ)dy

=e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))mkl(x/n, µ)

≤e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))mkl(1, µ)

=e−n·dϵ(x/n,µ)ne(1 +mϵ(x− µn))m log
1

µ
(24)

where dϵ(x/n, µ) is defined in (6). Now, we bound the second term in (22):

e−f(x−nµ) =e(1 +mϵ(x− nµ))me−nϵ(x/n−µ)

≤e(1 +mϵ(x− nµ))me−ndϵ(x/n,µ) . (25)
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Note that we have for x ≥ nµ

Pr[Sn ≥ x] ≤ P̄ (x) ≤ e−nkl(x/n,µ) (by Lemma 11)

≤ e−ndϵ(x/n,µ) . (26)

Putting (24), (25), and (26) together we have for x/n ≥ µ

Pr
[
S̃n,m ≥ x

]
≤ Aϵ(m,n, x, µ)e−n·dϵ(x/n,µ)

where

Aϵ(m,n, x, µ) = (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

µ

}
+ e(1 +mϵ(x− nµ))m + 1 .

Similarly, we can get for x/n ≤ µ

Pr
[
S̃n,m ≤ x

]
≤ Aϵ(m,n, x, µ)e−ndϵ(x/n,µ),

where

Aϵ(m,n, x, µ)

= (x− nµ) max
y∈[µ,x/n]

{
e(1 +mϵ(x− yn))m log

1

1− µ

}
+ e(1 +mϵ(x− nµ))m + 1 .

Corollary 1 (Concentration bound of private mean). Consider S̃n,m given in Lemma 5. Let x ∈ [0, 1].
Let {nm}m∈N be a sequence such that m/nm = o(1). Then, for any a > 0 there exists a constant
Aa > 0 such that for all m ∈ N

Pr

[
S̃nm,m

nm
≥ x

]
≤ Aae

−nm(dϵ(x,µ)−a), x ≥ µ .

Pr

[
S̃nm,m

nm
≤ x

]
≤ Aae

−nm(dϵ(x,µ)−a), x ≤ µ.

Proof of Corollary 1. From Lemma 5, we have for x ≥ µ

Aϵ(m,nm, x, µ)

=nm(x− µ) max
y∈[µ,x]

{
e(1 + (m+ 1)ϵnm(x− y))m+1 log

1

µ

}
+ e(1 + (m+ 1)ϵnm(x− µ))m+1 + 1 .

(27)

For y ∈ [µ, x],

Aϵ(m,nm, x, µ) ≤ A(nm) = nme(1 + (m+ 1)ϵnm)m+1 log
1

µ
+ e(1 + (m+ 1)ϵnm)m+1 + 1 .

Since existing b to make 1 + x ≤ bex hold, we have the result. The proof for the case of x ≤ µ is
completely analogous.

E Privacy Analysis

First, we provide a simple lemma to motivate the intuition behind the algorithm design. Then, we
provide a complete proof of Proposition 2.
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Lemma 6 (Continual release of noisy rewards). Let rewards {r1, . . . , rT } ∈ [0, 1]T . Let 1 = t1 <
t2 · · · < tℓ = T + 1 be ℓ time-step, with ℓ ≤ T . Then, the mechanism

r1
r2
...
rT

 C→


r1 + · · ·+ rt2−1 + Y1

r1 + · · ·+ rt3−1 + Y1 + Y2

...
r1 + · · ·+ rT + Y1 + Y2 + · · ·+ Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ) ∼iid Lap(1/ϵ).

Proof of Lemma 6. First, consider trying to release the following partial sums
r1
r2
...
rT

→


r1 + · · ·+ rt2−1

rt2 + · · ·+ rt3−1

...
rtℓ−1

+ · · ·+ rT

 .

Because the rewards are in [0, 1], the sensitivity of each partial sum is 1. Since each partial sum is
computed on non-overlapping sequences, combining the Laplace mechanism (Theorem 5) with the
parallel composition property of DP (Lemma 10) gives that


r1
r2
...
rT

 P→


r1 + · · ·+ rt2−1 + Y1

rt2 + · · ·+ rt3−1 + Y2

...
rtℓ−1

+ · · ·+ rT + Yℓ−1


is ϵ-DP, where (Y1, . . . , Yℓ−1) ∼iid Lap(1/ϵ).

Consider the post-processing function f : (x1, . . . xℓ−1)→ (x1, x1+x2, . . . , x1+x2+ · · ·+xℓ−1).
Then, we have that that C = f ◦ P . So, by the post-processing property of DP, C is ϵ-DP.

Proof of Proposition 2. Let π be either DP-IMED or DP-KLUCB. Let r ≜ {r1, . . . , rT } and r’ ≜
{r′1, . . . , r′T } be two neighbouring reward lists, that only differ at t⋆ ∈ {1, . . . , T}. Fix a ≜
(a1, . . . , aT ) ∈ [K]T . We want to show that

Vπ
r (a) ≤ eϵVπ

r’(a) .

Step 1: Probability decomposition and time-steps before t⋆:

Vπ
r (a)
Vπ

r’(a)
=

T∏
t=1

πt(at|a1, r1, . . . at−1, rt−1)

πt(at|a1, r′1, . . . at−1, r′t−1)

=

T∏
t=t⋆+1

πt(at|a1, r1, . . . at−1, rt−1)

πt(at|a1, r′1, . . . at−1, r′t−1)
,

since for t < t⋆, rt = r′t. Let us denote by Pr(a>t⋆ | a≤t⋆ , r) ≜∏T
t=t⋆+1 πt(at|a1, r1, . . . at−1, rt−1) the probability of the policy recommending the sequence

(at⋆+1, . . . , aT ), when interacting with r = {r1, . . . , rT } and already recommending a1, . . . , at⋆ in
the first steps.

Let us denote by t1, . . . , tℓ the time-steps of the beginning of the phases when π interacts with r, and
t′1, . . . , t

′
ℓ′ the time-steps of the beginning of the phases when π interacts with r’. Also, let tk⋆ be the

beginning of the phase for which t⋆ belongs in list r phases. Similarly, let t′k′
⋆

be the beginning of the
phase for which t⋆ belongs in list r’ phases.

Since (a1, . . . , aT ) is fixed, and rt = r′t for t < t⋆, then tk⋆
= t′k′

⋆
and k⋆ = k′⋆, i.e., t⋆ falls at the

same phase in r and r’.

Step 2: Considering the noisy sum of rewards at phase k⋆:
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Let S̃p
k⋆ =

∑tk⋆+1−1
s=tk⋆ rs + Yk⋆

be the noisy partial sum of rewards collected at phase k⋆ for r, where
Yk⋆ ∼ Lap(1/ϵ). Similarly, let S̃′p

k⋆ =
∑tk⋆+1−1

s=tk⋆ r′s + Y ′
k⋆

be the noisy partial sum of rewards
collected at phase k⋆ for r’, where Y ′

k⋆ ∼ Lap(1/ϵ). We make two main observations:

(a) If the value of the noisy partial sum at phase k⋆ is exactly the same between the neighbouring
r and r’, then the policy π will recommend the sequence of actions a>t⋆ with the same probability
under r and r’:

Pr(a>t⋆ | a≤t⋆ , r, S̃p
k⋆ = s) = Pr(a>t⋆ | a≤t⋆ , r’, S̃′p

k⋆ = s) . (28)

This is due to the structure of the algorithm π, where the reward at step t⋆ only affects the statistic
S̃p
k⋆ , and nothing else.

(b) Since rewards are [0, 1], using the Laplace mechanism, we have that

Pr(S̃p
k⋆ = s | a≤t⋆ , r) ≤ eϵPr(S̃′p

k⋆ = s | a≤t⋆ , r’) . (29)

Step 3: Combining Eq. 28 and Eq. 29, aka post-processing:

We have

Pr(a>t⋆ | a≤t⋆ , r) =
∫
s∈R

Pr(S̃p
k⋆ = s | a≤t⋆ , r)Pr(a>t⋆ | a≤t⋆ , r, S̃p

k⋆ = s)

≤
∫
s∈R

eϵPr(S̃′p
k⋆ = s | a≤t⋆ , r’)Pr(a>t⋆ | a≤t⋆ , r’, S̃′p

k⋆ = s)

= eϵPr(a>t⋆ | a≤t⋆ , r’) .

This concludes the proof:

Vπ
r (a)
Vπ

r’(a)
=

Pr(a>t⋆ | a≤t⋆ , r)
Pr(a>t⋆ | a≤t⋆ , r’)

≤ eϵ .

F Regret Analysis Proof

Lemma 7 (Explicit solution of dϵ). If µ, µ′ ∈ (0, 1) and µ ≤ µ′, we have

dϵ(µ, µ
′) ≜ inf

z∈[µ,µ′]
{kl(z, µ′) + ϵ(z − µ)} , (30)

under Bernoulli cases, then

z∗ = max

(
µ,

µ′

µ′ + (1− µ′)eϵ

)
.

solves the optimisation problem. Thus, we have

dϵ(µ, µ
′) =


kl (µ, µ′) , if µ ≥ µ′

µ′ + (1− µ′)eϵ
,

kl

(
µ′

µ′ + (1− µ′)eϵ
, µ′
)
+ ϵ

(
µ′

µ′ + (1− µ′)eϵ
− µ

)
, if µ ≤ µ′

µ′ + (1− µ′)eϵ
.

(31)
For µ ≥ µ′,

z∗ = min

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ

)
.

and

dϵ(µ, µ
′) =


kl (µ, µ′) , if µ ≤ µ′eϵ

µ′eϵ + (1− µ′)
,

kl

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ′
)
+ ϵ

(
µ− µ′eϵ

µ′eϵ + (1− µ′)

)
, if µ ≥ µ′eϵ

µ′eϵ + (1− µ′)
.

(32)
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Proof. The Kullback-Leibler divergence between two Bernoulli random variables with means z and
µ′ is given by

kl(z, µ′) = z log
z

µ′ + (1− z) log
1− z

1− µ′ .

The optimisation problem is

dϵ(µ, µ
′) = inf

z∈[µ,µ′]

{
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(z − µ)

}
.

To find the optimal z∗, take the derivative of the objective function with respect to z and let it equal
to 0:

∂

∂z

[
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(z − µ)

]
= 0 .

By calculation, we have

log
z(1− µ′)

µ′(1− z)
+ ϵ = 0 .

Rearrange for z, to obtain

z =
µ′

µ′ + (1− µ′)eϵ
.

The optimal z∗ must lie within the interval [µ, µ′], hence we have

z∗ = max

(
µ,min

(
µ′,

µ′

µ′ + (1− µ′)eϵ

))
.

We always have µ′

µ′+(1−µ′)eϵ ≤ µ′, so we can remove the min part:

z∗ = max

(
µ,

µ′

µ′ + (1− µ′)eϵ

)
.

Thus, we obtain

dϵ(µ, µ
′) =


kl (µ, µ′) if µ ≥ µ′

µ′ + (1− µ′)eϵ

kl

(
µ′

µ′ + (1− µ′)eϵ
, µ′
)
+ ϵ

(
µ′

µ′ + (1− µ′)eϵ
− µ

)
if µ ≤ µ′

µ′ + (1− µ′)eϵ

Now, we consider µ ≥ µ′,
dϵ(µ, µ

′) = inf
z∈[µ′,µ]

{kl(z, µ′) + ϵ(µ− z)} .

So, we need to minimise

dϵ(µ, µ
′) = inf

z∈[µ′,µ]

{
z log

z

µ′ + (1− z) log
1− z

1− µ′ + ϵ(µ− z)

}
over z ∈ [µ′, µ]. Differentiating the objective function with respect to z and setting it equal to 0, we
have

log
z

µ′ − log
1− z

1− µ′ − ϵ = 0.

Solving for z, we get

z∗ =
µ′eϵ

µ′eϵ + (1− µ′)
≥ µ′ .

Projecting the solution to [µ′, µ], then we have that the optimal solution is

z∗ = min

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ

)
.

Thus, the explicit solution is

dϵ(µ, µ
′) =


kl (µ, µ′) , if µ ≤ µ′eϵ

µ′eϵ + (1− µ′)
,

kl

(
µ′eϵ

µ′eϵ + (1− µ′)
, µ′
)
+ ϵ

(
µ− µ′eϵ

µ′eϵ + (1− µ′)

)
, if µ ≥ µ′eϵ

µ′eϵ + (1− µ′)
.
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Lemma 8. For any µ, µ′ ∈ [0, 1], ∣∣∣∣ d{dϵ (µ, µ′)}
dµ

∣∣∣∣ ≤ ϵ.

Proof. For µ ≤ µ′, from (31), we have the explicit solution. If µ ≥ µ′

µ′+(1−µ′)eϵ ,

dϵ (µ, µ
′) = kl(µ, µ′) = µ log

µ

µ′ + (1− µ) log
1− µ

1− µ′

Its derivative with respect to µ is

d{dϵ (µ, µ′)}
dµ

=
d

dµ
kl(µ, µ′) = log

µ(1− µ′)

µ′(1− µ)
.

We have the condition

µ′ ≥ µ ≥ µ′

µ′ + (1− µ′)eϵ
.

Since µ′ ≥ µ, we note that
d{dϵ (µ, µ′)}

dµ
≤ 0 .

Similarly, since µ ≥ µ′

µ′+(1−µ′)eϵ , we substitute this into the derivative

µ(1− µ′)

µ′(1− µ)
≥

(
µ′

µ′+(1−µ′)eϵ

)
(1− µ′)

µ′
(
1− µ′

µ′+(1−µ′)eϵ

) =
1

eϵ
.

Thus,

−ϵ ≤ log
µ(1− µ′)

µ′(1− µ)
≤ 0 .

If µ ≤ µ′

µ′+(1−µ′)eϵ , then
d{dϵ (µ, µ′)}

dµ
= −ϵ .

Therefore, for µ ≤ µ′,

−ϵ ≤ d{dϵ (µ, µ′)}
dµ

≤ 0 .

Now, we consider the case of µ ≥ µ′. From the explicit solution (32), when µ ≥ µ′eϵ

µ′eϵ+(1−µ′) ,
d{dϵ(µ,µ′)}

dµ = ϵ and the result holds. Let’s consider µ ≤ µ′eϵ

µ′eϵ+(1−µ′) , similar to the above argument,
we have

d{dϵ (µ, µ′)}
dµ

=
d

dµ
kl(µ, µ′) = log

µ(1− µ′)

µ′(1− µ)
∈ [0, ϵ].

Thus, we have the result in the lemma.

Lemma 9. For any 0 ≤ µ ≤ µ′ < 1,

d{dϵ (µ, µ′)}
dµ′ ≤ 1

1− µ′ .

Proof. Considering the definition of dϵ in (6), we have for 0 ≤ µ ≤ µ′ < 1

dϵ(µ, µ
′) = inf

z∈[µ,µ′]
kl(z, µ′) + ϵ(z − µ) .

We first show

d{dϵ (µ, µ′)}
dµ′ ≤ d{kl (µ, µ′)}

dµ′ . (33)
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From the explicit solution in (31), we have if µ ≥ µ′

µ′+(1−µ′)eϵ , then dϵ(µ, µ
′) = kl (µ, µ′). So the

inequality holds. If µ ≤ µ′

µ′+(1−µ′)eϵ , let f(µ′) = µ′

µ′+(1−µ′)eϵ , then f ′(µ′) = eϵ

(µ′+(1−µ′)eϵ)2 . In this
case, dϵ(µ, µ′) = kl (f(µ′), µ′) + ϵ (f(µ′)− µ) where µ ≤ f(µ′) ≤ µ′. By calculation, we have for
this case,

d{dϵ (µ, µ′)}
dµ′ = f ′(µ′)

(
log

f(µ′)

µ′ − log
1− f(µ′)

1− µ′ + ϵ

)
+

µ′ − f(µ′)

µ′(1− µ′)
.

Note that log f(µ′)
µ′ − log 1−f(µ′)

1−µ′ + ϵ = 0 and µ ≤ f(µ′). And we bound

d{kl (µ, µ′)}
dµ′ =

1− µ

1− µ′ −
µ

µ′

=
1

1− µ′
µ′ − µ

µ′

≤ 1

1− µ′ .

Thus, we have the result.

Theorem 3 (Regret upper bound of DP-IMED). Assume µ⋆ < 1. Under the batch sizes given in (12)
with α > 1, the regret bound of DP-IMED for a Bernoulli bandit ν is

RegT (DP-IMED, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .

Proof of Theorem 3. Let T be the set of rounds t such that Lines 7–12 are run, that is, the rounds
such that the arm selection occurred. For t ∈ T , we define µ̃i(t) as µ̃i,nm when Ni(t− 1) = nm. Let
j be any optimal arm, that is, j such that ∆j = 0. By the batched structure of the algorithm, we have

Regret(T ) =
∑
i ̸=i∗

T∑
t=1

(µ⋆ − µi)1 [i(t) = i]

≤ n0

∑
i̸=i∗

(µ⋆ − µi) +
∑
i ̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T ]

≤ n0

∑
i̸=i∗

(µ⋆ − µi)

+
∑
i̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) < µ⋆ − δ]︸ ︷︷ ︸
(A)

+
∑
i̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ]︸ ︷︷ ︸
(B)

,

(34)

where δ > 0 is a small constant. (A) and (B) correspond to the regret before and after the convergence,
respectively.

Note that we have

nm =

⌈
n0

αm+1 − 1

α− 1

⌉
≤ n0

αm+1 − 1

α− 1
+ 1, (35)

and

Bm = nm − nm−1 ≤ n0
αm+1 − 1

α− 1
− n0

αm − 1

α− 1
+ 1 ≤ 2n0α

m . (36)
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Pre-convergence Term. First consider (A). Define

Īj = max
m:µ̃j,m<µ⋆−δ

{
nmdϵ([µ̃j,m]10, µ

⋆ − δ) + log nm

}
, (37)

where we define Īj = −∞ if µ̃j,m ≥ µ⋆ − δ for all m ∈ Z+. Then,
{i(t) = i, t ∈ T , µ̃j(t) < µ⋆ − δ} implies that

Ii(t) = I∗(t) ≤ Ij(t) ≤ Nj(t− 1)dϵ([µ̃j(t)]
1
0, µ

⋆ − δ) + logNj(t) ≤ Īj ,

where I∗(t) = maxi′ Ii(t) is the optimal arm obtained by Line 8 in Algorithm 1. By this fact we
have

(A) ≤
T∑

t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, t ∈ T , Ii(t) ≤ Īj

]
≤

T∑
t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, t ∈ T , logNi(t− 1) ≤ Īj

]
≤

T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , nm ≤ eĪj

]
≤

∞∑
m=0

Bm+1

T∑
t=1

1

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , n0

αm − 1

α− 1
≤ eĪj

]

=

⌊
logα((α−1)eĪj /n0+1)

⌋∑
m=0

Bm+1

T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm, t ∈ T ] .

Since {i(t) = i, Ni(t− 1) = nm} can occur at most once for each m, we have

(A) ≤

⌊
logα((α−1)eĪj /n0+1)

⌋∑
m=0

Bm+1

= n⌊logα((α−1)eĪj /n0+1)⌋+1
− n0

=

n0
α

⌊
logα((α−1)eĪj /n0+1)

⌋
+2 − 1

α− 1

− n0

≤ n0
α2((α− 1)eĪj/n0 + 1)− 1

α− 1
− n0 + 1

= α2eĪj + αn0 + 1

= α2 max
m:µ̃j,m<µ⋆−δ

{
nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
}
+ αn0 + 1

≤ α2
∞∑

m=0

1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ
⋆−δ) + αn0 + 1 . (38)

Now, let us consider the expectation of (38). When µ̃j,m < µ⋆ − δ we have

dϵ([µ̃j,mj ]
1
0, µ

⋆ − δ) = dϵ([µ̃j,mj ]
1
0, µ

⋆)−
∫ µ⋆

µ⋆−δ

d{dϵ
(
[µ̃j,mj

]10, µ
)
}

dµ

∣∣∣∣∣
µ=u

du

≥ dϵ([µ̃j,mj ]
1
0, µ

⋆)− δ

1− µ⋆
(by Lemma 9)

= dϵ([µ̃j,mj
]10, µ

⋆)− δ′,

where we set δ′ = δ/(1− µ⋆).
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Let P (x) = Pr[dϵ([µ̃j,mj ]
1
0, µ

⋆) ≥ x, µ̃j,m < µ⋆ − δ]. If µ̃j,m < µ⋆ − δ, then 0 ≤
dϵ([µ̃j,mj ]

1
0, µ

⋆) ≤ d1 := dϵ(0, µ
⋆). Hence, we have

E
[
1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
]

≤ E
[
1 [µ̃j,m < µ⋆ − δ]nmenm(dϵ([µ̃j,m]10,µ

⋆)−δ′)
]

=

∫ d1

0

nmenm(x−δ′) d(−P (x))

= [nmenm(x−δ′)(−P (x))]d1
x=0 +

∫ d1

0

n2
menm(x−δ′)P (x) dx

≤ nme−nmδ′ +

∫ d1

0

n2
menm(x−δ′)P (x) dx .

Let cx ∈ [0, µ⋆] be such that dϵ(cx, µ⋆) = x. Then{
dϵ([µ̃j,mj ]

1
0, µ

⋆) ≥ x, µ̃j,m < µ⋆ − δ
}
⇔
{
µ̃j,mj

< cx, µ̃j,m < µ⋆ − δ
}

.

Therefore,

P (x) = Pr[µ̃j,mj < cx, µ̃j,m < µ⋆ − δ] ≤ Aae
nmae−nmdϵ(cx,µ

⋆) = Aae
nmae−nmx, (39)

for any a > 0 by Corollary 1. Thus, we have

E
[
1 [µ̃j,m < µ⋆ − δ]nmenmdϵ([µ̃j,m]10,µ

⋆−δ)
]

≤ nme−nmδ′ +

∫ d1

0

n2
menm(x−δ′)Aae

nmae−nmx dx

= nme−nmδ′ + d1n
2
mAae

−nm(δ′−a) . (40)

By letting a < δ′ and combining (38) with (40), we obtain

E[(A)] ≤ α2
∞∑

m=0

(
nme−nmδ′ + d1n

2
mAae

−nm(δ′−a)
)
+ αn0 + 1

≤ α2
∞∑

n=0

(
ne−nδ′ + d1n

2Aae
−n(δ′−a)

)
+ αn0 + 1

= α2

(
e−(δ′−a)

(1− e−(δ′−a))2
+ d1Aa

e−(δ′−a)(e−(δ′−a) + 1)

(1− e−(δ′−a))3

)
+ αn0 + 1

= α2

(
e−(δ′−a)

(1− e−(δ′−a))2
+ d1Aa

e−(δ′−a)(e−(δ′−a) + 1)

(1− e−(δ′−a))3

)
+ αn0 + 1

= O(1) . (41)

Post-convergence Term Next we consider (B). Since dϵ(µ, µ) = 0 for any µ ∈ [0, 1], we have

I∗(t) ≤ max
i′:µ̃i′ (t)=µ̃∗(t)

Ii′(t) = max
i′:µ̃i′ (t)=µ̃∗(t)

logNi′(T ) ≤ log T .

On the other hand, i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ implies that

I∗(t) = Ii(t) ≥ nmdϵ
(
[µ̃i(t)]

1
0, [µ̃

∗(t)]10
)
= nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
,

from which we have

{i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ} ⊂
{
nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
≤ log T

}
.

So, we have

(B) =

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̃j(t) ≥ µ⋆ − δ]
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≤
T∑

t=1

∞∑
m=0

Bm+11
[
i(t) = i, Ni(t− 1) = nm, nmdϵ

(
[µ̃i(t)]

1
0, µ

⋆ − δ
)
≤ log T

]
=

∞∑
m=0

Bm+11
[
nmdϵ

(
[µ̃i,nm ]10, µ

⋆ − δ
)
≤ log T

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11
[
nmdϵ

(
[µ̃i,nm

]10, µ
⋆ − δ

)
≤ log T

]
(42)

≤
∞∑

m=0

Bm+11
[
nm(dϵ([µ̃i,nm

]10, µ
⋆)− δ′) ≤ log T

]
,

where recall that δ′ = δ/(1− µ⋆) and the last inequality follows from Lemma 9.

Let

H =
log T

dϵ(µi, µ⋆)− 2δ′
(43)

and

m∗ = inf{m ∈ N : nm ≥ H} .
Then, by nm∗−1 < H and (35) we have

H > nm∗−1 =

⌈
n0

αm∗ − 1

α− 1

⌉
≥ n0

αm∗ − 1

α− 1
,

which implies

m∗ ≤ logα

(
(α− 1)H

n0
+ 1

)
. (44)

Now, the post-convergence term can be bounded as follows:

E[(B)] ≤
∞∑

m=0

Bm+1 Pr
[
nm(dϵ([µ̃i,nm ]10, µ

⋆)− δ′) ≤ log T
]

≤
m∗−1∑
m=0

Bm+1 +

∞∑
m=m∗

Bm+1 Pr
[
nm(dϵ([µ̃i,nm

]10, µ
⋆)− δ′) ≤ log T

]
≤ nm∗ − n0 +

∞∑
m=m∗

Bm+1 Pr
[
H
(
dϵ([µ̃i,m]10, µ

⋆)− δ′
)
≤ log T

]
< n0

αm∗+1 − 1

α− 1
+ 1− n0 +

∞∑
m=m∗

Bm+1 Pr
[
H
(
dϵ([µ̃i,m]10, µ

⋆)− δ′
)
≤ log T

]
≤ n0

α
(

(α−1)H
n0

+ 1
)
− 1

α− 1
+ 1− n0 +

∞∑
m=m∗

Bm+1 Pr
[
dϵ([µ̃i,m]10, µ

⋆) ≤ dϵ(µi, µ
⋆)− δ′

]
(by (43) and (44))

≤ αH + 1− n0α

α− 1
+

∞∑
m=m∗

Bm+1 Pr [µ̃i,m ≥ µi + δ′/ϵ] (by Lemma 8)

≤ αH +

∞∑
m=m∗

Bm+1Aa′ea
′nme−nm(dϵ(µi+δ′/ϵ,µ⋆)) (by Corollary 1)

≤ αH +

∞∑
m=m∗

2n0α
m+1Aa′e−n0

αm+1−1
α−1 (dϵ(µi+δ′/ϵ,µ⋆)−a′) (by (36)) (45)

= αH +Aa′eΛ
∞∑

m=m∗

2n0α
m+1e−αm+1Λ (46)
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≤ αH + 2n0Aa′eΛ
∫ ∞

m∗
αx+1e−αxΛ dx

= αH +
2αn0Aa′eΛ

ln(α)Λ
e−αm∗

Λ

=
α log T

dϵ(µi, µ⋆)− 2δ′
+ o(1) . (47)

Here, in (45) we took a′ < dϵ(µi + δ′/ϵ, µ⋆) and in (46) we defined

Λ =
n0(dϵ(µi + δ′/ϵ, µ⋆)− a′)

α− 1
.

We complete the proof by combining (34), (41), and (47), and letting δ′ = δ
1−µ⋆ ↓ 0.

Theorem 4 (Regret upper bound of DP-KLUCB). Assume µ⋆ < 1. Under the batch sizes given in
(12) with α > 1, the regret bound of DP-KLUCB for a Bernoulli bandit ν is

RegT (DP-KLUCB, ν) ≤
∑
i ̸=i∗

α∆i log T

dϵ(µi, µ⋆)
+ o(log T ) .

Proof of Theorem 4. By the same argument as the analysis for DP-IMED we have

Regret(T ) ≤ n0

∑
i̸=i∗

(µ⋆ − µi)

+
∑
i̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) < µ⋆ − δ]︸ ︷︷ ︸
(A)

+
∑
i̸=i∗

(µ⋆ − µi)

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) ≥ µ⋆ − δ]︸ ︷︷ ︸
(B)

,

(48)

where µ̄⋆(t) = maxi µ̄i(t).

We use a transformation of these terms that is similar to Honda [2019] but more suitable for the
batched algorithm. First, we have

(A) =

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) < µ⋆ − δ]

≤
T∑

t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄j(t) < µ⋆ − δ] .

Let

Ī ′j = max
m:µ̃j,m<µ⋆−δ

{
nmdϵ([µ̃j,m]10, µ

⋆ − δ)
}
.

Since

{µ̄j(t) < µ⋆ − δ} ⇔
{
sup

{
µ : dϵ([µ̃j(t)]

1
0, µ) ≤

log t

Nj(t− 1)

}
< µ⋆ − δ

}
⇒
{
dϵ([µ̃j(t)]

1
0, µ

⋆ − δ) >
log t

Nj(t− 1)
, µ̃j(t) < µ⋆ − δ

}
⇔
{
t < eNj(t−1)dϵ([µ̃j(t)]

1
0,µ

⋆−δ), µ̃j(t) < µ⋆ − δ
}
,
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we see that

(A) ≤
T∑

t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , t < eNj(t−1)dϵ([µ̃j,m]10,µ

⋆−δ), µ̃j,m < µ⋆ − δ
]

≤
T∑

t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t < eĪ

′
j

]
≤

T∑
t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, nm < eĪ

′
j − 1

]
(by Ni(t− 1) ≤ t− 1)

=

∞∑
m=0

Bm+11

[
nm < eĪ

′
j − 1

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11

[
nm < eĪ

′
j − 1

]
≤ (α+ 1)eĪ

′
j (by nm =

∑m
i=0 Bm and Bm+1 ≤ αnm)

≤ (α+ 1)eĪj ,

where Īj is defined in (37). The evaluation of this expectation is the one same as (38), which results
in E[(A)] = O(1).

Now, we consider the second term. Note that i(t) = i implies µ̄⋆(t) = µ̄i(t) and we also have

{µ̄i(t) ≥ µ⋆ − δ} ⇔
{
sup

{
µ : dϵ([µ̃j(t)]

1
0, µ) ≤

log t

Nj(t)

}
≥ µ⋆ − δ

}
⇒
{
dϵ([µ̃i(t)]

1
0, µ

⋆ − δ) ≤ log t

Ni(t)

}
.

Then, we have

(B) =

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄⋆(t) ≥ µ⋆ − δ]

=

T∑
t=1

∞∑
m=0

Bm+11 [i(t) = i, Ni(t− 1) = nm, t ∈ T , µ̄i(t) ≥ µ⋆ − δ]

≤
T∑

t=1

∞∑
m=0

Bm+11

[
i(t) = i, Ni(t− 1) = nm, t ∈ T , dϵ([µ̃i,nm ]10, µ

⋆ − δ) ≤ log t

nm

]

≤
∞∑

m=0

Bm+11

[
dϵ([µ̃i,nm

]10, µ
⋆ − δ) ≤ log t

nm

] T∑
t=1

1 [i(t) = i, Ni(t− 1) = nm]

≤
∞∑

m=0

Bm+11

[
dϵ([µ̃i,nm

]10, µ
⋆ − δ) ≤ log t

nm

]
,

whose expectation is analysed in (42).

Comparison to the regret bound of AdaP-KLUCB in Azize and Basu [2022] Theorem 8 in Azize
and Basu [2022] shows that for τ > 3, AdaP-KLUCB yields a regret

RegT (AdaP-KLUCB, ν) ≤
∑

a:∆a>0

(
C1(τ)∆a

min{kl(µa, µ∗), C2ϵ∆a}
log(T ) +

3τ

τ − 3

)
, (49)

where C1(τ) and C2 > 0 are defined as

inf
β∈B

max

{
(1 + β)α

kl(µa, µ∗)
,

(1 + τ)

(c(β)− γℓ,T )ϵ∆a

}
log(T ) ≜

1
4C1(τ)

min{kl(µa, µ∗), C2ϵ∆a}
log(T ),
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such that τ is a constant that controls the optimism in AdaP-KLUCB, B ≜ {β > 0 : c(β) > γℓ,T },
for β > 0, c(β) ∈ [0, 1] is defined such that: kl(µa + c(β)∆a, µ

∗) = d(µa,µ
∗)

1+β , and γℓ,T such that

kl(µa + γℓ,T∆a, µa) =
log(T )

2ℓ
for T the horizon and ℓ the phase.

In general, C1 and C2 may depend on µa and µ⋆, and thus are not “constants". In contrast, our bound
in Theorem 2 matches the asymptotic lower bound of Theorem 1 up to the exact constant α > 1
that controls the geometrically increasing batches and which can be chosen arbitrarily close to 1.
In addition, our analysis only requires that the number of batches is sublinear in T , as seen from
Proposition 1. As a result, we can also use a polynomially increasing batch size instead of Bm ≈ αm,
which fully makes the regret asymptotically optimal. We used a geometrically increasing batch size
here just for simplicity.

Comment on KL-UCB and IMED algorithms. We present both DP-KLUCB and DP-IMED to
show that, for two different algorithmic design philosophies in bandits (KL-UCB and IMED), our
privacy framework of geometric batching without forgetting, combined with our new concentration
inequality, can design algorithms with optimal regret upper bounds.

(a) KL-UCB and IMED belong to fundamentally different algorithmic bandit families:

• KL-UCB is a UCB-style algorithm that relies on optimism in the face of uncertainty, and
constructs upper confidence bounds based on Chernoff’s inequality.

• IMED is an information-theoretic method that selects arms based on empirical divergence
minimisation, comparing empirical rewards to the estimated best arm.

(b) Our proposed privacy framework works for both KL-UCB and IMED: our framework estimates
the unknown means privately by running the algorithm in geometrically increasing phases, and
accumulating Laplace noises from each phase, i.e. no forgetting. In addition, our tight DP-Chernoff
concentration inequality (Proposition 1) directly provides new dϵ-based indexes for both KL-UCB and
IMED style algorithms, tightly balancing exploration and exploitation under noisy DP observations.
Combining everything with a generic regret upper bound analysis provides two optimal DP bandit
algorithms.

Improved regret bounds of KL-UCB/IMED v.s. UCB The improvement introduced by us-
ing asymptotically optimal algorithms (KL-UCB/IMED) compared to the vanilla UCB algo-
rithm Lattimore and Szepesvári [2020] boils down to comparing kl(µa, µ

⋆) with the squared gap
∆2

a = (µ⋆ − µa)
2.

(a) Using Pinsker’s inequality, we always have that kl(µa, µ
⋆) ≥ 2∆2

a

(b) However, for close values of µa and µ⋆, a Taylor expansion shows that

kl(µa, µ
⋆) =

∆2
a

2µa(1− µa)
+ o(∆2

a)

which means that
∆−2

a

kl(µa, µ⋆)−1
=

1

2µa(1− µa)
+ o(1)→∞

when µa tends to either 0 or 1. This means that our algorithms DP-KLUCB and DP-IMED improve
over the state-of-the-art algorithms (AdaP-UCB and Lazy-DP-TS) in a problem-dependent constant
(related to the variance of Bernoullis), which could blow up for some hard instances close to the
borders 0 and 1.

G Extended Experiments

In this section, we present additional experiments comparing the algorithms in four bandit environ-
ments with Bernoulli distributions, as defined by Sajed and Sheffet [2019], namely

µ1 = {0.75, 0.70, 0.70, 0.70, 0.70}, µ2 = {0.75, 0.625, 0.5, 0.375, 0.25},
µ3 = {0.75, 0.53125, 0.375, 0.28125, 0.25}, µ4 = {0.75, 0.71875, 0.625, 0.46875, 0.25}.
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and four budgets ϵ ∈ {0.01, 0.1, 0.5, 1}. The results are presented in Figure 4 for µ1, Figure 5 for µ2,
Figure 6 for µ3 and Figure 7 for µ4. We implement all the algorithms in Python (version 3.8) and on
an 8 core 64-bits Intel i5@1.6 GHz CPU.

For all the environments and privacy budgets tested, DP-IMED and DP-KLUCB achieve the lowest
regret.

Comparison to the lower bound. We also plot the regret as a function of the privacy budget ϵ in
Figure 8. The algorithm chosen is DP-IMED with α = 1.1, T = 107 and for bandit environment
µ = [0.8, 0.1, 0.1, 0.1, 0.1]. We discretise the [0, 1] interval into 100 values of ϵ. For each ϵ, we run
the algorithm 100 times and plot the mean and standard deviation of the regret in [0, 1]. We also plot
the asymptotic regret lower bound in Figure 8 for T = 107 and µ as a function of ϵ. The performance
of our algorithm DP-IMED matches the regret lower bound. We also remark that the change between
the high and the low privacy regimes happens smoothly.

Effect of α, the geometric batching hyper-paramter. In all previous figures, we took α = 2, which
corresponds to arm-dependent doubling. The reason we chose α = 2 is to have a “fair” comparison
to the other algorithms in the literature, i.e. DP-SE, AdaP-KLUCB and Lazy-DP-TS, which all use
an arm-dependent doubling in the original papers, and in theory, could also be implemented using
geometrically increasing batches of any ratio α > 1. By taking α = 2, we mainly focus on the effect
of our algorithm’s two main algorithmic novelties: getting rid of forgetting and new dϵ-based indexes.
In Figure 9, we plot the regret of DP-IMED as a function of time steps for different values of α. As
α gets smaller, the performance of DP-IMED gets better. However, the performance worsens when α
is very close to 1. At the limit when α→ 1, each arm-dependent phase length tends to 1, and thus,
one Laplace noise is added to each Bernoulli reward sample. This is equivalent to local DP, where
the price of privacy is high.

Real-world dataset. We add an experiment inspired by the COV-BOOST Munro et al. [2021],
Kone et al. [2023] dataset. COV-BOOST is a Phase 2 clinical trial, conducted on 2,883 participants,
to measure the immunogenicity of different COVID-19 vaccines as a third dose. This resulted in a
total of 20 vaccination strategies being assessed, each of them defined by the vaccines received as
first, second and third doses. In Table 4 of Kone et al. [2023], the authors report the average immune
responses induced by each candidate strategy in cohorts of participants. From this study, we extract
and process the Anti-spike IgG average immune response for each strategy, then project them in [0, 1]
to simulate Bernoulli bandits with K = 20 arms, and run our algorithms with different values of ϵ.
We report the evolution of regret for this specific Bernoulli instance, under different values of ϵ in
Figure 10. DP-IMED and DP-KLUCB still achieve the lowest regret for this instance.

H Limitations

In this section, we describe some of the limitations of our results.

• Our matching upper and lower bounds are asymptotic in the horizon T . This is also the
case in classic multi-armed bandit results without privacy. An interesting direction is to
investigate the effect of privacy on the o(log(T ) terms, which are committed in the current
analysis.

• Our algorithms and regret upper bounds are tailored for Bernoulli distributions. This is
a fundamental setting in bandits and an important first step for understanding the inter-
play between privacy and sequential decision-making. Generalising the analysis to other
distributions is an interesting future direction.

• An important ingredient in our algorithms is geometrically increasing batching. Our con-
centration results allow for any batching strategy where the batch size nT is negligible in
T , i.e. nT = o(T ). However, it is unclear if it is possible to eliminate this design choice
altogether, like we did with forgetting. This is an important direction to explore, especially
for adversarial bandits, where arm-dependent batching strategies like those used in the
stochastic setting are bound to fail.
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Figure 4: Evolution of regret (mean ±2 std) over time for µ1 for different budgets ϵ.

I Existing technical results and Definitions

Proposition 4 (Post-processing [Dwork and Roth, 2014]). LetM be a mechanism and f be an
arbitrary randomised function defined onM’s output. IfM is ϵ-DP, then f ◦M is ϵ-DP.

The post-processing property ensures that any quantity constructed only from a private output is still
private, with the same privacy budget. This is a consequence of the data processing inequality.
Proposition 5 (Group Privacy [Dwork and Roth, 2014]). Let D and D′ be two datasets in Xn. IfM
is (ϵ, δ)-DP, then for any event E ∈ F

MD(A) ≤ eϵdHam(D,D′)MD′(A) . (50)

Group privacy translates the closeness of output distributions on neighbouring input datasets to a
closeness of output distributions on any two datasets D and D′ that depend on the Hamming distance
dHam(D,D′). This property will be the basis for proving lower bounds in Section 3.

Proposition 6 (Simple Composition). LetM1, . . . ,Mk be k mechanisms. We define the mechanism

G : D →
k⊗

i=1

Mi
D

as the k composition of the mechanismsM1, . . . ,Mk.

• If eachMi is (ϵi, δi)-DP, then G is (
∑k

i=1 ϵi,
∑k

i=1 δi)-DP.

• If eachMi is ρi-zCDP, then G is
∑k

i=1 ρi-zCDP.
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Figure 5: Evolution of regret (mean ±2 std) over time for µ2 for different budgets ϵ.

Composition is a fundamental property of DP. Composition helps to analyse the privacy of sophis-
ticated algorithms, by understanding the privacy of each building block, and summing directly the
privacy budgets. Proposition 6 can be improved in two directions. (a) It is possible to show that the
result is still true if the mechanisms are chosen adaptively, and that the mechanism at step i takes as
auxiliary input the outputs of the last i− 1 mechanisms. (b) Advanced composition theorems Kairouz
et al. [2015] for (ϵ, δ)-DP improve the dependence on k the number of composed mechanisms.
Specifically, if the same mechanism is composed k times, Proposition 6 concludes that the composed
mechanism is (kϵ, kδ)-DP. Advanced composition Kairouz et al. [2015] shows that the k-fold adap-
tively composed mechanism is (ϵ′, δ′ + kδ)-DP for any δ′ where ϵ′ ≜

√
2k log(1/δ′)ϵ+ kϵ(eϵ − 1).

Roughly speaking, advanced composition provides a (
√
kϵ, δ)-DP guarantee, improving by

√
k the

(kϵ, kδ)-DP guarantee of simple composition.

In addition to the classic composition theorems, we provide here an additional property of interest:
parallel composition.
Lemma 10 (Parallel Composition). LetM1, . . . ,Mk be k mechanisms, such that k < n, where n is
the size of the input dataset. Let t1, . . . tk, tk+1 be indexes in [1, n] such that 1 = t1 < · · · < tk <
tk+1 − 1 = n.
Let’s define the following mechanism

G : {x1, . . . , xn} →
k⊗

i=1

Mi
{xti

,...,xti+1−1}

G is the mechanism that we get by applying each Mi to the i-th partition of the input dataset
{x1, . . . , xn} according to the indexes t1 < · · · < tk < tk+1.

• If eachMi is (ϵ, δ)-DP, then G is (ϵ, δ)-DP
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Figure 6: Evolution of regret (mean ±2 std) over time for µ3 for different budgets ϵ.

• If eachMi is ρi-zCDP, then G is ρ-zCDP

In parallel composition, the k mechanisms are applied to different “non-overlapping" parts of the
input dataset. If each mechanism is DP, then the parallel composition of the k mechanisms is DP,
with the same privacy budget. This property will be the basis for designing private bandit algorithms
in Section 4.
Theorem 5 (The Laplace Mechanism [Dwork and Roth, 2014]). Let f : X → Rk be a deterministic
algorithm with ℓ1 sensitivity s1(f) ≜ max

D∼D′
∥f(D)− f(D′)∥1. Let

ML(f, ϵ) ≜ f + (Y1, . . . , Yk),

where Yi are i.i.d from Lap
(

s1(f)
ϵ

)
, where the Laplace distribution centred at 0 with scale b, denoted

Lap(b), is the distribution with probability density function

Lap(x|b) ≜ 1

2b
exp

(
−|x|

b

)
,

for any x ∈ R.

The mechanismML(f, ϵ) is called the Laplace mechanism and satisfies ϵ-DP.
Lemma 11 (Chernoff Tail Bound via KL Divergence [Boucheron et al., 2003]). Let X1, X2, . . . , Xn

be independent Bernoulli random variables with success probabilities p1, p2, . . . , pn. Define Sn =∑n
i=1 Xi, and let µ = E[Sn] =

∑n
i=1 pi. Then the following bounds hold:

• Upper Tail Bound: for any a > µ

P (Sn ≥ a) ≤ exp
(
−n · kl

(a
n
,
µ

n

))
,
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Figure 7: Evolution of regret (mean ±2 std) over time for µ4 for different budgets ϵ.

where kl(p, q) is defined as

kl(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
.

• Lower Tail Bound: for any a < µ

P (Sn ≤ a) ≤ exp
(
−n · kl

(a
n
,
µ

n

))
.

Lemma 12 (Asymptotic Maximal Hoeffding Inequality). Assume that Xi has positive mean µ and
that Xi − µ is σ-sub-Gaussian. Then,

∀ϵ > 0, lim
n→∞

P
(
maxs≤n

∑s
i=1 Xi

n
≤ (1 + ϵ)µ

)
= 1 .
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Figure 8: Evolution of the regret for T = 107 with respect to ϵ for DP-IMED on µ ≜
[0.8, 0.1, 0.1, 0.1, 0.1], compared to the asymptotic regret lower bound of Theorem 1.
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Figure 9: Effect of α on the regret of DP-IMED, on µ2 and ϵ = 0.25.
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Figure 10: Evolution of regret (mean ±2 std) over time for the COV-BOOST dataset, for different
budgets ϵ.
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