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ABSTRACT

Nonconvex-nonconcave minimax problems are difficult to optimize by gradient
methods. The extragradient method, proven to outperform the gradient descent
ascent, has become standard but there is still room for improvement in terms of
a convergence speed. On the other hand, under a bilinear setting, the primal-
dual hybrid gradient (PDHG) method is one of the most popular methods, and
is superior to the extragradient in practice. The PDHG was studied on a convex-
concave problem, but it has not been found useful in a more general nonconvex-
nonconcave minimax problem. In this paper, we demonstrate a natural extension of
the PDHG to a structured nonconvex-nonconcave minimax problem, whose saddle-
subdifferential operator satisfies the weak Minty variational inequality condition.
This new nonlinear variant of PDHG, named semi-anchored (SA) gradient method,
is built upon the Bregman proximal point method. This consequently provides a
worst-case convergence rate, in terms of a new Bregman distance-based optimality
measure. This rate analysis of the SA implies a possible improvement over the
extragradient with a similar rate in terms of the squared gradient norm, as the new
optimality measure upper bounds the squared gradient norm. In addition, since
the SA exactly reduces to the PDHG for a bilinear problem, it is likely to be faster
than the extragradient in practice when entered a locally bilinear region. We further
illustrate the potential of the SA, by providing a fair classification experiment,
where it outpaces the extragradient, given an efficient max-oracle.

1 INTRODUCTION

Generative adversarial network (GAN) (Arjovsky et al., 2017; Goodfellow et al., 2014), adversarial
training (Kurakin et al., 2017; Mądry et al., 2018) and fair training (Mohri et al., 2019; Nouiehed
et al., 2019) involve solving a nonconvex-nonconcave minimax problem. These applications have
produced numerous promising results, but their gradient-based training is yet reported to be difficult
and laborious. In minimax optimization, the extragradient method (Korpelevich, 1976) has become
one of standard methods in minimax optimization, as it is known to outperform gradient descent
ascent method (Mescheder et al., 2018; Gorbunov et al., 2022). However, there is still room for
improvement, in terms of a convergence speed, possibly from a different perspective.

For a (composite) bilinear problem, the primal-dual hybrid gradient (PDHG) method (Chambolle &
Pock, 2011; Esser et al., 2010) is one of the favorites, and practically outperforms the extragradient
method (Chambolle & Pock, 2011). This was extended to convex-concave problems (Hamedani &
Aybat, 2021; Yadav et al., 2018; Zhao, 2019), but has not been studied in a more general nonlinear
nonconvex-nonconcave minimax problems. This paper thus constructs a new nonlinear variant of the
PDHG, named semi-anchored (SA) gradient method, that shows several theoretical and empirical
improvements over existing methods.

The proposed SA gradient method is built upon the theory of the Bregman proximal point (BPP)
method (Bauschke et al., 2003; Borwein et al., 2011; Eckstein, 1993). In specific, the PDHG
method is an instance of the proximal point method (Martinet, 1970; Rockafellar, 1976) with
a specific preconditioner (He & Yuan, 2012). The BPP method is a nonlinear extension of the
proximal point method via the Bregman distance (Bregman, 1967), and we choose one that directly
extends the preconditioner of the PDHG. We consequently show that the SA gradient method finds a
stationary point of a structured nonconvex-nonconcave composite problem; its Lipschitz continuous
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saddle-subdifferential operator satisfies the weak Minty variational inequality (MVI) condition
in (Diakonikolas et al., 2021). The weak MVI condition is weaker than the MVI condition that has
received recent attention as one of standard nonconvex-nonconcave settings (Dang & Lan, 2015;
Malitsky, 2020; Mertikopoulos et al., 2019; Song et al., 2020; Zhou et al., 2017).

For the worst-case rate analysis, we first show that the worst-case rate of the BPP method is O(1/k),
under the weak MVI condition, in terms of the Bregman distance between the successive iterates,
where k denotes the number of iterations. Then, the exact SA method, named SA-GDmax, using
an exact maximization oracle for the max-player, consequently has the same O(1/k) rate. Here,
the considered optimality measure, tailored from the Bregram distance, which is new in minimax
optimization literature. The extragradient method also has the O(1/k) rate (Diakonikolas et al., 2021;
Gorbunov et al., 2022) but in terms of the squared gradient norm that is upper bounded by our new
optimality measure. This implies that the SA-GDmax can be superior to the extragradient in the
worst case. Also note that the SA-GDmax exactly reduces to the PDHG for a bilinear problem, so we
can expect that it will practically outperform the extragradient when entered a locally bilinear region.
We then show that its more practical version, named SA-MGDA, using a finite number of gradient
steps of the max-player, has a complexity that matches that of the exact version up to a log factor.

Our theoretical results of the SA gradient method, built upon the PDHG and the BPP, are comparable
to those of extragradients (as detailed later), showing potential of the PDHG-like methods. We further
provide numerical experiments where the proposed SA-GDmax outperforms extragradient, given an
efficient max-oracle, making the PDHG-like methods more interesting in general minimax problems.

Our main contributions are summarized as follows.

• We study the properties of the BPP method and analyze its worst-case rate, in terms of
the Bregman distance between two successive iterates, under the weak MVI condition, in
Section 4. We also similarly study a version of the BPP with projection onto a separating
hyperplane that works for a larger range of the weak MVI condition.

• Built upon Section 4, we develop a new semi-anchoring (SA) approach, a new nonlinear
variant of the PDHG in Section 5. We further construct its inexact but more practical variant,
named SA-MGDA.

• In Section 6, we present the worst-case rates of the SA gradient methods for structured
nonconvex-nonconcave composite problems. This analysis is based on a newly introduced
Bregman distance-based optimality measure, and the worst-case rate is comparable to (and
possibly better than) the extragradient method. We also analyze the SA gradient methods
under the strong MVI condition (Song et al., 2020; Zhou et al., 2017), in Appendix E.

• Section 7 provides two numerical experiments, where an efficient maximization oracle is
available and consequently the SA gradient method outperforms the extragradient.

2 PRELIMINARIES

2.1 BREGMAN DISTANCE

This paper uses a Legendre function (Rockafellar, 1970) and its associated Bregman distance (Breg-
man, 1967), defined below, as a non-Euclidean proximity measure (Eckstein, 1993; Teboulle, 2018).
These help us to better handle the nonlinear geometry of a problem.
Definition 1. Let h : Rd → (−∞,∞] be a Legendre function (Rockafellar, 1970). The Bregman
distance associated to h, denoted by Dh : domh× int domh → R+ is defined by Dh(x,y) :=
h(x)− h(y)− ⟨∇h(y), x− y⟩.

A Bregman distance Dh reduces to the Euclidean distance for h(x) = 1
2 ||x||

2. Dh is not symmetric
in general, except for the case h(x) = 1

2 ||x||
2. In addition, Dh(x,y) ≥ 0 for all (x,y) ∈

domh× int domh, and Dh(x,y) = 0 if and only if x = y due to the strict convexity of h. Popular
examples of h are h(x) =

∑d
i=1 |xi|p/p for p ≥ 2, a Shannon entropy h(x) =

∑d
i=1 xi log xi,

domh = [0,∞)d, and a Burg entropy h(x) = −
∑d
i=1 log xi, domh = (0,∞)d. An appropriate

choice of h from this (partial) list, especially that captures the geometry of the constraint sets of
the problem, has been found useful in many applications (see, e.g., (Bauschke et al., 2016; Beck &
Teboulle, 2003; Bolte et al., 2018; Lu et al., 2018)). This paper, however, chooses h not from the
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above standard list. Our choice of h in Section 5 is inspired by that of the PDHG (Chambolle & Pock,
2011; Esser et al., 2010; He & Yuan, 2012).

2.2 COMPOSITE MINIMAX PROBLEM AND WEAKLY MONOTONE OPERATOR

We are interested in the minimax problem in a form:

min
u∈Rdu

max
v∈Rdv

{Φ(u,v) := f(u) + ϕ(u,v)− g(v)} , (1)

which satisfies the following assumption. Let d := du + dv .
Assumption A1. f : Rdu → (−∞,∞] and g : Rdv → (−∞,∞] are closed, proper and convex
functions. A function ϕ : Rd → R is continuously differentiable and has a Lipschitz continuous
gradient, i.e., there exists Luu, Luv, Lvu, Lvv > 0 such that, for all u, ū ∈ Rdu and v, v̄ ∈ Rdv ,

||∇uϕ(u,v)−∇uϕ(ū, v̄)|| ≤ Luu||u− ū||+ Luv||v − v̄||,
||∇vϕ(u,v)−∇vϕ(ū, v̄)|| ≤ Lvu||u− ū||+ Lvv||v − v̄||.

Both the gradient ∇ϕ and the saddle-gradient of ϕ, denoted by Mϕ := (∇uϕ,−∇vϕ), are L-
Lipschitz continuous (see Appendix A), i.e., there exists L > 0 such that ||Mϕx − Mϕy|| ≤
L||x− y|| for all x,y ∈ Rd.

Finding a first-order stationary point x∗ := (u∗,v∗) ∈ Rd of (1), is equivalent to finding a zero of
the following set-valued saddle-subdifferential operator of Φ:

M := Mϕ + (∂f, ∂g) : Rd ⇒ (−∞,∞]d. (2)

Let X∗(M) := {x∗ : 0 ∈ Mx∗} be a nonempty solution set. We consider the squared
subgradient norm at x, mins∈Mx ||s||2, as an optimality criteria, which is standard in nonconvex-
nonconcave minimax problems (Diakonikolas et al., 2021; Lee & Kim, 2021; Pethick et al., 2022;
2023). Under Assumption A1, the operator M (2) satisfies the following weakly monotone condition
with γ = L̂ :=max{Luu, Lvv} (see Appendix B) and is maximal.
Assumption A2 (Weak monotonicity). For some γ ≥ 0, an operator M is γ-weakly monotone,
i.e., ⟨x− y, w − z⟩ ≥ −γ||x− y||2 for all (x,w), (y, z) ∈ graM , where graM := {(x,w) ∈
R
d ×Rd : w ∈ Mx} denotes the graph of M . Also, it is maximal, i.e., there exists no γ-weakly

monotone operator that its graph properly contains graM .

2.3 STRUCTURED NONCONVEX-NONCONCAVE PROBLEM

We consider the nonconvex-nonconcave condition in (Diakonikolas et al., 2021), named the weak
Minty variational inequality (MVI). (See Appendix E for the strong MVI condition in (Song
et al., 2020; Zhou et al., 2017) and its related analysis.) The MVI problem is to find x∗ such
that ⟨x− x∗, w⟩ ≥ 0 for all (x,w) ∈ graM . For a continuous M , a solution set of the MVI
problem is a subset of X∗(M), and if M is monotone, they are equivalent. The MVI condition,
assuming that a solution of the MVI problem exists, is studied in (Dang & Lan, 2015; Malitsky,
2020), which is also studied under the name, the coherence, in (Mertikopoulos et al., 2019; Song
et al., 2020; Zhou et al., 2017). Recently, Diakonikolas et al. (2021) introduced the following weaker
condition, named weak MVI condition.
Assumption A3 (Weak MVI). For some ρ ≥ 0, there exists a solution x∗ ∈ X∗(M) such that

⟨x− x∗, w⟩ ≥ −ρ
2
||w||2, ∀(x,w) ∈ graM .

Let Xρ
∗ (M) be the associated solution set. Assumption A3 is implied by the −ρ

2 -
comonotononicity (Bauschke et al., 2021), or equivalently the ρ

2 -cohypomonotonicity (Combettes
& Pennanen, 2004), i.e., ⟨x− y, w − z⟩ ≥ −ρ

2 ||w − z||2 for all (x,w), (y, z) ∈ graM . The
comonotonicity is also implied by the α ≥ 0-interaction dominant condition in (Grimmer et al., 2022)
(see (Lee & Kim, 2021, Example 1)). Daskalakis et al. (2020, Proposition 2) and Diakonikolas et al.
(2021) consider a (constrained) two-agent zero-sum reinforcement learning problem, called the von
Neumann ratio game, that satisfies the weak MVI condition, but neither the MVI condition nor the
comonotonicity condition. Pethick et al. (2022) also provides examples satisfying the weak MVI.
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3 EXISTING GRADIENT-BASED METHODS

Extragradient methods Unlike gradient descent in minimization, gradient descent ascent method
diverges even for a simple bilinear minimax problem (Mescheder et al., 2018; Zhang & Yu, 2020).
Therefore, extragradient-type methods (Hsieh et al., 2019; Korpelevich, 1976; Malitsky, 2020;
Nesterov, 2007; Popov, 1980) with a better convergence behavior have gained interest. Especially,
the extragradient method works under the MVI condition (Dang & Lan, 2015; Mertikopoulos et al.,
2019), and recently, its variants, named EG+ (Diakonikolas et al., 2021) and CEG+ (Pethick et al.,
2022), have been found to work under the weak MVI condition.

Primal-dual hybrid gradient method For a bilinearly-coupled convex-concave problem
minu maxv {f(u) + ⟨u, Bv⟩−g(v)}, which is an instance of (1), the primal-dual hybrid gradient
(PDHG) (Chambolle & Pock, 2011; Esser et al., 2010), for k = 0, 1, . . .,

uk+1 = proxτf [uk − τBvk],

vk+1 = proxτg[vk + τB⊤(2uk+1 − uk)],

is most widely used, where the proximal operator is defined as proxψ := (I + ∂ψ)−1. The PDHG is
similar to the alternating (proximal) gradient descent ascent method, except that the PDHG uses the
term B⊤(2uk+1 − uk) in the vk+1 update, instead of B⊤uk+1. This simple modification improves
convergence, which is a one-sided variant of the extragradient-type methods, while being practically
superior to the plain extragradient in a bilinear problem (Chambolle & Pock, 2011).

In (He & Yuan, 2012), the PDHG is shown to be equivalent to the preconditioned proximal point
method with a (linear) preconditioner P (u,v) := ( 1τu − Bv,−B⊤u + 1

τ v). In Section 5, we
extend this understanding to a nonlinear problem. Note that the PDHG has been extended to tackle
convex-concave problems (1) in (Hamedani & Aybat, 2021; Yadav et al., 2018; Zhao, 2019) by
directly generalizing the term B⊤(2uk+1 −uk). In particular, the prediction method in (Yadav et al.,
2018) uses the term ∇vϕ(2uk+1−uk,vk), and Zhao (2019) and Hamedani & Aybat (2021) consider
2∇vϕ(uk,vk)−∇vϕ(uk−1,vk−1) with different update ordering. Section 5 proposes a different
extension of the PDHG method, by nonlinearizing the preconditioner P , leading to the semi-implicit
gradient term 2∇vϕ(uk+1,vk+1)−∇vϕ(uk,vk).

Gradient descent with max-oracle The proposed SA gradient method resembles the gradient
descent with max-oracle (GDmax), so we discuss it here. Consider a constrained minimax problem
minu∈U maxv∈V ϕ(u,v), an instance of (1). Then, the GDmax solves the equivalent minimization
problem minu∈U{Ψ(u) := maxv∈V ϕ(u,v)} by a gradient descent method on u (Barazandeh &
Razaviyayn, 2020; Jin et al., 2020; Nouiehed et al., 2019). This requires a gradient computation
∇Ψ(u) = ∇uϕ(u,v∗(u)), for v∗(u) := argmaxv∈V ϕ(u,v), based on Danskin’s theorem (Dan-
skin, 1967). This involves a maximization with respect to v. Unfortunately, even for a smooth ϕ, the
function Ψ is not differentiable in general. If a smooth function ϕ is further assumed to be strongly
concave on v with a convex compact set V , the function Ψ is differentiable and one can apply a
gradient descent method on u (Barazandeh & Razaviyayn, 2020; Nouiehed et al., 2019). In many
practical cases, the strong concavity is not given, so regularization can be useful for the GDmax, but
this requires tuning parameters and makes it unable to find an exact solution of the original problem.

Table 1 compares the convergence guarantees of the extragradient-type, the PDHG-type, the GDmax-
type and the proposed SA gradient methods. In particular, the SA gradient converges under settings
that the extragradient-type methods work, unlike the other two types, which is our major contribution.

4 BREGMAN PROXIMAL POINT (BPP) METHOD

4.1 THE h-RESOLVENT

The h-resolvent of a monotone operator M with respect to a Legendre function h is defined as
Rh

M := (∇h+M)−1∇h (Eckstein, 1993), where we omit M and h in Rh
M for simplicity hereafter,

unless necessary. This reduces to the standard resolvent operator (I +M)−1 for h = 1
2 || · ||

2, where
I is an identity operator. The h-resolvent R is single-valued on its domain for a monotone operator
M (Bauschke et al., 2003, Proposition 3.8), and we extend this for a weakly monotone operator.
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Method Monotone MVI Weak MVI Optimality
Type Name (ρ = 0) (ρ > 0) Measure

Extragradient
EG, DE† ✓

EG, OptDE‡ ✓ ✓

EG+,CEG+§ ✓ ✓ ✓ Squared gradient norm

PDHG PDHG⋆
Prediction◦ ✓

GDmax GDmax∗

Semi-anchoring SA-GDmax ✓ ✓ ✓ Bregman distance (6)

Table 1: Comparison of the problem settings for the extragradient-type, PDHG-type, GDmax-type and
the proposed methods; The SA-GDmax generalizes both the PDHG and GDmax, and converges for
the settings that the EG+/CEG+ work. In addition, EG+/CEG+ and SA-GDmax have the sameO(1/k)
worst-case rate, while the latter is in terms of a specific Bregman distance (6) that upper bounds
the squared gradient norm used for the rate of the former. †(Korpelevich, 1976; Nemirovski, 2004;
Nesterov, 2007), ‡(Dang & Lan, 2015; Mertikopoulos et al., 2019; Song et al., 2020), §(Diakonikolas
et al., 2021; Pethick et al., 2022) ⋆(Chambolle & Pock, 2011; Esser et al., 2010), ◦(Hamedani &
Aybat, 2021; Yadav et al., 2018; Zhao, 2019), ∗(Nouiehed et al., 2019; Jin et al., 2020)

Lemma 1. Let M satisfy Assumption A2 for some γ ≥ 0, and h be a µh-strongly convex Legendre
function. Then, if µh > γ, the h-resolvent R is single-valued on int domh.

4.2 BPP UNDER WEAK MVI CONDITION

The BPP method (Eckstein, 1993) iteratively applies the h-resolvent as, for k = 0, 1, . . .,

xk+1 = R(xk), (3)

which converges to a zero of a monotone operator M . We analyze the worst-case convergence
behavior of the BPP under Assumptions A2 and A3. We first state the Bregman nonexpansivity of R
below. For ρ = 0 and for any Legendre h, this reduces to the quasi-Bregman firmly nonexpansive
property Dh(x∗,Rx) ≤ Dh(x∗,x)−Dh(Rx,x) (Borwein et al., 2011; Eckstein, 1993).

Lemma 2. Let M satisfy Assumption A3 for some ρ ≥ 0, and h be an Lh-smooth Legendre function.
Then, if Rx exists, for any x∗ ∈ Xρ

∗ (M), Dh(x∗,Rx) ≤ Dh(x∗,x)− (1− ρLh)Dh(Rx,x).

This lemma presents that the condition ρLh ≤ 1 guarantees the quasi-Bregman nonexpansiveness
Dh(x∗,Rx) ≤ Dh(x∗,x). We then have the following worst-case rate in terms of the best Bregman
distance between two successive iterates (consequently the best squared subgradient norm) under
the weak MVI condition, and the convergence property of the iterate sequences. These built upon
(Eckstein, 1993, Theorem 1) of the BPP for a monotone operator.

Theorem 1. Let M satisfy Assumptions A2 and A3 for some γ, ρ ≥ 0, and h be a µh-strongly convex
and Lh-smooth Legendre function with µh > γ and ρLh < 1, respectively. Then, the sequence {xk}
of the BPP method (3) satisfies, for k ≥ 1 and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈Mxi

||si||2

2Lh
≤ min
i=1,...,k

Dh(xi,xi−1) ≤
Dh(x∗,x0)

(1− ρLh) k
.

Moreover, all limit points of the sequence {xk} are in X∗(M), and if we further assume that
Xρ

∗ (M) = X∗(M), the sequence {xk} converges to a solution x∗ ∈ Xρ
∗ (M).

4.3 BPP WITH PROJECTION ONTO A SEPARATING HYPERPLANE

We further develop a variant of the BPP that iteratively projects a point onto the following hyperplane
H(x) :=

{
x̄ ∈ Rd : ⟨∇h(x)−∇h(Rx), x− x̄⟩ =

(
1
Lh

− ρ
2

)
||∇h(x) − ∇h(Rx)||2

}
that

separates x and Xρ
∗ (M) under the condition ρLh < 2 (unless ∇h(x) = ∇h(Rx)), for any x ∈ Rd

(see Appendix C.4). We leave investigating other choices of separating hyperplane as future work.

5



Under review as a conference paper at ICLR 2024

The corresponding BPP with projection updates as

xk+1 = PH(xk)(xk) = xk −
(

1

Lh
− ρ

2

)
(∇h(xk)−∇h(Rxk)). (4)

This requires additional computation of ∇h, compared to the standard BPP, while generating a
quasi-firmly nonexpansive sequence, as shown in Lemma 3. Note that such projection technique,
originally appeared in (Solodov & Svaiter, 1999), has been also used for the extragradient method
in (Pethick et al., 2022), yielding a convergence guarantee for a larger range of ρ.
Lemma 3. Let M satisfy Assumption A3 for some ρ ≥ 0, and h be an Lh-smooth Legendre function
with ρLh ≤ 2. Then, if Rx exists, for any x∗ ∈ Xρ

∗ (M), ||R̃x−x∗||2 ≤ ||x−x∗||2−||R̃x−x||2,

where R̃ := I −
(

1
Lh

− ρ
2

)
(∇h−∇hR).

We then have the following worst-case rate in terms of the squared subgradient norm, and the
convergence property of the iterate sequences, for a larger range of ρ, compared to the standard BPP.
Theorem 2. Let M satisfy Assumptions A2 and A3 for some γ, ρ ≥ 0, and h be a µh-strongly convex
and Lh-smooth Legendre function with µh > γ and ρLh < 2, respectively. Then, the sequence {xk}
of the BPP method with projection (4) satisfies, for k ≥ 1 and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈MRxi−1

||si||2

2Lh
≤ 2Lh||x0 − x∗||2

(2− ρLh)2k
.

Moreover, all limit points of the sequence {xk} are in X∗(M), and if we further assume that
Xρ

∗ (M) = X∗(M), the sequence {xk} converges to a solution x∗ ∈ Xρ
∗ (M).

5 SEMI-ANCHORED GRADIENT METHODS

5.1 CONSTRUCTING SEMI-ANCHORED GRADIENT METHOD FROM PDHG VIA BPP

Inspired by the linear preconditioner P (u,v) of the PDHG, which is equivalent to choosing
h(u,v) = 1

2τ

(
||u||2 + ||v||2

)
− ⟨u, Bv⟩ in the BPP, our main contribution of this paper is to

consider the following Legendre function:

h(u,v) =
1

2τ

(
||u||2 + ||v||2

)
− ϕ(u,v). (5)

Under Assumption A1, this h is
(
1
τ − L

)
-strongly convex1 when 1

τ > L. This yields the Bregman
distance, which is a difference between the function ϕ and its quadratic upper bound at y:

Dh(x,y) = ϕ(y) + ⟨∇ϕ(y), x− y⟩+ 1

2τ
||x− y||2 − ϕ(x). (6)

This Bregman distance Dh(xk,xk−1) of the successive iterates is used as an optimality measure
in our worst-case rate analysis, which has not been observed anywhere in minimax optimization
literatures. We believe having such optimality measure, tailored from using the analysis of the
Bregman proximal point method and our specific choice of h, may be the key of having successful
extension of the PDHG to nonconvex-nonconcave problems, which calls for further investigation. We
have already shown in Theorem 1 that this upper bounds the squared subgradient norm, a standard
optimality measure, so our rate analysis easily translates to standard rate analysis.

We are now ready to state our new method. Since M in (2) is L̂ = max{Luu, Lvv}-
weakly monotone, the corresponding BPP update (3) with ∇h = 1

τ I − ∇ϕ is well-defined
for 1

τ − L > L̂, by Lemma 1. The BPP update (3) with h in (5) is (uk+1,vk+1) =(
1
τ I −∇ϕ+M

)−1 ( 1
τ I −∇ϕ

)
(uk,vk). Rewriting this in the minimization and maximization

form respectively leads to

uk+1 = argmin
u∈Rdu

{ 1

2τ
||u− (uk − τ∇uϕ(uk,vk))||2 + f(u)

}
(7)

1We have that ⟨∇h(x)−∇h(y), x− y⟩ = 1
τ
||x− y||2 − ⟨∇ϕ(x)−∇ϕ(y), x− y⟩ ≥

(
1
τ
− L

)
||x−

y||2 for all x,y ∈ Rd, where the last inequality uses the L-Lipschitz continuity of ∇ϕ.
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vk+1 = argmax
v∈Rdv

{
2ϕ(uk+1,v)−

1

2τ
||v − (vk − τ∇vϕ(uk,vk))||2 − g(v)

}
.

The minimization in u can be solved by one proximal gradient update, while the maximization in
v is equivalent to an implicit update vk+1 = proxτg[vk + τ(2∇vϕ(uk+1,vk+1)−∇vϕ(uk,vk))].
Since the proximal point, i.e., anchoring, only happens in v, we name this technique to be semi-
anchoring (SA). In particular, when equipped with the exact maximization oracle, we call this method,
SA-GDmax, as it resembles GDmax. Similarly, built upon the BPP with projection, we obtain
SA-GDmax with projection.

Lemma 1 and Theorems 1 and 2 of the BPP method (with projection), that will be used for the
rate analysis of SA-GDmax, also apply to the standard proximal point method (with h(x) =
1
2τ ||x||

2), i.e., xk+1 = (I + τM)−1xk. Such, however, requires solving a regularized minimax
(uk+1,vk+1) = argminu maxv

{
f(u) + ϕ(u,v)− g(v) + 1

2τ ||u− uk||2 − 1
2τ ||v − vk||2

}
, at

each iteration, while the SA-GDmax needs one gradient descent step and a maximization at each
iteration. Both methods intrinsically have an implicit regularization (smoothing), and thus have a
good convergence guarantee, while the latter is preferred in terms of the computational complexity.

5.2 DEVELOPING A PRACTICAL VARIANT OF SEMI-ANCHORED GRADIENT METHOD

In many practical cases, exact maximization oracle is not available. So as a first attempt to making the
SA gradient method more practical, we consider applying an iterative method for the maximization
in v. The maximization problem in v consists of a

(
1
τ + 2Lvv

)
-smooth and

(
1
τ − 2Lvv

)
-strongly

concave function, and a concave but possibly nonsmooth function −g. We can thus use total J
number of (inner) proximal gradient steps (using the Lipschitz continuity of ∇vvϕ(uk+1, ·)) for the
(inexact) maximization in v; fast proximal gradient methods (Beck & Teboulle, 2009; Chambolle &
Pock, 2016) can be used for acceleration. Since this involves multiple gradient steps, we name this
semi-anchored multi-step gradient descent ascent (SA-MGDA). The resulting SA-MGDA method
(with projection) is illustrated in Algorithm 1 (for Lvv > 0). The vk,j+1 update involves a convex
combination of an anchor point, vk − τ∇vϕ(uk,vk), that only depends on the previous point
(uk,vk) and a recent point, vk,j + 1

Lvv
∇vϕ(uk+1,vk,j), that depends on (uk+1,vk,j). So the name

anchoring is more apparent here.

Algorithm 1 SA-MGDA (with projection) for (1) with Lvv > 0

Input: x0 = (u0,v0), τ , η = τ
1+2Lvvτ

for k = 0, 1, . . . do
ûk+1 = proxτf [uk − τ∇uϕ(uk,vk)], vk,0 = vk
for j = 0, . . . , J − 1 do
vk,j+1 = proxηg

[
η
τ (vk − τ∇vϕ(uk,vk)) + 2ηLvv

(
vk,j +

1
Lvv

∇vϕ(ûk+1,vk,j)
)]

v̂k+1 = vk,J , x̂k+1 = (ûk+1, v̂k+1)

if SA-MGDA then xk+1 = x̂k+1

else if SA-MGDA with projection then xk+1 = xk −
(

1
1
τ +L

− ρ
2

)
(Mϕx̂k+1 −Mϕxk)

We leave making a more practical version of the SA gradient method, without both exact maximization
oracle and inner iterations, as future work. Note that the extragradient method is such a practical
variant of the proximal point method. We believe that our development of the SA-GDmax and the
SA-MGDA can be a foundation for further development of a practical PDHG-like method that is
comparable or outperforming the extragradient method in nonconvex-nonconcave minimax problems.
We next provide worst-case rates of the SA-GDmax and SA-MGDA that are comparable to those of
the extragradients.

6 ANALYZING SEMI-ANCHORED GRADIENT METHODS

6.1 ANALYZING THE EXACT SA GRADIENT METHOD: SA-GDMAX

The worst-case rate of the SA-GDmax directly follows from Lemma 1 and Theorem 1 of the BPP
method, for a specific h in (5) that is µh-strongly convex and Lh-smooth with µh = 1

τ − L and

7
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Lh = 1
τ + L. In specific, the proof follows from Theorem 1 with constraints µh > L̂ and ρLh < 1,

yielding τ < 1/(L+L̂) and τ > ρ/(1−ρL). We also need ρ < 1/(2L+L̂), so that τ exists.
Theorem 3. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈

[
0, 1

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1. Then, the sequence {xk} of the SA-GDmax (i.e., SA-MGDA
with J = ∞) satisfies, for k ≥ 1, τ ∈

(
ρ

1−ρL ,
1

L+L̂

)
and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈Mxi

||si||2

2
(
1
τ + L

) ≤ min
i=1,...,k

Dh(xi,xi−1) ≤
Dh(x∗,x0)(

1− ρ
(
1
τ + L

))
k
.

Moreover, all limit points of the sequence {xk} are in X∗(M), and if we further assume that
Xρ

∗ (M) = X∗(M), the sequence {xk} converges to a solution x∗ ∈ Xρ
∗ (M).

The EG+ (Diakonikolas et al., 2021) and CEG+ (Pethick et al., 2022) have shown that they have the
same O(1/k) rate for the squared gradient norm. We want to note that our result is on the Bregman
distance that is an upper bound on the squared gradient norm. So, it is possible that we have a gain in
the convergence rate, which we observe in our experiments. Of course, the SA-GDmax is comparable
to the extragradient in terms of the computational complexity only if we have a computationally
cheap exact maximization oracle.

Similarly, we have the following theorem of the SA-GDmax with projection. With additional
computation of Mϕx̂k+1, it works for a larger range of ρ values. The proof follows from Theorem 2
with constraints µh > L̂ and ρLh < 2, yielding τ < 1/(L+L̂) and τ > ρ/(2−ρL). We also need
ρ < 2/(2L+L̂), so that τ exists. Note that this method becomes more useful for a finite J soon.
Theorem 4. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈

[
0, 2

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1. Then, the sequence {xk} of the SA-GDmax with projection
satisfies, for k ≥ 1, τ ∈

(
ρ

2−ρL ,
1

L+L̂

)
and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈MRxi−1

||si||2

2
(
1
τ + L

) ≤
2
(
1
τ + L

)
||x0 − x∗||2(

2− ρ
(
1
τ + L

))2
k

.

Moreover, all limit points of the sequence {xk} are in X∗(M), and if we further assume that
Xρ

∗ (M) = X∗(M), the sequence {xk} converges to a solution x∗ ∈ Xρ
∗ (M).

6.2 ANALYZING THE INEXACT SA GRADIENT METHOD: SA-MGDA

This section studies the convergence behavior of the SA-MGDA (with projection). The SA-MGDA
can be viewed as an inexact variant of the BPP method (Eckstein, 1998), which generates a point
xk+1 different from Rxk at the kth iteration. Therefore, the proof of the following theorem of the
SA-MGDA first extends Theorem 1 of the (exact) BPP to its inexact variant in Appendix D.1. Then,
we consequently have the following theorem for the SA-MGDA (see Theorem 7 in Appendix D.1
for a more detailed statement). Its gradient computation complexity O(ϵ−1 log ϵ−1) matches the
complexity of the SA-GDmax up to a logarithmic factor. We consider the case where f and g are
prox-friendly, so we will neglect the complexity of their proximal operations.
Theorem 5. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈

[
0, 1

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1. Then, the SA-MGDA method finds an ϵ-stationary point,
i.e., a point x satisfying mins∈MRx

||s||2

2( 1
τ +L)

≤ Dh(Rx,x) ≤ ϵ, with k = O(ϵ−1) number of

outer iterations and J = O(log
(
ϵ−1
)
) inner iterations, requiring total O(ϵ−1 log ϵ−1) gradient

computations.

We have exactly the same complexity result for the SA-MGDA with projection, in terms of the
squared gradient norm, but for a larger region of ρ values below, illustrating the importance of the
projection step. The proof similarly first extends Theorem 2 of the (exact) BPP with projection to
its inexact variant in Appendix D.2, and consequently have the following result (see Theorem 8 in
Appendix D.2 for a more detailed statement).
Theorem 6. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈

[
0, 2

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1. Then, the SA-MGDA with projection finds an ϵ-stationary
point, i.e., a point x satisfying mins∈MRx ||s||2 ≤ ϵ, with k = O(ϵ−1) number of outer iterations
and J = O(log

(
ϵ−1
)
) inner iterations, requiring total O(ϵ−1 log ϵ−1) gradient computations.

8
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Figure 1: Toy example: (Left) Squared gradient norm, (Right) Our optimality measure (6).

Figure 2: Fair classification: the number of correctly classified test data for the worst category vs.
iteration with (Left) τ = 0.01 and (Right) τ = 0.001.

7 NUMERICAL RESULTS

We consider two experiments that an efficient max-oracle is available. The first toy example satisfies
the weak MVI, while the second one is not known to satisfy it. The latter is provided to see whether
the SA works well in practice. For both cases, the SA-GDmax method outperforms the extragradient.

7.1 TOY EXAMPLE

We consider a toy example ϕ(u, v) = −L2ρ
4 u2 + L

√
1− L2ρ2/4uv + L2ρ

4 v2 (f(u) = g(v) = 0),
which has a saddle operator satisfying L-Lipschitz continuity and ρ-weak MVI. We compare SA-
GDmax with CEG+ and GDmax (to also verify the effectiveness of SA in GDmax). Since GDmax
does not converge in our setting, it is applied to a regularized problem ϕλ(u, v) := ϕ(u, v)− λ

2 ∥v −
v0∥2 (Nouiehed et al., 2019). Here, we take ρ = 2

3L , L = 1, and (u0, v0) = (1, 1/2). Fig. 1 presents
that the SA-GDmax outperforms CEG+ with ᾱ = 1−Lρ

2 , and the GDmax with various choices of λ.

7.2 FAIR CLASSIFICATION

To make the trained model fair to all categories, Mohri et al. (2019) considered a minimax problem
that minimizes the maximum loss among the categories. We study such fair classification experiment
in Nouiehed et al. (2019) on the Fashion MNIST data set2 (Xiao et al., 2017). Similar to Nouiehed
et al. (2019), we focus on the data labeled as T-shirt/top, Coat, and Shirt. The corresponding minimax
problem is minu maxi=1,2,3 Li(u), where u denotes the parameters of the neural network (see
Appendix F for the details), and L1, L2, and L3 denote the cross-entropy losses of the training
data in each category, respectively. This is equivalent to minu maxv∈V

∑3
i=1 viLi(u), where

V =
{
v ∈ R3

+ :
∑3
i=1 vi = 1

}
, i.e., ϕ(u,v) =

∑3
i=1 viLi(u) with f = 0 and g(v) = δV(v).

Since the problem is not strongly concave in v, Nouiehed et al. (2019) applied the GDmax to a
regularized problem minu maxv∈V

∑3
i=1 viLi(u)−

λ
2

∑3
i=1 v

2
i . We ran the CEG+, GDmax, and

SA-GDmax methods with the same learning rates τ = 0.01, 0.001. For the GDmax, we considered
various regularization parameters λ = 0, 0.01, 0.1, 1. We performed 50 independent simulations
for each case, and, in Fig. 2, we report the mean and standard deviation of the number of correctly
classified test data (out of 1000) for the worst3 category, versus iterations. We have gains on
SA-GDmax over CEG+ and GDmax, similar to our toy experiment, as expected.

2This consists of 28×28 grayscale cloth images of ten categories; 60000 data for training and 10000 for test.
3The worst category denotes the smallest number of correctly classified test data among the three categories.

9



Under review as a conference paper at ICLR 2024

REFERENCES

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proc. Intl.
Conf. Mach. Learn, 2017.

B. Barazandeh and M. Razaviyayn. Solving non-convex non-differentiable min-max games using
proximal gradient method. In Proc. IEEE Conf. Acoust. Speech Sig. Proc., 2020. doi: 10.1109/
ICASSP40776.2020.9054474.

H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, 2011. doi: 10.1007/978-1-4419-9467-7.

H. H. Bauschke, J. M. Borwein, and P. L. Combettes. Bregman monotone optimization algorithms.
SIAM J. Control Optim., 42(2):596–636, 2003. doi: 10.1137/S0363012902407120.

H. H. Bauschke, X. Wang, and L. Yao. General resolvents for monotone operators: characterization
and extension. In Biomedical Mathematics: Promising Directions in Imaging,Therapy Planning,
and Inverse Problems, pp. 57–74, 2010.

H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient continuity:
first-order methods revisited and applications. Math. Oper. Res., 42(2):330–48, 2016.

H. H. Bauschke, W. M. Moursi, and X. Wang. Generalized monotone operators and their averaged
resolvents. Mathematical Programming, 189(1):55–74, 2021.

A. Beck. First-order methods in optimization. Soc. Indust. Appl. Math., 2017. URL http:
//bookstore.siam.org/mo25/.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex op-
timization. Operations Research Letters, 3(31):167–75, May 2003. doi: ’10.1016/S0167-6377(02)
00231-6’.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM J. Imaging Sci., 2(1):183–202, 2009. doi: 10.1137/080716542.

J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity and
Lipschitz gradient continuity with applications to quadratic inverse problems. SIAM J. Optim., 28
(3):2131–2151, 2018. doi: 10.1137/17M1138558.

J. M. Borwein, S. Reich, and S. Sabach. A characterization of Bregman firmly nonexpansive operators
using a new monotonicity concept. J. Nonlinear Convex Anal., 12(1):161–84, 2011.

L. M. Bregman. The relaxation method for finding the common point of convex sets and its application
to the solution of problems in convex programming. USSR Comp Math and Math Phys, 7:200–17,
1967.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications
to imaging. J. Math. Im. Vision, 40(1):120–145, 2011. doi: 10.1007/s10851-010-0251-1.

A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta Numerica,
25:161–319, 2016. doi: 10.1017/S096249291600009X.

P. L. Combettes and T. Pennanen. Proximal methods for cohypomonotone operators. SIAM J. Control
Optim., 43(2):731–42, 2004. doi: 10.1137/S0363012903427336.

C. D. Dang and G. Lan. On the convergence properties of non-Euclidean extragradient methods for
variational inequalities with generalized monotone operators. Computational Optimization and
Applications, 60(2):277–310, 2015. doi: 10.1007/s10589-014-9673-9.

J. M. Danskin. The theory of max-min, and its application to weapons allocation problem. Springer-
Verlag Berlin Heidelberg, 1967. doi: 10.1007/978-3-642-46092-0.

C. Daskalakis, D. J. Foster, and N. Golowich. Independent policy gradient methods for competitive
reinforcement learning. In Neural Info. Proc. Sys., 2020.

10

http://bookstore.siam.org/mo25/
http://bookstore.siam.org/mo25/


Under review as a conference paper at ICLR 2024

J. Diakonikolas, C. Daskalakis, and M. Jordan. Efficient methods for structured nonconvex-
nonconcave min-max optimization. In International Conference on Artificial Intelligence and
Statistics, pp. 2746–2754. PMLR, 2021.

J. Eckstein. Nonlinear proximal point algorithms using Bregman functions, with applications to
convex programming. Mathematics of Operations Research, 18(1):202–26, 1993. doi: 10.1287/
moor.18.1.202.

J. Eckstein. Approximate iterations in Bregman-function-based proximal algorithms. Mathematical
Programming, 83:113–23, January 1998.

E. Esser, X. Zhang, and T. Chan. A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci., 3(4):1015–46, 2010. doi:
10.1137/09076934X.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial networks. In Neural Info. Proc. Sys., 2014.

Eduard Gorbunov, Nicolas Loizou, and Gauthier Gidel. Extragradient method: O(1/K) last-
iterate convergence for monotone variational inequalities and connections with cocoercivity. In
International Conference on Artificial Intelligence and Statistics, pp. 366–402. PMLR, 2022.

B. Grimmer, H. Lu, P. Worah, and V. Mirrokni. The landscape of the proximal point method for
nonconvex–nonconcave minimax optimization. Mathematical Programming, pp. 1–35, 2022.

E. Y. Hamedani and N. S. Aybat. A primal-dual algorithm with line search for general convex-concave
saddle point problems. SIAM J. Optim., 31(2):1299–1329, 2021. doi: 10.1137/18M1213488.

B. He and X. Yuan. Convergence analysis of primal-dual algorithms for a saddle-point problem:
from contraction perspective. SIAM J. Imaging Sci., 5(1):119–49, 2012. doi: 10.1137/100814494.

Y.-G. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochastic
extra-gradient methods. In Neural Info. Proc. Sys., 2019.

C. Jin, P. Netrapalli, and M. I. Jordan. What is local optimality in nonconvex-nonconcave minimax
optimization? In Proc. Intl. Conf. Mach. Learn, 2020.

G. M. Korpelevich. An extragradient method for finding saddle points and other problems. Ekonomika
i Mateaticheskie Metody, 12(4):747–56, 1976.

A. Kurakin, I. J. Goodfellow, and S. Bengio. Adversarial machine learning at scale. In Proc. Intl.
Conf. on Learning Representations, 2017.

S. Lee and D. Kim. Fast extra gradient methods for smooth structured nonconvex-nonconcave
minimax problems. In Neural Info. Proc. Sys., 2021.

H. Lu, R. M. Freund, and Y. Nesterov. Relatively smooth convex optimization by first-order methods,
and applications. SIAM J. Optim., 28(1):333–54, 2018. doi: 10.1137/16M1099546.

Y. Malitsky. Golden ratio algorithms for variational inequalities. Mathematical Programming, 184:
383–410, 2020.

B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Rev.
Française Informat. Recherche Opérationnelle, 4:154–8, 1970.

P. Mertikopoulos, B. Lecouat, H. Zenati, C.-S. Foo, V. Chandrasekhar, and G. Piliouras. Optimistic
mirror descent in saddle-point problems: going the extra (gradient) mile. In Proc. Intl. Conf. on
Learning Representations, 2019.

L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for GANs do actually converge.
In Proc. Intl. Conf. Mach. Learn, 2018.
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A PROOF OF LIPSCHITZ CONTINUITY OF ∇ϕ AND Mϕ

Let x := (u,v) and y := (ū, v̄). Since ∥∇ϕ(u,v)−∇ϕ(ū, v̄)∥ = ∥Mϕx−Mϕy∥, it is enough
to show that there exists a constant L > 0 such that ∥∇ϕ(u,v)−∇ϕ(ū, v̄)∥ ≤ L∥x− y∥.

By Assumption A1, we have the following bounds
∥∇ϕ(u,v)−∇ϕ(ū,v)∥2 = ∥∇uϕ(u,v)−∇uϕ(ū,v)∥2 + ∥∇vϕ(u,v)−∇vϕ(ū,v)∥2

≤ (L2
uu + L2

vu)∥u− ū∥2,
∥∇ϕ(ū,v)−∇ϕ(ū, v̄)∥2 = ∥∇uϕ(ū,v)−∇uϕ(ū, v̄)∥2 + ∥∇vϕ(ū,v)−∇vϕ(ū, v̄)∥2

≤ (L2
uv + L2

vv)∥v − v̄∥2.
Then, we can show the Lipschitz continuity as below.

∥∇ϕ(u,v)−∇ϕ(ū, v̄)∥ ≤ ∥∇ϕ(u,v)−∇ϕ(ū,v)∥+ ∥∇ϕ(ū,v)−∇ϕ(ū, v̄)∥

≤
√
L2
uu + L2

vu∥u− ū∥+
√
L2
uv + L2

vv∥v − v̄∥

≤
√
L2
uu + L2

vu + L2
uv + L2

vv

√
∥u− ū∥2 + ∥v − v̄∥2

(∵ Cauchy-Schwarz inequality)

=
√
L2
uu + L2

vu + L2
uv + L2

vv∥x− y∥.

B PROOF OF WEAK MONOTONICITY OF M

By Assumption A1, ϕ(·,v) is Luu-weakly convex for fixed v, and −ϕ(u, ·) is Lvv-weakly convex
for fixed u. Then, using the weak convexity on u, we have

ϕ(ū,v) ≥ ϕ(u,v) + ⟨∇uϕ(u,v), ū− u⟩−Luu

2
||ū− u||2,

ϕ(u, v̄) ≥ ϕ(ū, v̄) + ⟨∇uϕ(ū, v̄), u− ū⟩−Luu

2
||u− ū||2,

for all u, ū ∈ Rdu and v, v̄ ∈ Rdv . Similarly, using the weak convexity on v, we have

−ϕ(u, v̄) ≥ −ϕ(u,v)− ⟨∇vϕ(u,v), v̄ − v⟩−Lvv

2
||v̄ − v||2,

−ϕ(ū,v) ≥ −ϕ(ū, v̄)− ⟨∇vϕ(ū, v̄), v − v̄⟩−Lvv

2
||v − v̄||2.

Let x = (u,v), y = (ū, v̄), wϕ = (∇uϕ(u,v),−∇vϕ(u,v)), and zϕ = (∇uϕ(ū, v̄),
−∇vϕ(ū, v̄)). Then, summing the above four inequalities yields

⟨x− y, w − z⟩ ≥ ⟨x− y, wϕ − zϕ⟩ ≥ −Luu||u− ū||2 − Lvv||v − v̄||2

≥ −max{Luu, Lvv}||x− y||2,
for all (x,w), (y, z) ∈ graM , where the first inequality uses the convexity of f and g.

C PROOFS FOR SECTION 4

C.1 PROOF OF LEMMA 1

Note that ∇h + M = (∇h − γI) + (M + γI). From the condition that µh > γ and M is
γ-weakly monotone, it is straightforward to show that h − γ

2 ∥ · ∥2 is a Legendre function and
M + γI is maximally monotone. Then Bauschke et al. (2010, Corollary 2.3) shows that ran(∇h+
M) = R

d. This implies that Rx is nonempty for all x ∈ int domh. Assume that y, z ∈
Rx. Since ∇h(x) − ∇h(y) ∈ My and ∇h(x) − ∇h(z) ∈ Mz, we have −γ∥y − z∥2 ≤
−⟨∇h(y)−∇h(z), y − z⟩ ≤ −µh∥y − z∥2. So if µh > γ, the inequality implies that y = z.

14



Under review as a conference paper at ICLR 2024

C.2 PROOF OF LEMMA 2

By the definition of Rx, we have ∇h(x)−∇h(Rx) ∈ MRx. Then, Assumption A3 on M implies
that

0 ≤ ⟨∇h(x)−∇h(Rx), Rx− x∗⟩+
ρ

2
||∇h(x)−∇h(Rx)||2

= ⟨∇h(x), Rx− x⟩− ⟨∇h(x), x∗ − x⟩+ ⟨∇h(Rx), x∗ −Rx⟩+ρ
2
||∇h(x)−∇h(Rx)||2

= −Dh(Rx,x) +Dh(x∗,x)−Dh(x∗,Rx) +
ρ

2
||∇h(x)−∇h(Rx)||2

≤ −Dh(Rx,x) +Dh(x∗,x)−Dh(x∗,Rx) + ρLhDh(Rx,x),

where the last inequality follows from the convex and Lh-smooth properties of h, i.e., 1
2Lh

||∇h(x)−
∇h(y)||2 ≤ Dh(x,y) for all x,y (Nesterov, 2018, Theroem 2.1.5).

C.3 PROOF OF THEOREM 1

By Lemma 1, the condition µh > γ implies that Rx exists for any x. By Lemma 2, we get

Dh(x∗,xi) ≤ Dh(x∗,xi−1)− (1− ρLh)Dh(xi,xi−1) (8)

for all i ≥ 1. By summing over the above inequality, we get

k∑
i=1

(1− ρLh)Dh(xi,xi−1) ≤
k∑
i=1

(Dh(x∗,xi−1)−Dh(x∗,xi))

= Dh(x∗,x0)−Dh(x∗,xk)

≤ Dh(x∗,x0).

Hence, by dividing the both sides of the inequality by (1− ρLh)k, we get

min
i=1,...,k

min
si∈Mxi

||si||2

2Lh
≤ min
i=1,...,k

Dh(xi,xi−1) ≤
1

k

k∑
i=1

Dh(xi,xi−1) ≤
Dh(x∗,x0)

(1− ρLh)k
.

The first inequality follows from ∇h(xi) − ∇h(xi−1) ∈ Mxi, and the convex and Lh-smooth
properties of h, i.e., 1

2Lh
||∇h(x)−∇h(y)||2 ≤ Dh(x,y) (Nesterov, 2018, Theroem 2.1.5).

Next, we prove that all limit point of the sequence {xk} are first-order stationary points. By (8), the
sequence {Dh(x∗,xk)} is bounded above, which implies that {xk} is a bounded sequence due to
the strong convexity of h. Let x∞ be any limit point of {xk}, and let {xk(j)} be a subsequence that
converges to x∞. Note that Dh(xk+1,xk) → 0 (and ∇h(xk)−∇h(xk+1) → 0 by the convex and
Lh-smooth properties of h, i.e., 1

2Lh
||∇h(x) − ∇h(y)||2 ≤ Dh(x,y) (Nesterov, 2018, Theroem

2.1.5)) as k → ∞, since
∑k
i=1Dh(xi,xi−1) ≤ Dh(x∗,x0)

1−ρLh
. Then {xk(j)+1} also converges to x∞

since

||xk(j)+1 − x∞||2 ≤ 2||xk(j) − x∞||2 + 2||xk(j)+1 − xk(j)||2

≤ 2||xk(j) − x∞||2 + 4

µh
Dh(xk(j)+1,xk(j)),

where the last inequality uses the strong convexity of h, i.e., µh

2 ||xk(j)+1 − xk(j)||2 ≤
Dh(xk(j)+1,xk(j)). Since M+γI is maximally monotone and satisfies ∇h(xk(j))−∇h(xk(j)+1)+
γxk(j)+1 ∈ (M + γI)(xk(j)+1), we finally have 0 ∈ Mx∞ by Bauschke & Combettes (2011,
Proposition 20.32).

Lastly, assume that Xρ
∗ (M) = X∗(M). Then x∞ is in Xρ

∗ (M), and since
limj→∞Dh(x∞,xk(j)) = 0 and {Dh(x∞,xk)} is a nonincreasing sequence by (8), we get
limk→∞Dh(x∞,xk) = 0. Therefore, by the strong convexity of h, {xk} converges to x∞ ∈
Xρ

∗ (M).
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C.4 SEPARATING HYPERPLANE

We prove that H(x) separates x and Xρ
∗ (M) by showing the following two inequalities:

⟨∇h(x)−∇h(Rx), x− x⟩ <
(

1

Lh
− ρ

2

)
||∇h(x)−∇h(Rx)||2,

⟨∇h(x)−∇h(Rx), x− x∗⟩ ≥
(

1

Lh
− ρ

2

)
||∇h(x)−∇h(Rx)||2,

for all x∗ ∈ Xρ
∗ (M).

The first inequality is straightforward as the left-hand side of the inequality is equal to zero and
the right-hand side of the inequality is positive (unless ∇h(x) = ∇h(Rx)) under the condition
Lhρ < 2.

Next, for any solution x∗ ∈ Xρ
∗ (M), we get

⟨∇h(x)−∇h(Rx), x− x∗⟩ = ⟨∇h(x)−∇h(Rx), (x−Rx) + (Rx− x∗)⟩

≥
(

1

Lh
− ρ

2

)
||∇h(x)−∇h(Rx)||2, (9)

which uses the 1
Lh

-cocoercivity of ∇h, i.e., 1
Lh

||∇h(x)−∇h(y)||2 ≤ ⟨∇h(x)−∇h(y), x− y⟩
(Nesterov, 2018, Theroem 2.1.5), and the weak MVI condition (Assumption A3) with ∇h(x) −
∇h(Rx) ∈ MRx.

C.5 PROOF OF LEMMA 3

By the definition R̃x := I −
(

1
Lh

− ρ
2

)
(∇h−∇hR), we get

||R̃x− x∗||2 = ||x− x∗||2 − 2

(
1

Lh
− ρ

2

)
⟨∇h(x)−∇h(Rx), x− x∗⟩

+

(
1

Lh
− ρ

2

)2

||∇h(x)−∇h(Rx)||2

≤ ||x− x∗||2 −
(

1

Lh
− ρ

2

)2

||∇h(x)−∇h(Rx)||2

= ||x− x∗||2 − ||R̃x− x||2,
where the inequality uses (9).

C.6 PROOF OF THEOREM 2

By Lemma 1, the condition µh > γ implies that Rx exists for any x and thus R̃x is well-defined.
By Lemma 3, we get

||xi − x∗||2 ≤ ||xi−1 − x∗||2 − ||xi − xi−1||2 (10)

= ||xi−1 − x∗||2 −
(

1

Lh
− ρ

2

)2

||∇h(xi−1)−∇h(Rxi−1)||2

for all i ≥ 1. By summing over the above inequality, we get
k∑
i=1

(2− ρLh)
2

4L2
h

||∇h(Rxi−1)−∇h(xi−1)||2 ≤
k∑
i=1

(||xi−1 − x∗||2 − ||xi − x∗||2)

= ||x0 − x∗||2 − ||xk − x∗||2

≤ ||x0 − x∗||2.
Hence, by dividing the both sides of the inequality by (2− ρLh)

2k/2Lh, we get

min
i=1,...,k

||∇h(Rxi−1)−∇h(xi−1)||2

2Lh
≤ 1

k

k∑
i=1

||∇h(Rxi−1)−∇h(xi−1)||2

2Lh
≤ 2Lh||x0 − x∗||2

(2− ρLh)2k
.
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By using the fact that ∇h(Rxi−1)−∇h(xi−1) ∈ MRxi−1, the lower bound of the inequality can
be further bounded as

min
i=1,...,k

min
si∈MRxi−1

||si||2

2Lh
≤ min
i=1,...,k

||∇h(Rxi−1)−∇h(xi−1)||2

2Lh
.

Next, we prove that all limit point of the sequence {xk} are first-order stationary points. By (10),
the sequence {||xk − x∗||} is bounded above, which implies that {xk} is a bounded sequence. Let
x∞ be any limit point of {xk}, and let {xk(j)} be a subsequence that converges to x∞. Note that
||∇h(xk)−∇h(Rxk)|| → 0 (and ||xk−Rxk|| → 0 by the µh-strong convexity of h, i.e., µh||xk−
Rxk|| ≤ ||∇h(xk) − ∇h(Rxk)||) as k → ∞, since

∑k
i=1

1
2Lh

||∇h(xi−1) − ∇h(Rxi−1)||2 ≤
2Lh||x0−x∗||2

(2−ρLh)2
. Then {Rxk(j)} also converges to x∞ since

||Rxk(j) − x∞|| ≤ ||Rxk(j) − xk(j)||+ ||xk(j) − x∞||.
Since M + γI is maximally monotone and satisfies ∇h(xk(j)) − ∇h(Rxk(j)) + γRxk(j) ∈
(M + γI)(Rxk(j)), we finally have 0 ∈ Mx∞ by Bauschke & Combettes (2011, Proposition
20.32).

Lastly, assume thatXρ
∗ (M) = X∗(M). Then x∞ is inXρ

∗ (M), and since limj→∞ ||xk(j)−x∞|| =
0 and ||xk − x∞|| is a nonincreasing sequence by (10), we get limk→∞ ||xk − x∞|| = 0.

D PROOFS FOR SECTION 6

D.1 PROOF OF THEOREM 5

We first extend Theorem 1 of the (exact) BPP method to its inexact variant that approximately
computes the h-resolvent in BPP.
Lemma 4. Let {xk} be generated by an inexact BPP, and x∗

k := Rxk−1 be an exactly updated
point from xk−1, where xk ̸= x∗

k in general. Then, under the conditions in Theorem 1, the sequence
{xk} satisfies, for k ≥ 1 and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

Dh(x
∗
i ,xi−1) ≤

2Dh(x∗,x0) +
∑k
i=1

i+1
i

(
(i+ 1)2 Lh

µh
− 1
)
Lh

2 ∥xi − x∗
i ∥2

(1− ρLh)
∑k
i=1

i+1
i

.

Proof. Since ∇h(xi−1)−∇h(x∗
i ) ∈ Mx∗

i , the weak MVI condition implies

0 ≤⟨∇h(xi−1)−∇h(x∗
i ),x

∗
i − x∗⟩+

ρ

2
||∇h(xi−1)−∇h(x∗

i )||2

=Dh(x∗,xi−1)−Dh(x∗,x
∗
i )−Dh(x

∗
i ,xi−1) +

ρ

2
||∇h(xi−1)−∇h(x∗

i )||2

≤Dh(x∗,xi−1)−Dh(x∗,x
∗
i )− (1− ρLh)Dh(x

∗
i ,xi−1)

=Dh(x∗,xi−1)−Dh(x∗,xi) + (Dh(x∗,xi)−Dh(x∗,x
∗
i ))− (1− ρLh)Dh(x

∗
i ,xi−1).

The term Dh(x∗,xi)−Dh(x∗,x
∗
i ) can be further bounded as

Dh(x∗,xi)−Dh(x∗,x
∗
i ) = h(x∗

i )− h(xi)− ⟨∇h(xi),x∗ − xi⟩+ ⟨∇h(x∗
i ),x∗ − x∗

i ⟩
= −Dh(xi,x

∗
i ) + ⟨∇h(x∗

i )−∇h(xi),x∗ − xi⟩

≤ −Dh(xi,x
∗
i ) +

η

2µh
∥∇h(x∗

i )−∇h(xi)∥2 +
µ

2η
∥x∗ − xi∥2

≤ −Dh(xi,x
∗
i ) + η

Lh
µh
Dh(xi,x

∗
i ) +

1

η
Dh(x∗,xi)

=

(
η
Lh
µh

− 1

)
Dh(xi,x

∗
i ) +

1

η
Dh(x∗,xi). (11)

Therefore, we get

(1− ρLh)Dh(x
∗
i ,xi−1) ≤Dh(x∗,xi−1)−

(
1− 1

η

)
Dh(x∗,xi) +

(
η
Lh
µh

− 1

)
Dh(xi,x

∗
i ),
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and by taking η = (i+ 1)2 and multiplying both sides by i+1
i , we get

i+ 1

i
(1− ρLh)Dh(x

∗
i ,xi−1) ≤

i+ 1

i
Dh(x∗,xi−1)−

i+ 2

i+ 1
Dh(x∗,xi)

+
i+ 1

i

(
(i+ 1)2

Lh
µh

− 1

)
Dh(xi,x

∗
i )

≤ i+ 1

i
Dh(x∗,xi−1)−

i+ 2

i+ 1
Dh(x∗,xi)

+
i+ 1

i

(
(i+ 1)2

Lh
µh

− 1

)
Lh
2
||xi − x∗

i ||2. (12)

Then the result follows directly by summing over the inequalities for all i = 1, . . . , k and dividing
both sides by (1− ρLh)

∑k
i=1

i+1
i .

This leads to the following theorem, and consequently we have Theorem 5. Here, the choice of J
depends on the total number of outer iterations k, so this will be mostly useful when we are given k
in advance. We omitted here, but it is possible to modify the proof to have same complexity result
with varying number of inner iterations J(i) that increases in the order of O(log(i)).

Theorem 7. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈
[
0, 1

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1 Then, the sequence {xk} of the SA-MGDA (with a finite J)
satisfies, for k ≥ 1, τ ∈

(
ρ

1−ρL ,
1

L+L̂

)
and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈MRxi−1

||si||2

2
(
1
τ + L

) ≤ min
i=1,...,k

Dh(Rxi−1,xi−1) ≤
3Dh(x∗,x0)(

1− ρ
(
1
τ + L

))
k
,

for J ≥
1
τ +2Lvv
1
τ −2Lvv

log
(
(k + 1)(k + 3)

(
(k + 1)2 1+τL

1−τL − 1
)

4(1+τL)
1−τL

)
.

Proof. We first upper bound the term ||xi − x∗
i ||2 in the right-hand side of (12). The sequence

{(ui,vi)}i≥0 of SA-MGDA (for a finite J), an instance of the inexact BPP, satisfies ui = u∗
i , so

||x∗
i − xi|| = ||v∗

i − vi||. Thus,

||xi − x∗
i ||2 = ||vi − v∗

i ||2

≤ ||vi−1 − v∗
i ||2 exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤ ||xi−1 − x∗

i ||2 exp
(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤ (2||xi−1 − x∗||+ 2||x∗

i − x∗||2) exp
(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
2||xi−1 − x∗||+

4

µh
Dh(x∗,xi−1)

)
exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤ 8

µh
Dh(x∗,xi−1) exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
(13)

where the second line follows from the fact that J number of (inner) proximal gradient ascent steps
satisfy ||v̂i − vR

i ||2 ≤ ||vi−1 − vR
i ||2 exp

(
−

1
τ −2Lvv
1
τ +2Lvv

J
)

(by Theorem 10.29 of Beck (2017)), and
the fifth line uses

||x∗
i − x∗||2 ≤ 2

µh
Dh(x∗,x

∗
i ) ≤

2

µh
Dh(x∗,xi−1)
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due to the strong convexity and the quasi-Bregman nonexpansivity. Then, we have the following
upper bound of the right-hand side of the inequality (12)

i+ 1

i
(1− ρLh)Dh(x

∗
i ,xi−1) ≤

i+ 1

i
Dh(x∗,xi−1)−

i+ 2

i+ 1
Dh(x∗,xi)

+
i+ 1

i

(
(i+ 1)2

Lh
µh

− 1

)
4Lh
µh

Dh(x∗,xi−1) exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
1 +

1

(i+ 1)(i+ 3)

)
i+ 1

i
Dh(x∗,xi−1)−

i+ 2

i+ 1
Dh(x∗,xi),

where the second inequality uses J ≥
1
τ +2Lvv
1
τ −2Lvv

log
(
(i+ 1)(i+ 3)

(
(i+ 1)2 Lh

µh
− 1
)

4Lh

µh

)
.

Then, by multiplying i+3
i+2 on both sides, we get

(i+ 1)(i+ 3)

i(i+ 2)
(1− ρLh)Dh(x

∗
i ,xi−1) ≤

i+ 2

i
Dh(x∗,xi−1)−

i+ 3

i+ 1
Dh(x∗,xi).

Hence, by summing over the inequalities for all i = 1, . . . , k, we get
k∑
i=1

(i+ 1)(i+ 3)

i(i+ 2)
(1− ρLh)Dh(x

∗
i ,xi−1) ≤ 3Dh(x∗,x0)−

k + 3

k + 1
Dh(x∗,xk),

and further dividing both sides by
∑k
i=1

(i+1)(i+3)
i(i+2) (1− ρLh), we get

min
i=1,...,k

min
si∈MRxi−1

||si||2

2
(
1
τ + L

) ≤ min
i=1,...,k

Dh(Rxi−1,xi−1) ≤
3Dh(x∗,x0)

(1− ρLh)
∑k
i=1

(i+1)(i+3)
i(i+2)

≤ 3Dh(x∗,x0)

(1− ρLh)k

by using the fact that 1
2Lh

||∇h(Rxi−1) − ∇h(xi−1)||2 ≤ Dh(Rxi−1,xi−1) and ∇h(Rxi−1) −
∇h(xi−1) ∈ MRxi−1.

The constraints µh > L̂ and ρLh < 1 yields τ < 1
L+L̂

and τ > ρ
1−ρL . We need ρ < 1

2L+L̂
, so that τ

exists.

D.2 PROOF OF THEOREM 6

We first extend Lemma 3 to a version with a new variable x′ that will be considered as an approxima-
tion to R̃x in the later analysis. The lemma below reduces to Lemma 3 when x′ = R̃x and δ = 0.
Introducing a positive constant δ here seems redundant, but this becomes useful in the upcoming
analysis.
Lemma 5. Under the conditions in Lemma 3, we have

||x′ − x∗||2 ≤ (1 + δ)||x− x∗||2 − (1 + δ)||R̃x− x||2 +
(
1 +

1

δ

)
||R̃x− x′||2,

for any δ > 0, x,x′, and x∗ ∈ X∗
ρ (M).

Proof. We have

||x′ − x∗||2 = ||R̃x− x∗ + x′ − R̃x||2

= ||R̃x− x∗||2 + 2 ⟨R̃x− x∗, x
′ − R̃x⟩+||x′ − R̃x||2

≤ (1 + δ)||R̃x− x∗||2 +
(
1 +

1

δ

)
||x′ − R̃x||2

≤ (1 + δ)||x− x∗||2 − (1 + δ)||R̃x− x||2 +
(
1 +

1

δ

)
||x′ − R̃x||2,

where the first inequality uses Young’s inequality, and the second inequality uses Lemma 3.
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Next, using Lemma 5, we extend Theorem 2 of the (exact) BPP with projection method to its
inexact variant that approximately computes the h-resolvent in the BPP with projection, i.e., xk+1 :=

xk −
(

1
Lh

− ρ
2

)
(∇h(xk)−∇h(x̂k+1)).

Lemma 6. Let {xk} be generated by an inexact BPP with projection, and x∗
k := R̃xk−1 be

an exactly updated point from xk−1, where xk ̸= x∗
k in general. Then, under the conditions in

Theorem 2, the sequence {xk} satisfies, for k ≥ 1 and for any x∗ ∈ Xρ
∗ (M),

min
i=1,...,k

min
si∈MRxi−1

||si||2

2Lh
≤

2Lh

(
2||x0 − x∗||2 +

∑k
i=1(i+ 1)(i+ 2)||xi − x∗

i ||2
)

(2− ρLh)2
∑k
i=1

i+1
i

.

Proof. By taking δ = 1
(i+1)2−1 , x = xi−1, and x′ = xi in Lemma 5, we get

||xi − x∗||2 ≤ (i+ 1)2

i(i+ 2)
||xi−1 − x∗||2 −

(i+ 1)2

i(i+ 2)
||x∗

i − xi−1||2 + (i+ 1)2||xi − x∗
i ||2,

and by multiplying i+2
i+1 both sides and reordering terms, we have

i+ 1

i
||x∗

i − xi−1||2 ≤ i+ 1

i
||xi−1 − x∗||2 −

i+ 2

i+ 1
||xi − x∗||2 + (i+ 1)(i+ 2)||xi − x∗

i ||2.
(14)

Hence, by summing over the inequalities for all i = 1, . . . , k, we have

k∑
i=1

i+ 1

i
||x∗

i − xi−1||2 ≤ 2||x0 − x∗||2 −
k + 2

k + 1
||xk − x∗||2 +

k∑
i=1

(i+ 1)(i+ 2)||xi − x∗
i ||2.

Therefore, by using the fact that ||x∗
i − xi−1||2 = (2−ρLh)

2

4L2
h

||∇h(Rxi−1) − ∇h(xi−1)||2 and

dividing both sides by (2−ρLh)
2

2Lh

∑k
i=1

i+1
i , we get

min
i=1,...,k

||∇h(Rxi−1)−∇h(xi−1)||2

2Lh
≤

2Lh

(
2||x0 − x∗||2 +

∑k
i=1(i+ 1)(i+ 2)||xi − x∗

i ||2
)

(2− ρLh)2
∑k
i=1

i+1
i

.

By using the fact that ∇h(Rxi−1) − ∇h(xi−1) ∈ MRxi−1, the left-hand side of the inequality
can be further bounded as

min
i=1,...,k

min
si∈MRxi−1

||si||2

2Lh
≤ min
i=1,...,k

||∇h(Rxi−1)−∇h(xi−1)||2

2Lh
.

This leads to the following theorem, and consequently we have Theorem 6. Here, the choice of J
depends on the total number of outer iterations k, so this will be mostly useful when we are given k
in advance. We omitted here, but it is possible to modify the proof to have same complexity result
with varying number of inner iterations J(i) that increases in the order of O(log(i)).

Theorem 8. Let M (2) of the composite problem (1) satisfy Assumption A3 for some ρ ∈
[
0, 2

2L+L̂

)
,

and let f, g and ϕ satisfy Assumption A1 Then, the sequence {xk} of the SA-MGDA with projection
(for a finite J) satisfies, for k ≥ 1, τ ∈

(
ρ

2−ρL ,
1

L+L̂

)
and for any x∗ ∈ Xρ

∗ (M),

min
i=1,...,k

min
si∈MRxi−1

||si||2

2
(
1
τ + L

) ≤
6
(
1
τ + L

)
||x0 − x∗||2(

2− ρ
(
1
τ + L

))2
k

,

for J ≥
1
τ +2Lvv
1
τ −2Lvv

log

(
(k + 1)2(k + 2)(k + 3)

(
1− ρ( 1

τ +L)
2

)2
4

1−τL

)
.
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Proof. We first upper bound the term ||xi − x∗
i ||2 in the right-hand side of (14). Let us define

(uR
i ,v

R
i ) := Rxi−1.

||xi − x∗
i ||2 =

(
1

Lh
− ρ

2

)2

||∇h(x̂i)−∇h(Rxi−1)||2

≤
(
1− ρLh

2

)2

||x̂i −Rxi−1||2

=

(
1− ρLh

2

)2

||v̂i − vR
i ||2

≤
(
1− ρLh

2

)2

||vi−1 − vR
i ||2 exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
1− ρLh

2

)2

||xi−1 −Rxi−1||2 exp
(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
1− ρLh

2

)2 (
2||xi−1 − x∗||2 + 2||Rxi−1 − x∗||2

)
exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
1− ρLh

2

)2(
2||xi−1 − x∗||2 +

2Lh
µh

||xi−1 − x∗||2
)
exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
=

(
1− ρLh

2

)2
2(µh + Lh)

µh
||xi−1 − x∗||2 exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
,

where the second line uses the Lh-smoothness of h, the fourth line follows from the fact that J number

of (inner) proximal gradient ascent steps satisfy ||v̂i − vR
i || ≤ ||vi−1 − vR

i || exp
(
−

1
τ −2Lvv

2( 1
τ +2Lvv)

J

)
(by Theorem 10.29 of Beck (2017)), and the seventh line uses

||Rxi−1 − x∗||2 ≤ 2

µh
Dh(x∗,Rxi−1) ≤

2

µh
Dh(x∗,xi−1) ≤

Lh
µh

||xi−1 − x∗||2

due to the strong convexity and smoothness of h and the quasi-Bregman nonexpansivity. Then, we
have the following upper bound of the right-hand side of the inequality (14)

i+ 1

i
||x∗

i − xi−1||2 ≤ i+ 1

i
||xi−1 − x∗||2 −

i+ 2

i+ 1
||xi − x∗||2

+ (i+ 1)(i+ 2)

(
1− ρLh

2

)2
2(µh + Lh)

µh
||xi−1 − x∗||2 exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
≤
(
1 +

1

(i+ 1)(i+ 3)

)
i+ 1

i
||xi−1 − x∗||2 −

i+ 2

i+ 1
||xi − x∗||2,

where the second inequality uses J ≥
1
τ +2Lvv
1
τ −2Lvv

log

(
i(i+ 1)(i+ 2)(i+ 3)

(
1− ρLh

2

)2
2(µh+Lh)

µh

)
.

Then, by multiplying i+3
i+2 on both sides, we get

(i+ 1)(i+ 3)

i(i+ 2)
||x∗

i − xi−1||2 ≤ i+ 2

i
||xi−1 − x∗||2 −

i+ 3

i+ 1
||xi − x∗||2.

Hence, by summing over the inequalities for all i = 1, . . . , k, we get
k∑
i=1

(i+ 1)(i+ 3)

i(i+ 2)
||x∗

i − xi−1||2 ≤ 3||x0 − x∗||2 −
k + 3

k + 1
||xk − x∗||2,

and further dividing both sides by
∑k
i=1

(i+1)(i+3)
i(i+2) , we get

min
i=1,...,k

min
si∈MRxi−1

(2− ρLh)
2||si||2

4L2
h

≤ min
i=1,...,k

||x∗
i − xi−1||2 ≤ 3||x0 − x∗||2∑k

i=1
(i+1)(i+3)
i(i+2)

≤ 3||x0 − x∗||2

k
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by using the fact that ||x∗
i − xi−1||2 = (2−ρLh)

2

4L2
h

||∇h(Rxi−1)−∇h(xi−1)||2 and ∇h(Rxi−1)−
∇h(xi−1) ∈ MRxi−1.

The constraints µh > L̂ and ρLh < 2 yields τ < 1
L+L̂

and τ > ρ
2−ρL . We need ρ < 2

2L+L̂
, so that τ

exists.

E BPP AND SA GRADIENT METHODS UNDER STRONG MVI CONDITION

We also consider the strong MVI condition in (Song et al., 2020; Zhou et al., 2017). This condi-
tion is also non-monotone, and includes the µ-strong pseudomonotonicity (Nguyen & Qin, 2020)
(see (Nguyen & Qin, 2020) for examples). Let Sµ∗ (M) be the associated solution set.

Assumption A4 (Strong MVI). For some µ ≥ 0, there exists a solution x∗ ∈ X∗(M) such that

⟨x− x∗, w⟩ ≥ µ||x− x∗||2, ∀(x,w) ∈ graM .

The BPP has a linear rate under the strong MVI condition.

Theorem 9. Let M satisfy Assumptions A2 and A4 for some γ, µ ≥ 0, and h be a µh-strongly convex
and Lh-smooth Legendre function with µh > γ. Then, for k ≥ 1 and for any x∗ ∈ Sµ∗ (M), the

sequence {xk} of the BPP method (3) satisfies Dh(x∗,xk) ≤
(

2µ
Lh

+ 1
)−k

Dh(x∗,x0).

Proof. By Lemma 1, the condition µh > γ implies that Rx exists for any x. By the defini-
tion of Rx, we have ∇h(x) − ∇h(Rx) ∈ MRx. Then, Assump. A4 on M implies that
µ||x∗ −Rx||2 ≤ ⟨∇h(x)−∇h(Rx), Rx− x∗⟩ = −Dh(Rx,x) +Dh(x∗,x) −Dh(x∗,Rx).
By letting x = xi−1 and using the Lh-smoothness of h, i.e., Dh(x∗,xi) ≤ Lh

2 ||x∗ −xi||2, we have(
2µ
Lh

+ 1
)
Dh(x∗,xi) ≤ −Dh(xi,xi−1) +Dh(x∗,xi−1) ≤ Dh(x∗,xi−1).

The following theorem of the SA-GDmax method is a byproduct of Lemma 1 and Theorem 9 of the
BPP method, for a specific h in (5) that is µh-strongly convex and Lh-smooth with µh = 1

τ − L and
Lh = 1

τ + L.

Theorem 10. Let M (2) of the composite problem (1) satisfy Assump. A4 for µ ≥ 0, and let f, g and
ϕ satisfy Assump. A1. Then, for k ≥ 1, τ ∈

(
0, 1

L+L̂

)
and for any x∗ ∈ Sµ∗ (M), the sequence of the

SA-GDmax satisfies Dh(x∗,xk) ≤
(
1 + 2τµ

1+τL

)−k
Dh(x∗,x0).

Proof. The proof follows from Theorem 9 with µh > L̂.

We next analyze the SA-MGDA under the strong MVI condition. Note that the following theorem
reduces to Theorem 10 as J → ∞.

Theorem 11. Let M (2) of the composite problem (1) satisfy Assump. A4 for µ ≥ 0, and let f, g and
ϕ satisfy Assump. A1. Then, for k ≥ 1, τ ∈

(
0, 1

L+L̂

)
and for any x∗ ∈ Sµ∗ (M), the sequence of the

SA-MGDA satisfies

Dh(x∗,xk) ≤

((
1

2
+

τµ

1 + τL

)−1

+
8(1 + 3τL)(1 + τL)

(1− τL)2
exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

))k
Dh(x∗,x0).

For the proof of Theorem 11, we extend Theorem 9 of the (exact) BPP method to its inexact variant
below.

Lemma 7. Let {xk} be generated by an inexact BPP, and x∗
k := Rxk−1 be an exactly updated

point from xk−1, where xk ̸= x∗
k in general. Then, under the conditions in Theorem 9, the sequence
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{xk} satisfies, for k ≥ 1 and for any x∗ ∈ Sµ∗ (M),

Dh(x∗,xk) ≤
(
µ

Lh
+

1

2

)−k

Dh(x∗,x0)

+

k∑
i=1

(
µ

Lh
+

1

2

)−i+1(
2Lh
µh

− 1

)
Lh||xi − x∗

i ||2.

Proof. Since ∇h(xi−1)−∇h(x∗
i ) ∈ Mx∗

i , the strong MVI condition implies

µ||x∗ − x∗
i ||2 ≤ ⟨∇h(xi−1)−∇h(x∗

i ),x
∗
i − x∗⟩

= Dh(x∗,xi−1)−Dh(x∗,x
∗
i )−Dh(x

∗
i ,xi−1).

Since Dh(x∗,x
∗
i ) ≤ Lh

2 ||x∗ − x∗
i ||2, we have(

2µ

Lh
+ 1

)
Dh(x∗,x

∗
i ) ≤ Dh(x∗,xi−1)−Dh(x

∗
i ,xi−1) ≤ Dh(x∗,xi−1).

Therefore,

Dh(x∗,xi) ≤
(
2µ

Lh
+ 1

)−1

Dh(x∗,xi−1) + (Dh(x∗,xi)−Dh(x∗,x
∗
i ))

≤
(
2µ

Lh
+ 1

)−1

Dh(x∗,xi−1) +

(
η
Lh
µh

− 1

)
Dh(xi,x

∗
i ) +

1

η
Dh(x∗,xi)

≤
(
2µ

Lh
+ 1

)−1

Dh(x∗,xi−1) +

(
η
Lh
µh

− 1

)
Lh
2
||xi − x∗

i ||2 +
1

η
Dh(x∗,xi).

where the second inequality follows from (11). Then by subtracting 1
ηDh(x∗,xi) and dividing(

1− 1
η

)
both sides, we get

Dh(x∗,xi) ≤
(
1− 1

η

)−1(
2µ

Lh
+ 1

)−1

Dh(x∗,xi−1) +

(
1− 1

η

)−1(
η
Lh
µh

− 1

)
Lh
2
||xi − x∗

i ||2.

(15)

Then the result follows directly by taking η = 2 and recursively applying the inequalities for all
i = 1, . . . , k.

Then, similar to the proof of Theorem 5 in Appendix D.1, we get

Dh(x∗,xi) ≤
(
µ

Lh
+

1

2

)−1

Dh(x∗,xi−1) +

(
2Lh
µh

− 1

)
Lh||xi − x∗

i ||2

≤
(
µ

Lh
+

1

2

)−1

Dh(x∗,xi−1) +

(
2Lh
µh

− 1

)
8Lh
µh

Dh(x∗,xi−1) exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

)
=

((
µ

Lh
+

1

2

)−1

+

(
2Lh
µh

− 1

)
8Lh
µh

exp

(
−

1
τ − 2Lvv

1
τ + 2Lvv

J

))
Dh(x∗,xi−1),

where the first inequality is (15) by taking η = 2. Then the result follows directly by recursively
applying the inequalities for all i = 1, . . . , k. By Theorem 11, we have the following corollary.
Corollary 1. Under the conditions in Theorem 11, the SA-MGDA method achieves Dh(x∗,xk) ≤ ϵ
with k = O(log

(
ϵ−1
)
) number of outer iterations and J = O(1) number of inner iterations,

requiring total O(log
(
ϵ−1
)
) gradient computations.
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F DETAILS OF THE STRUCTURE OF THE NEURAL NETWORK

Layer Type Shape

Convolution + tanh 3 × 3 × 5
Max Pooling 2 × 2
Convolution 3 × 3 × 10
Max Pooling 2 × 2
Fully Connected + tanh 250
Fully Connected + tanh 100
Softmax 3

Table 2: Details of the Structure of the Neural Network
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