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Abstract

Recent studies have exposed the substantial vulnerability of voice-activated smart devices to
adversarial examples, predominantly targeting the robustness of automatic speech recogni-
tion (ASR) systems. Most of adversarial examples are generated by introducing adversarial
perturbations within the lp norm bounds to benign audio inputs. However, these attacks
are constrained by the parametric bounds of perturbations or the features of disturbance,
which limits their effectiveness. To improve the acoustic realism of adversarial examples
and enhance attack performance, we propose a novel attack framework called Diffusion-
based Adversarial Attack. By leveraging DiffVC, a diffusion-based voice conversion model,
to map audio into a latent space and employing Adversarial Latent Perturbation (ALP),
we manage to achieve robust and imperceptible adversarial perturbations embedding. Ex-
tensive evaluations demonstrate that our method enhances targeted attack performance.
Specifically, our method has remarkably achieved a Word Error Rate (WER) of 103.7%,
alongside a Success Rate (SR) of 99%, demonstrating a notable improvements of 25% and
11% respectively over the state-of-the-art attack. Additionally, our approach also stands
out for its high audio quality and efficiency.

Keywords: Trustworthy Machine Learning; Adversarial Examples; Automatic Speech
Recognition; Voice Conversion; Deep Learning; Machine Learning.

1. Introduction

In recent years, deep neural networks (DNNs) have achieved remarkable progress in vari-
ous fields, notably as natural language processing (NLP) Zhang et al. (2020), autonomous
driving Liu et al. (2024), and speech recognition Prabhavalkar et al. (2023). Despite their
tremendous success, DNNs are vulnerable to adversarial attacks Goodfellow et al. (2015).
These attacks inject imperceptible perturbations to the input data, which can cause the
model to produce incorrect outputs or misclassify the data. Our work primarily fo-
cuses on the automatic speech recognition (ASR) domain, as adversarial attacks
present challenges to the security and reliability of speech-related applications.
Attackers can craft and inject malicious speech commands that can lead to severe secu-
rity and safety consequences, including economic damages Samuel et al. (2020), health
risks Venkatraman et al. (2021), and even physical harm Sugawara et al. (2020).

To investigate the threats posed by audio adversarial examples, extensive works Carlini
and Wagner (2017, 2018); Qin et al. (2019); Chen et al. (2020); Zheng et al. (2021) have
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Figure 1: Pipeline of Diffusion-based Adversarial Attack. Firstly, we use Diffusion-Based
Voice Conversion Model to construct latent space. Next, Adversarial Latent Perturbation
is used to generate adversarial examples. Eventually, the generated adversarial examples
can fool the ASR model.

proposed various methods. In order to maintain human acoustic imperceptibility and re-
alism, most of these work introduce adversarial perturbations within the constraint of lp
norm , thereby restricting the distance between the adversarial audio and benign audio.
However, this approach may overly constrain the perturbations, limiting the effectiveness
of adversarial attacks. To address this gap, Qu et al. (2022) proposed a method named
Speech Synthesizing Attack (SSA) to optimize the audio style vector z in the CVAE model
Kim et al. (2021) for the first time, which controls the pitches and rhythms of synthesized
waveforms, fooling the ASR model to transcribe incorrectly or even transcribe to a given
target text. However, they found that some synthesized adversarial audios do not sound as
natural as those original synthesized audios, which needs efforts to enhance the quality of
adversarial audio synthesis.

Considerable efforts have made in the aforementioned works, several major challenges
still remain in generating realistic yet deceptive audio adversarial examples. 1) Challenges
in balancing the Audio Quality and Attack Efficiency. Despite efforts to maintain
audio quality, adversarial perturbations often introduce audible artifacts or distortions,
degrading the attack’s effectiveness against human perception. To elevate the fidelity of
adversarial audio, it is imperative to allocate additional computational resources and time
in optimizing adversarial perturbations. 2) Dependence on existing audio. Most audio
adversarial examples are typically audio dependent attack (ADA), requiring construction
based on existing benign audio samples. In cases where the human speaker or the orig-
inal benign audio is unavailable, these attacks become not accessible. Mitigating above
limitations is critical for developing more robust audio adversarial attacks and effective
countermeasures.

To tackle that aforementioned challenges, we propose a novel adversarial attack called
“Diffusion-based Adversarial Attack”, which enables imperceptible and robust perturba-
tions injection in the latent space that covering all aspects of audio information. As shown
in Figure 1, we first map audios onto a low-dimensional manifold using a advanced diffusion-
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based voice conversion model, ensuring high-quality conversion that maintains speaker sim-
ilarity and speech naturalness, even for unseen speakers. Within this latent space, multiple
features enable the generation of diverse and natural-sounding adversarial audios. By opti-
mizing the adversarial objective through Adversarial Latent Perturbation (ALP), we enrich
the audios with a diverse range of potent adversarial features, enhancing the attack perfor-
mance without compromising the audio’s naturalness. Moreover, a novel sampling scheme
accelerates synthesis, guided by gradient descent for rapid adversarial attack. Our method
integrates advanced modeling with adversarial optimization, enhancing the generation of
high-fidelity, effective adversarial audios. In conclusion, our contributions can be summa-
rized as follows:

• We propose a novel audio independent adversarial attack framework called Diffusion-
based Adversarial Attack, which utilizes high-capacity and low-dimensional manifolds
to generate more diverse and natural adversarial audios. To the best of our knowledge,
our framework is the first to employ a diffusion-based model for generating adversarial
audio examples.

• We present the Adversarial Latent Perturbation, that add perturbations in the latent
space which contains diverse features. By utilizing Adversarial Latent Optimiza-
tion and Skip Gradient method, we optimize perturbations in the latent space,
rapidly generating realistic yet deceptive adversarial audios.

• Our attack’s efficacy has been validated through extensive experiments on the state-
of-the-art (SOTA) ASR model, Whisper. Notably, we have achieved an average im-
provement in WER ranging from 3 to 25 absolute points and in SR ranging from 11
to 16 absolute points, surpassing the performance of previous attacks. By enhancing
audio quality and optimizing attack efficiency, our approach successfully generates
high-quality adversarial audios within a short time.

2. Related Works and Background

2.1. Adversarial Attack on ASR Model

Adversarial examples are purposefully crafted alterations to input data that can lead clas-
sifiers to misclassify them. In the realm of speech recognition, these examples serve as a
critical tool for evaluating the robustness of speech processing systems. A variety of meth-
ods have been proposed for generating such examples, which can be generally categorized
into the following types:

2.1.1. Audio Dependent Attack.

Audio adversarial examples which are constructed depending on existing benign audios can
be deemed as Audio Dependent Attack (ADA). These attacks are designed on the principle
that adversarial perturbations must be imperceptible to human perception to preserve the
semantic integrity of the audio while significantly deceiving automatic speech recognition
(ASR) models. A great deal of methods Carlini and Wagner (2018); Qin et al. (2019); Silver
et al. (2017); Song et al. (2018) have been developed under this framework, assuming that
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the perturbations can be constrained to be as unnoticeable as possible. For example, a
psychoacoustic rule of auditory masking Qin et al. (2019) is employed to add perturbations
in regions that are least perceptible to human hearing. However, ADAs are contingent upon
the availability of benign audios, which may not always be feasible in practical scenarios
where the original human speaker or audio is inaccessible. Furthermore, the perturbation
principle underlying the ADA approach requires the introduced perturbations be rigorously
constrained to evade detection by human perception. This constraint is essential to ensure
the efficacy of the adversarial attack while preserving the naturalness of the audio. How-
ever, the reliance on imperceptibility and the dependency on benign audios highlight the
limitations and challenges of ADA in real-world applications.

2.1.2. Audio Independent Attack.

Distinct from Audio Dependent Attacks (ADAs) that necessitate access to specific audio
input, Audio Inependent Attacks (AIAs) operate on the principle that any audio capable
of deceiving ASR models while remaining imperceptible to humans poses a security threat
within the domain of voice recognition. Unlike ADA, AIA enables a novel threat model
that generates adversarial audio from the scratch, bypassing the need to add perturba-
tions to benign audios. The majority of these unrestricted adversarial attacks have been
concentrated within the image domain, as evidenced by studies Shi et al. (2022). Carlini
and Wagner’s work Carlini and Wagner (2018) explored an audio attack that initiates from
non-speech sources, such as classical music, while still necessitates the use of existing audio
to apply perturbations. Similarly, the research conducted by Roy et al. (2018) introduced
methods to inaudibly modulate voice commands onto ultrasonic frequencies, enabling silent
adversarial control over voice command systems. In contrast to prior works, SSA Qu et al.
(2022), leveraging advances in neural speech synthesis, directly synthesizes adversarial au-
dio that retains the intended semantic content and effectively deceives ASR models into
producing incorrect or targeted transcriptions. This novel approach not only mitigates the
limitations of ADA by eliminating the reliance on benign audios but also broadens the scope
of adversarial attacks within speech recognition systems. However, this method only choose
the audio style vector, which controls the pitches and rhythms of synthesised waveform, for
minor modifications, rather than altering all features. Yet, it will sacrifices the flexibility
and attack performance of AIA.

2.2. Whisper ASR Model

Whisper ASR model is a transforner sequence-to-sequence model trained on very large
amounts of supervised data, which achieve very impressive robustness against noise and
out-of-distribution data. It has enabled a range of applications, including captioning, trans-
lation, and audio analysis, across various industries and domains. However, Olivier and Raj
(2022) show that Whisper model is vulnerable to white-box adversarial attacks. Based on
this, we also conduct adversarial attacks on the Whisper model. In contrast to previous
automatic speech recognition (ASR) models that utilize the Connectionist Temporal Clas-
sification (CTC) loss, the Whisper model employs the Cross-Entropy (CE) loss between its
predictions and ground truth text transcriptions. Through this CE loss, the model implic-
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itly learns to align its token predictions with the corresponding labels, circumventing the
need for explicit alignment mechanisms.

3. Method

3.1. Problem Definition

Given a clean source voice X and a target voice Y , attackers aim to construct an adversarial
voice X̂ that is naturally sounded but able to deceive well trained ASR model F(·) in
predicting targeted transcription yt:

F(Attack(X )) = F(X̂ ) = yt, (1)

where

X̂ = DiffVC (C (X ),S (Y )) (2)

Here, Attack(·) is the attack approach, while C (·) and S (·) denote the extraction of
linguistic information and acoustic information from the voice, respectively. Notice that
equaption (2) implies that X̂ generated by DiffVC model contains the linguistic information
from the source speech and the acoustic information from the target speech.

Different from previous attacks that apply lp norm to constraints audio perturbation
values on raw waveform (∥δ∥p < ϵ, where δ is the perturbation and ϵ is a small positive
constant), we add perturbations in latent space of the diffusion model and exploit the
properties of the diffusion model to generate acoustically natural and successful adversarial
attacks. We elaborate on our approach in the following paragraphs.

3.2. Diffusion-Based Adversarial Attack

We observe that perturbations in the latent space are less perceptible and more robust,
which makes it an ideal candidate for launching adversarial attacks. In order to achieve the
latent-based adversarial attack above-mentioned, known as Diffusion-based Adversarial
Attack, we propose to first leverage DiffVC, which implements Diffusion-Based Voice
Conversion to map audios onto a low-dimensional manifold that represents the feature
latent space covering all aspects of audio information. Then, we propose an Adversarial
Latent Perturbation (ALP), as shown in Figure 1, through the interaction of generative
model and ASR models to embed perturbations in the latent space. By the joint optimiza-
tion of perturbations and signed gradients, we generate realistic yet deceptive adversarial
audios.

3.2.1. Diffusion-Based Voice Conversion.

We use DiffVC proposed by Popov et al. (2021) for efficient synthesis of high-quality speech.
In practical, DiffVC employs an encoder to parameterize the terminal distribution of the
forward diffusion, extracting linguistic content from the source speech X to predict average
voice features X̄ . The reverse diffusion is parameterized with the decoder, which generates
speech with the target voice Y conditioning using the encoded content, enabling the model



Wang Luo Qiu Liu Fu

to adapt to new voices from a single reference. The forward and reverse processes can be
represented by the following Stochastic Differential Equations (SDEs):

dXt =
1

2
βt(X̄ −Xt)dt +

√
βtd

−→
Wt, (3)

dX̂t = (
1

2
(X̄ − X̂t)− sθ(X̂t, X̄, gt(Y ), t))βtdt+

√
βtd

←−
Wt, (4)

where t ∈ [0,1],
−→
Wt and

←−
Wt are independent Wiener processes, βt is noise schedule, sθ

is the score function with parameters θ.

With a well-trained reverse diffusion process, its trajectories closely approximate the
forward diffusion process. Consequently, data generation can be achieved by sampling x̂1
from the prior distribution N (x̄, I) and solving the stochastic differential equation (SDE) (4)
in reverse time. In this way, we can sample x̂t−h from the reverse SDE solvers:

X̂t−h = X̂t + βth

((
1

2
+ ω̂t,h

)
(X̂t − X̄) + (1 + κ̂t,h)sθ(X̂t, X̄, gt(Y ), t)

)
+ σ̂t,hξt, (5)

where t = {1, 1−h, .., h}, h = 1/N , (N ∈ N is the number of SDE solver steps) and ξt are
i.i.d. samples from N (0, I). The score function sθ conditioned on the speaker conditioning
network gt(Y ), is trained to approximate gradient of the log-density of noisy data Xt. For
κ̂t,h, ω̂t,h, σ̂t,h, the described derivation process was introduced in Popov et al. (2022).

3.2.2. Adversarial Latent Perturbation.

An ideal AIA attack should ensure the acoustic realism and semantic integrity of adversarial
examples, exhibits diverse adversarial audio features, and demonstrate potential attack
performance. In light of the current absence of comprehensive strategies, we propose an
audio independent Latent-based attack called Adversarial Latent Perturbation (ALP).

Design Intuition. Extensive research Pope et al. (2021); Shamir et al. (2021) have re-
vealed and verified that real-world data distribution can be described by low dimensional
manifold. Such manifolds facilitate the learning process for neural networks, enabling them
to construct complex decision boundaries from a relatively small set of training examples.
When a well-trained model captures the essence of natural audios on these low-dimensional
manifolds, it inherently ensures the realism of the synthesized audios and retains the rich-
ness of content, including acoustic and linguistic features. By projecting an audio onto this
low-dimensional manifold, moving it along the adversarial direction on the manifold with
accurate gradient descent guidance, the direct search method efficiently yields an adversar-
ial audio. Moreover, since ASR systems also conform to the distribution of these manifolds,
adversarial examples crafted along the manifold have more adversarial features and and
exhibit enhanced attack performance, as shown in Figure 2.

Design Overview. To mitigate perceptible disturbances in the audio latent space while
enhancing the efficiency of adversarial attack, we add perturbations and propose an opti-
mization method named Adversarial Latent Optimization . After the input source voice
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Figure 2: Adversarial examples generated by AIA and ADA, donated as x1adv and x2adv.
AIA generate adversarial example x1adv along the adversarial direction of the acoustic man-
ifold and remain within the distribution of the original audio data. In contrast, adversarial
examples x2adv generated by ADA falls out-of-distribution. Our attack (orange arrow) can
manipulate attack in the low-dimensional manifold of natural audios, which combine acous-
tic and linguistic sub-manifold.

is converted into an ‘average voice’ through the forward diffusion process, the resulting ‘av-
erage voice’ mel-spectrograms preserve the semantic information of the synthesized audio,
while the speaker conditioning network gt(·) contains the acoustic information, ensuring
the speaker similarity and speech naturalness of the audio. Considering that X̂1 ∼ N (0, I)
substantially contain both the acoustic features and linguistic features in the latent space,
we determine to perturb it to enrich adversarial examples with a spectrum of deceptive fea-
tures, such as pitch, rhythm, and semantics, thereby enhancing attack performance. With
Skip Gradient , we calculate signed gradients which provides the adversarial direction,
and manipulate Adversarial Latent Perturbation. The algorithm for ALP is presented in
Algorithm 1, and we integrate the diffusion-based voice conversion model to design the
optimization methods.

Adversarial Latent Optimization. Based on the average mel-spectrogram x̄ by the
encoder φ(·), the reverse denoising process of DiffVC can be defined as D(·) through equa-
tion (5), and it involves t iterations:

D(X̂1, {gt(Y )}1t=0, X̄, 1) = X̂0(X̂h(..., (X̂1−h,g1−h(Y ), 1− h),

..., gh(Y ), h), g0(Y ), 0),
(6)

Therefore, the synthesis audio is indicated by X̂0 = D(X̂1, {gt(Y )}1t=0, X̄, 1). Combined
with equaption (1), the optimization of adversarial latent can be defined as fellows:

min
δ

L
(
F(X̂∗0 ), yt

)
, s.t.||δ||∞ ≤ κ, (7)

where

X̂∗0 = D(X̂1 + δ, {gt(Y )}1t=0, X̄, 1) = X̂∗0 and X̂∗0 sounds natural, (8)

Here, δ represents the adversarial perturbation on the latent space. Once perturbation
has been integrated, we subsequently refine the initial estimate X̂0 to X̂∗0 , denoting the
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audio adversarial examples. To achieve our objective of generating natural-sounding audio
and misleading ASR model into incorrect transcriptions, we formulate our loss function of
two parts: i) cross-entropy loss Lce, which is used in the training process of the Whisper
model. Thus, adversarial examples optimized with Lce will guide the Whisper model toward
misclassification. ii) mel-spectrogram loss Lmel mainly guides to minimize the l1 norm
distance between the mel-spectrograms of the generated adversarial examples X̂∗0 and those
of the clean synthesis audio X̂0. Consequently, the total loss function L is formulated as
follows:

L(F(X̂∗0 ), yt, X̂0) = Lce(F(X̂∗0 ), yt))− β · Lmel(X̂
∗
0 , X̂0), (9)

where

Lmel(X̂
∗
0 , X̂0) = ||ϕ(X̂0)− ϕ(X̂∗0 )||1 (10)

In this context, Lmel is controlled by β, and ϕ denotes the function that converts audio
into the corresponding mel-spectrogram.

Similar to most of adversarial attacks, we use the sign gradient descent approach to

estimate δ through: δ ≃ α∇X̂∗1
L
(
F(X̂∗0 ), yt

)
, in which α represents the magnitude of

perturbations directed by the gradient. Additionally, to maintain the congruence between
X̂0 and X̂∗0 , we constrain α in the l∞-ball of radius ϵ. Specifically, if the perturbation δ
exceeds the threshold ϵ in optimization steps, it will be projected back onto the boundary of

the ball to ensure that ||δ||∞ ≤ ϵ. The gradient δ ≃ α∇X̂∗1
L
(
F(X̂∗0 ), yt

)
can be expanded

by the chain rule as follows:

∇X̂∗1
L
(
F(X̂∗0 ), y

)
=

∂L
∂X̂∗0

· ∂X̂
∗
0

∂X̂∗h
·
∂X̂∗h
∂X̂∗2h

· · ·
∂X̂∗1−h

∂X̂∗1
. (11)

Skip Gradient. For a complete denoising process that encompasses T sequential calcula-
tion graph, the direct computation of gradients is unfeasible due to GPU memory overflow.
However, this challenge can be addressed through the adoption of a skip-gradient method,
which was originally proposed in Chen et al. (2024).

The entire calculation graph consists of two primary parts. The initial segment, de-
noted by ∂L

∂X̂∗0
represents the gradient of the classifier’s loss function with respect to the

reconstructed mel-spectrogram X̂∗0 , and it specifies the direction of the adversarial gradi-
ent. Following this, the subsequent component involves the computation of the iterative

product
∂X̂∗t
∂X̂∗t+1

, which corresponds to the backpropagation process through the generative

model. This process approximate
∂X̂∗0
∂X̂∗1

=
∂X̂∗0
∂X̂∗h

· ∂X̂∗h
∂X̂∗2h

··· ∂X̂
∗
1−h

∂X̂∗1
employing a skip gradient strat-

egy to mitigate the gradient issue. In diffusion process, the denoising process is designed
to eliminate the Gaussian noise introduced during sampling Song et al. (2020). Denoting

ᾱt = γ0,t and β̄t =
√
1− γ20,t, the Stochastic Differential Equation (SDE) framework re-

sembles Denoising Diffusion Implicit Models (DDIM), enabling the closed-form sampling of
Xt at any arbitrary time step t through the reparameterization trick:

Xt = ᾱtX0 + β̄tε, ε ∼ N (0, I). (12)
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Subsequently, we execute a transformation by rearranging equation (12), yielding the

expression X0 =
1
ᾱt

Xt− β̄t

ᾱt
ε. As the timestep t approaches to 1, we deduce that lim

t→1

∂X̂∗0
∂X̂∗1

=

lim
t→1

1
ᾱt

≈ ρ, where ρ is a constant. This approximation results in a simplified gradient

for the denoising process, given by ∇X̂∗1
L
(
F(X̂∗0 ), y

)
= ρ ∂L

∂X̂∗0
, which significantly reduces

computational complexity and memory usage. Consequently, the gradient can be efficiently
computed using the loss function evaluated with respect to the adversarial audio X̂∗0 .

Algorithm 1 Diffusion-Based Adversarial Attack

Input: source voice X, target voice Y , target transcription yt, average voice encoder φ(·), speaker condi-
tioning network gt(·), ASR model F(·), SDE solver steps N , attack iterations Na, and momentum factor
µ

1: Calculate X̄ by average voice encoder φ(X)
2: Initialize h = 1/N, δ0 ← 0, g0 ← 0
3: // Diffusion-Based Voice Conversion
4: for t = 1, 1− h, . . . , h do

5: dX̂t = ( 1
2
(X̄ − X̂t)− sθ(X̂t, X̄, gt(Y ), t))βtdt+

√
βtd

←−
Wt

6: X̂t−h ← X̂t − dX̂t

7: end for
8: // Adversarial Latent Perturbation
9: for k = 1, . . . , Na do
10: X̂∗0 ← D(X̂1 + δ, {gt(Y )}1t=0, X̄, 1)

11: ∇X̂∗
1
L
(
F(X̂∗0 ), y

)
← ρ ∂L

∂X̂∗
0

12: gk ← µ · gk−1 +
∇

X̂∗
1
L(F(X̂∗

0 ,y))

||∇
X̂∗

1
L(F(X̂∗

0 ,y))||1

13: δk ←
∏

κ (δk−1 + η · sign(gk))
14: end for
Output: The high-quality audio adversarial examples X̂∗0 .

4. Experiments

4.1. Experiments Setup

4.1.1. Datasets.

In our experiments, we employ the LibriSpeech dataset, a comprehensive corpus of 1,000
hours of audiobooks designed for speech recognition and voice conversion tasks. This dataset
is split into three subsets: a 100-hour set, a 360-hour set, and a 500-hour set, which col-
lectively facilitate a broad spectrum of research applications. We utilize the test-clean-100
subset for our voice conversion attacks.

4.1.2. Models.

In our attack framework, DiffVC and the Whisper models are utilized as voice conversion
synthesizers and speech recogniser, respectively. The DiffVC model trained on Librispeech
datasets, is capable of high-quality voice conversion with 30 reverse diffusion steps. The
speaker conditioning network is set to the wodyn type to condition the decoder at time t
with the noisy target mel-spectrogram Yt. And the Whisper model includes 5 model sizes:
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tiny (39M parameters) to large (1550M). Constrained by the device, we only implement
our attack on tiny to medium (769M). In practical, we use the Whisper inference package,
and follows the loss computation functions in Olivier and Raj (2022). More details about
the package provided by OpenAI are available at the provided link1. Radford et al. (2023)
have demonstrated that the Whisper model achieves accuracy on speech recognition and
translation that is comparable to other state-of-the-art systems, such as DeepSpeech, thus
the success of our method on the Whisper model suggests that it would likely perform well
on other ASR models as well.

4.1.3. Experiment Settings.

Our experiments using an NVIDIA GeForce RTX 4090 GPU with Pytorch. SDE solver
steps N = 30, attack iterations Na = 100, β = 0.2, η = 0.02, κ = 0.1, and µ = 1.

4.1.4. Evaluation Metrics.

We will evaluate our approach from three perspectives: attack effectiveness, efficiency, and
the quality of adversarial examples generated. In terms of attack effectiveness, since our
method belongs to the category of targeted attacks, we evaluate it with the Word Error Rate
(WER) and Success Rate (SR) metrics. Regarding attack efficiency, we intend to measure
this by the time consumed per attack or the number of iterations required. Finally, for the
assessment of adversarial sample quality, we will employ the Mean Opinion Score (MOS)
to evaluate the quality of the generated adversarial audio.

4.2. Attack on Fixed Target Text

To illustrate the superiority of our proposed attack method, we conduct two parts of ex-
periments. For the first part, we choose 100 audio samples as source speakers and perform
voice conversion with the same single target speaker to execute the adversarial attack. The
objective of our attacks is to deceive recognition systems, with the C&W attack and the
ALP targeting the Whisper model, and the SSA focusing on the DeepSpeech model. The
targeted text for these attacks is explicitly defined as: ‘OK, Google. Browse to evil.com.’.
From the experiments presented in this section, it is evident that our attack possesses
significant advantages over the baseline work in terms of attack effectiveness, adversarial
examples synthesis quality, and attack speed.

4.2.1. Targeted Attack Performance.

We found that ALP attack shows remarkable performance in terms of WER and SR on
the fixed target text. Specifically, our method is largely successful in degrading the perfor-
mance of all Whisper models, by 103.7% and 99% regarding WER and SR respectively,
significantly outperforming the baselines. The detailed results of our method and com-
parisons with baselines are presented in Table 1. Our approach demonstrates a relative
increase in WER ranging from 5% to 94% under the C&W attack, and 3% under the SSA.
Furthermore, the SR has achieved a relative increase of 5% to 30% over the C&W attack
and 19% over the SSA. Notably, the Whisper model is considered more advanced than the

1. https://github.com/openai/whisper
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Table 1: Targeted attack results of ALP on the librispeech dataset and comparisons with
baselines.

Model Params.
Clean
WER

C&W ALP(Ours) SSA
Model

WER↑ SR WER↑ SR WER↑ SR

tiny.en 39M 3.4% 94.1% 100%

103.7% 99% 100.7% 83%
Deep
Speech

base.en 74M 3.0% 98.3% 94%
small.en 244M 1.9% 66.0% 82%

medium.en 796M 1.7% 53.2% 76%

Average 2.5% 77.9% 88%

DeepSpeech model. Given our attack’s strong performance against the Whisper model, we
anticipate that it would also exhibit superior efficacy against the DeepSpeech model.

4.2.2. Quality Evaluation Comparison.

Despite constrained perturbations in the latent space, the synthesized adversarial examples
maintain acoustic realism. In our experiments, we subjected 100 source audios to adversarial
voice conversion, discovering that our attack is universally applicable across different speak-
ers. As depicted in Figure 3, our attack leverages the strengths of both the SSA attack and
C&W attack. The waveforms produced by our ALP attack retain the fundamental shape of
high-quality original synthetic audio, enabling a natural auditory perception. Moreover, our
adversarial audio significantly differs from the C&W approach, which is limited to minor
perturbations. The ALP attack surpasses this constraint, offering enhanced optimization
capabilities.
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Figure 3: The comparison on waveforms between the baselines and our ALP.

Furthermore, Figure 4 presents mel-spectrograms synthesized before and after our ad-
versarial attack, illustrating the higher quality of the adversarial examples. The figure
demonstrates that the introduction of noise during mel-spectrogram generation does not
markedly distort the synthesized mel-spectrogram, ensuring minimal alteration of audio
features and preserving the naturalness of the adversarial samples.
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Figure 4: Mel-spectrogram of adversarial audio and original synthetic audio

Additionally, we conducted Mean Opinion Score (MOS) tests to further assess the qual-
ity of the synthesized adversarial audios. Fifty participants rated 50 pairs of audio samples,
each consisting of the original audio synthesized by DiffVC and its corresponding adversar-
ial audio generated by our ALP attack. The participants listened to the audio samples in a
randomized order and rated them on a scale from 1 to 5. The MOS results, detailed in Ta-
ble 2, indicate that our ALP attack’s MOS score (3.75) closely matches the original synthesis
(3.96), showcasing the robust generative capacity of our diffusion model. Furthermore, our
attack’s MOS surpasses that of the baseline SSA attack.

Table 2: The MOS comparison between original and adversarial synthesised audios.

Type of audios MOS

ALP
Before Attack (original synthesised audios) 3.96
After Attack (ALP synthesised audios) 3.75

SSA
Before Attack (original synthesised audios) 4.09
After Attack (SSA synthesised audios) 3.39

4.2.3. Time Consuming.

In this section, we discuss the attack speed of our work. Leveraging a diffusion-based
voice conversion model enhanced by a novel sampling scheme, we significantly accelerate
the synthesis process. As depicted in Table 3, ALP attack demonstrates a substantially
reduced computational time compared to the SSA attack, which requires 8000 iterations,
and the C&W attack, which involves minutes of computation. On average, the ALP attack
requires only 35.21 seconds, underscoring its efficiency.

Table 3: Attack speed of ALP for different Whisper types and comparisons with baselines.

Attack
Time(sec)

Attack
tiny.en base.en small.en medium.en DeepSpeech

C&W 51.32 98.60 145.74 498.53
1554 SSA

ALP(Ours) 35.21 75.33 95.11 137.21
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Table 4: Time consuming and MOS with different perturbation constraint values.

Perturbation 0.1 0.25 0.5

Time Consuming (sec) 75.33 74.51 75.18

MOS 3.75 3.52 3.21

4.2.4. Perturbation Analysis.

We have experiments with different perturbation constraint values on the Whisper small.en
model, specifically 0.1, 0.25, and 0.5. Table 4 indicate that different perturbation ranges
minimally affects the time consumption for the attack but significantly impacts the Mean
Opinion Score (MOS) values. This could be attributed to the fact that minor changes in
the latent space can lead to substantial alterations in the synthesized audio. To ensure the
authenticity of the synthesized audio, we have limited the perturbations to a range below
0.1.

4.3. Attack on Multiple Target Text

To explore the impact of different source and target speakers on the performance of our
attack, we design following experiments.

For this part, we select 10 distinct source voices and 10 target voices. The source
and target voices are paired to synthesize 100 adversarial audios, targeting the Whisper
base.en model. Adversarial audios are generated to replicate the source speaker’s semantic
content and are aligned with the target voice’s. This experiments show the robustness of
our approach across a diverse spectrum of speakers. Furthermore, by aligning with the
target audio’s semantic content, we demonstrate our attack method’s flexibility in various
target text length.

By analyzing the Word Error Rate (WER) across varying text lengths for both source
and target speaker audios during targeted attacks, we derived Figure 5. The figure shows
that the WER reach up to 247% when the conditional text is 49 words and the target text
19 words, and it declines as the length of the conditional text shortens. This suggests that
longer conditional texts will enrich more information in the style latent and content spaces
of the synthesized speech, allow for a broader spectrum of acoustic and linguistic features
to be perturbed, making it easier to achieve the attack objective. Conversely, when the
target text becomes longer, it will increase in the distance between the conditional text
and the target text, thereby degrades attack performance. This observation indicates that
while the method remains effective across various lengths, the optimal balance between
the lengths of the conditional and target texts is pivotal for maximizing the attack perfor-
mance. Therefore, an optimal text length ratio between the source and target texts is key
to enhancing attack performance.Importantly, our analysis also reveals that even when the
WER is minimized, it remains significantly high at around 100%. This finding confirms the
effectiveness of our attack, proving that with just a few seconds of the victim’s audio, we
can still effectively execute attacks on extended speech content.

Moreover, we investigated the execution time of our attacks and found a positive corre-
lation between audio length and the time required, as shown in Figure 6. Although longer
audio segments increase the duration due to a wider search space for perturbation, the non-



Wang Luo Qiu Liu Fu

Figure 5: WER with different conditional
text length and target text length

Figure 6: Adversarial synthesis time to
different source and target audio dura-
tions

linear correlation implies that attack complexity does not increase uniformly with audio
length. This insight imply that optimizing audio length can provide more opportunities for
perturbation, potentially makes our attacks easier to execute.

In summary, our comprehensive analysis underscores the nuanced interplay between
text length, audio duration, and attack performance. It highlights the methodical approach
required to fine-tune attacks for maximum efficacy, confirming the versatility and potency
of our attack methodology across a spectrum of conditions.

5. Conclusion

In this paper, we propose an audio adversarial attack framework called Diffusion-based
Adversarial Attack. We introduce adversarial perturbations within the feature latent space
of the diffusion-based voice conversion process to synthesize natural-sounding adversarial
samples. By moving the latents along the adversarial gradients during audio synthesis, we
are able to generate adversarial voices. Building upon this concept and leveraging diffusion
models, we have implemented the Adversarial Latent Perturbation (ALP). Our experiments
further demonstrate the superiority of our approach in terms of attack effectiveness, audio
synthesis quality, and time efficiency. With the development of diffusion-based generative
models, we anticipate a continuous improvement in the quality of synthesized adversarial
voice samples and a reduction in computational costs. The availability of high-quality adver-
sarial samples at a low cost presents convenience for attackers and raises concerns regarding
the security of Automatic Speech Recognition (ASR) models. In the following research, we
will focus on the security and robustness of ASR models in real-world applications.
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