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Abstract001

Dialogue Policy (DP) is pivotal in Task-002
Oriented Dialogue (TOD), and Reinforcement003
Learning (RL) has shown good effectiveness in004
training DP scenarios. However, RL-based DPs005
encounter challenges in composite tasks with006
domain dependencies, which involve managing007
interrelated subtasks across various domains.008
In particular, the Proximal Policy Optimiza-009
tion (PPO) algorithm, as an efficient, stable,010
and user-friendly RL algorithm, is gradually011
becoming the preferred tool for solving com-012
plex reinforcement learning tasks; meanwhile,013
Large Language Models (LLMs) have shown014
a profound understanding of common sense015
content across various domains. Therefore, we016
propose the integration of LLMs with an en-017
hanced PPO method to tackle composite tasks,018
which we term the LLM Feedback Domain019
Dependent Policy (LLM-DDP). Improving the020
capability of TOD systems to address domain-021
dependent issues is achieved by integrating the022
domain prioritization logic of LLMs into the023
actor-critic framework of PPO. Furthermore,024
we introduce a domain-driven critic loss func-025
tion, which enhances the policy network’s abil-026
ity to incorporate domain prioritization logic.027
In the MultiWOZ 2.1 dataset, with identical028
parameter configurations and dialogue turns,029
our study achieved superior performance and030
validated the efficacy of the proposed method-031
ology.032

1 Introduction033

Task-Oriented Dialogue (TOD) is a type of dia-034

logue system designed to facilitate the completion035

of specific tasks or actions. It emphasizes the ef-036

ficiency and accuracy of user interactions, with037

the aim of achieving the desired outcomes with038

the fewest number of sessions. Over the years of039

development, numerous outstanding systems have040

emerged in the field of task-oriented multi-turn dia-041

logue, such as LaMDA, Senseforth, and Cognigy.042

TOD systems typically adopt two structural 043

paradigms: end-to-end and pipeline architectures. 044

End-to-end TOD adopts an approach of holistic 045

system modeling. However, due to the model’s 046

inherent black-box nature, its decision-making pro- 047

cesses and generated responses may be difficult to 048

control, improve, and optimize. In contrast, the 049

pipeline architecture composed of individual mod- 050

ules enables researchers to take advantage of di- 051

verse technical means to improve the efficiency 052

of development and debugging processes. The ar- 053

chitectural pipeline of a TOD system is primarily 054

constituted by four core components: Natural Lan- 055

guage Understanding (NLU) (Wang et al., 2022; 056

Mirza et al., 2024), Dialogue State Tracking (DST) 057

(Balaraman et al., 2021), Dialogue Policy (DP) and 058

Natural Language Generation (NLG) (Ohashi and 059

Higashinaka, 2022a). The DP module plays a cru- 060

cial role in TOD. It is responsible for making flexi- 061

ble and reasonable decisions regarding the system’s 062

next actions based on the current dialogue state, 063

which includes aspects such as user requirements, 064

provided information, and the progress of the task. 065

This aims to optimize the dialogue process, im- 066

prove task completion efficiency, and balance user 067

satisfaction. 068

Dialogue tasks can be categorized into three 069

types according to their complexity and domain 070

scope: single domain tasks, multi-domain tasks, 071

and composite tasks (Balaraman and Magnini, 072

2021; Peng et al., 2017). Single-domain tasks, such 073

as weather inquiries, relate to a single domain of 074

expertise. Multi-domain tasks, on the other hand, 075

involve the system managing multiple tasks concur- 076

rently, such as providing news updates and query- 077

ing weather information. In these scenarios, each 078

task domain is independent and unrelated. Com- 079

posite tasks may span multiple domains and require 080

switching between dependent domains (Peng et al., 081

2017). For example, the task of travel planning en- 082

compasses domains such as train, hotel, interesting, 083
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and restaurants. These domains have dependency084

relationships. Specifically, booking train tickets085

first may make it impossible to reserve a suitable086

hotel, or reserving a restaurant first may result in087

the inability to find an appropriate hotel option.088

Performing analysis and evaluation of the depen-089

dencies between various domains in the DP module090

can significantly reduce the number of interaction091

turns between the system and the user, thus sub-092

stantially enhancing the efficiency and success rate093

of dialogue.094

In the type of composite domain tasks, current095

approaches to DP are inadequate to capture in-096

tricate interdependencies across various domains,097

and some scholars are working to improve this is-098

sue based on Reinforcement Learning (RL). Wang099

et al. (2020a) proposed modeling the hierarchi-100

cal structure between DP and NLG with the op-101

tion framework, where the latent dialogue act is102

applied to avoid designing specific dialogue act103

representations. (Zhao et al., 2024) proposed a104

novel Bootstrapped Policy Learning framework105

that adaptively tailors curricula for complex goals106

through goal design with progressively challeng-107

ing subgoals, combines these aspects to enable108

smooth knowledge transitions from simple to com-109

plex goals, enhancing the learning efficiency of DP.110

However, the design of task hierarchies requires111

substantial domain knowledge and is inherently112

unstable, further complicating the resolution of do-113

main dependencies.114

Existing experiments have shown that the PPO115

algorithm achieves a relatively high success rate116

among RL algorithms. Meanwhile, large language117

models (LLMs) possess common sense knowledge118

and strong semantic comprehension abilities. The119

combination of PPO and LLMs opens up new possi-120

bilities for addressing the inter-domain dependency121

issues in complex domain tasks. We integrate these122

two methodologies and propose a novel method,123

termed LLM Feedback Domain Dependent Pol-124

icy (LLM-DDP), which leverages the strengths of125

both PPO and LLM to enhance decision-making126

in domain-dependent policies. Initially, to train127

the DP, we employ Imitation Learning, swiftly at-128

taining proficiency in emulating expert behavior.129

Subsequently, we introduce large language models130

to judge domain priorities according to the current131

dialogue state and filter out unnecessary candidate132

system actions to reduce the action space. Fur-133

thermore, this study introduces a domain-driven134

Critic loss function, aimed at continuously improv-135

ing the performance of the policy network in tack- 136

ling composite tasks. Through the above methods, 137

LLM-DDP reduces the number of dialogue turns, 138

increases the success rate of dialogs, and addresses 139

domain-dependent issues. 140

2 Related Work 141

2.1 Multi-Domain Challenges in Dialogue 142

Policy 143

To tackle the difficulties of inter-domain depen- 144

dency, many previous studies have turned to trans- 145

fer learning as a solution. (Pan and Yang, 2009) 146

takes advantage of shared characteristics and re- 147

lationships between different tasks, allowing the 148

transfer of knowledge learned from one task to 149

another. However, the selection of appropriate do- 150

mains itself presents a complex issue. Transfer 151

learning often requires the design of sophisticated 152

model architectures and training strategies, which 153

can significantly increase computational and de- 154

bugging costs. Wu et al. (2019) introduced a Trans- 155

ferable Dialogue State Generator (TRADE), which 156

enables domain adaptation in zero-shot settings by 157

leveraging knowledge learned from other domains 158

to track slot values in new domains. Meanwhile, 159

Kaiser et al. (2017) proposed the Multi-Model ar- 160

chitecture, which converts inputs from different 161

domains into a unified representation through spe- 162

cialized modality nets, allowing the model to han- 163

dle tasks across multiple domains simultaneously. 164

In the recent past, some studies have adopted 165

the Hierarchical Reinforcement Learning (HRL) 166

method to address these problems. (Zhu et al., 167

2023; Rohmatillah and Chien, 2023) decomposes 168

a complex task horizontally or vertically into mul- 169

tiple subtasks that are then executed by different 170

agents. However, this hierarchical structure is in- 171

herently unstable. As lower-level policies contin- 172

uously evolve, transition functions at the higher 173

level also undergo constant changes. Consequently, 174

HRL struggles to address the issue of domain de- 175

pendency in complex multi-domain tasks. 176

Unlike the aforementioned studies, this study 177

uses the prior knowledge and semantic compre- 178

hension capabilities of LLMs to evaluate domain 179

priorities and quantify the loss function to address 180

domain dependency issues. 181

2.2 LLMs in TOD Systems 182

The application of LLMs in TOD systems is pri- 183

marily categorized into two approaches: end-to- 184
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end and pipeline-based. Although end-to-end mod-185

els offer a more straightforward approach to gen-186

erating responses (Lee, 2021; Yang et al., 2021),187

their black-box-like processing may engender limi-188

tations in terms of flexibility and maintainability.189

Regarding the pipeline-based TOD system,190

within the NLU module, Yoshimaru et al. (2023)191

propose a framework that uses LLM asyn-192

chronously in the part of the system that returns193

an appropriate response and in the part that un-194

derstands the intention of the user to search the195

database. In the DST module, Gao et al. (2023)196

employed SOLOIST, a model initialized with pre-197

trained weights, and subsequently fine-tuned it on198

a small amount of data obtained from the section.199

After fine-tuning, the model generates only the200

domain and slot of the belief state. In the DP201

module, Kwan et al. (2024) uses a text-to-text202

Transformer-based model to generate flexible dia-203

logue actions and employs reinforcement learning204

with a reward-shaping mechanism to efficiently205

fine-tune the word-level dialogue policy. In the206

NLG module, Xu et al. (2024) used an LLM to207

rephrase dialogues, thus generating natural lan-208

guage that is more natural and empathetic.209

Although LLMs are currently widely applied to210

end-to-end TOD systems and in NLU, DST, and211

NLG modules in pipeline-based TOD systems, re-212

search on improving DP using LLMs is relatively213

scarce. Our approach, which integrates the out-214

put of LLMs with the novel loss function, appears215

to be a relatively novel endeavor in the academic216

community.217

2.3 Loss Objective for Dialogue Policy218

In the machine learning literature, the cross-entropy219

(CE) loss function is one of the most widely used220

optimization objectives so far. However, it faces221

challenges in application scenarios such as DP222

training, as it is not robust when dealing with highly223

imbalanced datasets Lin et al. (2023). Furthermore,224

mean squared error (MSE) also has limitations225

when used individually, such as sensitivity to out-226

liers, vanishing or explosion of gradients, and un-227

suitability for classification problems. As a result,228

some studies investigate various combinations of229

loss functions. Wu et al. (2023) trained the model230

during the DP training phase by combining pol-231

icy loss and response loss, which led to improved232

performance. Rohmatillah and Chien (2023) inte-233

grated three loss functions from the policy network234

and the auxiliary network in classification predic-235

tion, effectively training and optimizing DP. These 236

approaches have achieved effective results in dia- 237

logue tasks of composed domains. 238

In our study, we integrate two different loss func- 239

tions to develop a novel composite loss function, 240

aiming to address the issue of efficiently training 241

the DP module in scenarios involving composed 242

domains. 243

3 Method 244

The LLM-DDP architecture diagram is shown in 245

Figure 1. The approach is implemented based on 246

the ToD pipeline, more details of which can be 247

found in Appendix A.The approach is primarily 248

composed of five key components: (1) Imitation 249

Learning: Pre-train a policy network to acceler- 250

ate the training process. (2) Action Probability 251

Sampling: Apply the Heaviside Step Function to 252

discretize the predicted probabilities into binary val- 253

ues (0 or 1). (3) Domain Priority Ranking: Obtain 254

prioritization of domains by harnessing the capa- 255

bilities of LLMs, which is used to produce prioriti- 256

zations of the next turn’s system action. (4) Multi- 257

cross-entropy loss function: Utilize the multi-cross- 258

entropy loss function to guide the policy network to- 259

ward convergence. (5) Domain-Driven Loss Func- 260

tion for the Critic Module in PPO: Propose a novel 261

loss function formulated for the critic by integrat- 262

ing the stability of MSE and the domain sensitivity 263

of multi-cross-entropy. 264

3.1 Background 265

In this study, an effective improvement of DP is 266

achieved through the modification of the Actor- 267

Critic framework of the PPO algorithm. It consists 268

of two primary components: the Actor and the 269

Critic. The Actor, a neural network, is tasked with 270

selecting actions according to the current policy. 271

The Critic, another neural network, is responsible 272

for assessing the quality of the Actor’s actions by 273

providing a score. 274

The interaction between the agent (Dialogue Sys- 275

tem) and the environment (User Context) is formal- 276

ized using a finite Markov Decision Process (MDP) 277

denoted as (S, A, P , R). Here, S represents the 278

set of states, A denotes the set of discrete actions, 279

and R means the set of rewards. At time step t, the 280

agent is in a state St∈S. 281

3.2 Imitation Learning 282

Initially, we employed Behavior Cloning (BC) to 283

train a policy network that produces actions that 284
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Figure 1: Overview of LLM Feedback Domain Dependent Policy(LLM-DDP) with highlignted five key components.
Equations are defined in Section 3.4, 3.5 and 3.6.

closely mimic those of the expert. The formulation285

is as follows:286

θ∗ = argmin
θ

E(s,a)∼B [L(πθ(s), a)] . (1)287

Here, B denotes the dataset comprising state action288

pairs (s, a). The loss function L(πθ(s), a) quanti-289

fies the discrepancy between the action πθ(s) pro-290

duced by the policy π in the state s and the action291

of the expert a. The symbol θ∗ represents the op-292

timal set of parameters, which we aim to obtain293

through training for the policy network. Through294

the pre-training process, we attained an Inform295

score of 48.9 (dialogue information provision effec-296

tiveness), a Complete score of 42 (predefined task297

accomplishment degree), a Success score of 26.7298

(dialogue objective fulfillment rate), and the count299

of Successful Turns reached 7.48 (dialogue turns300

for goal achievement). The results show that BC301

has effectively grasped the policy network, greatly302

speeding up the training process. This progress303

lays a good foundation for further reinforcement304

learning work.305

3.3 Action probability sampling306

In the subsequent reinforcement learning phase,307

this study uses the Bernoulli distribution to deter-308

mine the action At∈A to be taken. The Bernoulli309

distribution is a discrete probability distribution310

that models a random experiment with only two311

possible outcomes: success (denoted as 1) and fail-312

ure (denoted as 0). Similarly, our action distribu- 313

tion is binary, consisting of only two values, 1 and 314

0. Let the probability of success be denoted by p 315

where 0 ≤ p ≤ 1, then the probability of failure is 316

1− p. The Bernoulli distribution, denoted as D(x), 317

is specifically expressed as: 318

At = D(p(ât)) = px(1− p)1−x. (2) 319

Here, p(ât) represents the probability of the action 320

taken at time t as predicted by the policy network. 321

Given that we are dealing with discrete actions, the 322

interaction between the agent and the environment 323

is iterative. Each step relies on the current state 324

and the agent’s policy. This interaction is mod- 325

eled as a Markov chain, where the state transition 326

P (St+1 = s′ | St = s,At = a) and the reward 327

Rt+1 = R(St, At) are determined by the dynam- 328

ics of the environment and the agent’s policy. The 329

agent aims to learn an optimal policy to maximize 330

the cumulative long-term rewards. 331

3.4 Domain Priority Ranking 332

By integrating the dialogue context state St set into 333

the LLM prompts and leveraging the LLM’s com- 334

mon sense knowledge to extract key information, 335

we can ensure a comprehensive understanding of 336

the dialogue content within the limitations of con- 337

text length. This process enables the generation 338

of probabilities for relevant domains, which are 339
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expressed as follows:340

pLLM(ât) = LLM([St; prompt]). (3)341

Based on domain priority, the possible action space342

is filtered out to generate action masks. Then, per-343

form an element-wise multiplication of the action344

masks with the output of the action by the policy345

network. This operation facilitates the integration346

of the two predictions. The expression is given by:347

pC(ât) = pLLM(ât)×At. (4)348

The fused action prediction probabilities are then349

passed through the Bernoulli distribution to deter-350

mine the actions taken. The expression is as fol-351

lows:352

At(domain) = D(pC(ât)) = pxC(1−pC)
1−x. (5)353

The LLM-DDP prompt is placed in the Ap-354

pendix Table 3.355

3.5 Multi Cross entropy loss function356

This study employs an innovative policy network357

optimization method, which adjusts the policy net-358

work by minimizing the multi-cross-entropy loss359

between the fused action At(domain) and the out-360

put of the action of the original policy network At.361

The multi-cross-entropy loss function is utilized to362

predict the difference in probability distributions363

between A(domain)(i) and p(ât)
(i) at time step t.364

The expression is as follows:365

LCE = −
N∑
i=1

A(domain)(i) log(p(ât)
(i)). (6)366

Here, A(domain)(i) serving as the target action,367

can be regarded as a one-hot encoded label [0, 1].368

N denotes the numerical encoding of all actions369

that the system can take during execution. In the370

MultiWOZ 2.1 dataset, the value of N is 208. We371

use the multi-cross-entropy loss function to mea-372

sure the divergence between the fused and original373

action distributions. Through iterative optimiza-374

tion of this loss, our goal is to guide the policy375

network to converge to an action-selection policy376

for handling domain-priority tasks.377

3.6 Domain-driven loss function for critics378

This study uses MSE, which is widely recognized379

for its applicability and reliability in regression380

tasks, as the loss function for the critic network.381

MSE provides a direct measure of model perfor- 382

mance by quantifying the discrepancy between the 383

predicted values of the value function and the target 384

values. Furthermore, for the purpose of network 385

optimization and the achievement of a balance be- 386

tween bias and variance, the generalized advantage 387

estimate (GAE) is selected as the target value. GAE 388

estimates the value function by combining tempo- 389

ral difference (TD) errors in multiple time steps, 390

and this is done while achieving that bias-variance 391

balance through the appropriate selection of the 392

hyperparameter λ. The expression for GAE is as 393

follows: 394

GAE(τ) =
∞∑
k=0

γkλk∆V 395

∆V = Rt+k+1 + γV (st+k+1)− V (st+k).
(7)

396

Thus, the calculation of the MSE loss LMSE is given 397

by: 398

LMSE =
1

2

N∑
t=τ

(GAE(τ)−Q(st, at))
2 . (8) 399

As yet, the current loss function does not incorpo- 400

rate information on domain-priority actions. This 401

limitation hampers the model’s ability to capture 402

specific domain characteristics. To solve this lim- 403

itation, our study proposes a novel loss function 404

design that aims to perform backpropagation twice, 405

once with the MSE loss function and once with the 406

multi-cross-entropy loss function. The formulation 407

is as follows: 408

LC = LMSE + λ ∗ LCE. (9) 409

The loss function LC combines the stability of 410

MSE with the domain sensitivity of multi-cross- 411

entropy. This integrated strategy improves the 412

model’s adaptability to the features of composite 413

domains. 414

4 Experiment 415

4.1 Dataset 416

This study evaluates performance using the Mul- 417

tiWOZ 2.1 (Eric et al., 2020) benchmark data 418

set. MultiWOZ 2.1 is an extensive Task-Oriented 419

Dialogue dataset encompassing 10,425 dialogues 420

across 7 distinct domains. There were 3,406 single- 421

domain dialogues and 7,032 multi-domain dia- 422

logues. In addition, human evaluation was included 423
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to accurately gauge algorithm performance. Since424

the MultiWOZ dataset is based on the MIT open-425

source license, it does not involve privacy-related426

issues or potential malicious or unintended harmful427

effects.428

4.2 Experimental Setting429

Implementation The experiments are conducted430

on a Linux server with 64 GB memory, Ultra9 CPU431

(24 cores), NVIDIA A6000 GPUs (48 GB). We432

implement the algorithm on the basis of ConvLab-433

3 (Zhu et al., 2022). The backend for deep learning434

is PyTorch (Paszke et al., 2019).435

State-action space In MultiWOZ 2.1, the state-436

action space is defined by 361 dimensions and the437

action space is 208 dimensions.438

LLM model Utilize the API interface of GPT-3.5-439

turbo to achieve the prediction of domain priority.440

Hyper-parameters for our LLM-DDP algorithm441

The policy network is a 3-layer Multi-Layer Percep-442

tron (MLP) model, with hidden size 512, and the443

ReLU activation at each layer. The critic network444

has the same architecture as the policy network.445

In the training process, the seed was set to 42 for446

initializing random parameters. The discount factor447

gamma was set to 0.99 to calculate the discounted448

sum of future rewards. The lambda parameter in449

GAE was set to 0.95 to balance bias and variance.450

The clip ratio for the PPO loss (Wang et al., 2020b)451

was set to 0.2 to limit the magnitude of policy up-452

dates. The learning rate for the policy network was453

set to 3e−4, determining the step size of parameter454

updates in the policy network. The learning rate for455

the value network was also set to 3e−4, determin-456

ing the step size of parameter updates in the value457

network. The maximum norm for gradient clipping458

was set to 0.5 to prevent gradient explosion. The459

number of iterations for training the policy network460

was set at 200 and the same number of iterations461

was used to train the value network.462

4.3 Baselines463

To systematically assess the effectiveness of the464

dialogue system approach proposed in this study,465

we consider five alternative methods, denoted SAi466

(i = 1, 2, ..., 5). Methods SA1 - SA4 were based467

on a pipeline architecture, utilizing NLU, DST, and468

NLG modules identical to those selected in this469

study, namely BERT, Rule, and Template, respec-470

tively. Method SA5 involved invoking the GPT-471

3.5-turbo API and using ChatGPT as an end-to-end472

system role. Further details are as follows:473

SA1 (DP Module with GDPL) The DP module is 474

adopted by the Guided Dialogue Policy Learning 475

(GDPL) algorithm (Takanobu et al., 2019). 476

SA2 (DP Module with PG) The DP module is 477

adopted by the Policy Gradient (PG) algorithm 478

(Sutton et al., 1999). 479

SA3 (DP Module with PPO) The DP module 480

is adopted by the Proximal Policy Optimization 481

(PPO) algorithm (Schulman et al., 2017). 482

SA4 (DP Module with DQN) The DP module is 483

adopted by the Deep Q-Learning (DQN) algorithm 484

(Hester et al., 2018). 485

SA5 (End-to-End Dialogue Model with GPT3.5- 486

turbo) Specifically designed prompts are used to 487

invoke the GPT-3.5-turbo interface to implement 488

an end-to-end dialogue model. The prompt results 489

are shown in the appendix table 4. 490

4.4 Evaluation Metrics 491

Following previous research (Jang et al., 2022; 492

Peng et al., 2021, 2017; Wang et al., 2022), we 493

evaluated our system using four metrics: Inform, 494

Complete, Success, and Dialogue Turns. The In- 495

form metric evaluates whether the dialogue system 496

can accurately provide the required entity infor- 497

mation and key content for the task. The Com- 498

plete metric assesses the extent to which the sys- 499

tem provides comprehensive information to assist 500

users in completing their tasks. The Success metric 501

measures the system’s ability to successfully help 502

users accomplish their predetermined tasks. Dia- 503

logue Turns refers to the number of conversational 504

exchanges needed to complete a task, denoted as 505

Turn(succ). Ideally, a lower number of dialogue 506

turns indicates greater system efficiency. However, 507

it may also suggest that no effective dialogue has 508

taken place. 509

4.5 Main results 510

4.5.1 Automatic Evaluation 511

In this study, we use four metrics, Inform, Com- 512

plete, Success, and Turn (succ) to comprehensively 513

evaluate the performance of our LLM-DDP model. 514

To ensure the fairness and validity of the experi- 515

ments, given that ConvLab-3 does not disclose its 516

parameters, all baseline methods are standardized 517

to match the parameters and training epochs of our 518

LLM-DDP model. The results are presented in 519

Table 1, which clearly indicates that LLM-DDP 520

significantly outperforms other methods. 521

Among the experiments, SA4 and SA5 exhibit 522

significantly lower metric values. The stark con- 523

6



Method Inform Complete Success Turn (succ)
(SA1) DP Module with GDPL 0.54 0.24 0.10 4.81
(SA2) DP Module with PG 0.54 0.45 0.11 5.81
(SA3) DP Module with PPO 0.51 0.63 0.28 6.35
(SA4) DP Module with DQN 0.03 0.17 0.01 19.8
(SA5) End-to-End Dialogue Model with GPT3.5: - 0.24 0.08 9.69
LLM-DDP 0.54 0.86 0.45 15.05

Table 1: A Comparative Results Table Based on Uniform Experimental Parameters and Training Epochs

trast implies that the DQN algorithm and the ap-524

proach that rely solely on prior knowledge of LLMs525

and prompts struggle to handle the complex depen-526

dencies in the composite domain scenario.527

When looking at the Inform metric, SA1, SA2,528

and LLM-DDP share the same value of 0.54. This529

indicates that these three algorithms are compara-530

ble to provide required entities and key content.531

The PPO algorithm in SA3 shows a relatively bet-532

ter performance. LLM-DDP, which improves the533

PPO algorithm by integrating LLM with an innova-534

tive loss function, shows remarkable improvements.535

The success rate of LLM-DDP increases to 0.45,536

which is 59.7% higher than in SA3. This significant537

increase highlights the effectiveness of integrating538

LLMs and the novel loss function in enhancing the539

dialogue completion rate and the overall success of540

the system.541

In the MultiWOZ 2.1 dataset, the average turns542

are 14. LLM-DDP has a Turn(succ) of 15.05,543

which is close to the average, while maintaining544

a high Complete metric of 0.86. This implies545

that LLM-DDP can complete dialogues efficiently,546

while other methods fail to reach the same level of547

performance.548

In summary, whether considering other pipeline549

methods or end-to-end approaches, all perform in-550

feriorly to LLM-DDP under the premise of unified551

parameters and training epochs. The experimen-552

tal results strongly substantiate the effectiveness553

of our LLM-DDP approach in handling composite554

domain tasks in TOD systems.555

4.5.2 Human Evaluation556

To enhance the accuracy of our evaluation, we en-557

listed human evaluators to assess dialogues. For the558

fairness and effectiveness of the evaluation, 25 hu-559

man volunteers, including researchers and ordinary560

users, were selected. Each assessor conducted five561

conversations with six baseline methods and our562

proposed method. It was clearly stated to the as-563

sessors that the assessment data were sourced from564

open source datasets and did not involve privacy - 565

related issues. The performance of the models was 566

evaluated across four crucial dimensions: Content, 567

Accuracy, Satisfaction, and Success. 568

In these metrics, higher scores mean better per- 569

formance. Ratings are divided into the following 570

four levels: First, when the user action perfectly 571

aligns with the system action, a score of 100 is 572

awarded. Second, when the user action largely 573

matches the system action, the score is assigned 574

based on the specific circumstances within the 575

range of 50-99. Third, when the user action par- 576

tially matches the system action, the score is as- 577

signed based on the specific circumstances within 578

the range of 1-49. Fourth, when the user action 579

is entirely mismatched with the system action, a 580

score of 0 is given. 581

The manual grading results are presented in 582

Figure 2 in Appendix E. According to Figure 2. 583

Among SA1 to SA5, SA2 achieved the highest 584

scores in terms of content, but was surpassed by 585

SA3 in other metrics. The Accuracy, Satisfaction, 586

and Success metrics of SA3 are higher than those 587

of all other baselines. However, these metrics were 588

consistently lower than those of LLM-DDP. LLM- 589

DDP maintained robust performance across the 590

human evaluation criteria. 591

4.6 Ablation studies and further analysis 592

Ablations on our LLM-DDP framework To com- 593

prehensively explore the influence of different tech- 594

niques on the final experimental results, we con- 595

ducted seven groups of ablation experiments in four 596

major directions, as presented in Table 2. 597

• NOMASK: The LLM was not used to pre- 598

dict domain priority during training, so action 599

probabilities related to the domain were not 600

generated. When comparing LLM-DDP, all 601

indicators of NOMASK are lower.This clearly 602

demonstrates the significance of the domain 603

priority algorithm in dealing with composite 604
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Method Inform Complete Success Turns (succ)
NOMASK 0.52 0.81 0.42 13.17
GC-0.1 0.55 0.82 0.41 15.05
GC-0.3 0.53 0.71 0.40 14.34
MSE-Huber 0.52 0.85 0.40 16.52
MSML-CEL 0.52 0.81 0.42 13.5
DM-50 0.51 0.71 0.41 5.82
DM-125 0.50 0.79 0.42 8.82
LLM-DDP 0.54 0.86 0.45 15.05

Table 2: Comparison of the experimental results of the seven ablation experiments with those of the LLM-DDP
experiments

domain scenarios. By predicting domain pri-605

ority, LLM-DDP can better filter the action606

space and make more appropriate decisions,607

thereby improving the performance of the dia-608

logue system.609

• GC-0.1 and GC-0.3: Represent that the PPO610

clipping ratios are 0.1 and 0.3, while LLM-611

DDP is 0.2. GC-0.1 achieved the best result612

on the Inform metric. Limiting the ratio values613

enables the model to provide more accurate614

information during the dialogue process. The615

values of the Complete and Success metrics616

are lower than those of LLM - DDP. This in-617

dicates that setting the hyperparameter of the618

clipping coefficient is crucial and has a rela-619

tively significant impact on the results.620

• MSE-Huber and MSML-CE: MSE-Huber621

indicates replacing the MSE Loss with the622

Huber Loss, and MSML-CE means replacing623

Multi Label Soft Margin Loss with Cross En-624

tropy Loss. The experimental results show625

that replacing the loss function has some im-626

pact on the performance of the dialogue sys-627

tem. However, this impact is relatively minor,628

indicating that the LLM-DDP algorithm ex-629

hibits strong robustness.630

• DM-50 and DM-125: Represent training the631

model for 50 and 125 epochs, respectively,632

while LLM-DDP is trained for 600 epochs.633

All indicators gradually increase from DM-50634

to DM-125 and then to LLM-DDP. This indi-635

cates that the LLM-DDP algorithm requires636

a certain number of epochs to converge. But637

even with only 50 training epochs, the DM-638

50 results are still better than the indicators639

of the SA1-SA5 methods, demonstrating the640

superiority of the LLM-DDP framework.641

These ablation experiments provide in-depth in- 642

sight into the importance of each component and 643

parameter in the LLM-DDP framework, further 644

validating the effectiveness and rationality of the 645

proposed method. 646

5 Conclusion 647

This study introduces the LLM-DDP framework, 648

integrating LLM with domain-driven critic loss 649

functions to resolve domain-dependent issues in 650

composite domain tasks. With common sense 651

knowledge and semantic comprehension of LLM, it 652

significantly enhances the adaptability of the model 653

to domain-related problems. The combined loss 654

function design increases the efficiency and perfor- 655

mance of the model. Comprehensive experiments, 656

including automatic evaluations and human assess- 657

ments on the MultiWOZ 2.1 dataset, have validated 658

the superiority of our method. The results reinforce 659

the effectiveness of the LLM-DDP framework. 660

Limitations 661

However, we have yet to implement LLM-DDP 662

in more LLM. To further enhance model perfor- 663

mance, we plan to conduct experiments on higher- 664

tier LLMs, especially reasoning models, in the fu- 665

ture. In addition, we will expand our experimental 666

scope to include richer datasets to ensure the gener- 667

alizability of the model. Our exploration will also 668

extend to more complex prompts. 669

Ethical considerations 670

Our work strictly adheres to the ethical guidelines 671

and principles outlined by the ACL. All data sets 672

used in our research are sourced from previous 673

studies, ensuring that there are no privacy concerns 674

or issues related to racial discrimination. 675
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A Preliminaries 867

A.1 Pipeline architecture for TOD 868

The pipeline architecture is a classic design 869

paradigm for TOD systems, which decomposes 870

the entire system into multiple modules. Typically, 871

it consists of four core modules: NLU, DST, DP 872

and NLG, each responsible for a specific subtask 873

(Ohashi and Higashinaka, 2022b). 874

A.2 NLU module for TOD 875

A common approach for NLU involves training a 876

BIO (Begin, Inside, Outside) tagger for slot-value 877

pairs and a multiclass classifier for intents. The slot- 878

filling task takes the user’s utterance X as input and 879

generates a dictionary M = {s1 = v1, . . . , sn = 880

vn}, where s1 represents a slot and vi represents 881

a corresponding value for that slot (Madotto et al., 882

2020). 883

A.3 DST module for TOD 884

Given a dialogue D consisting of t turns of utter- 885

ances X1
U , X

1
S , . . . , X

t
U , a DST model predicts a 886

dictionary Mt = {s1 = v1, . . . , sn = vn}, similar 887

to the process of natural language understanding 888

(NLU). 889

A.4 DP module for TOD 890

The DP module determines the next action of 891

the system by integrating the current belief state 892

Mt, the historical context, and the results of the 893

database query (Wang et al., 2022). Specifically, it 894
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combines the current understanding of the user’s895

intent with contextual information and selects an896

appropriate response from the database.897

A.5 NLG module for TOD898

The Natural Language Generation (NLG) module899

is tasked with the responsibility of translating the900

system’s decisions or actions into natural and fluent901

language. The model takes a speech act and a slot-902

value dictionary as input and generates a discourse903

X as output.904

B Prompt for LLM-DDP905

For the LLM-DDP, we designed the corresponding906

prompts and obtained the respective answers, as907

shown in the Appendix Table 3.908

C Prompt for SA5 Experiments909

For the SA5 experiment, we designed the corre-910

sponding prompts and obtained the respective re-911

sponses, as shown in the appendix Table 4.912

D Pseudocode of the PPO algorithm913

To better explain the PPO algorithm, we present its914

pseudocode, as shown in Table 5.915

E Human Grading916

In Figure 2, the Content metric assesses whether917

the system provided the correct actions and feed-918

back in response to user requests. The Accuracy919

metric evaluates whether users received precise an-920

swers through brief dialogues, including instances921

where the system offered responses to unasked922

questions. The Satisfaction metric reflects over-923

all user contentment with the system’s responses924

and performance over five interactions. The Suc-925

cess rate indicates whether the system ultimately926

met all requirements. Users are required to rate the927

model based on these four criteria.928

Prompt for LLM-DDP
In a task-oriented dialogue scenario, you will
be provided with user actions from historical
dialogues presented in JSON format. Analyze
the patterns and information within these histor-
ical user actions. Consider the interdependent
relationships among different domains. Think
about how different actions might be associated
with specific domains. Based on this analysis,
predict the possible domains to which the cur-
rent dialogue belongs. The output should be in
JSON format, including the possible domains
and their corresponding probability values.
user actions: [["inform", "train", "NotBook",
"none"], ["inform", "train", "leave at", "18:30"],
["inform", "train", "departure", "cambridge"],
["inform", "train", "day", "wednesday"], ["in-
form", "train", "arrive by", "dontcare"], ["in-
form", "train", "destination", "stevenage"]]
Answer
["hotel":0.3, "train":0.8]

Table 3: LLM-DDP Prompt in the Appendix
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Figure 2: The distribution chart of manual grading for the six methods.

Prompt for SA5 Experiments
{‘role’: ‘system’,‘content’: ‘Imagine you are a
user chatting with a helpful assistant to achieve
a goal. You should chat according to the given
goal faithfully and naturally. You should not
generate all the information in the goal at once.
You should generate short, precise, and informa-
tive response (less than 50 tokens), correspond-
ing to only one or two items in the goal. You
should not generate information not presented
in the goal. If and only if you achieve your goal,
express your thanks and generate **“[END]”**
token. If you think the assistant can not help you
or the conversation falls into a infinite loop, gen-
erate **“[STOP]”** token.’}, {‘role’: ‘user’,
‘content’: ‘I need a hotel please. I need one with
wifi. Are there any 4 stars available? It must
have free parking.’}, {‘role’: ‘assistant’, ‘con-
tent’: ‘Sure, I can help you with that. I found a
4 - star hotel with free parking and wifi. Would
you like me to provide more details?’}, {’role’:
‘user’, ‘content’: ‘I would like it to have a 4 star
rating.’}
Answer
I have found a 4 - star hotel with free parking
and wifi. Would you like me to proceed with
booking this hotel for you?

Table 4: SA5 Experiments Prompt in the Appendix

Pseudocode of the LLM-PPO algorithm
for iteration = 1, 2, . . . do

for actor = 1, 2, . . ., N do
Run policy πθold in environment

for T timesteps
Using LLM to generate the

probability distribution Pa in the
action domain

Compute action domain Cross
Entropy Loss

Compute advantage estimates
Â1, . . . , ÂT

end for
Compute Mean Square Error Loss
Optimize surrogate L wrt θ, with

K epochs and minibatch size M ≤ NT
θold ← θ

end for

Table 5: Pseudocode in the Appendix
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