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Abstract

Dialogue Policy (DP) is pivotal in Task-
Oriented Dialogue (TOD), and Reinforcement
Learning (RL) has shown good effectiveness in
training DP scenarios. However, RL-based DPs
encounter challenges in composite tasks with
domain dependencies, which involve managing
interrelated subtasks across various domains.
In particular, the Proximal Policy Optimiza-
tion (PPO) algorithm, as an efficient, stable,
and user-friendly RL algorithm, is gradually
becoming the preferred tool for solving com-
plex reinforcement learning tasks; meanwhile,
Large Language Models (LLMs) have shown
a profound understanding of common sense
content across various domains. Therefore, we
propose the integration of LLMs with an en-
hanced PPO method to tackle composite tasks,
which we term the LLM Feedback Domain
Dependent Policy (LLM-DDP). Improving the
capability of TOD systems to address domain-
dependent issues is achieved by integrating the
domain prioritization logic of LLMs into the
actor-critic framework of PPO. Furthermore,
we introduce a domain-driven critic loss func-
tion, which enhances the policy network’s abil-
ity to incorporate domain prioritization logic.
In the MultiwOZ 2.1 dataset, with identical
parameter configurations and dialogue turns,
our study achieved superior performance and
validated the efficacy of the proposed method-

ology.

1 Introduction

Task-Oriented Dialogue (TOD) is a type of dia-
logue system designed to facilitate the completion
of specific tasks or actions. It emphasizes the ef-
ficiency and accuracy of user interactions, with
the aim of achieving the desired outcomes with
the fewest number of sessions. Over the years of
development, numerous outstanding systems have
emerged in the field of task-oriented multi-turn dia-
logue, such as LaMDA, Senseforth, and Cognigy.

TOD systems typically adopt two structural
paradigms: end-to-end and pipeline architectures.
End-to-end TOD adopts an approach of holistic
system modeling. However, due to the model’s
inherent black-box nature, its decision-making pro-
cesses and generated responses may be difficult to
control, improve, and optimize. In contrast, the
pipeline architecture composed of individual mod-
ules enables researchers to take advantage of di-
verse technical means to improve the efficiency
of development and debugging processes. The ar-
chitectural pipeline of a TOD system is primarily
constituted by four core components: Natural Lan-
guage Understanding (NLU) (Wang et al., 2022;
Mirza et al., 2024), Dialogue State Tracking (DST)
(Balaraman et al., 2021), Dialogue Policy (DP) and
Natural Language Generation (NLG) (Ohashi and
Higashinaka, 2022a). The DP module plays a cru-
cial role in TOD. It is responsible for making flexi-
ble and reasonable decisions regarding the system’s
next actions based on the current dialogue state,
which includes aspects such as user requirements,
provided information, and the progress of the task.
This aims to optimize the dialogue process, im-
prove task completion efficiency, and balance user
satisfaction.

Dialogue tasks can be categorized into three
types according to their complexity and domain
scope: single domain tasks, multi-domain tasks,
and composite tasks (Balaraman and Magnini,
2021; Peng et al., 2017). Single-domain tasks, such
as weather inquiries, relate to a single domain of
expertise. Multi-domain tasks, on the other hand,
involve the system managing multiple tasks concur-
rently, such as providing news updates and query-
ing weather information. In these scenarios, each
task domain is independent and unrelated. Com-
posite tasks may span multiple domains and require
switching between dependent domains (Peng et al.,
2017). For example, the task of travel planning en-
compasses domains such as train, hotel, interesting,



and restaurants. These domains have dependency
relationships. Specifically, booking train tickets
first may make it impossible to reserve a suitable
hotel, or reserving a restaurant first may result in
the inability to find an appropriate hotel option.
Performing analysis and evaluation of the depen-
dencies between various domains in the DP module
can significantly reduce the number of interaction
turns between the system and the user, thus sub-
stantially enhancing the efficiency and success rate
of dialogue.

In the type of composite domain tasks, current
approaches to DP are inadequate to capture in-
tricate interdependencies across various domains,
and some scholars are working to improve this is-
sue based on Reinforcement Learning (RL). Wang
et al. (2020a) proposed modeling the hierarchi-
cal structure between DP and NLG with the op-
tion framework, where the latent dialogue act is
applied to avoid designing specific dialogue act
representations. (Zhao et al., 2024) proposed a
novel Bootstrapped Policy Learning framework
that adaptively tailors curricula for complex goals
through goal design with progressively challeng-
ing subgoals, combines these aspects to enable
smooth knowledge transitions from simple to com-
plex goals, enhancing the learning efficiency of DP.
However, the design of task hierarchies requires
substantial domain knowledge and is inherently
unstable, further complicating the resolution of do-
main dependencies.

Existing experiments have shown that the PPO
algorithm achieves a relatively high success rate
among RL algorithms. Meanwhile, large language
models (LLMs) possess common sense knowledge
and strong semantic comprehension abilities. The
combination of PPO and LLMs opens up new possi-
bilities for addressing the inter-domain dependency
issues in complex domain tasks. We integrate these
two methodologies and propose a novel method,
termed LLM Feedback Domain Dependent Pol-
icy (LLM-DDP), which leverages the strengths of
both PPO and LLM to enhance decision-making
in domain-dependent policies. Initially, to train
the DP, we employ Imitation Learning, swiftly at-
taining proficiency in emulating expert behavior.
Subsequently, we introduce large language models
to judge domain priorities according to the current
dialogue state and filter out unnecessary candidate
system actions to reduce the action space. Fur-
thermore, this study introduces a domain-driven
Critic loss function, aimed at continuously improv-

ing the performance of the policy network in tack-
ling composite tasks. Through the above methods,
LLM-DDP reduces the number of dialogue turns,
increases the success rate of dialogs, and addresses
domain-dependent issues.

2 Related Work

2.1 Multi-Domain Challenges in Dialogue
Policy

To tackle the difficulties of inter-domain depen-
dency, many previous studies have turned to trans-
fer learning as a solution. (Pan and Yang, 2009)
takes advantage of shared characteristics and re-
lationships between different tasks, allowing the
transfer of knowledge learned from one task to
another. However, the selection of appropriate do-
mains itself presents a complex issue. Transfer
learning often requires the design of sophisticated
model architectures and training strategies, which
can significantly increase computational and de-
bugging costs. Wu et al. (2019) introduced a Trans-
ferable Dialogue State Generator (TRADE), which
enables domain adaptation in zero-shot settings by
leveraging knowledge learned from other domains
to track slot values in new domains. Meanwhile,
Kaiser et al. (2017) proposed the Multi-Model ar-
chitecture, which converts inputs from different
domains into a unified representation through spe-
cialized modality nets, allowing the model to han-
dle tasks across multiple domains simultaneously.

In the recent past, some studies have adopted
the Hierarchical Reinforcement Learning (HRL)
method to address these problems. (Zhu et al.,
2023; Rohmatillah and Chien, 2023) decomposes
a complex task horizontally or vertically into mul-
tiple subtasks that are then executed by different
agents. However, this hierarchical structure is in-
herently unstable. As lower-level policies contin-
uously evolve, transition functions at the higher
level also undergo constant changes. Consequently,
HRL struggles to address the issue of domain de-
pendency in complex multi-domain tasks.

Unlike the aforementioned studies, this study
uses the prior knowledge and semantic compre-
hension capabilities of LL.Ms to evaluate domain
priorities and quantify the loss function to address
domain dependency issues.

2.2 LLMs in TOD Systems

The application of LLMs in TOD systems is pri-
marily categorized into two approaches: end-to-



end and pipeline-based. Although end-to-end mod-
els offer a more straightforward approach to gen-
erating responses (Lee, 2021; Yang et al., 2021),
their black-box-like processing may engender limi-
tations in terms of flexibility and maintainability.

Regarding the pipeline-based TOD system,
within the NLU module, Yoshimaru et al. (2023)
propose a framework that uses LLM asyn-
chronously in the part of the system that returns
an appropriate response and in the part that un-
derstands the intention of the user to search the
database. In the DST module, Gao et al. (2023)
employed SOLOIST, a model initialized with pre-
trained weights, and subsequently fine-tuned it on
a small amount of data obtained from the section.
After fine-tuning, the model generates only the
domain and slot of the belief state. In the DP
module, Kwan et al. (2024) uses a text-to-text
Transformer-based model to generate flexible dia-
logue actions and employs reinforcement learning
with a reward-shaping mechanism to efficiently
fine-tune the word-level dialogue policy. In the
NLG module, Xu et al. (2024) used an LLM to
rephrase dialogues, thus generating natural lan-
guage that is more natural and empathetic.

Although LLMs are currently widely applied to
end-to-end TOD systems and in NLU, DST, and
NLG modules in pipeline-based TOD systems, re-
search on improving DP using LLMs is relatively
scarce. Our approach, which integrates the out-
put of LLMs with the novel loss function, appears
to be a relatively novel endeavor in the academic
community.

2.3 Loss Objective for Dialogue Policy

In the machine learning literature, the cross-entropy
(CE) loss function is one of the most widely used
optimization objectives so far. However, it faces
challenges in application scenarios such as DP
training, as it is not robust when dealing with highly
imbalanced datasets Lin et al. (2023). Furthermore,
mean squared error (MSE) also has limitations
when used individually, such as sensitivity to out-
liers, vanishing or explosion of gradients, and un-
suitability for classification problems. As a result,
some studies investigate various combinations of
loss functions. Wu et al. (2023) trained the model
during the DP training phase by combining pol-
icy loss and response loss, which led to improved
performance. Rohmatillah and Chien (2023) inte-
grated three loss functions from the policy network
and the auxiliary network in classification predic-

tion, effectively training and optimizing DP. These
approaches have achieved effective results in dia-
logue tasks of composed domains.

In our study, we integrate two different loss func-
tions to develop a novel composite loss function,
aiming to address the issue of efficiently training
the DP module in scenarios involving composed
domains.

3 Method

The LLM-DDP architecture diagram is shown in
Figure 1. The approach is implemented based on
the ToD pipeline, more details of which can be
found in Appendix A.The approach is primarily
composed of five key components: (1) Imitation
Learning: Pre-train a policy network to acceler-
ate the training process. (2) Action Probability
Sampling: Apply the Heaviside Step Function to
discretize the predicted probabilities into binary val-
ues (0 or 1). (3) Domain Priority Ranking: Obtain
prioritization of domains by harnessing the capa-
bilities of LLMs, which is used to produce prioriti-
zations of the next turn’s system action. (4) Multi-
cross-entropy loss function: Utilize the multi-cross-
entropy loss function to guide the policy network to-
ward convergence. (5) Domain-Driven Loss Func-
tion for the Critic Module in PPO: Propose a novel
loss function formulated for the critic by integrat-
ing the stability of MSE and the domain sensitivity
of multi-cross-entropy.

3.1 Background

In this study, an effective improvement of DP is
achieved through the modification of the Actor-
Critic framework of the PPO algorithm. It consists
of two primary components: the Actor and the
Critic. The Actor, a neural network, is tasked with
selecting actions according to the current policy.
The Critic, another neural network, is responsible
for assessing the quality of the Actor’s actions by
providing a score.

The interaction between the agent (Dialogue Sys-
tem) and the environment (User Context) is formal-
ized using a finite Markov Decision Process (MDP)
denoted as (S, A, P, R). Here, S represents the
set of states, A denotes the set of discrete actions,
and R means the set of rewards. At time step ¢, the
agent is in a state S;€.S.

3.2 Imitation Learning

Initially, we employed Behavior Cloning (BC) to
train a policy network that produces actions that
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Figure 1: Overview of LLM Feedback Domain Dependent Policy(LLM-DDP) with highlignted five key components.

Equations are defined in Section 3.4, 3.5 and 3.6.

closely mimic those of the expert. The formulation
is as follows:

0" = argmin E(s 0o [L(mo(s), )] . (1)

Here, I3 denotes the dataset comprising state action
pairs (s, a). The loss function L(7y(s), a) quanti-
fies the discrepancy between the action 7y(s) pro-
duced by the policy 7 in the state s and the action
of the expert a. The symbol 6* represents the op-
timal set of parameters, which we aim to obtain
through training for the policy network. Through
the pre-training process, we attained an Inform
score of 48.9 (dialogue information provision effec-
tiveness), a Complete score of 42 (predefined task
accomplishment degree), a Success score of 26.7
(dialogue objective fulfillment rate), and the count
of Successful Turns reached 7.48 (dialogue turns
for goal achievement). The results show that BC
has effectively grasped the policy network, greatly
speeding up the training process. This progress
lays a good foundation for further reinforcement
learning work.

3.3 Action probability sampling

In the subsequent reinforcement learning phase,
this study uses the Bernoulli distribution to deter-
mine the action A;€ A to be taken. The Bernoulli
distribution is a discrete probability distribution
that models a random experiment with only two
possible outcomes: success (denoted as 1) and fail-

ure (denoted as 0). Similarly, our action distribu-
tion is binary, consisting of only two values, 1 and
0. Let the probability of success be denoted by p
where 0 < p < 1, then the probability of failure is
1 — p. The Bernoulli distribution, denoted as D(z),
is specifically expressed as:

Ay =D(p(a)) =p"(1-p)" "

Here, p(a;) represents the probability of the action
taken at time ¢ as predicted by the policy network.
Given that we are dealing with discrete actions, the
interaction between the agent and the environment
is iterative. Each step relies on the current state
and the agent’s policy. This interaction is mod-
eled as a Markov chain, where the state transition
P(Siy1 =8 | S, = s,A; = a) and the reward
Riy1 = R(Sy, A;) are determined by the dynam-
ics of the environment and the agent’s policy. The
agent aims to learn an optimal policy to maximize
the cumulative long-term rewards.

3.4 Domain Priority Ranking

By integrating the dialogue context state S; set into
the LLM prompts and leveraging the LLM’s com-
mon sense knowledge to extract key information,
we can ensure a comprehensive understanding of
the dialogue content within the limitations of con-
text length. This process enables the generation
of probabilities for relevant domains, which are



expressed as follows:
prim(ar) = LLM([Sy; prompt]). (3)

Based on domain priority, the possible action space
is filtered out to generate action masks. Then, per-
form an element-wise multiplication of the action
masks with the output of the action by the policy
network. This operation facilitates the integration
of the two predictions. The expression is given by:

pe(ar) = pim(ar) x Ag. “4)

The fused action prediction probabilities are then
passed through the Bernoulli distribution to deter-
mine the actions taken. The expression is as fol-
lows:

A¢(domain) = D(pc(as)) = p&(1—pc) . (5)

The LLM-DDP prompt is placed in the Ap-
pendix Table 3.

3.5 Multi Cross entropy loss function

This study employs an innovative policy network
optimization method, which adjusts the policy net-
work by minimizing the multi-cross-entropy loss
between the fused action A;(domain) and the out-
put of the action of the original policy network A;.
The multi-cross-entropy loss function is utilized to
predict the difference in probability distributions
between A(domain)® and p(a,)® at time step t.
The expression is as follows:

N
Leg = — Z A(domain) D log(p(a) ™). (6)
i=1

Here, A(domain)® serving as the target action,
can be regarded as a one-hot encoded label [0, 1].
N denotes the numerical encoding of all actions
that the system can take during execution. In the
MultiwOZ 2.1 dataset, the value of N is 208. We
use the multi-cross-entropy loss function to mea-
sure the divergence between the fused and original
action distributions. Through iterative optimiza-
tion of this loss, our goal is to guide the policy
network to converge to an action-selection policy
for handling domain-priority tasks.

3.6 Domain-driven loss function for critics

This study uses MSE, which is widely recognized
for its applicability and reliability in regression
tasks, as the loss function for the critic network.

MSE provides a direct measure of model perfor-
mance by quantifying the discrepancy between the
predicted values of the value function and the target
values. Furthermore, for the purpose of network
optimization and the achievement of a balance be-
tween bias and variance, the generalized advantage
estimate (GAE) is selected as the target value. GAE
estimates the value function by combining tempo-
ral difference (TD) errors in multiple time steps,
and this is done while achieving that bias-variance
balance through the appropriate selection of the
hyperparameter A. The expression for GAE is as
follows:

GAE(r) =Y +"A"AV
k=0
AV = Riypr1 + 7V (Strks1) — V(seyr)-
(N

Thus, the calculation of the MSE loss Ly is given
by:

N

Lyvise = %Z (GAE() — Q(st,a1))” . (8)
t=T1

As yet, the current loss function does not incorpo-
rate information on domain-priority actions. This
limitation hampers the model’s ability to capture
specific domain characteristics. To solve this lim-
itation, our study proposes a novel loss function
design that aims to perform backpropagation twice,
once with the MSE loss function and once with the
multi-cross-entropy loss function. The formulation
is as follows:

Lc = Lysg + A * L. 9

The loss function Lc combines the stability of
MSE with the domain sensitivity of multi-cross-
entropy. This integrated strategy improves the
model’s adaptability to the features of composite
domains.

4 Experiment

4.1 Dataset

This study evaluates performance using the Mul-
tiWOZ 2.1 (Eric et al., 2020) benchmark data
set. MultiWOZ 2.1 is an extensive Task-Oriented
Dialogue dataset encompassing 10,425 dialogues
across 7 distinct domains. There were 3,406 single-
domain dialogues and 7,032 multi-domain dia-
logues. In addition, human evaluation was included



to accurately gauge algorithm performance. Since
the MultiWOZ dataset is based on the MIT open-
source license, it does not involve privacy-related
issues or potential malicious or unintended harmful
effects.

4.2 Experimental Setting

Implementation The experiments are conducted
on a Linux server with 64 GB memory, Ultra9 CPU
(24 cores), NVIDIA A6000 GPUs (48 GB). We
implement the algorithm on the basis of ConvLab-
3 (Zhu et al., 2022). The backend for deep learning
is PyTorch (Paszke et al., 2019).
State-action space In MultiwOZ 2.1, the state-
action space is defined by 361 dimensions and the
action space is 208 dimensions.
LLM model Utilize the API interface of GPT-3.5-
turbo to achieve the prediction of domain priority.
Hyper-parameters for our LLM-DDP algorithm
The policy network is a 3-layer Multi-Layer Percep-
tron (MLP) model, with hidden size 512, and the
ReLU activation at each layer. The critic network
has the same architecture as the policy network.
In the training process, the seed was set to 42 for
initializing random parameters. The discount factor
gamma was set to 0.99 to calculate the discounted
sum of future rewards. The lambda parameter in
GAE was set to 0.95 to balance bias and variance.
The clip ratio for the PPO loss (Wang et al., 2020b)
was set to 0.2 to limit the magnitude of policy up-
dates. The learning rate for the policy network was
set to 3e—4, determining the step size of parameter
updates in the policy network. The learning rate for
the value network was also set to 3e—4, determin-
ing the step size of parameter updates in the value
network. The maximum norm for gradient clipping
was set to 0.5 to prevent gradient explosion. The
number of iterations for training the policy network
was set at 200 and the same number of iterations
was used to train the value network.

4.3 Baselines

To systematically assess the effectiveness of the
dialogue system approach proposed in this study,
we consider five alternative methods, denoted SAi
(t =1,2,...,5). Methods SA1 - SA4 were based
on a pipeline architecture, utilizing NLU, DST, and
NLG modules identical to those selected in this
study, namely BERT, Rule, and Template, respec-
tively. Method SAS involved invoking the GPT-
3.5-turbo API and using ChatGPT as an end-to-end
system role. Further details are as follows:

SA1 (DP Module with GDPL) The DP module is
adopted by the Guided Dialogue Policy Learning
(GDPL) algorithm (Takanobu et al., 2019).

SA2 (DP Module with PG) The DP module is
adopted by the Policy Gradient (PG) algorithm
(Sutton et al., 1999).

SA3 (DP Module with PPO) The DP module
is adopted by the Proximal Policy Optimization
(PPO) algorithm (Schulman et al., 2017).

SA4 (DP Module with DQN) The DP module is
adopted by the Deep Q-Learning (DQN) algorithm
(Hester et al., 2018).

SAS (End-to-End Dialogue Model with GPT3.5-
turbo) Specifically designed prompts are used to
invoke the GPT-3.5-turbo interface to implement
an end-to-end dialogue model. The prompt results
are shown in the appendix table 4.

4.4 Evaluation Metrics

Following previous research (Jang et al., 2022;
Peng et al., 2021, 2017; Wang et al., 2022), we
evaluated our system using four metrics: Inform,
Complete, Success, and Dialogue Turns. The In-
form metric evaluates whether the dialogue system
can accurately provide the required entity infor-
mation and key content for the task. The Com-
plete metric assesses the extent to which the sys-
tem provides comprehensive information to assist
users in completing their tasks. The Success metric
measures the system’s ability to successfully help
users accomplish their predetermined tasks. Dia-
logue Turns refers to the number of conversational
exchanges needed to complete a task, denoted as
Turn(succ). Ideally, a lower number of dialogue
turns indicates greater system efficiency. However,
it may also suggest that no effective dialogue has
taken place.

4.5 Main results

4.5.1 Automatic Evaluation

In this study, we use four metrics, Inform, Com-
plete, Success, and Turn (succ) to comprehensively
evaluate the performance of our LLM-DDP model.
To ensure the fairness and validity of the experi-
ments, given that ConvLab-3 does not disclose its
parameters, all baseline methods are standardized
to match the parameters and training epochs of our
LLM-DDP model. The results are presented in
Table 1, which clearly indicates that LLM-DDP
significantly outperforms other methods.

Among the experiments, SA4 and SAS exhibit
significantly lower metric values. The stark con-



Method Inform Complete Success Turn (succ)
(SA1) DP Module with GDPL 0.54 0.24 0.10 4.81

(SA2) DP Module with PG 0.54 0.45 0.11 5.81

(SA3) DP Module with PPO 0.51 0.63 0.28 6.35

(SA4) DP Module with DQN 0.03 0.17 0.01 19.8

(SA5) End-to-End Dialogue Model with GPT3.5: - 0.24 0.08 9.69
LLM-DDP 0.54 0.86 0.45 15.05

Table 1: A Comparative Results Table Based on Uniform Experimental Parameters and Training Epochs

trast implies that the DQN algorithm and the ap-
proach that rely solely on prior knowledge of LLMs
and prompts struggle to handle the complex depen-
dencies in the composite domain scenario.

When looking at the Inform metric, SA1, SA2,
and LLM-DDP share the same value of 0.54. This
indicates that these three algorithms are compara-
ble to provide required entities and key content.
The PPO algorithm in SA3 shows a relatively bet-
ter performance. LLM-DDP, which improves the
PPO algorithm by integrating LLM with an innova-
tive loss function, shows remarkable improvements.
The success rate of LLM-DDP increases to 0.45,
which is 59.7% higher than in SA3. This significant
increase highlights the effectiveness of integrating
LLMs and the novel loss function in enhancing the
dialogue completion rate and the overall success of
the system.

In the MultiWwOZ 2.1 dataset, the average turns
are 14. LLM-DDP has a Turn(succ) of 15.05,
which is close to the average, while maintaining
a high Complete metric of 0.86. This implies
that LLM-DDP can complete dialogues efficiently,
while other methods fail to reach the same level of
performance.

In summary, whether considering other pipeline
methods or end-to-end approaches, all perform in-
feriorly to LLM-DDP under the premise of unified
parameters and training epochs. The experimen-
tal results strongly substantiate the effectiveness
of our LLM-DDP approach in handling composite
domain tasks in TOD systems.

4.5.2 Human Evaluation

To enhance the accuracy of our evaluation, we en-
listed human evaluators to assess dialogues. For the
fairness and effectiveness of the evaluation, 25 hu-
man volunteers, including researchers and ordinary
users, were selected. Each assessor conducted five
conversations with six baseline methods and our
proposed method. It was clearly stated to the as-
sessors that the assessment data were sourced from

open source datasets and did not involve privacy -
related issues. The performance of the models was
evaluated across four crucial dimensions: Content,
Accuracy, Satisfaction, and Success.

In these metrics, higher scores mean better per-
formance. Ratings are divided into the following
four levels: First, when the user action perfectly
aligns with the system action, a score of 100 is
awarded. Second, when the user action largely
matches the system action, the score is assigned
based on the specific circumstances within the
range of 50-99. Third, when the user action par-
tially matches the system action, the score is as-
signed based on the specific circumstances within
the range of 1-49. Fourth, when the user action
is entirely mismatched with the system action, a
score of 0 is given.

The manual grading results are presented in
Figure 2 in Appendix E. According to Figure 2.
Among SA1 to SAS5, SA2 achieved the highest
scores in terms of content, but was surpassed by
SA3 in other metrics. The Accuracy, Satisfaction,
and Success metrics of SA3 are higher than those
of all other baselines. However, these metrics were
consistently lower than those of LLM-DDP. LLM-
DDP maintained robust performance across the
human evaluation criteria.

4.6 Ablation studies and further analysis

Ablations on our LLM-DDP framework To com-
prehensively explore the influence of different tech-
niques on the final experimental results, we con-
ducted seven groups of ablation experiments in four
major directions, as presented in Table 2.

* NOMASK: The LLM was not used to pre-
dict domain priority during training, so action
probabilities related to the domain were not
generated. When comparing LLM-DDP, all
indicators of NOMASK are lower.This clearly
demonstrates the significance of the domain
priority algorithm in dealing with composite



Method Inform Complete Success Turns (succ)
NOMASK 0.52 0.81 0.42 13.17
GC-0.1 0.55 0.82 0.41 15.05
GC-0.3 0.53 0.71 0.40 14.34
MSE-Huber 0.52 0.85 0.40 16.52
MSML-CEL 0.52 0.81 0.42 13.5

DM-50 0.51 0.71 0.41 5.82
DM-125 0.50 0.79 0.42 8.82
LLM-DDP 0.54 0.86 0.45 15.05

Table 2: Comparison of the experimental results of the seven ablation experiments with those of the LLM-DDP

experiments

domain scenarios. By predicting domain pri-
ority, LLM-DDP can better filter the action
space and make more appropriate decisions,
thereby improving the performance of the dia-
logue system.

* GC-0.1 and GC-0.3: Represent that the PPO
clipping ratios are 0.1 and 0.3, while LLM-
DDP is 0.2. GC-0.1 achieved the best result
on the Inform metric. Limiting the ratio values
enables the model to provide more accurate
information during the dialogue process. The
values of the Complete and Success metrics
are lower than those of LLM - DDP. This in-
dicates that setting the hyperparameter of the
clipping coefficient is crucial and has a rela-
tively significant impact on the results.

* MSE-Huber and MSML-CE: MSE-Huber
indicates replacing the MSE Loss with the
Huber Loss, and MSML-CE means replacing
Multi Label Soft Margin Loss with Cross En-
tropy Loss. The experimental results show
that replacing the loss function has some im-
pact on the performance of the dialogue sys-
tem. However, this impact is relatively minor,
indicating that the LLM-DDP algorithm ex-
hibits strong robustness.

* DM-50 and DM-125: Represent training the
model for 50 and 125 epochs, respectively,
while LLM-DDP is trained for 600 epochs.
All indicators gradually increase from DM-50
to DM-125 and then to LLM-DDP. This indi-
cates that the LLM-DDP algorithm requires
a certain number of epochs to converge. But
even with only 50 training epochs, the DM-
50 results are still better than the indicators
of the SA1-SAS methods, demonstrating the
superiority of the LLM-DDP framework.

These ablation experiments provide in-depth in-
sight into the importance of each component and
parameter in the LLM-DDP framework, further
validating the effectiveness and rationality of the
proposed method.

5 Conclusion

This study introduces the LLM-DDP framework,
integrating LLM with domain-driven critic loss
functions to resolve domain-dependent issues in
composite domain tasks. With common sense
knowledge and semantic comprehension of LLM, it
significantly enhances the adaptability of the model
to domain-related problems. The combined loss
function design increases the efficiency and perfor-
mance of the model. Comprehensive experiments,
including automatic evaluations and human assess-
ments on the MultiwOZ 2.1 dataset, have validated
the superiority of our method. The results reinforce
the effectiveness of the LLM-DDP framework.

Limitations

However, we have yet to implement LLM-DDP
in more LLLM. To further enhance model perfor-
mance, we plan to conduct experiments on higher-
tier LLMs, especially reasoning models, in the fu-
ture. In addition, we will expand our experimental
scope to include richer datasets to ensure the gener-
alizability of the model. Our exploration will also
extend to more complex prompts.

Ethical considerations

Our work strictly adheres to the ethical guidelines
and principles outlined by the ACL. All data sets
used in our research are sourced from previous
studies, ensuring that there are no privacy concerns
or issues related to racial discrimination.
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A Preliminaries

A.1 Pipeline architecture for TOD

The pipeline architecture is a classic design
paradigm for TOD systems, which decomposes
the entire system into multiple modules. Typically,
it consists of four core modules: NLU, DST, DP
and NLG, each responsible for a specific subtask
(Ohashi and Higashinaka, 2022b).

A.2 NLU module for TOD

A common approach for NLU involves training a
BIO (Begin, Inside, Outside) tagger for slot-value
pairs and a multiclass classifier for intents. The slot-
filling task takes the user’s utterance X as input and
generates a dictionary M = {s; = vy,...
vn }, where s represents a slot and v; represents
a corresponding value for that slot (Madotto et al.,
2020).

73n—

A.3 DST module for TOD

Given a dialogue D consisting of ¢ turns of utter-
ances Xllj, Xé, .. ,X[t], a DST model predicts a
dictionary M; = {s1 = v1,..., S, = vy}, similar
to the process of natural language understanding
(NLU).

A.4 DP module for TOD

The DP module determines the next action of
the system by integrating the current belief state
M;, the historical context, and the results of the
database query (Wang et al., 2022). Specifically, it



combines the current understanding of the user’s
intent with contextual information and selects an
appropriate response from the database.

A.5 NLG module for TOD

The Natural Language Generation (NLG) module
is tasked with the responsibility of translating the
system’s decisions or actions into natural and fluent
language. The model takes a speech act and a slot-
value dictionary as input and generates a discourse
X as output.

B Prompt for LLM-DDP

For the LLM-DDP, we designed the corresponding
prompts and obtained the respective answers, as
shown in the Appendix Table 3.

C Prompt for SAS Experiments

For the SAS5 experiment, we designed the corre-
sponding prompts and obtained the respective re-
sponses, as shown in the appendix Table 4.

D Pseudocode of the PPO algorithm

To better explain the PPO algorithm, we present its
pseudocode, as shown in Table 5.

E Human Grading

In Figure 2, the Content metric assesses whether
the system provided the correct actions and feed-
back in response to user requests. The Accuracy
metric evaluates whether users received precise an-
swers through brief dialogues, including instances
where the system offered responses to unasked
questions. The Satisfaction metric reflects over-
all user contentment with the system’s responses
and performance over five interactions. The Suc-
cess rate indicates whether the system ultimately
met all requirements. Users are required to rate the
model based on these four criteria.
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Prompt for LLM-DDP

In a task-oriented dialogue scenario, you will
be provided with user actions from historical
dialogues presented in JSON format. Analyze
the patterns and information within these histor-
ical user actions. Consider the interdependent
relationships among different domains. Think
about how different actions might be associated
with specific domains. Based on this analysis,
predict the possible domains to which the cur-
rent dialogue belongs. The output should be in
JSON format, including the possible domains
and their corresponding probability values.
user actions: [["inform", "train", "NotBook",
"none"], ["inform", "train", "leave at", "18:30"],
["inform", "train", "departure”, "cambridge"],
["inform", "train", "day", "wednesday"], ["in-
form", "train", "arrive by", "dontcare"], ["in-
"o stevenage"]]

"non

form", "train", "destination",

Answer

["hotel":0.3, "train":0.8]

Table 3: LLM-DDP Prompt in the Appendix



Human Grading
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Figure 2: The distribution chart of manual grading for the six methods.

Prompt for SAS Experiments

{‘role’: ‘system’,‘content’: ‘Imagine you are a
user chatting with a helpful assistant to achieve
a goal. You should chat according to the given
goal faithfully and naturally. You should not
generate all the information in the goal at once.
You should generate short, precise, and informa-
tive response (less than 50 tokens), correspond-
ing to only one or two items in the goal. You
should not generate information not presented
in the goal. If and only if you achieve your goal,
express your thanks and generate **“[END]”**
token. If you think the assistant can not help you
or the conversation falls into a infinite loop, gen-
erate **“[STOP]”** token.’}, {‘role’: ‘user’,
‘content’: ‘I need a hotel please. I need one with
wifi. Are there any 4 stars available? It must
have free parking.’}, { ‘role’: ‘assistant’, ‘con-
tent’: ‘Sure, I can help you with that. I found a
4 - star hotel with free parking and wifi. Would
you like me to provide more details?’ }, {’role’:
‘user’, ‘content’: ‘I would like it to have a 4 star
rating.’ }

Answer

I have found a 4 - star hotel with free parking
and wifi. Would you like me to proceed with
booking this hotel for you?

Table 4: SAS Experiments Prompt in the Appendix
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Pseudocode of the LLM-PPO algorithm

for iteration =1, 2, ... do
for actor =1, 2, ..., N do
Run policy mg,, in environment
for T timesteps
Using LLM to generate the
probability distribution P, in the
action domain
Compute action domain Cross
Entropy Loss
R _ Compute advantage estimates
Al,...,AT
end for
Compute Mean Square Error Loss
Optimize surrogate L wrt 6, with
K epochs and minibatch size M < NT
Oo14 < 0
end for

Table 5: Pseudocode in the Appendix
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