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Abstract
Multi-sample aggregation strategies, such as ma-
jority voting and best-of-N sampling, are widely
used in contemporary large language models
(LLMs) to enhance predictive accuracy across
various tasks. A key challenge in this process
is temperature selection, which significantly im-
pacts model performance. Existing approaches
either rely on a fixed default temperature or re-
quire labeled validation data for tuning, which
are often scarce and difficult to obtain. This
paper addresses the challenge of automatically
identifying the (near)-optimal temperature for
different LLMs using multi-sample aggregation
strategies, without relying on task-specific vali-
dation data. We provide a comprehensive anal-
ysis of temperature’s role in performance opti-
mization, considering variations in model archi-
tectures, datasets, task types, model sizes, and
predictive accuracy. Furthermore, we propose a
novel entropy-based metric for automated tem-
perature optimization, which consistently outper-
forms fixed-temperature baselines. Additionally,
we incorporate a stochastic process model to en-
hance interpretability, offering deeper insights
into the relationship between temperature and
model performance. Our code is available at
https://github.com/StigLidu/dualdistill.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able capabilities across various domains, including question
answering (Kamalloo et al., 2023), intelligent agents (Wang
et al., 2024b; Zhang et al., 2023), scientific discovery (Ma
et al., 2024; Romera-Paredes et al., 2024), and mathematical
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Figure 1. (a) The entropy turning point (EntP) (green star) is
defined as the temperature point where the log-scale of the token-
level entropy of generation (red line) shifts from concave to convex,
implying the sudden spike in the entropy curve (blue line). (b) The
accuracy tested at EntP is highly correlated with the best accuracy
from grid search over temperatures on the MATH dataset.

reasoning (Ahn et al., 2024; Sun et al., 2024; Lin et al., 2024;
Wu et al., 2024). A fundamental research question in gener-
ative models is how to effectively sample solutions from a
learned distribution and perform inference-time reasoning.

Recently, multi-sample aggregation strategies have gained
increasing attention. These strategies involve generating
multiple solutions from the underlying distribution and ag-
gregating them into a final prediction (Wei et al., 2022; Yao
et al., 2024). Common aggregation techniques, such as
majority voting, weighted majority voting, and best-of-N
selection, have demonstrated significant performance im-
provements in benchmark evaluations of LLMs (Welleck
et al., 2024; Wang et al., 2024a).

Despite the promising success of multi-sample aggregation
strategies, there remains a lack of deep understanding regard-
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ing how to optimize the sampling process to enhance LLM
performance under different conditions, including variations
in training datasets, task types, and model sizes. A crucial
open question is how to tune temperature, a key hyperpa-
rameter that controls the smoothness of the system-learned
distribution. Intuitively, increasing the temperature leads to
a smoother distribution, enhancing the diversity of sampled
outputs. However, excessively high temperatures can intro-
duce many low-quality samples, making aggregation more
challenging (Holtzman et al., 2019; Renze & Guven, 2024).
Conversely, lowering the temperature results in a highly
concentrated distribution, reducing diversity and potentially
omitting high-quality samples. Striking the right balance
between over-sampling and under-sampling is therefore es-
sential for optimizing LLM performance.

A common practice in prior evaluations is to use the same
temperature across all methods despite variations in training
datasets, task types, model sizes, and aggregation strategies.
This practice is clearly suboptimal. An alternative approach
is to empirically tune the temperature using labeled valida-
tion data for each task, dataset, model size, and aggrega-
tion strategy (Zhang et al., 2024a; Dhuliawala et al., 2024).
However, such a process is tedious and time-consuming and
heavily dependent on the availability of labeled validation
data, limiting its applicability when such data are scarce.

In this paper, we present the first systematic investigation
of how temperature affects LLM performance under multi-
sample aggregation strategies across various conditions. Fur-
thermore, we propose a principled algorithmic solution for
automated temperature optimization without requiring la-
beled validation data. Our key idea is as follows:

1. We use the confidence score of each model as a self-
assessment measure.

2. If this self-assessment measure is highly correlated
with model accuracy on test data, it can serve as a
surrogate metric for tuning temperature in the absence
of labeled validation data.

A surprising finding from our temperature tuning experi-
ments is the discovery of a phenomenon we term the en-
tropy turning point (EntP) in the self-assessed performance
curve. As illustrated in Figure 1(a), the token-level en-
tropy (y-axis) of an LLM varies with temperature values
(x-axis), shown by the blue curve, while its log-scale rep-
resentation appears as the red curve. Notably, there is a
transition point (EntP) where the red curve shifts from con-
cave to convex. Figure 1(b) shows that the accuracy scores
at EntP for a set of LLMs are strongly correlated with their
highest accuracy scores obtained through grid-based temper-
ature tuning. This finding supports our intuition that EntP
can be leveraged to automatically determine the optimal

temperature for each LLM using multi-sample aggregation
strategies. We introduce TURN, our proposed approach for
automated temperature optimization. Through extensive ex-
periments, TURN has demonstrated strong generalizability
across diverse tasks (e.g., mathematical problem-solving,
code generation), model sizes, and aggregation strategies
(e.g., majority voting, best-of-N). It consistently outper-
forms baseline methods using a fixed temperature, yielding
significant performance improvements. Additionally, our
approach enhances the interpretability of temperature’s role
in model performance by analyzing EntP. Moreover, our
analysis explores how the optimal temperature is influenced
by the divergence or similarity between model training and
tasks (Section 3).

In summary, TURN provides a novel, efficient, and princi-
pled method for optimizing temperature in LLM inference
with multi-sample aggregation. It eliminates the need for
labeled validation data and significantly improves perfor-
mance across a wide range of applications.

2. Preliminary & Related Work
Before moving to our main contributions, we first review
how language models typically generate samples and pro-
vide an introduction to multi-sample aggregation strategies.

Language Model Sampling Language models typically
generate output for generative tasks by autoregressively
sampling from the conditional probability distribution over
the next token, given both the input context and previously
generated tokens. Formally, for an input sequence X and
an output sequence Y = (y1, y2, . . . , yN ), the probability
of producing Y is given by the following:

P (Y | X) =

N∏
i=1

P
(
yi

∣∣ y<i, X
)
. (1)

To compute the probability distribution, the model obtains
a set of logits zi and then divides them by a temperature
hyperparameter T before applying the softmax function and
a regularization function F :

P (yi | y<i, X) = F
(
softmax

(zi
T

))
, (2)

where zi is the logit corresponding to token yi. The temper-
ature T controls how peaked or flat the resulting probability
distribution will be. The regularization function F is used
to reschedule the sampling process (e.g., Top-k (Kool et al.,
2019), Top-p (Holtzman et al., 2019), Min-p (Nguyen et al.,
2024) and Locally Typical Sampling (Meister et al., 2023)).

Multi-Sample Aggregation Strategy Since different ran-
dom seeds can produce varying outcomes, a common ap-
proach to mitigate sampling variance is to draw multiple

2



Optimizing Temperature for Language Models with Multi-Sample Inference

Figure 2. (a) Accuracy Heatmap. Performance of Mistral-7B-Instruct-v0.3 under majority voting across different temperatures. The
best temperature for each sampling size is highlighted in bold white, and the optimal temperature range is shaded white. The green line
shows the temperature predicted by our method. (b) Midpoint of Optimal Temperature Range vs. Number of Samples. The optimal
temperature range varies by model; those with training data more closely matching the task tend to favor higher temperatures.

samples and aggregate their results. In practice, it leads to
substantial performance improvements and has been widely
adopted to achieve state-of-the-art performance in math
reasoning (Sun et al., 2024; Jaech et al., 2024), code genera-
tion (Wang et al., 2024a), and many other domains.

Specifically, a set of candidate outputs Y = {Y1, . . . , YN}
is generated and then aggregated into a final answer. Two
standard aggregation methods are typically employed:

• Majority Voting: The final answer is the output that
appears most frequently among the candidates, i.e.,

ŷ = arg max
y∈{Y1,...,YN}

N∑
i=1

I
(
Yi = y

)
,

where I(·) is the indicator function, which returns 1 if
its argument is true and 0 otherwise. This method is
frequently used where evaluating whether two outputs
are equivalent is relatively easy. The method is also
called self-consistency (Wang et al., 2022).

• Best-of-N: Each sample is scored by a reward function
G, and the final answer is the one with the highest
score:

ŷ = arg max
y∈{Y1,...,YN}

G(y).

The reward function G can be defined in various ways,
such as a separate language model’s likelihood, or a
trained or verified reward model.

Choosing Temperature in Multi-Sample Aggregation
Despite the widespread use of multi-sample aggregation
strategies in state-of-the-art systems, the question of choos-
ing the important temperature parameter remains under-
explored.

Some studies have investigated selecting a temperature for a
single-sample method (Zhang et al., 2024b; Li et al., 2024;
Kumar & Sarawagi, 2019; Xie et al., 2024; Dhuliawala
et al., 2024) or multi-sample aggregation with a validation
set (Zhang et al., 2024a). Our method has two key differ-
ences: (1) we focus on state-of-the-art multisample aggrega-
tion strategies rather than single-sample inference, and (2)
we find the optimal temperature without validation data.

3. Correlation Between Model Training and
Optimal Temperature

Multi-sample aggregation strategies—commonly used
in problem-solving, code generation, and related do-
mains—leverage information from multiple samples, which
helps escape local minima and improve robustness. In these
settings, sample diversity becomes crucial: a diverse set of
candidate samples increases the likelihood that the correct
solution appears in the pool, rather than repeating the same
mistake. The temperature parameter is a primary lever for
controlling this diversity.

We hypothesize that how a model is trained impacts the
optimal temperature for multi-sample inference strategies.
In particular, a more specialized or fine-tuned model can
safely explore higher temperatures without drifting into low-
quality outputs. In contrast, a general-purpose model typi-
cally benefits from a lower temperature to remain focused
on relevant content.

We investigate this in two steps: In Section 3.1, we show that
the optimal temperature varies for a base, instruction-tuned,
and fine-tuned model. Then in Section 3.2, we establish
a general relationship between a model’s proximity to the
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Figure 3. Plot of midpoints of optimal temperature ranges (x-axis,
sample size 128) vs. distances between models and tasks (y-axis).
A strong negative correlation is observed on the MATH and MBPP
datasets, with correlation coefficients of -0.895 and -0.777.

target task and its corresponding optimal temperature. Our
key insight is that token-level entropy is a proxy of distance
from a task, which motivates our entropy-based method for
automatic temperature selection in Section 4.

3.1. Optimal Temperature Range Varies

We first demonstrate that the optimal sampling temperature
varies by model type. We test three Mistral-7B variants:
the pretrained base model, the instruction-finetuned ver-
sion (Mistral-7B-Instruct), and a task-finetuned model for
MATH1 (Wang et al., 2024c). Each model is evaluated us-
ing multi-sample aggregation across different temperatures.
Figure 2(a) presents the accuracy heatmap for the Mistral-
7B-Instruct model on the MATH dataset. At smaller sample
sizes, lower temperatures tend to produce better accuracy.
However, higher temperatures can yield better results as the
sample size increases. For a fixed sample size, the accuracy
curve follows a single-peak pattern: it rises as temperature
increases and peaks, and then gradually declines, staying
relatively steady near the peak.

Since the single-peak behavior, we define the ϵ-optimal
1Model link: https://huggingface.co/peiyi9979/mistral-7b-sft

temperature range. This range encompasses temperatures
T where the accuracy A(T ) is no less than A(T ∗)− ϵ, with
A(T ∗) representing the peak accuracy. Given the curve’s
single-peak nature, this range forms an interval around T ∗.
For our analysis, we set ϵ = 0.02, effectively capturing the
temperatures close to the peak where the accuracy remains
relatively high.

We then plot the midpoint of this optimal temperature
range for each model variant and various sample sizes (Fig-
ure 2(b)). We observe that the pretrained model has the low-
est midpoint, the instruction-finetuned model has a higher
midpoint, and the task-finetuned model has the highest. An-
other observation is that optimal temperature ranges change
slowly once beyond a sample size of 32. Therefore, we
choose a sample size of 128 in our following experiments
to ensure stable performance in the rich-sample setting.

From these observations, we hypothesize a general relation-
ship between how closely a model is tuned to a particular
task and the temperature that yields the best accuracy. We
discuss this hypothesis further in the next section.

3.2. Correlation Between Training-Task Similarity and
Optimal Temperature

Our goal is to establish a general relationship between a
model’s learned distribution and its optimal temperature
for a task. Our key intuition is that token-level entropy can
serve as a proxy for how distant a model is from a target task
and that this distance helps identify the optimal temperature.

Specifically, we define a distance metric that measures how
similar a model’s training data is to a given task. Let T =
{X1, ..., Xk} be the task with k problem instances. We
define this distance D(M, T ) as the average of token-level
entropy H(.) of the language model M when generating
the answers A = {Y1, ..., Yk} for the problems in T :

D(M, T ) =
1

k

k∑
i=1

 1

|Yi|

|Yi|∑
j=1

H
(
pM

(
· | Xi, Yi,<j

)) ,

(3)

where
H(p) = −

∑
v∈p

p
(
v) log p

(
v
)
. (4)

To avoid bias toward ground-truth references, we use model-
generated sequences {Yi} instead of official gold solutions.
Meanwhile, the distance is measured at a low temperature
T = 0.5 to ensure the generation stability.

We evaluated several language models on the MATH and
MBPP datasets, including pretrained, instruction-finetuned,
and task-finetuned models. Figure 3 plots the midpoint of
the optimal temperature range against our distance metric,
demonstrating a strong negative correlation. Specifically,
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across our model set, the correlation on MATH is −0.895,
while on MBPP it is −0.777.

In practice, this suggests using a higher temperature (e.g.,
T = 0.9–1.1) for task-finetuned models and a lower temper-
ature (e.g., T = 0.5–0.7) for more general-purpose models
(pretrained or instruction-finetuned).

Figure 4. Entropy Curve Characteristics. (a) The token-level
entropy H (solid blue line) increases slowly at lower temperatures
and then jumps sharply at a critical turning point. In contrast, the
entropy for a fixed (greedy) generation stays low (dotted blue line).
log(H) (red line) reveals a transition from concavity to convexity
that aligns with the sharp increase in H, marking the entropy
turning point (EntP). (b) EntP aligns with the best temperature and
varies across different models.

4. Entropy-Based Automatic Temperature
Selection

Determining an optimal sampling temperature is crucial in
multi-sample aggregation strategies, yet existing approaches
often rely on labeled data or tuning on a validation set.
This reliance becomes problematic when no such data are
available. In this section, we show how to leverage token-
level entropy as an intrinsic property to pinpoint a suitable
temperature without labeled data. We first demonstrate a
spike on token-level entropy as a signal of quality collapse
in Section 4.1. Then develop a method that automatically
selects temperature using an entropy turning point (EntP)
derived from the spike in Section 4.2. Finally, we applied a
stochastic process model to explain the mechanism of our

algorithm in Section 4.3.

4.1. Entropy Spike as an Indicator of Quality Collapse

First, we discover a surprising phenomenon that we call
the entropy spike. Specifically, increasing the temperature
smoothly increases the model’s entropy, until a dramatic
spike where the entropy rapidly increases. We believe the
spike is a good indicator of sample quality collapse.

As illustrated in Figure 4(a), we calculate the token-level
entropy at different temperature levels (solid blue line). To
reduce computational overhead, we compute the entropy
only over the top-K tokens (with the highest probabilities) at
each step, setting K = 1000 in all subsequent experiments.
The entropy curve remains stable for lower temperatures
but then shows a sudden rise. One might attribute this
behavior to temperature’s role in flattening the distribution
(Equation 1). However, the following analysis indicates
that this spike reflects a substantial change in the model’s
next-token distribution.

Specifically, we constrain the model to generate the same
outputs produced by greedy decoding while evaluating en-
tropy under a higher temperature (dotted blue line). If tem-
perature alone were responsible for the entropy spike, these
fixed outputs would yield a similarly high entropy. How-
ever, as shown in Figure 4(a), we observe a significant gap
between these two entropy curves, indicating that the actual
sampling distribution undergoes a large shift.

Thus, we infer that the sudden rise in the entropy curve
implies a substantial drop in sample quality. Setting the
temperature around this sudden rise can balance sufficient
diversity without a large quality drop, which is suitable for
multi-sample aggregation strategies.

4.2. Turning Point Temperature Selection (TURN)

Given the token-level entropy curve of a language model on
a specific task, how can we identify a suitable temperature
for multi-sample aggregation strategies? Inspired by the
difference in the shapes of the entropy curve: When the tem-
perature remains low, the entropy increases flatly. However,
when the sampling temperature is near the spike, the entropy
increases (super)-exponentially, implying a quality drop in
samples. Therefore, after taking the logarithm of the entropy
curve (shown in Figure 4(a), red line), the flat part becomes
concave while the exponentially-increasing part becomes
convex. We define the entropy turning point (EntP) as the
temperature where the log entropy curve becomes convex.
Figure 4(b) tests the llemma-7b base model and its task-
finetuned variant2 (Sun et al., 2024), and EntP matches the
position with the highest accuracy and varies between dif-

2Model link: https://huggingface.co/ScalableMath/llemma-7b-
sft-metamath-level-1to3-hf

5

https://huggingface.co/ScalableMath/llemma-7b-sft-metamath-level-1to3-hf
https://huggingface.co/ScalableMath/llemma-7b-sft-metamath-level-1to3-hf


Optimizing Temperature for Language Models with Multi-Sample Inference

ferent models. Based on EntP, we develop a new method for
automatic temperature prediction in multi-sample aggrega-
tion strategies, called Turning Point Temperature Selection
(TURN).

The optimal temperature should be around EntP to achieve
both sample quality and diversity. At the same time, we
found that some aggregation methods may be more tolerant
of quality drops (e.g., for best-of-N, only one sample is
enough to be correct). So we added a small adaptation
factor β based on the aggregation function, and it is set to
0 and +0.1 for majority voting and best-of-N, respectively.
The aggregation adaptation for best-of-N is calculated in
the MATH dataset but can be directly applied to other tasks.
Refer to Appendix C for more details.

Specifically, given a language model M, a task T =
{X1, . . . , Xk} with k input instances, and an aggregation
method A. To estimate token-level entropy, we randomly
sampled N times. In each time, we randomly choose an
input instance Xi and generate one sample by M under
each candidate temperature tj = j · t (with t being the tem-
perature interval and j = 0, 1, . . . , J , where J = ⌊tmax/t⌋).
These entropies are then aggregated to calculate the average
entropy H(tj) at each temperature tj . Taking the logarithm,
we obtain ℓ(tj) = logH(tj).

Next, we identify the EntP index j∗, where the second
derivative of ℓ changes from negative to positive, and select
its corresponding temperature j∗ · t. Then we add the aggre-
gation adaptation factor β to form the final prediction. The
pseudocode for our algorithm is listed in Algo. 1.

Algorithm 1 Turning Point Temperature Selection (TURN)
1: Input: Language Model M, task T = (X1, ..., Xk),

temperature interval t, maximum temperature tmax,
sample size N , aggregation method A.

2: Output: Predicted Temperature Tpred.
3: Compute J = ⌊tmax/t⌋ {Number of choices}
4: Initialize entropy list E = []
5: for n = 1 to N do
6: Randomly select Xi from T
7: for j = 0 to J do
8: Generate a sample Y using M with T = j · t
9: Compute token-level entropy of Y , add to E [j]

10: end for
11: end for
12: Compute H(j) = Mean (E(j)) for all j
13: Compute ℓ(j) = logH(j) for all j
14: Find j∗ = argminj

(
d2ℓ
dt2 > 0

)
15: Compute t∗ = j∗ · t
16: Add adaptation factor βA: Tpred = t∗ + βA
17: Return Tpred

Figure 5. Stochastic Process Model. We run our process model in
the setting: N0 = 10, N1 = 30000, L0 = 0, σ0 = 1, L1 = −10,
and α = 2. (a) The entropy curve is similar to that of the real
language model: flat at first, and then sharply increases. (b) We
calculate the relation between temperature and the percentage of
improper tokens in the simulation, and the percentage of improper
tokens quickly increases after EntP.

4.3. A Stochastic Process Model

We applied a stochastic process model to explain why the
entropy curve exhibits a sudden spike and what that spike
signifies.

Because inference is sequential, when the language model
makes an error (for example, by sampling an improper to-
ken), it increases the likelihood of further mistakes. Mean-
while, the model may occasionally recover and return to a
correct trajectory.

To simulate this process, we adopt a stochastic process
model with K steps in sequential, generating a token in each
step. At the start, the model has an initial error rate p = pinit,
representing the probability of selecting an improper token.
At each step, if the model selects an improper token, the
likelihood of further errors increases to 1− (1− p)α, where
α > 1 is called the noise tolerance rate. Conversely, if the
model selects a proper token, the error probability decreases
to pα (but cannot be smaller than pinit).

To build a bridge between the temperature T and the initial
error rate pinit, we propose an estimation. All tokens are
labeled proper or improper irrelevant to contexts, and the
number of improper tokens (N1) is much larger than that
of proper tokens (N0). In the beginning, proper tokens
have high logits L0 with a variance N (0, σ2

0) to reflect
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the nature that there may be several proper next tokens
with similar logits. Improper tokens have uniformly low
logits L1. Then, the initial error rate pinit is determined
as the probability of selecting an improper token based on
the logits and temperature. During inference, all improper
tokens equally share the error rate p, while proper tokens
account for the remaining probability based on their logits.

Using this setup, we can estimate the token-level entropy.
As shown in Figure 5(a), the simulated entropy curve (blue
line) aligns well with the observed entropy curves of a real
language model (Figure 4(1) solid blue line). Meanwhile,
Figure 5(b) shows the relationship between the temperature
and the percentage of improper tokens, which rises quickly
after EntP. This observation suggests that, before EntP, in-
creasing the temperature can help explore the proper tokens.
However, after EntP, the increase in the percentage of im-
proper tokens makes the model uncertain and creates errors,
implying a quick drop in sample quality. The behavior of
the stochastic process model is consistent with our observa-
tions of language models, proving that token-level entropy
is a good indicator of sample quality. Detailed formulas and
experiments can be found in Appendix B.

5. Evaluating TURN
We want to answer the following research questions about
our approach TURN for selecting the optimal temperature:

• RQ1: How is the accuracy of TURN in automatic
temperature prediction?

• RQ2: How efficient is TURN regarding the number of
samples (the parameter N in Algo. 1)?

Through experiments, TURN proves effective across mod-
els, aggregation strategies, and tasks while remaining effi-
cient, requiring only a few samples for temperature predic-
tion.

5.1. Experiment Setup

We evaluate our methods in two scenarios where sampling-
based inference is widely used: Math Problem Solving with
Majority Voting and Code Generation with Best-of-N. The
datasets and models are as follows:

Math Problem Solving: We assess language models’ rea-
soning abilities using the MATH dataset (Hendrycks et al.,
2021), which consists of competition-level math problems.
To accommodate multiple models, we randomly select 200
test problems (40 per difficulty level). Accuracy is measured
based on majority voting. We test general-purpose models
(Llama (Dubey et al., 2024), Mistral (Jiang et al., 2023)),
domain-specific models (Llemma (Azerbayev et al., 2023),
OpenMath2 (Toshniwal et al., 2024), Deepseek-Math (Shao

Table 1. The prediction from our algorithm TURN (Pred.), the
optimal temperature ranges (Opt. Range) from grid search, and
the performance drop (PD) for various models tested in the MATH
and MBPP datasets. TURN achieved hit rates of 12/13 and
11/13, average temperature gaps of 0.023 and 0.015, and average
performance drop of 0.32% and 0.59%.

MATH with Majority Voting (Hit Rate: 92.3%)

Model Name Pred. Opt. Range PD (↓)

mistral-7b-sft 0.9 0.5–1.5 0.75%
math-shepherd-mistral-7b-rl 0.9 0.5–1.3 0%
Mistral-7B-v0.3 0.7 0.3–0.7 0.37%
Mistral-7B-Instruct-v0.3 0.7 0.5–0.7 0%
deepseek-math-7b-base 0.6 0.5–0.7 0.5%
deepseek-math-7b-instruct 0.8 0.5–1.3 0.75%
llemma-7b 0.7 0.3–0.7 0%
llemma-7b-sft-metamath-hf 1.1 0.7–1.5 0%
Llama-3.1-8B-Instruct 0.6 0.3–0.7 0%
Llama-3.1-8B 0.6 0.5–0.7 0.5%
Llama-3.2-3B-Instruct 0.7 0.5–0.7 0%
Llama-3.2-3B 0.6 0.3 1%
OpenMath2-Llama3.1-8B 0.8 0.5–1.1 0.25%

MBPP with Best-of-N (Hit Rate: 84.6%)

Model Name Pred. Opt. Range PD (↓)

deepseek-coder-7b-base-v1.5 1.0 0.7–0.9 2.70%
deepseek-coder-7b-instruct-v1.5 1.0 1.1–1.3 1.77%
CodeLlama-7b-hf 0.8 0.7–0.9 0%
CodeLlama-7b-Python-hf 0.9 0.7–0.9 0.71%
CodeLlama-7b-instruct-hf 0.9 0.9–1.1 0%
Qwen2.5-Coder-7B 0.9 0.7–1.1 0%
Qwen2.5-Coder-7B-Instruct 0.9 0.7–1.1 0%
Yi-coder-9B 0.7 0.7–1.3 0.97%
Yi-Coder-9B-chat 0.9 0.9–1.5 0%
Llama-3.1-8B 0.9 0.5–0.9 1.08%
Llama-3.1-8B-Instruct 0.8 0.7–1.1 0.39%
Mistral-7B-v0.3 0.8 0.5–0.9 0%
Mistral-7B-Instruct-v0.3 0.7 0.7–0.9 0%

et al., 2024)), and fine-tuned models (Math-Shepherd (Wang
et al., 2024c), Easy-to-Hard (Sun et al., 2024)).

Code Generation: For code generation, we use the MBPP
dataset (Austin et al., 2021), selecting the first 100 pro-
gramming problems. Accuracy is measured using pass@K,
where correctness is determined by passing provided unit
tests. We regard the unit tests as the best-of-N strategy
with a perfect reward model to rank answers. Besides
general-purpose models, we evaluate code-specific mod-
els, including Deepseek-Coder (Guo et al., 2024), CodeL-
lama (Roziere et al., 2023), Qwen2.5-Coder (Hui et al.,
2024), and Yi-coder (01.AI, 2024).

Implement Details: For both tasks, we sample 256 times
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Table 2. Comparison Between TURN and Fixed Temperatures. We compared TURN to various fixed temperatures under two metrics:
The sum of Temperature Gap and the average Performance Drop. ‘-Ada.’ means removing the aggregation adaptation factor β. Although
some temperatures are generally suitable for multi-sample aggregation strategies (i.e., T = 0.7 or T = 0.9), TURN can outperform
any single fixed temperature across any dataset, highlighting the strong performance of TURN in automatic temperature selection. The
underline means not inferior to the best fixed temperature, and the bold is the best result.

Fixed Temperature TURN TURN
0.1 0.3 0.5 0.7 0.9 1.1 -Ada.

MATH Sum Gap (↓) 4.6 2.0 0.4 0.4 2.0 3.6 0.3 0.3
Avg. Drop (↓) 8.6% 3.5% 1.0% 0.8% 3.1% 7.2% 0.3% 0.3%

MBPP Sum Gap (↓) 8.2 5.6 3.0 0.8 0.2 1.2 0.2 0.6
Avg. Drop (↓) 22.5% 10.7% 5.1% 1.5% 0.9% 4.2% 0.5% 1.1%

Average Sum Gap (↓) 6.4 3.8 1.7 0.6 1.1 2.4 0.25 0.45
Avg. Drop (↓) 15.55% 7.1% 3.05% 1.15% 2.0% 5.7% 0.4% 0.7%

per question at each temperature level and compute accuracy
across different sampling sizes. For temperature prediction
in TURN, we use an interval of t = 0.1 and set N =
8× dataset size (an excessive sample size, see Section 5.4
for discussion). Additional inference configurations are
detailed in Appendix A.

Table 3. Variance of Entropy Estimation. We report the aver-
age variance of the entropy curve and the variance of estimated
temperature Tpred under different sample sizes with 50 trials on
Llama3.1-8B-Instruct on MATH. A small sample size (e.g., 40) is
sufficient for entropy estimation in TURN for its low prediction
variance and small performance drop.

Sample Size (N )
10 40 100 800

Mean (Var (H(.))) 0.084 0.022 0.010 0.001
Var (Tpred) 0.020 0.005 0.003 0.001

Performance Drop(↓) 0.9% 0.2% 0.1% 0.0%

5.2. Evaluation Metrics

To assess the performance of our algorithm for automatically
selecting the optimal sampling temperature, we define the
following key metrics (all the metrics are calculated under a
large sample size of 128, refer to Section 3.1 for discussion):

Metrics: We use the following metrics to evaluate the accu-
racy and reliability of our temperature prediction algorithm:

• Hit Rate (HR): The frequency with which TURN
selects a temperature within the ϵ-optimal range3, indi-
cating practical reliability.

• Temperature Gap (TG): The absolute difference be-
tween the predicted temperature and the nearest bound-
ary of the ϵ-optimal temperature range.

• Performance Drop (PD): The accuracy loss compared
to the best temperature found by grid search.

3Defined in Section 3.1.

5.3. Baseline

As no existing method automatically adjusts tempera-
tures in multi-sample aggregation strategies, we compare
against a fixed temperature baseline. We search for
{0.1, 0.3, 0.5, 0.7, 0.9, 1.1} and select the temperature that
maximizes the overall accuracy. This mimics a common,
yet suboptimal practice where developers apply a single
temperature across all models, disregarding variations in
model behavior and task requirements.

5.4. Results

We evaluated 13 models on two tasks—MATH (with ma-
jority voting) and MBPP (with Best-of-N)—and present
the results in Table 1. Recall Figure 1(b), the correlation
coefficient between the accuracy of the predicted tempera-
ture and the best accuracy from grid search is 0.9998 for
MATH (and 0.9913 for MBPP). TURN achieves a Hit Rate
of 12/13 on MATH and 11/13 on MBPP, indicating strong
performance across most models. The Temperature Gap
remains minimal even when the predicted temperature falls
outside the ϵ-optimal range (0.023 for MATH and 0.015 for
MBPP). Compared to the best temperatures found through
the grid search, TURN incurs only a small drop in average
performance (0.32% and 0.59%, respectively). Full per-
model results and predicted turning points are provided in
Appendix D.

Comparison with Fixed Temperatures: We next compare
TURN to a fixed temperature baseline. Specifically, we
sample temperatures from 0.1 to 1.1 at intervals of 0.2 and
report the Temperature Gap (TG) and Performance Drop
(PD) in Table 2. Our method outperforms the best of fixed
temperatures by 0.5% on MATH and 0.4% on MBPP in
average accuracy. When both tasks are combined, the mar-
gin increases to 0.75%, highlighting the benefit of adaptive
temperature selection over a uniform fixed temperature.

Number of Samples for Temperature Estimation: Fi-
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nally, we assess the efficiency of TURN by examining the
prediction variance under different sample sizes for Llama-
3.1-8B-Instruct on MATH. As shown in Table 3, we report
the average variance of the entropy curve in all choices of
T , the variance of the predicted temperature, and the aver-
age performance drop. We find that even with a moderate
sample size (e.g., 40 samples), the variance remains low
and the performance drop is tiny (0.2%), suggesting that a
small sampling budget is sufficient for accurate temperature
estimation and thus proves the efficiency of our algorithm.

6. Conclusion
In this paper, we investigated the critical role of temperature
in multi-sample aggregation strategies. We observed that the
optimal temperature varies significantly across models due
to differences in training strategies and data distributions.
By analyzing the relationship between training-testing dis-
tribution similarity and the optimal temperature range, we
identify a strong correlation that provides valuable insights
into model behavior. Furthermore, we proposed the first
method for automatically predicting optimal temperatures
across diverse tasks, achieving this without labeled data.
Our findings contribute to a deeper understanding of tem-
perature’s impact on language model performance and offer
a practical approach for optimizing inference settings.
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A. Inference Configuration
A.1. Software

Our experiments build upon two open-source projects: Easy-to-Hard Generalization (Sun et al., 2024) for the MATH dataset
and bigcode-evaluation-harness (Ben Allal et al., 2022) for the MBPP dataset. We employ vLLM (Kwon et al., 2023) to
accelerate inference. All experiments can be reproduced on a single L40S or A6000 GPU.

A.2. Sampling Hyperparameters

We use zero-shot inference for models fine-tuned specifically for each dataset. For general-purpose models, we use four
in-context examples (few-shot inference) to ensure correct output formatting. The maximum output length is set to 1024
tokens for all tasks. For the MATH dataset, we use top-k sampling with k = 20. No additional sampling constraints are
imposed for the MBPP dataset.

A.3. Metric Calculation

To compute the majority vote results for the MATH dataset, we consider two samples to have the same answer if they match
after normalization. For the pass@K metric, we follow the definition in Chen et al. (2021). Let N be the total number of
samples and C be the number of correct samples. Then pass@K is defined as:

pass@K = 1−
(
N−C
K

)(
N
K

) . (5)

B. Details of the Stochastic Process Model
We introduce a stochastic process model to explain that (1) the token-level entropy increases steadily at the beginning but
rises rapidly when the sampling temperature reaches a certain threshold. (2) The optimal temperature is near the turning
point when using multi-sample aggregation strategies.

The stochastic process model has two underlying assumptions: (1) Every token can be labeled as ‘proper’ or ‘improper’
at each decoding step. Generally, proper tokens have relatively higher logits than improper tokens, while the number of
improper tokens is much higher than that of proper tokens. (2) When an improper token is generated, improper tokens have
a higher generation probability in the next step, and vice versa.

Under these two assumptions, we can calculate the token-level entropy under different sampling temperatures, and the
temperature-entropy curve fits that of real language models. Meanwhile, the percentage of improper tokens quickly increases
after the turning point, implying a quick drop in sample quality in real language models.

B.1. Model Setup

B.1.1. INITIAL CONDITIONS

We consider a discrete-time process {xt}Kt=0 where each xt ∈ [0, 1] represents the model’s probability of producing an
improper token at time step t. We start with an initial error rate:

x0 = xinit ∈ [0, 1].

Conceptually, xinit corresponds to the model’s baseline ‘error propensity’ at the start. This value is related to the sampling
temperature T of the language model: higher T typically yields a flatter probability distribution over tokens, increasing the
chance of selecting an improper token and thus increasing xinit. (See Section B.1.4 for a heuristic link between temperature
and initial error rate.)

B.1.2. INTERPRETING THE ERROR RATE

At each step t, the language model chooses a single token, and each token is classified as proper or improper. Although in
practice, the correctness of a token depends on the context and is not truly binary, we approximate this by treating correctness
as a Bernoulli trial:
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• Probability of producing an improper token: xt;

• Probability of producing a proper token: 1− xt.

Define a random variable Et that indicates whether an error occurred at time step t:

Et =

{
1 with probability xt, (improper token),
0 with probability 1− xt, (proper token).

B.1.3. ERROR RATE UPDATE RULES

After each step, the error rate of the next step xt+1 is updated based on whether the token in this step t is proper or not:

If an error occurs (Et = 1): The error rate of the next step xt+1 is increased. Intuitively, making a mistake can make the
model more likely to continue making errors. Formally, we update:

xt+1 = 1− (1− xt)
α.

It can be seen that xt+1 ≥ xt for xt ∈ [0, 1] and α > 1 (α is a hyperparameter). Here, α can be considered as the
noise tolerance rate, measuring how stable the model is when it experiences unexpected noise, and we try different α in
experiments.

If a proper token is produced (Et = 0): The error rate of the next step xt+1 is reduced, reflecting a ‘reinforcement’ of
correct behavior. We do this by:

xt+1 = max(xα
t , xinit).

It generally makes xt+1 ≤ xt smaller, so this update lowers the error rate. In particular, we do not allow the error rate to
drop below the initial baseline xinit.

B.1.4. LINKING INITIAL ERROR RATE AND TEMPERATURE

At time step t, the token probability mass of the model is divided into:

• Improper tokens with total probability P1,improper = xt;

• Proper tokens with total probability P0,proper = 1− xt.

Therefore, by definition, we have xinit = P1,improper. Under higher temperatures T , the softmax distribution flattens,
increasing P1,improper because the number of improper tokens is large but their logits are low. Thus, xinit increases as T
increases.

B.1.5. TYPE OF TOKENS DURING DECODING

The probability of tokens when decoding is usually multi-peak (i.e., except for the token with the highest logit, some other
tokens have reasonably high logits and are also acceptable during decoding), so it is natural to consider a scenario with three
categories of tokens:

• Proper tokens: Small number of tokens with high logits. Let N0 be the number of proper tokens. To capture the
multi-peak behavior, the logits of proper tokens l0,1, ..., l0,N0

are sampled from the Gaussian distribution N (L0, σ0).

• Low Probability Improper tokens: Many low-logit tokens where language models seldom choose them. Let N1 be
the number of tokens of this type, and their logits are set to L1 for simplicity.

• High Probability Improper tokens: Due to insufficient training or mistakes in training data, some tokens may have
exceptionally high logits but are logically improper in (e.g., the token 3 in 1 + 1 = 3). Since different language models
behave differently, we only consider decoding without high-probability improper tokens in our discussion.

For the first two types of tokens, we have L0 > L1, N0 ≪ N1.
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B.1.6. TOKEN PROBABILITY DURING SAMPLING

At each step t, the probability of producing improper tokens is xt. Let pt,proper/improper,j be the probability of the j-th
proper/improper tokens at step t. For improper tokens, we have:

pt,improper,j =
xt

N1
, ∀j ∈ [1, N1].

For the proper tokens, we allocate the remaining probability 1− xt according to their relative logits:

pt,proper,j = (1− xt)softmax(l0,1, ..., l0,N0)j , ∀j ∈ [1, N0].

This ensures that the relative order of the probabilities for the proper tokens remains determined by their logits, while the
total mass allocated to the improper tokens is xt.

B.1.7. ENTROPY CALCULATION

We define token-level entropy H on a sequence of decoding steps:

H =
1

K

K∑
t=1

∑
j

pt,j log pt,j = − 1

K

K∑
t=1

 N0∑
j=1

pt,proper,j log pt,proper,j +

N1∑
j=1

pt,improper,j log pt,improper,j

 .

Here, K is the total number of decoding steps considered.

B.2. Experiment

B.2.1. MODEL HYPERPARAMETER

The stochastic process model has the following hyperparameters:

• The numbers of proper and improper tokens: N0, N1;

• The logits of proper and improper tokens: l0,{1,...,N0}, l1,{1,...,N1}, where:

l0,i ∼ N (L0, σ0), l1,i = L1;

• The number of total steps K;

• The noise tolerance rate α.

The input is the temperature T and the output is the average token-level entropy H over 500 seeds. In our experiment, the
hyperparameters are set to be:

N0 = 10, N1 = 30000, L0 = 0, L1 = −10, σ0 = 1, K = 512.

Furthermore, we tested different noise tolerance rates α ∈ [1.5, 2.0, 2.5, 3.0] to show the behavior under different noise
tolerances.

B.2.2. RESULT

Figure 8 is the temperature entropy curve derived from the toy model at different noise tolerance rates α. The curves with
different noise tolerances have a similar shape. Generally, the curve can be divided into two parts: (sub)-linear increase and
(super)-exponential increase. In the first part, the increase is due to the various choices among the proper tokens, while the
sharp rise in the second part is due to the loss of control (i.e., the model frequently chooses improper tokens and then makes
the error rate extremely high).

In particular, the curve is very similar to the behavior of real language models, and some reference entropy curves and
log-entropy curves are shown in Figures 10 and 11.
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Figure 6. The temperature-entropy curves.

Figure 7. The temperature-log entropy curves.

Figure 8. The curves derived from the stochastic process model under different α.

Relation to Improper Token Rate It is natural to consider that proper tokens can lead to correct final answers and that
improper tokens will result in incorrect final answers, so we measure the percentage of improper tokens. As shown in
Figure 9, when the temperature exceeds the turning point, the percentage of improper tokens increases quickly, implying a
quality drop in the samples. Interestingly, the difference in noise tolerance rates has little inference on the turning point but
controls the improper token increasing speed after the turning point. However, the percentage of improper tokens increases
rapidly in all tested α.

B.3. Conclusion

Our stochastic process model provides a simplified but insightful framework for understanding how temperature-dependent
sampling dynamics can lead to characteristic shifts in the model output distribution. The model predominantly chooses
from the proper tokens in the low-temperature (or sublinear growth) regime, resulting in relatively stable and controlled
outputs. The distribution flattens, and nonsense tokens gain significant probability mass as temperature increases beyond a
certain threshold. This transition leads to a sudden and steep increase in entropy—mirroring observations in actual language
models—and a corresponding drop in the correct rate. Therefore, increasing the temperature can initially increase generation
diversity (sampling among proper tokens) with a small correctness drop. However, the performance suffers a quick drop
after reaching a certain threshold (i.e., the turning point EntP).

C. Aggregation Adaptation Calculation
The choice of aggregation function affects the optimal generation temperature. For example, in majority voting, the final
answer must be selected by the majority, whereas in best-of-N, only a single correct instance out of the N samples is required.
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Figure 9. The Temperature-Improper Token (%) curves.

Figure 10. The temperature-entropy curves.

Figure 11. The temperature-log entropy curves.

In the case of majority voting, the turning point on the entropy curve aligns with the optimal temperature, so we set its
adaptation to 0. For best-of-N, we computed an adaptation on MATH and then tested it on MBPP to confirm generality.
Specifically, we averaged the difference between the midpoints of the optimal temperature ranges for best-of-N and majority
voting across 13 models on MATH. This difference was 0.092 on average. Therefore, for simplicity, we set the aggregation
adaptation for best-of-N to 0.1.
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Table 4. Aggregation Adaptation for Best-of-N: we calculate midpoints of optimal temperature ranges on Majority Voting and Best-of-N
for MATH. The difference between the average of midpoints is 0.092, so we set the adaptation factor to 0.1.

Aggregation Individual Models (Models are listed in the same order as Table 1) Average
Best-of-N 0.6 0.8 0.6 0.6 0.7 0.5 0.6 1.1 1.2 0.5 0.6 1.3 1.0 0.7769

Majority Voting 0.6 0.9 0.6 0.5 0.3 0.6 0.5 1.1 0.9 0.5 0.6 1.0 0.8 0.6846

D. Results of All Tested Models
We present the accuracy heatmaps and entropy estimations for all tested models. Figure 12 shows the heatmaps of model
accuracy for the MATH dataset, while Figure 13 displays the heatmaps for the MBPP dataset. Additionally, Figure 14
illustrates the entropy curve estimations for the MATH dataset, and Figure 15 provides the entropy curve estimations for the
MBPP dataset.
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Figure 12. The accuracy heatmap for all tested models on the MATH dataset. The green line is our predicted temperature.
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Figure 13. The accuracy heatmap for all tested models on the MBPP dataset. The green line is our predicted temperature.
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Figure 14. The entropy curves and turning points of language models when testing on the MATH dataset.
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Figure 15. The entropy curves and turning points of language models when testing on the MBPP dataset.
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