
Short-Range Oversquashing

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Message Passing Neural Networks (MPNNs) are widely used for learning on2

graphs, but their ability to process long-range information is limited by the3

phenomenon of oversquashing. This limitation has led some researchers to4

advocate Graph Transformers as a better alternative, whereas others suggest that5

it can be mitigated within the MPNN framework, using virtual nodes or other6

rewiring techniques.7

In this work, we demonstrate that oversquashing is not limited to long-range8

tasks, but can also arise in short-range problems. This observation allows us9

to disentangle two distinct mechanisms underlying oversquashing: (1) the bot-10

tleneck phenomenon, which can arise even in low-range settings, and (2) the11

vanishing gradient phenomenon, which is closely associated with long-range12

tasks.13

We further show that the short-range bottleneck effect is not captured by existing14

explanations for oversquashing, and that adding virtual nodes does not resolve it.15

In contrast, transformers do succeed in such tasks, positioning them as the more16

compelling solution to oversquashing, compared to specialized MPNNs.17

1 Introduction18

Graph Neural Networks (GNNs) are the leading tool for learning on graph-structured data, with many19

of the most popular models falling into the category of Message Passing Neural Networks (MPNNs).20

While MPNNs are computationally very efficient due to their ability to leverage graph sparsity, they21

are known to be successful only when using a small number of MPNN layers, typically 2–4. The22

difficulty in training deep MPNNs is commonly attributed to the phenomena of oversmoothing [1]23

and oversquashing [2]. Oversmoothing is the phenomenon in which, as the number of MPNN layers24

increases, node features become nearly indistinguishable from one another, with the extreme case25

often termed total collapse. Our focus in this paper will primarily be on oversquashing.26

The term oversquashing, coined by Alon and Yahav [2], refers to the difficulty of training MPNNs on27

long-range tasks, that is, tasks that require communication between distant nodes to solve the problem28

accurately. The authors explained that this difficulty is caused by a bottleneck effect, where the29

intermediate nodes on the path between two distant nodes need to have an increasingly large feature30

dimension in order to solve the problem by message passing. Later papers put more emphasis on low31

graph connectivity and vanishing gradients as the essential component leading to oversquashing.32

Oversmoothing and oversquashing are at the center of active discussion in the graph-learning com-33

munity. On the one hand, many papers attempt to enable the use of MPNNs for long-range learning34

using techniques such as virtual nodes and other rewiring methods, which are aimed at reducing the35

range and difficulty of the learning problem. In a different direction, several papers have argued that36

Graph Transformers (GTs) outperform MPNNs due to their ability to handle long-range tasks [3–6].37

Later results cast doubt on this claim, showing that with careful training, MPNNs with virtual nodes38

can obtain competitive results in many graph benchmarks, including Long Range Graph Benchmark39

(LRGB) [6], which consists of tasks that arguably require long-range interactions. Similarly, it40

was argued in a recent work [7] that MPNNs with virtual nodes are able to simulate the attention41

mechanism: “despite recent efforts, we still lack good benchmark datasets where GT can outperform42

MPNN by a large margin.”43

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

Short-Range Oversquashing

Our main goal in this paper is to advance the theoretical understanding of oversquashing by demon-44

strating that it can also arise in short-range tasks. Specifically, we construct a family of graph-learning45

problems that admit exact solutions with just two MPNN iterations, yet we prove that any MPNN46

must employ very large node-feature dimensions to solve them. Thus, these problems are affected47

by the bottleneck effect, even though the underlying graphs are well connected. We also show48

empirically that the vanishing gradient problem does not occur for these problems.49

In contrast, we show that popular synthetic long-range tasks considered in the literature suffer from50

vanishing gradients but not from the bottleneck effect. Thus, we claim that these are two distinct51

effects that were inadvertently mixed together.52

In addition, we show empirically that standard MPNNs, even when augmented with virtual nodes, per-53

form poorly on these problems, whereas transformers solve them easily. This yields an interpretable54

test case in which MPNNs with virtual nodes are clearly outperformed by transformers.55

1.1 Related Work56

Oversquashing in graph neural networks. The oversquashing phenomenon was first identified57

by Alon and Yahav [2], who demonstrated that MPNNs struggle to propagate information between58

distant nodes due to an exponential growth in the nodes’ receptive field. They introduced the Tree59

Neighbors-Match problem, discussed in section 2, as a canonical example, where the bottleneck60

effect arises as the problem radius increases, arguing that the exponential growth of receptive fields61

with depth creates information bottlenecks at intermediate nodes.62

Theoretical explanations of oversquashing. Several theoretical frameworks have been proposed63

to explain oversquashing. Topping et al. [8] connected oversquashing to the Ricci curvature of64

graph edges, proving that edges with negative curvature act as information bottlenecks and deriving65

bounds on gradient norms in terms of curvature. Di Giovanni et al. [9] provided direct gradient-decay66

analysis, deriving bounds on Jacobian norms that predict exponential decay when either the distance67

between nodes or the number of message-passing iterations is large.68

Spectral properties and graph connectivity. The spectral gap (smallest nonzero eigenvalue λ1 of69

the normalized graph Laplacian) has been proposed as a key indicator of oversquashing potential.70

When λ1 is close to zero, the graph is nearly disconnected into multiple components, suggesting poor71

information flow. Several works have used spectral graph theory to predict and mitigate oversquashing,72

proposing rewiring strategies that increase λ1 to improve information propagation Topping et al. [8].73

Black et al. [10] introduced effective resistance as a measure for predicting oversquashing. For nodes74

u and v, the effective resistance is Ru,v = (1u − 1v)L
+(1u − 1v), where L+ is the pseudoinverse of75

the graph Laplacian. This quantity, borrowed from electrical network theory, accounts for all paths76

between nodes and is proportional to commute time in random walks [11]. Black et al. proved upper77

bounds on gradient norms in terms of effective resistance, establishing connections between high78

resistance and vanishing gradients.79

Graph Transformers and attention mechanisms. Because self attention enables all-pairs com-80

munication in a single hop, Graph Transformers are often argued to mitigate oversquashing when81

paired with structural/positional encodings (e.g., Graphormer [3]; GPS [4]; Exphormer [5]). Cai82

et al. [7] showed theoretically that MPNN with virtual nodes (VN) can approximate self attention83

(including linear transformers) and, empirically, that strong MPNN+VN baselines are competitive on84

LRGB, sharpening the GT–MPNN comparison. Rosenbluth et al. [12] studied uniform expressivity85

and proved that GT and MPNN+VN are incomparable—neither subsumes the other—while much of86

“universality” in non-uniform settings stems from powerful positional encodings; their experiments87

report mixed outcomes across datasets. The Long-Range Graph Benchmark (LRGB) [6] was intro-88

duced to stress long-distance interactions, and subsequent re-evaluations with stronger baselines have89

narrowed parts of the once-reported transformer advantage [13].90

Oversmoothing and related phenomena. Oversmoothing is another fundamental limitation of91

deep GNNs, in which node features become indistinguishable as the number of layers increases.92

Rusch et al. [1] provide a comprehensive survey of oversmoothing, showing that it emerges as a93

consequence of repeated averaging operations in deep networks. Oversmoothing is inherently a94

deep-network phenomenon, requiring many layers before node features converge to similar values.95

2

Short-Range Oversquashing

Information-theoretic perspectives. Alon and Yahav [2] introduced information-theoretic argu-96

ments to understand oversquashing, connecting information capacity requirements to exponentially97

growing receptive fields in deep networks. They argued that intermediate nodes must store information98

about an exponentially growing neighborhood, creating fundamental bottlenecks. This perspective has99

influenced subsequent work on understanding the theoretical limits of message-passing architectures100

and motivated the search for alternative architectures that avoid these bottlenecks.101

More recently, Arnaiz-Rodriguez and Errica [14] published a broad position paper that critically102

examines common beliefs in graph machine learning, exposing conceptual ambiguities surrounding103

notions such as oversmoothing and oversquashing. Their work argues that many of these ideas104

have become intertwined in the literature and calls for clearer distinctions between them. This105

perspective complements ours by emphasizing the importance of separating computational bottlenecks106

(oversquashing) from topological assumptions, thereby motivating the more fine-grained theoretical107

and empirical analysis we undertake here.108

1.2 Notation and Preliminaries109

We begin by introducing notation. Graphs are denoted by G = (V,E,X), where V is a finite set of110

nodes, E is the set of graph edges, and X = (xv)v∈V denotes node feature vectors xv ∈ Rd. The set111

of neighbors of node v is denoted by Nv. Message-Passing Neural Networks (MPNNs) are graph112

neural networks that update each node’s feature by combining its own feature with the features of its113

neighbors. Namely, the feature vector hkv at each layer k is iteratively computed by114

h0v = xv, hk+1
v = ϕk(h

k
v , ψk({hku|u ∈ Nv})), (1)

where ψk maps the multiset of neighboring node features in a permutation-invariant fashion to a115

vector, and ϕk maps pairs of vectors to a single vector. Popular examples of MPNNs include GIN116

[15] GAT [16] GCN [17] and many others [18–20].117

2 Oversquashing: Long Range and Short Range118

n source
nodes

n target
nodes

central
node

k central
nodes

source target}

Problem radius

(b) Ring Transfer (c) Two-Radius (k=1) (d) Two-Radius
(general k)

?ℓ

ℓ!

ℓ"

ℓ#

ℓ$

ℓ%

ℓ!

ℓ"

ℓ#

ℓ$

ℓ%?

?
?
?
?

?

?
?
?
?

(a) Tree Neighbors-match

Figure 1: Illustration of synthetic graph-transfer problems. (a) Tree Neighbors-Match: information
is transferred from leaves to a target node through a tree of depth r. (b) Ring Transfer: a source and
target are connected by two disjoint paths of length r. (c) Two-Radius: n sources, n targets, and a
single central node. (d) Generalized Two-Radius: k central nodes. Node colors represent source
and target identifiers; gray denotes central nodes.

To improve the theoretical understanding of oversquashing, we study a family of synthetic graph-119

transfer problems. We begin by introducing terminology and notation that will be used throughout120

the examples.121

We consider graphs whose node set is a disjoint union V = S ∪ C ∪ T , where S denotes source122

nodes, C denotes central nodes, and T denotes target nodes. In essence, the goal of these tasks is123

to transfer information from source nodes to target nodes, with the central nodes serving solely to124

conduct that information.125

Each node feature is a pair xv = (ιv, ℓv), where ιv ∈ {0, 1, . . . , n} is a node identifier, and126

ℓv ∈ {1, . . . , L} is a node label. Source nodes have unique identifiers ιv ∈ {1 . . . , n}, and their127

labels represent information to be transferred. Central nodes are all assigned the identifier ιv = 0.128

3

Short-Range Oversquashing

The identifiers of target nodes specify from which source they should receive information (see fig. 1).129

The identifiers and labels are encoded as one-hot vectors.130

We begin with two well-known problems from the graph learning literature. The first problem, Tree131

Neighbors-Match, was introduced by Alon and Yahav [2]. We consider a binary tree, whose source132

nodes are its leaves, each assigned a distinct identifier ιs and a label ℓs. The root of the tree is133

connected to a target node t, which is assigned an identifier ιt (see fig. 1(a)). The goal is to assign to134

the target node the label of the source node that has the same node identifier. Namely, the MPNN135

needs to find the leaf node s for which ιs = ιt, and set the output feature hKt of node t to ℓs.136

Surprisingly, Alon and Yahav [2] demonstrated empirically that, as the depth of the tree increases,137

standard MPNNs struggle to solve this seemingly simple task. They attribute this to the exponential138

growth in the number of leaves with the depth. Since message passing aggregates information locally,139

solving the task perfectly requires the root node to encode the information from all leaves, which in140

turn demands a vector of very high dimension—rendering the approach impractical.141

The second problem, Ring Transfer, is a simple graph-transfer task introduced by Bodnar et al. [21]142

and further studied by Di Giovanni et al. [9]. Here, a source node s and a target node t are connected143

by two paths of length r (see fig. 1(b)). The goal is to transfer the label ℓs from the source to the144

target. Di Giovanni et al. [9] showed that this task also poses difficulties for MPNNs. Their analysis145

focuses on vanishing gradients rather than on the bottleneck phenomenon. Our first theoretical result,146

stated below, confirms this intuition: the Ring Transfer task indeed requires long-range interaction147

and is therefore prone to vanishing gradients. However, it does not suffer from the bottleneck effect,148

in the sense that it does not require high-dimensional node features.149

Theorem 1. For any r ≥ 1, the Ring Transfer task with radius r requires at least r iterations of an150

MPNN. However, there exists an MPNN that solves the task exactly whose node feature dimension is151

independent of r. This also holds if the ring topology is replaced with any other graph.152

proof idea. The necessity of at least r iterations is intuitive and well known. Intuitively, a constant153

feature dimension is sufficient because all that is needed is to recursively transfer the input source154

feature vector to neighboring nodes until the target node is reached. For a formal proof, see appendix A.155

156

2.1 The Two-Radius Problem157

We now introduce a new synthetic graph-transfer task, the Two-Radius problem. We show that,158

although it is solvable in theory with only two MPNN iterations, it nevertheless suffers from the159

bottleneck phenomenon. We further demonstrate that MPNNs struggle to solve it in practice.160

We first consider a simple variant of the problem—a family of graphs denoted by Gn, with n ≥ 1 (see161

fig. 1(c)). Each graph Gn = (V,E,X) has a vertex set V = S ∪ C ∪ T consisting of n source nodes,162

n target nodes, and a single central node. The source nodes s ∈ S are assigned distinct identifiers163

ιs ∈ {1, . . . , n}, and the n target nodes t ∈ T are assigned the same set of identifiers. Each source164

node is also assigned a distinct label ℓs ∈ {1, . . . , n}, not necessarily identical to its identifier. The165

goal is to construct an MPNN such that after K iterations, the output features hKt of the target nodes166

satisfy167

hKt = ℓs whenever ιt = ιs .

As we show below, this problem can be solved exactly by an MPNN, but only at the cost of a very high168

feature dimension, of order n log n. This is perhaps unsurprising, since the graphs under consideration169

are nearly disconnected: removing the single central node disconnects the graph and renders the170

task impossible to solve by an MPNN. Nonetheless, in the next section, we show that many of the171

measures proposed in the MPNN literature to assess connectivity and predict oversquashing fail to172

identify this graph as problematic. Moreover, the graphs in Gn can be made much better-connected173

without resolving the bottleneck issue.174

To show this, we consider a more general family of graphs Gn,k with k central nodes (see fig. 1(d)).175

Each central node is connected to all source and target nodes. Due to the permutation invariance of176

MPNNs, the central nodes are indistinguishable. As a result, adding more central nodes does not177

resolve the bottleneck phenomenon, even though it substantially improves the connectivity of the178

graph. We formalize this in the following theorem.179

4

Short-Range Oversquashing

Theorem 2. There exists an MPNN with T = 2 iterations that exactly solves the transfer task on
Gn,k. However, when using b-bit floating-point arithmetic, any MPNN that solves the transfer task on
Gn,k with T iterations and intermediate node features of dimension dt must satisfy

T∑
t=1

dt ≥
n

2b
log2(n/2)

for every central node c ∈ C.180

Proof. Fix some ordering of the source and target node identifiers, and some initial labeling, leading
to some annotated graph G ∈ Gn,k. Next, for any permutation τ ∈ Sn, consider the new problem
instance obtained by permuting the labels by τ while leaving the source and target nodes fixed, giving
a new graph Gτ . Let xtc(τ) denote the node features in c after t MPNN iterations applied to Gτ , and
denote by t(τ) the vector of all target nodes v = (xv, v ∈ T) obtained after T MPNN iterations
applied to Gτ . Then v(τ) is a function of the central nodes

v(τ) = v(xtc(τ), t = 1, . . . , T)

where c is any fixed central node (here we use the fact that the nodes at all central nodes are the same,
so we can look only at one of them). Since the MPNN solves the task exactly, we know in particular
that v(τ) ̸= v(σ) for any two distinct permutations τ ̸= σ. Therefore v can assume n! different
values as the permutation τ changes, and therefore, the vector (xtc(τ), t = 1, . . . , T) can also attain
n! different values. For this to be possible, this vector must of dimension sufficient to contain so
many values. Namely the total dimension d =

∑T
t=1 dt of the vector must satisfy (2b)d ≥ n!, which

implies that

b · d ≥ log2(n!) ≥ log2

((n
2

)n/2
)

=
n

2
log2(n/2)

181

As a concluding remark, we note that the high feature dimension required by theorem 2 is not the182

only difficulty in the problem. As our experiments below show, MPNNs indeed struggle to solve this183

problem even with high feature dimension. We believe that the main difficulty is the challenge of184

reliably mapping an input multiset of increasingly large size n of node features into the intermediate185

representation carried by the central nodes, without incurring significant distortion. The dependence186

of the distortion of a multiset map on the problem size is discussed, e.g., in [22, Theorem 3.3].187

2.2 Empirical Performance of MPNNs on the Two-Radius Problem188

We next evaluate empirically whether the bottleneck phenomenon in the Two-Radius problem189

indeed leads to practical performance degradation. Specifically, we consider the case k = 1 with190

n ∈ {10, 50, 150, 200}, using standard MPNN architectures: GCN [17], GIN [15], GAT [16], and191

GraphSAGE [18]. We evaluate all methods with feature dimensions of 256 and 1024 and three192

different learning rates, and report, for each method, the best result obtained across these runs. In193

addition, we evaluate a simple Set Transformer [23] without augmenting with structural/positional194

encoding. The Set Transformer treats the vertex features as a multiset, while ignoring the edge195

structure of the graph. Since Transformer allows pairwise interactions between all nodes, it is not196

expected to suffer from oversquashing. We further include a standard MLP, which, unlike the other197

methods, is not permutation invariant, and is thus a priori not expected to suffer from oversquashing,198

although it may lack sufficient inductive bias to generalize well on this task.199

The experiment results appear in fig. 2. As seen in the figure, MLPs perform poorly on this task even200

for small n. MPNN performance degrades as n increases, in line with our analysis. The only methods201

that succeed are the Transformer, which consistently achieves 100% accuracy on all instances, and202

GAT, which, with a high embedding dimension, can reach 90% accuracy even when n = 200. In203

addition to its lower accuracy compared to the Transformer, GAT was substantially more difficult to204

train: these results required using a very low learning rate and training for many epochs. As shown205

in fig. 3(a), achieving at least 92% accuracy required more than 100 epochs with GAT, whereas the206

Transformer needed fewer than 10. A more fine-grained evaluation of the effect of hidden-feature207

dimension appears in fig. 6 in appendix B.208

5

Short-Range Oversquashing

10 50 100 150 200
Number of nodes n

0

20

40

60

80

100
Ac

cu
ra

cy
 [%

]
Dim 256

10 50 100 150 200
Number of nodes n

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

Dim 1024

GCN GIN GAT SAGE Transformer MLP

Figure 2: Test accuracy comparison across different models on the Two-Radius problem. Perfor-
mance is evaluated for varying numbers of nodes n ∈ {10, 50, 150, 200} with hidden dimensions of
256 and 1024. Transformer consistently achieves 100% accuracy while MPNN performance degrades
as n increases

Next, we examine the effect of changing the number of central nodes k on the performance of209

MPNNs. As noted earlier, increasing k improves graph connectivity, but it is not expected to improve210

MPNN performance, because permutation equivariance implies that all central node features are211

identical across the message-passing process. Empirically, running GCN on the Two-Radius problem212

with varying k, we found that performance indeed does not improve as k grows and, perhaps213

surprisingly, is even worse than with k = 1. This is shown in fig. 3(b).214

215

0 25 50 75 100 125 150 175 200
Number of nodes n

0

20

40

60

80

100

120

Nu
m

be
r o

f e
po

ch
s

GAT
Transformer

(a)

1 5 10 20
Number of central nodes k

0

20

40

60

80

100

Ac
cu

ra
cy

GCN

(b)

Figure 3: (a) Training efficiency comparison between GAT and Transformer on the Two-Radius
problem, measured in the number of epochs required to achieve 92% accuracy. (b) Effect of the
number of central nodes k on GCN performance for the Two-Radius problem with n = 100. Accuracy
remains poor regardless of k, demonstrating that increasing graph connectivity via additional central
nodes does not resolve the bottleneck phenomenon.

In summary, we find that MPNNs struggle to solve the Two-Radius problem, whereas Set Transformer216

succeeds easily. This strengthens the case for Graph Transformers over MPNNs, and serves as an217

example of a scenario where disregarding the graph structure can be advantageous—a phenomenon218

discussed in [24].219

3 Oversquashing Measures Don’t Explain the Two-Radius Problem220

As seen in the previous section, the Two-Radius problem suffers from the bottleneck effect (theorem 2)221

and MPNNs struggle to solve it in practice. The goal of this section is to revisit common proposals222

for measuring and characterizing oversquashing, and to show that most of these measures fail to223

capture the oversquashing that arises in the Two-Radius problem.224

6

Short-Range Oversquashing

3.1 Current Explanations for Oversquashing225

Problem Radius. In the original oversquashing paper [2], the authors argued that the root cause of226

oversquashing is a large problem radius. Their reasoning connects several factors: the literal compres-227

sion of information in node features (oversquashing), the number of message-passing iterations, and,228

consequently, both the problem radius and the growth rate of the receptive field of message-recipient229

nodes, which are, respectively, causes and consequences of the number of MPNN iterations.230

In the Two-Radius problem introduced in the previous subsection, the problem radius is fixed at231

2, independent of n, and after only two message-passing iterations, the receptive field of all nodes232

is constant. This setting allows us to decouple the effect of large problem radius, which leads to233

vanishing gradients, from the bottleneck effect, which arises from large receptive fields. We regard234

these as two distinct mechanisms underlying oversquashing.235

Vanishing Gradients. A common explanation of oversquashing is that long range leads to vanishing236

gradients. In fact, many explanations of oversquashing provide analysis showing how the size of the237

gradients depends on certain topological properties of the graph, and using this analysis to devise238

rewiring techniques aimed at improving these topological properties and reducing oversquashing.239

The presence of vanishing gradients in the Two-Radius and Ring Transfer problem was evaluated240

by computing the average gradient norm of the model output (GCN) over 10 randomly selected241

test samples. The results are shown in fig. 4. For the Ring Transfer problem, both accuracy242

and gradient norm decrease drastically with the problem radius, whereas for the Two-Radius243

problem, as n increases, the accuracy of MPNN decreases, but its gradient norm exhibits244

only minor decrease. This suggests that the vanishing gradient effect is related to long-range245

interactions, but not to the bottleneck effect. To ensure that the hindered performance in the246

Two-Radius problem is not caused by oversmoothing, we computed the relative Mean Absolute247

Difference (MAD) energy [25] over the target nodes (see appendix C for details). As seen in the fig-248

ure, this energy does not decay toward zero, thereby ruling out oversmoothing as the underlying cause.249

250

5 10 15
Problem radius r

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

5 10 15
Problem radius r

10 11

10 9

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 n
or

m

0 50 100 150 200
Number of nodes n

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 [%
]

0 50 100 150 200
Number of nodes n

10 1

10 3

10 5

10 7

10 9

10 11

Gr
ad

ie
nt

 n
or

m

0 50 100 150 200
Number of nodes n

10 1

10 3

10 5

10 7

10 9

10 11

Re
la

tiv
e

M
AD

Ring Transfer problem: Effect of problem radius Two-Radius problem: Effect of number of nodes

Figure 4: GCN’s accuracy deteriorates as the problem radius increases, which is correlated with
vanishing gradients. On the other hand, problems with bottlenecks are also difficult for MPNNs, but
they do not suffer from vanishing gradients or oversquashing.

Spectral methods. Several works have proposed spectral quantities of the graph Laplacian as251

indicators of oversquashing, in particular the spectral gap (the difference between the first and second252

eigenvalues of the normalized Laplacian) and the closely related Cheeger constant, which measures253

the presence of sparse cuts in the graph [8, 26, 27]. Intuitively, graphs with a small spectral gap or254

low Cheeger constant contain bottlenecks that may hinder information flow, and such properties have255

been argued to correlate with oversquashing. However, in the Two-Radius problem with a single256

central node, the Cheeger constant is equal to 1 for all values of n. Moreover, when k ≥ 1 central257

nodes are taken, the graph becomes more connected, and the Cheeger constant grows with k:258

Theorem 3. The Cheeger constant hG for the graph Gn,k with k ≤ 2n central nodes is lower-bounded259

by hG ≥ k
8 .260

Nevertheless, the empirical and theoretical difficulty of the problem clearly increases with n, as261

shown in fig. 2 and theorem 2, showing that these spectral criteria fail to capture the bottleneck effect262

responsible for oversquashing in this setting.263

Ricci Curvature. The concept of Ricci curvature as an explanation for oversquashing was in-264

troduced in Topping et al. [8]. In that work, the authors proved upper bounds on certain gradient265

norms in terms of this curvature, thereby showing that edges with low curvature act as “information266

bottlenecks,” which can lead to vanishing gradients.267

7

Short-Range Oversquashing

Specifically, their main relevant result (Theorem 4) states that for any pair of vertices i, j connected268

by an edge, and for any δ > 0, under some additional assumptions, there exists a nonempty set Qj of269

vertices in the two-hop neighborhood of i such that270

1

|Qj |
∑
k∈Qj

∣∣∣∣∂h2k∂h0i

∣∣∣∣ < (α · β)2 · δ
1
4 ,

where α and β are upper Lipschitz bounds on the update and aggregation functions in the message-271

passing procedure, and ℓ0 is any integer between 0 and L − 2, with L denoting the number of272

message-passing iterations. Their result requires273

Ric(i, j) + 2 ≤ δ < max{di, dj}−
1
2 ,

where Ric(i, j) is the Ricci curvature of edge (i, j), also referred to as the balanced Forman curvature.274

In the Two-Radius problem, however, every edge (i, j) connects a vertex of degree 1 to a vertex of275

degree n. This implies Ric(i, j) = 0 (see Definition 1 in [8]), and the above assumption becomes276

2 ≤ δ < n− 1
2 ≤ 1,

which is impossible. Hence, their result is not applicable to this problem and, in particular, does not277

predict oversquashing.278

Effective Resistance. A closely related quantity, proposed by Black et al. [10], is the effective279

resistance. Inspired by the concept of resistance in electrical networks, the effective resistance280

between two nodes u and v decreases as the number of paths between them increases, and increases281

with the lengths of those paths. Formally it is defined as282

Ru,v = (1u − 1v)L
+ (1u − 1v) , (2)

where L+ is the pseudo-inverse of the non-normalized graph Laplacian. In the special case where u283

and v are connected by vertex-disjoint paths, the effective resistance can be expressed by a simpler284

formula (see Figure 1 therein)285

Ru,v =

 ∑
p is a path from u to v

Length(p)−1

−1

. (3)

To show that high effective resistance leads to oversquashing bottlenecks, the authors proved an upper286

bound on the Frobenius norm of the Jacobian in terms of the effective resistance between the nodes.287

However, in our example, it can be seen from eq. (3) that the effective resistance between the source288

and destination vertices always equals 2, independently of n, whereas the core phenomenon of289

oversquashing is clearly aggravated as n increases.290

Direct gradient-decay analysis. Di Giovanni et al. [9] further developed the ideas of Black et al.291

[10] and derived upper bounds on the Jacobian norm directly from basic topological features of the292

input graph, that is, without passing through spectral graph theory. Their first result, Theorem 3.2, is293

of the form294

∥∂h
(m)
v

∂h
(0)
u

∥ ≤ Cm (Sm)u,v , (4)

where C is a constant depending on the model and hidden feature dimension, and S is a matrix295

derived from the model parameters and the graph adjacency matrix. When the right-hand side of296

eq. (4) decays exponentially with m, their theorem predicts exponential decay of the Jacobian norm.297

However, in our setting, the number of message-passing iterations is constant m = 2, so the theorem298

does not predict exponential gradient decay.299

In another result [9, Theorem 4.1], they present a bound that similarly predicts exponential gradient300

decay, with the exponent depending on the distance between the two nodes and the number of301

message-passing iterations. Since both quantities in our example are constant, this theorem does not302

predict the observed oversquashing.303

The remaining results in [9] similarly assume either large distances or large number of message-304

passing iterations, both of which do not hold in our example.305

In fig. 1(b), it can be seen that for the Ring Transfer problem, the vanishing-gradient bounds do306

capture the oversquashing effect demonstrated empirically in fig. 4.307

8

Short-Range Oversquashing

10 50 100 150 160 170 180 190 200
Number of nodes n

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

GCN+VN
GCN

Figure 5: Comparison of GCN performance with and without virtual nodes (VN) on the Two-Radius
problem. While virtual nodes provide modest improvements, performance still degrades significantly
as n increases, indicating that VNs do not fully address the bottleneck in short-range oversquashing.

4 Virtual Nodes and Transformers308

Several papers have recently argued, both theoretically [7, 12, 28, 29] and empirically [28, 30, 31],309

that MPNNs with virtual nodes (VNs) can effectively handle oversquashing. In the context of long-310

range oversquashing, this is indeed reasonable, since virtual nodes reduce the effective problem radius311

to 2. However, for the Two-Radius problem, a virtual node would act similarly to the existing central312

nodes in these graphs, so adding a virtual node is not expected to yield substantial improvement for313

MPNNs.314

To evaluate this hypothesis, we compared GCN with and without a virtual node, as shown in fig. 5. As315

seen in the figure, while adding a virtual node does seem to improve performance for some values of316

n, GCN+VN still fails to solve the Two-Radius problem for larger values of n. Thus, the Two-Radius317

problem provides a synthetic example in which MPNN+VN is less effective than Transformers.318

5 Conclusion319

In this work, we revisited the phenomenon of oversquashing in MPNNs and demonstrated that it is320

not restricted to long-range tasks. Through the Two-Radius problem, we identified a setting where321

oversquashing arises even in short-range scenarios and showed that this corresponds to a bottleneck322

effect, separate from the vanishing gradient effect that dominates in long-range tasks.323

Our theoretical analysis established that solving the Two-Radius problem with MPNNs requires324

large feature dimensions that depend on the graph size, and our empirical results confirmed that325

standard MPNNs, even when augmented with virtual nodes, struggle on this task. By contrast, Graph326

Transformers and related architectures succeed, underscoring their potential as a more robust solution327

to oversquashing in settings where MPNNs remain bottlenecked.328

Our results also clarify the limitations of existing measures of connectivity as predictors of over-329

squashing, and highlight the need for refined metrics that account for short-range bottlenecks. We330

hope that the Two-Radius problem will serve as a useful benchmark for oversquashing in future331

studies, and that our analysis can guide the design of new architectures that combine the efficiency of332

MPNNs with the expressivity of transformers.333

References334

[1] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing335

in graph neural networks. arXiv preprint arXiv:2303.10993, 2023. 1, 2336

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical337

implications. In ICLR, 2021. 1, 2, 3, 4, 7338

[3] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio339

Tossou. Rethinking graph transformers with spectral attention. In NeurIPS, 2021. 1, 2340

[4] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and341

Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS,342

2022. 2343

9

Short-Range Oversquashing

[5] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal344

Sinop. Exphormer: Sparse transformers for graphs. In ICML, 2023. 2345

[6] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan346

Luu, and Dominique Beaini. Long range graph benchmark. In NeurIPS, 2022. 1, 2347

[7] Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and348

graph transformer. In International conference on machine learning, pages 3408–3430. PMLR,349

2023. 1, 2, 9, 13350

[8] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and351

Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.352

In ICLR, 2022. 2, 7, 8353

[9] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and354

Michael M Bronstein. On over-squashing in message passing neural networks: The impact of355

width, depth, and topology. In ICML, pages 7865–7885, 2023. 2, 4, 8356

[10] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing357

in gnns through the lens of effective resistance. In ICML, pages 2528–2547, 2023. 2, 8358

[11] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, and Roman Smolensky. The electrical359

resistance of a graph captures its commute and cover times. In Proceedings of the twenty-first360

annual ACM symposium on Theory of computing, pages 574–586, 1989. 2361

[12] Eran Rosenbluth, Jan Tönshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished362

in uniform: Self-attention vs. virtual nodes. In ICLR, 2024. 2, 9363

[13] Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?364

reassessing the long-range graph benchmark. In Learning on Graphs Conference, 2023. 2365

[14] Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing," oversquashing", heterophily,366

long-range, and more: Demystifying common beliefs in graph machine learning. arXiv preprint367

arXiv:2505.15547, 2025. 3368

[15] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural369

Networks? In ICLR, 2019. 3, 5370

[16] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua371

Bengio. Graph Attention Networks. In ICLR, 2018. 3, 5372

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional373

Networks. In ICLR, 2017. 3, 5374

[18] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on375

Large Graphs. In NIPS, pages 1024–1034, 2017. 3, 5376

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence377

Neural Networks. In ICLR, 2016.378

[20] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated Graph Recurrent Neural Networks.379

In IEEE Transactions on Signal Processing, 2020. 3380

[21] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Liò, Guido F Montufar,381

and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In NeurIPS, 2021. 4382

[22] Yair Davidson and Nadav Dym. On the hölder stability of multiset and graph neural networks.383

In The Thirteenth International Conference on Learning Representations, 2025. 5384

[23] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.385

Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In386

ICML, pages 3744–3753, 2019. 5, 13387

[24] Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural388

networks use graphs when they shouldn’t. In Forty-first International Conference on Machine389

Learning, 2024. 6390

[25] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the391

over-smoothing problem for graph neural networks from the topological view. In Proceedings392

of the AAAI conference on artificial intelligence, pages 3438–3445, 2020. 7, 12393

10

Short-Range Oversquashing

[26] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar.394

Oversquashing in gnns through the lens of information contraction and graph expansion. In395

Allerton, pages 1–8. IEEE, 2022. 7396

[27] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring397

for addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022. 7398

[28] Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph399

rewiring via virtual nodes. In NeurIPS, 2024. 9400

[29] Joshua Southern, Johannes Lutzeyer, Fabrizio Frasca, and Michael M Bronstein. Understanding401

virtual nodes: Oversquashing and node heterogeneity. In ICLR, 2025. 9402

[30] Trang Pham, Truyen Tran, Hoa Dam, and Svetha Venkatesh. Graph classification via deep403

learning with virtual nodes. In Proceedings of the Australasian Joint Conference on Artificial404

Intelligence, 2017. 9405

[31] EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of406

virtual nodes in graph neural networks for link prediction. In The First Learning on Graphs407

Conference, 2022. 9, 13408

A Proofs409

Proof of Theorem 1. The setting we are considering is that we are given some graph G, with a single410

source node s with node features xs = (1, ℓs), where 1 is the node identifier, signifying that this is411

the source node, and ℓs is the source label coming from some finite alphabet {1, . . . , A}. All other412

nodes v of the graph are given an initial value xv = (0, ℓv), where ℓv comes from the same alphabet413

(and is irrelevant to the problem at hand). There is one node, the target node t, whose shortest path414

distance from the node is r, and the goal is for an MPNN to update the target node to achieve the415

original value of the source node, namely hkt = xs.416

It is clear that in less that r iterations, an MPNN will not be able to achieve this goal. However, in r
iterations this goal is easily achieved by an MPNN whose feature dimension does not depend on r.
Namely, we begin as always with the initial features h0v = xv , and iteratively define hk+1

v ∈ R2 by

hk+1
v [1] = max

u∈Nv∪{v}
hku[1], hk+1

v [2] = max
u∈Nv∪{v}

hku[1] · hku[2]

We can then prove recursively on k that if the distance of v from s is ≤ k, then hkv = h0s, and417

otherwise hkv [1] = 0.418

For k = 0 this is clearly true. If the claim is true for k, then for k + 1 we have that, if the distance of419

v from s is more than k+1, than all its neighbors u will all have distance more than k from s, and so420

hku[1] = 0 and therefore hk+1
v [1] = 0. If v is a node of distance ≤ k + 1 from s, then there is some421

u ∈ N(v) ∪ {v} whose distance from s is ≤ k. As a result hk+1
v [1] = 1 = h0s, h

k+1
v [2] = hku[2] =422

h0s[2].423

In particular, it follows that after r iterations the target node will obtain the value of the source node.424

This concludes the proof.425

Proof of Theorem 3. Recall that for a graph G, and a subset A ⊆ V , the boundary ∂A is defined
as the number of edges between nodes in A and nodes in the complement of A, and the Cheeger
constant is defined as

hG = min
A⊆V,0<|A|≤|V |/2

|∂A|
|A|

.

Now let A ⊆ V with 0 < |A| ≤ |V |/2. Denote the number of central nodes in A by a and the
number of source and target nodes by b. By assumption

a+ b ≤ |V |/2 = n+ k/2.

We now consider three cases: case 1: If a ≥ k/2, then necessarily b ≤ n. It follows that

|∂A|
|A|

≥ a · (2n− b)

a+ b
≥ nk/2

4n
=
k

8

11

Short-Range Oversquashing

case 2: If b ≥ n then necessarily a ≤ k/2. It follows that
|∂A|
|A|

≥ b · (k − a)

a+ b
≥ n · k/2

4n
=
k

8
.

case 3: If both b ≤ n and a ≤ k/2. Then
|∂A|
|A|

=
a(2n− b) + b(k − a)

a+ b
≥ na+ bk/2

a+ b
≥ k/2.

This concludes the proof.426

B Additional Experimental Results427

To complement the analysis in the main text, here we presents a more fine-grained evaluation of the428

effect of the hidden-feature dimension on learning accuracy (fig. 6).429

The results follow the same experimental setup as fig. 2 and further illustrate that increasing the430

number of nodes makes the problem challenging for MPNNs, whereas the Transformer remains431

robust, with GAT ranking between the two. As shown in the figure, this difficulty is partially432

mitigated by increasing the hidden-feature dimension, which improves the performance of both433

MPNNs and GAT but does not close the gap with the Transformer. Overall, these results reinforce434

that MPNNs are limited by the bottleneck effect, whereas the Transformer remains largely unaffected.435

436

16 32 64 128 256 512 1024 2048
Hidden-feature dimension

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

n = 50

16 32 64 128 256 512 1024 2048
Hidden-feature dimension

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

n = 100
GCN GIN GAT SAGE Transformer MLP

Figure 6: Fine-grained evaluation of the effect of hidden-feature dimension on learning accuracy in
the same experimental setting as fig. 2.

C Experimental Details437

Input Representation438

The input representation consists of two concatenated one-hot vectors: one encoding the ID and439

another encoding the label. This combined one-hot representation is fed directly into the initial MPNN440

layer, which maps it from the input dimensionality to the hidden dimension. Our implementation441

does not use a separate encoder or projection layer for this operation.442

Mean Absolute Difference (MAD)443

In fig. 4 we included a relative variant of the Mean Absolute Difference (MAD)—an energy proposed444

by Chen et al. [25] to assess the extent to which oversmoothing takes place. For the output feature445

vectors hKv of the target nodes v ∈ T , it is computed by:446

1
1
2 |T |(|T |−1)

∑
u̸=v∈T ∥hKu − hKv ∥

1
|T |

∑
v∈T ∥hKv ∥

, (5)

namely, the average pairwise distance between the target node features, divided by the average norm447

of those features.448

12

Short-Range Oversquashing

Hardware and Software449

All experiments were conducted on an NVIDIA A40 GPU with 48GB memory, using CUDA 12.8.450

We implemented all models using PyTorch with PyTorch Geometric for graph operations and PyTorch451

Lightning for training management.452

Training procedure453

All models are trained using Adam optimizer with cross-entropy loss, running for a maximum of454

1000 epochs with ReduceLROnPlateau learning rate scheduler.455

Model Architectures and Initialization456

We evaluated the Two-Radius problem with node configurations n ∈ {10, 50, 100, 150, 200} and cen-457

tral nodes k = 1 (default), with additional ablation studies using k ∈ {5, 10, 20}. For reproducibility,458

we fixed the seed to be 0.459

Implementation details460

• For the Two-Radius problem, we masked source and central nodes during evaluation, computing461

accuracy only on target nodes.462

• In gradient norm computation, we use the first 5 test samples to reduce computational cost.463

• Central nodes (k). Fixed n = 100, varied k ∈ {1, 5, 10, 20} using GCN with lr = 1× 10−4.464

• Virtual Nodes (VNs). To test whether VNs mitigate the short-range bottleneck, we augment465

GCN with virtual nodes following Cai et al. [7] and Hwang et al. [31]. In the single-VN variant,466

the VN is initialized to zero and, after each layer, a two-layer MLP updates it; the resulting467

VN embedding is then added (broadcast) to every node representation. In the multiple-VN468

variant, each VN has its own MLP and is updated independently, and at each layer the sum of469

all VN embeddings is added to every node. The VN update uses a global aggregation over node470

features (either mean or sum). We compare GCN with and without VNs using tuned learning471

rates (5×10−4 with VN; 1× 10−4 without).472

• Set Transformer. Following Lee et al. [23], we implement a set-based transformer that ignores473

edges and operates solely on node features,treating the input as a multi-set. This Set Transformer474

architecture, which can be viewed as a Graph Transformer operating without explicit edge475

information, processes nodes as an unordered collection where multiplicities matter. In the Two-476

Radius setting, the model receives one-hot node features (IDs and labels) without connectivity477

information; thus, source/target/central roles must be inferred from feature patterns. All nodes478

interact simultaneously via self attention, so any node can attend to all other nodes without479

routing information through central nodes.480

This design is particularly effective here because target nodes can directly attend to sources with481

matching IDs, bypassing the central-node bottleneck that constrains MPNNs.482

13

Short-Range Oversquashing

Hyperparameter Selection483

Table 1 presents the hyperparameter configurations used for all model architectures in our experiments.484

These parameters were selected through preliminary experiments that balanced memory constraints,485

computational runtime, and model performance. Each configuration represents the optimal trade-off486

between these factors for the respective architecture. Table 2 shows the best-performing learning487

rates for each model across different hidden dimensions (256 and 1024), determined by evaluating488

three candidate learning rates per configuration and selecting the one yielding the highest validation489

accuracy. Together, these hyperparameter choices ensure reproducible and fair comparisons across490

all evaluated models.491

Table 1: Model Hyperparameters

Hyperparams GCN GAT GIN GraphSAGE MLP Set Transformer

batch_size 64 32 64 64 64 64
train_samples 7000 7000 7000 7000 7000 7000
test_samples 700 700 700 700 700 700
layers 4 4 4 4 4 2
activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU ReLU ReLU
residual ✓ ✓ ✓ ✓ ✓ ✓
use_layer_norm ✓ ✓ ✓ ✓ ✓ ✓
use_activation ✓ ✓ ✓ ✓ ✓ ✓
Attention_heads – 2 – – – 2
lr_factor 0.1 0.3 0.5 0.1 0.1 0.5
dropout – 0.1 – – 0.3 0.1

Table 2: Optimal Learning Rates

Model
Hidden Dimension

256 1024

GCN 5× 10−4 1× 10−4

GAT 1× 10−4 5× 10−5

GIN 5× 10−5 5× 10−4

GraphSAGE 5× 10−5 1× 10−4

MLP 1× 10−4 1× 10−4

Set Transformer 1× 10−3 1× 10−3

14

	1 Introduction
	1.1 Related Work
	1.2 Notation and Preliminaries

	2 Oversquashing: Long Range and Short Range
	2.1 The Two-Radius Problem
	2.2 Empirical Performance of MPNNs on the Two-Radius Problem

	3 Oversquashing Measures Don't Explain the Two-Radius Problem
	3.1 Current Explanations for Oversquashing

	4 Virtual Nodes and Transformers
	5 Conclusion
	A Proofs
	B Additional Experimental Results
	C Experimental Details

