N o o b~ @ N o=

© ©

8

20
21
22
23
24
25
26

27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43

Short-Range Oversquashing

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract

Message Passing Neural Networks (MPNNs) are widely used for learning on
graphs, but their ability to process long-range information is limited by the
phenomenon of oversquashing. This limitation has led some researchers to
advocate Graph Transformers as a better alternative, whereas others suggest that
it can be mitigated within the MPNN framework, using virtual nodes or other
rewiring techniques.

In this work, we demonstrate that oversquashing is not limited to long-range
tasks, but can also arise in short-range problems. This observation allows us
to disentangle two distinct mechanisms underlying oversquashing: (1) the bot-
tleneck phenomenon, which can arise even in low-range settings, and (2) the
vanishing gradient phenomenon, which is closely associated with long-range
tasks.

We further show that the short-range bottleneck effect is not captured by existing
explanations for oversquashing, and that adding virtual nodes does not resolve it.
In contrast, transformers do succeed in such tasks, positioning them as the more
compelling solution to oversquashing, compared to specialized MPNNs.

1 Introduction

Graph Neural Networks (GNNGs) are the leading tool for learning on graph-structured data, with many
of the most popular models falling into the category of Message Passing Neural Networks (MPNNs).
While MPNNSs are computationally very efficient due to their ability to leverage graph sparsity, they
are known to be successful only when using a small number of MPNN layers, typically 2—4. The
difficulty in training deep MPNNs is commonly attributed to the phenomena of oversmoothing [1]
and oversquashing [2]. Oversmoothing is the phenomenon in which, as the number of MPNN layers
increases, node features become nearly indistinguishable from one another, with the extreme case
often termed fotal collapse. Our focus in this paper will primarily be on oversquashing.

The term oversquashing, coined by Alon and Yahav [2], refers to the difficulty of training MPNNs on
long-range tasks, that is, tasks that require communication between distant nodes to solve the problem
accurately. The authors explained that this difficulty is caused by a bottleneck effect, where the
intermediate nodes on the path between two distant nodes need to have an increasingly large feature
dimension in order to solve the problem by message passing. Later papers put more emphasis on low
graph connectivity and vanishing gradients as the essential component leading to oversquashing.

Oversmoothing and oversquashing are at the center of active discussion in the graph-learning com-
munity. On the one hand, many papers attempt to enable the use of MPNNs for long-range learning
using techniques such as virtual nodes and other rewiring methods, which are aimed at reducing the
range and difficulty of the learning problem. In a different direction, several papers have argued that
Graph Transformers (GTs) outperform MPNNs due to their ability to handle long-range tasks [3-6].
Later results cast doubt on this claim, showing that with careful training, MPNNs with virtual nodes
can obtain competitive results in many graph benchmarks, including Long Range Graph Benchmark
(LRGB) [6], which consists of tasks that arguably require long-range interactions. Similarly, it
was argued in a recent work [7] that MPNNs with virtual nodes are able to simulate the attention
mechanism: “despite recent efforts, we still lack good benchmark datasets where GT can outperform

MPNN by a large margin.”
Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

44
45
46
47
48
49

50
51
52

53
54
55

56

57
58
59
60
61
62

63
64
65
66
67
68

69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95

Short-Range Oversquashing

Our main goal in this paper is to advance the theoretical understanding of oversquashing by demon-
strating that it can also arise in short-range tasks. Specifically, we construct a family of graph-learning
problems that admit exact solutions with just two MPNN iterations, yet we prove that any MPNN
must employ very large node-feature dimensions to solve them. Thus, these problems are affected
by the bottleneck effect, even though the underlying graphs are well connected. We also show
empirically that the vanishing gradient problem does not occur for these problems.

In contrast, we show that popular synthetic long-range tasks considered in the literature suffer from
vanishing gradients but not from the bottleneck effect. Thus, we claim that these are two distinct
effects that were inadvertently mixed together.

In addition, we show empirically that standard MPNNSs, even when augmented with virtual nodes, per-
form poorly on these problems, whereas transformers solve them easily. This yields an interpretable
test case in which MPNNs with virtual nodes are clearly outperformed by transformers.

1.1 Related Work

Oversquashing in graph neural networks. The oversquashing phenomenon was first identified
by Alon and Yahav [2], who demonstrated that MPNNs struggle to propagate information between
distant nodes due to an exponential growth in the nodes’ receptive field. They introduced the Tree
Neighbors-Match problem, discussed in section 2, as a canonical example, where the bottleneck
effect arises as the problem radius increases, arguing that the exponential growth of receptive fields
with depth creates information bottlenecks at intermediate nodes.

Theoretical explanations of oversquashing. Several theoretical frameworks have been proposed
to explain oversquashing. Topping et al. [8] connected oversquashing to the Ricci curvature of
graph edges, proving that edges with negative curvature act as information bottlenecks and deriving
bounds on gradient norms in terms of curvature. Di Giovanni et al. [9] provided direct gradient-decay
analysis, deriving bounds on Jacobian norms that predict exponential decay when either the distance
between nodes or the number of message-passing iterations is large.

Spectral properties and graph connectivity. The spectral gap (smallest nonzero eigenvalue A; of
the normalized graph Laplacian) has been proposed as a key indicator of oversquashing potential.
When A is close to zero, the graph is nearly disconnected into multiple components, suggesting poor
information flow. Several works have used spectral graph theory to predict and mitigate oversquashing,
proposing rewiring strategies that increase \; to improve information propagation Topping et al. [8].
Black et al. [10] introduced effective resistance as a measure for predicting oversquashing. For nodes
w and v, the effective resistance is R, , = (1, — 1,)L* (1, — 1,), where L™ is the pseudoinverse of
the graph Laplacian. This quantity, borrowed from electrical network theory, accounts for all paths
between nodes and is proportional to commute time in random walks [11]. Black et al. proved upper
bounds on gradient norms in terms of effective resistance, establishing connections between high
resistance and vanishing gradients.

Graph Transformers and attention mechanisms. Because self attention enables all-pairs com-
munication in a single hop, Graph Transformers are often argued to mitigate oversquashing when
paired with structural/positional encodings (e.g., Graphormer [3]; GPS [4]; Exphormer [5]). Cai
et al. [7] showed theoretically that MPNN with virtual nodes (VN) can approximate self attention
(including linear transformers) and, empirically, that strong MPNN+VN baselines are competitive on
LRGB, sharpening the GT-MPNN comparison. Rosenbluth et al. [12] studied uniform expressivity
and proved that GT and MPNN+VN are incomparable—neither subsumes the other—while much of
“universality” in non-uniform settings stems from powerful positional encodings; their experiments
report mixed outcomes across datasets. The Long-Range Graph Benchmark (LRGB) [6] was intro-
duced to stress long-distance interactions, and subsequent re-evaluations with stronger baselines have
narrowed parts of the once-reported transformer advantage [13].

Oversmoothing and related phenomena. Oversmoothing is another fundamental limitation of
deep GNNs, in which node features become indistinguishable as the number of layers increases.
Rusch et al. [1] provide a comprehensive survey of oversmoothing, showing that it emerges as a
consequence of repeated averaging operations in deep networks. Oversmoothing is inherently a
deep-network phenomenon, requiring many layers before node features converge to similar values.

96
97
98
99
100
101

102
103
104
105
106
107
108

109

110
111
112
113
114

115
116
117

118

119
120
121

122
123
124
125

126
127
128

Short-Range Oversquashing

Information-theoretic perspectives. Alon and Yahav [2] introduced information-theoretic argu-
ments to understand oversquashing, connecting information capacity requirements to exponentially
growing receptive fields in deep networks. They argued that intermediate nodes must store information
about an exponentially growing neighborhood, creating fundamental bottlenecks. This perspective has
influenced subsequent work on understanding the theoretical limits of message-passing architectures
and motivated the search for alternative architectures that avoid these bottlenecks.

More recently, Arnaiz-Rodriguez and Errica [14] published a broad position paper that critically
examines common beliefs in graph machine learning, exposing conceptual ambiguities surrounding
notions such as oversmoothing and oversquashing. Their work argues that many of these ideas
have become intertwined in the literature and calls for clearer distinctions between them. This
perspective complements ours by emphasizing the importance of separating computational bottlenecks
(oversquashing) from topological assumptions, thereby motivating the more fine-grained theoretical
and empirical analysis we undertake here.

1.2 Notation and Preliminaries

We begin by introducing notation. Graphs are denoted by G = (V, E, X), where V is a finite set of
nodes, E is the set of graph edges, and X = (), ¢y denotes node feature vectors x,, € R<. The set
of neighbors of node v is denoted by NV,,. Message-Passing Neural Networks (MPNNs) are graph
neural networks that update each node’s feature by combining its own feature with the features of its
neighbors. Namely, the feature vector h¥ at each layer k is iteratively computed by

W =ay, RBETY = gp(hE v ({hEJu € N, })), M

where 1, maps the multiset of neighboring node features in a permutation-invariant fashion to a
vector, and ¢ maps pairs of vectors to a single vector. Popular examples of MPNNSs include GIN
[15] GAT [16] GCN [17] and many others [18-20].

2 Oversquashing: Long Range and Short Range
(d) Two-Radius

(&) Tree Neighbors-match (b) Ring Transfer (c) Two-Radius (k=1) (general k)
[J
00
source target
[XX J
[J
Problem radius n target n source k central
nodes nodes nodes

Figure 1: Illustration of synthetic graph-transfer problems. (a) Tree Neighbors-Match: information
is transferred from leaves to a target node through a tree of depth r. (b) Ring Transfer: a source and
target are connected by two disjoint paths of length r. (¢c) Two-Radius: n sources, n targets, and a
single central node. (d) Generalized Two-Radius: % central nodes. Node colors represent source
and target identifiers; gray denotes central nodes.

To improve the theoretical understanding of oversquashing, we study a family of synthetic graph-
transfer problems. We begin by introducing terminology and notation that will be used throughout
the examples.

We consider graphs whose node set is a disjoint union V' = S U C U T, where S denotes source
nodes, C denotes central nodes, and T' denotes target nodes. In essence, the goal of these tasks is
to transfer information from source nodes to target nodes, with the central nodes serving solely to
conduct that information.

Each node feature is a pair , = (iy,%,), where ¢, € {0,1,...,n} is a node identifier, and
¢, € {1,...,L} is a node label. Source nodes have unique identifiers ¢, € {1...,n}, and their
labels represent information to be transferred. Central nodes are all assigned the identifier ¢, = 0.

130

131
132
133
134
135
136

137
138
139
140
141

142
143
144
145
146
147
148
149

150
151
152

153
154
155
156

157

158
159
160

162
163
164
165
166
167

168

170
171
172
173
174

175
176
177
178
179

Short-Range Oversquashing

The identifiers of target nodes specify from which source they should receive information (see fig. 1).
The identifiers and labels are encoded as one-hot vectors.

We begin with two well-known problems from the graph learning literature. The first problem, Tree
Neighbors-Match, was introduced by Alon and Yahav [2]. We consider a binary tree, whose source
nodes are its leaves, each assigned a distinct identifier ¢5 and a label /5. The root of the tree is
connected to a target node ¢, which is assigned an identifier ¢, (see fig. 1(a)). The goal is to assign to
the target node the label of the source node that has the same node identifier. Namely, the MPNN
needs to find the leaf node s for which ¢; = ¢4, and set the output feature h{(of node ¢ to 4.

Surprisingly, Alon and Yahav [2] demonstrated empirically that, as the depth of the tree increases,
standard MPNN s struggle to solve this seemingly simple task. They attribute this to the exponential
growth in the number of leaves with the depth. Since message passing aggregates information locally,
solving the task perfectly requires the root node to encode the information from all leaves, which in
turn demands a vector of very high dimension—rendering the approach impractical.

The second problem, Ring Transfer, is a simple graph-transfer task introduced by Bodnar et al. [21]
and further studied by Di Giovanni et al. [9]. Here, a source node s and a target node ¢ are connected
by two paths of length r (see fig. 1(b)). The goal is to transfer the label /s from the source to the
target. Di Giovanni et al. [9] showed that this task also poses difficulties for MPNNs. Their analysis
focuses on vanishing gradients rather than on the bottleneck phenomenon. Our first theoretical result,
stated below, confirms this intuition: the Ring Transfer task indeed requires long-range interaction
and is therefore prone to vanishing gradients. However, it does not suffer from the bottleneck effect,
in the sense that it does not require high-dimensional node features.

Theorem 1. For any r > 1, the Ring Transfer task with radius r requires at least r iterations of an
MPNN. However, there exists an MPNN that solves the task exactly whose node feature dimension is
independent of r. This also holds if the ring topology is replaced with any other graph.

proofidea. The necessity of at least r iterations is intuitive and well known. Intuitively, a constant
feature dimension is sufficient because all that is needed is to recursively transfer the input source
feature vector to neighboring nodes until the target node is reached. For a formal proof, see appendix A.

2.1 The Two-Radius Problem

We now introduce a new synthetic graph-transfer task, the Two-Radius problem. We show that,
although it is solvable in theory with only two MPNN iterations, it nevertheless suffers from the
bottleneck phenomenon. We further demonstrate that MPNNSs struggle to solve it in practice.

We first consider a simple variant of the problem—a family of graphs denoted by G,,, with n > 1 (see
fig. 1(c)). Each graph G,, = (V, E, X) has a vertex set V = S U C' U T consisting of n source nodes,
n target nodes, and a single central node. The source nodes s € S are assigned distinct identifiers
ts € {1,...,n}, and the n target nodes ¢t € T are assigned the same set of identifiers. Each source
node is also assigned a distinct label ¢5; € {1,...,n}, not necessarily identical to its identifier. The
goal is to construct an MPNN such that after K iterations, the output features € of the target nodes
satisfy

hf{ =/, whenever i = ¢,.

As we show below, this problem can be solved exactly by an MPNN, but only at the cost of a very high
feature dimension, of order n log n. This is perhaps unsurprising, since the graphs under consideration
are nearly disconnected: removing the single central node disconnects the graph and renders the
task impossible to solve by an MPNN. Nonetheless, in the next section, we show that many of the
measures proposed in the MPNN literature to assess connectivity and predict oversquashing fail to
identify this graph as problematic. Moreover, the graphs in G,, can be made much better-connected
without resolving the bottleneck issue.

To show this, we consider a more general family of graphs G,, ,, with k central nodes (see fig. 1(d)).
Each central node is connected to all source and target nodes. Due to the permutation invariance of
MPNN:Ss, the central nodes are indistinguishable. As a result, adding more central nodes does not
resolve the bottleneck phenomenon, even though it substantially improves the connectivity of the
graph. We formalize this in the following theorem.

180

181

182

183

184

186
187

193

Short-Range Oversquashing

Theorem 2. There exists an MPNN with T = 2 iterations that exactly solves the transfer task on
Gn k. However, when using b-bit floating-point arithmetic, any MPNN that solves the transfer task on
G,k with T iterations and intermediate node features of dimension d, must satisfy

T

n
Z dy > % logy(n/2)

t=1

for every central node ¢ € C.

Proof. Fix some ordering of the source and target node identifiers, and some initial labeling, leading
to some annotated graph G € G,, . Next, for any permutation 7 € .S,,, consider the new problem
instance obtained by permuting the labels by 7 while leaving the source and target nodes fixed, giving
anew graph G. Let z!(7) denote the node features in c after ¢t MPNN iterations applied to G, and
denote by t(7) the vector of all target nodes v = (x,,v € T') obtained after T MPNN iterations
applied to G-. Then v(7) is a function of the central nodes

v(r)=v(zi(r),t=1,...,T)

where c is any fixed central node (here we use the fact that the nodes at all central nodes are the same,
so we can look only at one of them). Since the MPNN solves the task exactly, we know in particular
that v(7) # v(o) for any two distinct permutations 7 # o. Therefore v can assume n! different
values as the permutation 7 changes, and therefore, the vector (x%(7),t = 1,...,7T) can also attain
n! different values. For this to be possible, this vector must of dimension sufficient to contain so

many values. Namely the total dimension d = ZtT:l d; of the vector must satisfy (2°)¢ > n!, which
implies that

b-d > logy(n!) > log, ((Z)n/2> = glogQ(n/2)

O

As a concluding remark, we note that the high feature dimension required by theorem 2 is not the
only difficulty in the problem. As our experiments below show, MPNNSs indeed struggle to solve this
problem even with high feature dimension. We believe that the main difficulty is the challenge of
reliably mapping an input multiset of increasingly large size n of node features into the intermediate
representation carried by the central nodes, without incurring significant distortion. The dependence
of the distortion of a multiset map on the problem size is discussed, e.g., in [22, Theorem 3.3].

2.2 Empirical Performance of MPNNs on the Two-Radius Problem

We next evaluate empirically whether the bottleneck phenomenon in the Two-Radius problem
indeed leads to practical performance degradation. Specifically, we consider the case k = 1 with
n € {10,50, 150,200}, using standard MPNN architectures: GCN [17], GIN [15], GAT [16], and
GraphSAGE [18]. We evaluate all methods with feature dimensions of 256 and 1024 and three
different learning rates, and report, for each method, the best result obtained across these runs. In
addition, we evaluate a simple Set Transformer [23] without augmenting with structural/positional
encoding. The Set Transformer treats the vertex features as a multiset, while ignoring the edge
structure of the graph. Since Transformer allows pairwise interactions between all nodes, it is not
expected to suffer from oversquashing. We further include a standard MLP, which, unlike the other
methods, is not permutation invariant, and is thus a priori not expected to suffer from oversquashing,
although it may lack sufficient inductive bias to generalize well on this task.

The experiment results appear in fig. 2. As seen in the figure, MLPs perform poorly on this task even
for small n. MPNN performance degrades as n increases, in line with our analysis. The only methods
that succeed are the Transformer, which consistently achieves 100% accuracy on all instances, and
GAT, which, with a high embedding dimension, can reach 90% accuracy even when n = 200. In
addition to its lower accuracy compared to the Transformer, GAT was substantially more difficult to
train: these results required using a very low learning rate and training for many epochs. As shown
in fig. 3(a), achieving at least 92% accuracy required more than 100 epochs with GAT, whereas the
Transformer needed fewer than 10. A more fine-grained evaluation of the effect of hidden-feature
dimension appears in fig. 6 in appendix B.

209
210
211
212
213
214
215

216
217
218
219

220

221
222
223
224

Short-Range Oversquashing

mm GCN s GIN GAT EEm SAGE Transformer . MLP
Dim 256 Dim 1024
100 100
_ 80 _ 80
X X
2 60 2 60
o e
3 3
éf 40 g 40
20 I 20 |
0 0
10 50 100 150 200 10 50 100 150 200
Number of nodes n Number of nodes n

Figure 2: Test accuracy comparison across different models on the Two-Radius problem. Perfor-
mance is evaluated for varying numbers of nodes n € {10, 50, 150, 200} with hidden dimensions of
256 and 1024. Transformer consistently achieves 100% accuracy while MPNN performance degrades
as m increases

Next, we examine the effect of changing the number of central nodes k on the performance of
MPNNSs. As noted earlier, increasing k& improves graph connectivity, but it is not expected to improve
MPNN performance, because permutation equivariance implies that all central node features are
identical across the message-passing process. Empirically, running GCN on the Two-Radius problem
with varying k£, we found that performance indeed does not improve as k& grows and, perhaps
surprisingly, is even worse than with k£ = 1. This is shown in fig. 3(b).

120
GAT 100
100] = Transformer . GCN
” 80
g 80
@ 3 60
5 60 S
[
2 9 40
5 40 <
=2
20
20
0 0
0 25 50 75 100 125 150 175 200 1 5 10 20
Number of nodes n Number of central nodes k
(@ (b)

Figure 3: (a) Training efficiency comparison between GAT and Transformer on the Two-Radius
problem, measured in the number of epochs required to achieve 92% accuracy. (b) Effect of the
number of central nodes k& on GCN performance for the Two-Radius problem with n = 100. Accuracy
remains poor regardless of k, demonstrating that increasing graph connectivity via additional central
nodes does not resolve the bottleneck phenomenon.

In summary, we find that MPNNs struggle to solve the Two-Radius problem, whereas Set Transformer
succeeds easily. This strengthens the case for Graph Transformers over MPNNSs, and serves as an
example of a scenario where disregarding the graph structure can be advantageous—a phenomenon
discussed in [24].

3 Oversquashing Measures Don’t Explain the Two-Radius Problem

As seen in the previous section, the Two-Radius problem suffers from the bottleneck effect (theorem 2)
and MPNNSs struggle to solve it in practice. The goal of this section is to revisit common proposals
for measuring and characterizing oversquashing, and to show that most of these measures fail to
capture the oversquashing that arises in the Two-Radius problem.

225

226
227
228
229

231
232
233
234
235

236
237
238
239

240
241
242
243
244
245
246
247
248
249
250

251
252
253
254
255
256
257

259

260

261
262
263

264
265

267

Short-Range Oversquashing

3.1 Current Explanations for Oversquashing

Problem Radius. In the original oversquashing paper [2], the authors argued that the root cause of
oversquashing is a large problem radius. Their reasoning connects several factors: the literal compres-
sion of information in node features (oversquashing), the number of message-passing iterations, and,
consequently, both the problem radius and the growth rate of the receptive field of message-recipient
nodes, which are, respectively, causes and consequences of the number of MPNN iterations.

In the Two-Radius problem introduced in the previous subsection, the problem radius is fixed at
2, independent of n, and after only two message-passing iterations, the receptive field of all nodes
is constant. This setting allows us to decouple the effect of large problem radius, which leads to
vanishing gradients, from the bottleneck effect, which arises from large receptive fields. We regard
these as two distinct mechanisms underlying oversquashing.

Vanishing Gradients. A common explanation of oversquashing is that long range leads to vanishing
gradients. In fact, many explanations of oversquashing provide analysis showing how the size of the
gradients depends on certain topological properties of the graph, and using this analysis to devise
rewiring techniques aimed at improving these topological properties and reducing oversquashing.

The presence of vanishing gradients in the Two-Radius and Ring Transfer problem was evaluated
by computing the average gradient norm of the model output (GCN) over 10 randomly selected
test samples. The results are shown in fig. 4. For the Ring Transfer problem, both accuracy
and gradient norm decrease drastically with the problem radius, whereas for the Two-Radius
problem, as n increases, the accuracy of MPNN decreases, but its gradient norm exhibits
only minor decrease. This suggests that the vanishing gradient effect is related to long-range
interactions, but not to the bottleneck effect. To ensure that the hindered performance in the
Two-Radius problem is not caused by oversmoothing, we computed the relative Mean Absolute
Difference (MAD) energy [25] over the target nodes (see appendix C for details). As seen in the fig-
ure, this energy does not decay toward zero, thereby ruling out oversmoothing as the underlying cause.

Ring Transfer problem: Effect of problem radius Two-Radius problem: Effect of number of nodes

.4
S
3

-

o

3

101 107! 107

©
3

1072 1073

®

3
-
S

®
3

107° 107°

o
<
3

107 1077

-
S

Accuracy [%]
o
3
o
3

Gradient norm
Accuracy [%]
Gradient norm
Relative MAD

107° 107°

IS
S
-
S
w
3

10-11 10-1

N
S
o
IS
S

15 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

15 5 10
Problem radius r Number of nodes n Number of nodes n Number of nodes n

5 10
Problem radius r

Figure 4: GCN’s accuracy deteriorates as the problem radius increases, which is correlated with
vanishing gradients. On the other hand, problems with bottlenecks are also difficult for MPNNS, but
they do not suffer from vanishing gradients or oversquashing.

Spectral methods. Several works have proposed spectral quantities of the graph Laplacian as
indicators of oversquashing, in particular the spectral gap (the difference between the first and second
eigenvalues of the normalized Laplacian) and the closely related Cheeger constant, which measures
the presence of sparse cuts in the graph [8, 26, 27]. Intuitively, graphs with a small spectral gap or
low Cheeger constant contain bottlenecks that may hinder information flow, and such properties have
been argued to correlate with oversquashing. However, in the Two-Radius problem with a single
central node, the Cheeger constant is equal to 1 for all values of n. Moreover, when k > 1 central
nodes are taken, the graph becomes more connected, and the Cheeger constant grows with k:

Theorem 3. The Cheeger constant h¢ for the graph Gy, i, with k < 2n central nodes is lower-bounded

by hg > %

Nevertheless, the empirical and theoretical difficulty of the problem clearly increases with n, as
shown in fig. 2 and theorem 2, showing that these spectral criteria fail to capture the bottleneck effect
responsible for oversquashing in this setting.

Ricci Curvature. The concept of Ricci curvature as an explanation for oversquashing was in-
troduced in Topping et al. [8]. In that work, the authors proved upper bounds on certain gradient
norms in terms of this curvature, thereby showing that edges with low curvature act as “information
bottlenecks,” which can lead to vanishing gradients.

269
270

271
272
273

274

275
276

277
278

279

281
282

283
284
285

287

288

290

291
292
293
294

Short-Range Oversquashing

Specifically, their main relevant result (Theorem 4) states that for any pair of vertices ¢, 7 connected
by an edge, and for any § > 0, under some additional assumptions, there exists a nonempty set (); of
vertices in the two-hop neighborhood of ¢ such that

8h2
\Q;| Z

keQ;
where a and (3 are upper Lipschitz bounds on the update and aggregation functions in the message-
passing procedure, and ¢ is any integer between 0 and L — 2, with L denoting the number of
message-passing iterations. Their result requires

1
Ric(i,7) + 2 < 6 < max{d;,d;} 2,
where Ric(i, §) is the Ricci curvature of edge (3, j), also referred to as the balanced Forman curvature.

6)2 6ia

In the Two-Radius problem, however, every edge (4, j) connects a vertex of degree 1 to a vertex of
degree n. This implies Ric(7, j) = 0 (see Definition 1 in [8]), and the above assumption becomes

1
2<d<n 2<1,

which is impossible. Hence, their result is not applicable to this problem and, in particular, does not

predict oversquashing.

Effective Resistance. A closely related quantity, proposed by Black et al. [10], is the effective
resistance. Inspired by the concept of resistance in electrical networks, the effective resistance
between two nodes u and v decreases as the number of paths between them increases, and increases
with the lengths of those paths. Formally it is defined as

Ruw =Ly = 1) LF (L — 1), ©)
where LT is the pseudo-inverse of the non-normalized graph Laplacian. In the special case where u
and v are connected by vertex-disjoint paths, the effective resistance can be expressed by a simpler

formula (see Figure 1 therein)
-1

Ruw = > Length(p)~™* | . 3)

p is a path from w to v

To show that high effective resistance leads to oversquashing bottlenecks, the authors proved an upper
bound on the Frobenius norm of the Jacobian in terms of the effective resistance between the nodes.

However, in our example, it can be seen from eq. (3) that the effective resistance between the source
and destination vertices always equals 2, independently of n, whereas the core phenomenon of
oversquashing is clearly aggravated as n increases.

Direct gradient-decay analysis. Di Giovanni et al. [9] further developed the ideas of Black et al.
[10] and derived upper bounds on the Jacobian norm directly from basic topological features of the
input graph, that is, without passing through spectral graph theory. Their first result, Theorem 3.2, is
of the form)

” 8]1 || < am (Sm)u . (4)

onY ’

where C' is a constant depending on the model and hidden feature dimension, and S is a matrix
derived from the model parameters and the graph adjacency matrix. When the right-hand side of
eq. (4) decays exponentially with m, their theorem predicts exponential decay of the Jacobian norm.
However, in our setting, the number of message-passing iterations is constant m = 2, so the theorem
does not predict exponential gradient decay.

In another result [9, Theorem 4.1], they present a bound that similarly predicts exponential gradient
decay, with the exponent depending on the distance between the two nodes and the number of
message-passing iterations. Since both quantities in our example are constant, this theorem does not
predict the observed oversquashing.

The remaining results in [9] similarly assume either large distances or large number of message-
passing iterations, both of which do not hold in our example.

In fig. 1(b), it can be seen that for the Ring Transfer problem, the vanishing-gradient bounds do
capture the oversquashing effect demonstrated empirically in fig. 4.

308

309
310
311
312
313
314

315
316
317
318

319

320
321
322
323

324
325
326
327
328

329
330
331
332
333

334

335
336

337
338

339
340

341
342
343

Short-Range Oversquashing

mmm GCN+VN
GCN

=
o
o

[
o

Accuracy [%]
N o
o o

N
o

10 50 100 150 160 170 180 190 200
Number of nodes n

Figure 5: Comparison of GCN performance with and without virtual nodes (VN) on the Two-Radius
problem. While virtual nodes provide modest improvements, performance still degrades significantly
as m increases, indicating that VNs do not fully address the bottleneck in short-range oversquashing.

4 Virtual Nodes and Transformers

Several papers have recently argued, both theoretically [7, 12, 28, 29] and empirically [28, 30, 31],
that MPNNs with virtual nodes (VNs) can effectively handle oversquashing. In the context of long-
range oversquashing, this is indeed reasonable, since virtual nodes reduce the effective problem radius
to 2. However, for the Two-Radius problem, a virtual node would act similarly to the existing central
nodes in these graphs, so adding a virtual node is not expected to yield substantial improvement for
MPNNS.

To evaluate this hypothesis, we compared GCN with and without a virtual node, as shown in fig. 5. As
seen in the figure, while adding a virtual node does seem to improve performance for some values of
n, GCN+VN still fails to solve the Two-Radius problem for larger values of n. Thus, the Two-Radius
problem provides a synthetic example in which MPNN+VN is less effective than Transformers.

5 Conclusion

In this work, we revisited the phenomenon of oversquashing in MPNNs and demonstrated that it is
not restricted to long-range tasks. Through the Two-Radius problem, we identified a setting where
oversquashing arises even in short-range scenarios and showed that this corresponds to a bottleneck
effect, separate from the vanishing gradient effect that dominates in long-range tasks.

Our theoretical analysis established that solving the Two-Radius problem with MPNNs requires
large feature dimensions that depend on the graph size, and our empirical results confirmed that
standard MPNNs, even when augmented with virtual nodes, struggle on this task. By contrast, Graph
Transformers and related architectures succeed, underscoring their potential as a more robust solution
to oversquashing in settings where MPNNSs remain bottlenecked.

Our results also clarify the limitations of existing measures of connectivity as predictors of over-
squashing, and highlight the need for refined metrics that account for short-range bottlenecks. We
hope that the Two-Radius problem will serve as a useful benchmark for oversquashing in future
studies, and that our analysis can guide the design of new architectures that combine the efficiency of
MPNNSs with the expressivity of transformers.

References

[1] T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023. 1,2

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In /CLR, 2021. 1,2,3,4,7

[3] Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Prudencio
Tossou. Rethinking graph transformers with spectral attention. In NeurIPS, 2021. 1,2

[4] Ladislav Rampések, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS,
2022. 2

344
345

346
347

348
349
350

351
352
353

354
355
356

357
358

359
360
361

362
363

364
365

366
367
368

369
370

371
372

373
374

375
376

377
378

379
380

381
382

383
384

385
386
387

388
389
390

391
392
393

Short-Range Oversquashing

[5] Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In ICML, 2023. 2

[6] Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In NeurIPS, 2022. 1, 2

[7] Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. On the connection between MPNN and
graph transformer. In International conference on machine learning, pages 3408-3430. PMLR,
2023.1,2,9, 13

[8] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In ICLR, 2022. 2,7, 8

[9] Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and
Michael M Bronstein. On over-squashing in message passing neural networks: The impact of
width, depth, and topology. In ICML, pages 7865-7885, 2023. 2,4, 8

[10] Mitchell Black, Zhengchao Wan, Amir Nayyeri, and Yusu Wang. Understanding oversquashing
in gnns through the lens of effective resistance. In ICML, pages 2528-2547, 2023. 2, 8

[11] Ashok K Chandra, Prabhakar Raghavan, Walter L Ruzzo, and Roman Smolensky. The electrical
resistance of a graph captures its commute and cover times. In Proceedings of the twenty-first
annual ACM symposium on Theory of computing, pages 574-586, 1989. 2

[12] Eran Rosenbluth, Jan Tonshoff, Martin Ritzert, Berke Kisin, and Martin Grohe. Distinguished
in uniform: Self-attention vs. virtual nodes. In /CLR, 2024. 2,9

[13] Jan Tonshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go?
reassessing the long-range graph benchmark. In Learning on Graphs Conference, 2023. 2

[14] Adrian Arnaiz-Rodriguez and Federico Errica. Oversmoothing," oversquashing", heterophily,
long-range, and more: Demystifying common beliefs in graph machine learning. arXiv preprint
arXiv:2505.15547,2025. 3

[15] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In ICLR, 2019. 3, 5

[16] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018. 3,5

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017. 3, 5

[18] William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NIPS, pages 1024-1034, 2017. 3, 5

[19] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated Graph Sequence
Neural Networks. In ICLR, 2016.

[20] Luana Ruiz, Fernando Gama, and Alejandro Ribeiro. Gated Graph Recurrent Neural Networks.
In IEEE Transactions on Signal Processing, 2020. 3

[21] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar,
and Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In NeurIPS, 2021. 4

[22] Yair Davidson and Nadav Dym. On the holder stability of multiset and graph neural networks.
In The Thirteenth International Conference on Learning Representations, 2025. 5

[23] Juho Lee, Yoonho Lee, Jungtack Kim, Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks. In
ICML, pages 3744-3753, 2019. 5, 13

[24] Maya Bechler-Speicher, Ido Amos, Ran Gilad-Bachrach, and Amir Globerson. Graph neural
networks use graphs when they shouldn’t. In Forty-first International Conference on Machine
Learning, 2024. 6

[25] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from the topological view. In Proceedings
of the AAAI conference on artificial intelligence, pages 3438-3445, 2020. 7, 12

10

394
395
396

397
398

399
400

401
402

404
405

406
407
408

410
411
412
413
414
415
416

417
418

419
420
421
422
423

424
425

Short-Range Oversquashing

[26] Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montufar.
Oversquashing in gnns through the lens of information contraction and graph expansion. In
Allerton, pages 1-8. IEEE, 2022. 7

[27] Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montifar. Fosr: First-order spectral rewiring
for addressing oversquashing in gnns. arXiv preprint arXiv:2210.11790, 2022. 7

[28] Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph
rewiring via virtual nodes. In NeurIPS, 2024. 9

[29] Joshua Southern, Johannes Lutzeyer, Fabrizio Frasca, and Michael M Bronstein. Understanding
virtual nodes: Oversquashing and node heterogeneity. In /CLR, 2025. 9

[30] Trang Pham, Truyen Tran, Hoa Dam, and Svetha Venkatesh. Graph classification via deep
learning with virtual nodes. In Proceedings of the Australasian Joint Conference on Artificial
Intelligence, 2017. 9

[31] EunJeong Hwang, Veronika Thost, Shib Sankar Dasgupta, and Tengfei Ma. An analysis of
virtual nodes in graph neural networks for link prediction. In The First Learning on Graphs
Conference, 2022. 9, 13

A Proofs

Proof of Theorem 1. The setting we are considering is that we are given some graph G, with a single
source node s with node features x5 = (1, ¢;), where 1 is the node identifier, signifying that this is
the source node, and /; is the source label coming from some finite alphabet {1,..., A}. All other
nodes v of the graph are given an initial value x,, = (0, £,), where £, comes from the same alphabet
(and is irrelevant to the problem at hand). There is one node, the target node ¢, whose shortest path
distance from the node is r, and the goal is for an MPNN to update the target node to achieve the
original value of the source node, namely h¥ = x,.

It is clear that in less that r iterations, an MPNN will not be able to achieve this goal. However, in r
iterations this goal is easily achieved by an MPNN whose feature dimension does not depend on 7.
Namely, we begin as always with the initial features h? = x,,, and iteratively define h**! € R? by

Wy)= max hgll], Ryl = max hgll] - hgl2)
uEN,U{v} uEN,U{v}

We can then prove recursively on k that if the distance of v from s is < k, then hﬁ' = hg, and
otherwise h%[1] = 0.

For k = 0 this is clearly true. If the claim is true for k, then for £ 4+ 1 we have that, if the distance of
v from s is more than k + 1, than all its neighbors « will all have distance more than k from s, and so
hE[1] = 0 and therefore hX*1[1] = 0. If v is a node of distance < k + 1 from s, then there is some
u € N(v) U {v} whose distance from s is < k. As aresult h¥+1[1] = 1 = hY, hF+1[2] = RE[2] =

R
R9[2].
In particular, it follows that after r iterations the target node will obtain the value of the source node.
This concludes the proof. O

Proof of Theorem 3. Recall that for a graph G, and a subset A C V, the boundary A is defined
as the number of edges between nodes in A and nodes in the complement of A, and the Cheeger
constant is defined as

|04]

min .
ACV,0<|AI<|V]/2 |A]

Now let A C V with 0 < |A| < |V|/2. Denote the number of central nodes in A by a and the
number of source and target nodes by b. By assumption

a+b<|V|/2=n+k/2.

he =

We now consider three cases: case 1: If a > k/2, then necessarily b < n. It follows that

[0A] _a-(2n—0) _ nk/2 k
> > [
[Al = a+b — 4n 8

11

426

427

428
429

430
431
432

434
435
436

437

438

439
440
441
442

443

444
445
446

447
448

Short-Range Oversquashing

case 2: If b > n then necessarily a < k/2. It follows that
|0A| S b-(k—a) S n-k/2 :E
Al = a+b T 4n 8

case 3: If both b < n and a < k/2. Then
|0A| a(2n —b) + b(k — a) - na + bk /2
A a+b - a+b

> k/2.

This concludes the proof. O

B Additional Experimental Results

To complement the analysis in the main text, here we presents a more fine-grained evaluation of the
effect of the hidden-feature dimension on learning accuracy (fig. 6).

The results follow the same experimental setup as fig. 2 and further illustrate that increasing the
number of nodes makes the problem challenging for MPNNs, whereas the Transformer remains
robust, with GAT ranking between the two. As shown in the figure, this difficulty is partially
mitigated by increasing the hidden-feature dimension, which improves the performance of both
MPNNs and GAT but does not close the gap with the Transformer. Overall, these results reinforce
that MPNNGs are limited by the bottleneck effect, whereas the Transformer remains largely unaffected.

GCN —eo— GIN —e— GAT —e— SAGE Transformer ~ —e— MLP
n=>50 n =100
100 > 4 100
80 80
>. 60 > 60
9 @)
© @©
= =
3 o
o 40 o 40
< <
20 20
| -$- —— B —-—
0 0
16 32 64 128 256 512 1024 2048 16 32 64 128 256 512 1024 2048
Hidden-feature dimension Hidden-feature dimension

Figure 6: Fine-grained evaluation of the effect of hidden-feature dimension on learning accuracy in
the same experimental setting as fig. 2.

C Experimental Details
Input Representation

The input representation consists of two concatenated one-hot vectors: one encoding the ID and
another encoding the label. This combined one-hot representation is fed directly into the initial MPNN
layer, which maps it from the input dimensionality to the hidden dimension. Our implementation
does not use a separate encoder or projection layer for this operation.

Mean Absolute Difference (MAD)

In fig. 4 we included a relative variant of the Mean Absolute Difference (MAD)—an energy proposed
by Chen et al. [25] to assess the extent to which oversmoothing takes place. For the output feature
vectors h of the target nodes v € T, it is computed by:

1 K K
S S — h h
%‘T‘(|T| 1) Zuyéyel ” u v ”

1 K J
m ZvET”hv ||

namely, the average pairwise distance between the target node features, divided by the average norm

of those features.

&)

12

449

450
451
452

453

454
455

456

457
458

460

461
462

463

464

465

467
468
469
470
471
472

473
474
475
476
477
478
479
480

481
482

Short-Range Oversquashing

Hardware and Software

All experiments were conducted on an NVIDIA A40 GPU with 48GB memory, using CUDA 12.8.
We implemented all models using PyTorch with PyTorch Geometric for graph operations and PyTorch
Lightning for training management.

Training procedure

All models are trained using Adam optimizer with cross-entropy loss, running for a maximum of
1000 epochs with ReduceLROnPlateau learning rate scheduler.

Model Architectures and Initialization

We evaluated the Two-Radius problem with node configurations n € {10, 50,100, 150, 200} and cen-
tral nodes & = 1 (default), with additional ablation studies using k& € {5, 10,20}. For reproducibility,
we fixed the seed to be 0.

Implementation details

* For the Two-Radius problem, we masked source and central nodes during evaluation, computing
accuracy only on target nodes.

¢ In gradient norm computation, we use the first 5 test samples to reduce computational cost.
+ Central nodes (k). Fixed n = 100, varied k € {1, 5, 10,20} using GCN with Ir =1 x 10~%.

* Virtual Nodes (VNs). To test whether VNs mitigate the short-range bottleneck, we augment
GCN with virtual nodes following Cai et al. [7] and Hwang et al. [31]. In the single-VN variant,
the VN is initialized to zero and, after each layer, a two-layer MLP updates it; the resulting
VN embedding is then added (broadcast) to every node representation. In the multiple-VN
variant, each VN has its own MLP and is updated independently, and at each layer the sum of
all VN embeddings is added to every node. The VN update uses a global aggregation over node
features (either mean or sum). We compare GCN with and without VNs using tuned learning
rates (53x10~% with VN; 1 x 10~* without).

¢ Set Transformer. Following Lee et al. [23], we implement a set-based transformer that ignores
edges and operates solely on node features,treating the input as a multi-set. This Set Transformer
architecture, which can be viewed as a Graph Transformer operating without explicit edge
information, processes nodes as an unordered collection where multiplicities matter. In the Two-
Radius setting, the model receives one-hot node features (IDs and labels) without connectivity
information; thus, source/target/central roles must be inferred from feature patterns. All nodes
interact simultaneously via self attention, so any node can attend to all other nodes without
routing information through central nodes.

This design is particularly effective here because target nodes can directly attend to sources with
matching IDs, bypassing the central-node bottleneck that constrains MPNNs.

13

484
485
486
487

489
490
491

Short-Range Oversquashing

Hyperparameter Selection

Table 1 presents the hyperparameter configurations used for all model architectures in our experiments.
These parameters were selected through preliminary experiments that balanced memory constraints,
computational runtime, and model performance. Each configuration represents the optimal trade-off
between these factors for the respective architecture. Table 2 shows the best-performing learning
rates for each model across different hidden dimensions (256 and 1024), determined by evaluating
three candidate learning rates per configuration and selecting the one yielding the highest validation
accuracy. Together, these hyperparameter choices ensure reproducible and fair comparisons across
all evaluated models.

Table 1: Model Hyperparameters

Hyperparams GCN GAT GIN GraphSAGE MLP Set Transformer
batch_size 64 32 64 64 64 64
train_samples 7000 7000 7000 7000 7000 7000
test_samples 700 700 700 700 700 700
layers 4 4 4 4 4 2
activation LeakyReLU LeakyReLU LeakyReLU LeakyReLU ReLU ReLU
residual v v v v v v
use_layer_norm v v v v v v
use_activation v v v v v v
Attention_heads - 2 - - - 2
Ir_factor 0.1 0.3 0.5 0.1 0.1 0.5
dropout - 0.1 - - 0.3 0.1

Table 2: Optimal Learning Rates

Hidden Dimension

Model

256 1024
GCN 5x107% 1x104
GAT 1x107* 5x10°°
GIN 5x 1075 5 x107*
GraphSAGE 5x 1075 1x 1074
MLP 1x107% 1x10~¢

Set Transformer 1x 1073 1 x 1073

14

	1 Introduction
	1.1 Related Work
	1.2 Notation and Preliminaries

	2 Oversquashing: Long Range and Short Range
	2.1 The Two-Radius Problem
	2.2 Empirical Performance of MPNNs on the Two-Radius Problem

	3 Oversquashing Measures Don't Explain the Two-Radius Problem
	3.1 Current Explanations for Oversquashing

	4 Virtual Nodes and Transformers
	5 Conclusion
	A Proofs
	B Additional Experimental Results
	C Experimental Details

