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Abstract

This paper proposes a general framework of Riemannian adaptive optimization methods.
The framework encapsulates several stochastic optimization algorithms on Riemannian man-
ifolds and incorporates the mini-batch strategy that is often used in deep learning. Within
this framework, we also propose AMSGrad on embedded submanifolds of Euclidean space.
Moreover, we give convergence analyses valid for both a constant and a diminishing step
size. Our analyses also reveal the relationship between the convergence rate and mini-
batch size. In numerical experiments, we applied the proposed algorithm to principal
component analysis and the low-rank matrix completion problem, which can be consid-
ered to be Riemannian optimization problems. Python implementations of the methods
used in the numerical experiments are available at https://anonymous.4open.science/
r/202408-adaptive-0BA6/README.md.

1 Introduction

Riemannian optimization (Absil et al., 2008; Sato, 2021) has received much attention in machine learning.
For example, batch normalization (Cho & Lee, 2017), representation learning (Nickel & Kiela, 2017), and the
low-rank matrix completion problem (Vandereycken, 2013; Cambier & Absil, 2016; Boumal & Absil, 2015)
can be considered optimization problems on Riemannian manifolds. This paper focuses on Riemannian
adaptive optimization algorithms for solving stochastic optimization problems on Riemannian manifolds. In
particular, we treat Riemannian submanifolds of Euclidean space (e.g., unit spheres and the Stiefel manifold).

In Euclidean settings, adaptive optimization methods are widely used for training deep neural networks.
There are many adaptive optimization methods, such as Adaptive gradient (AdaGrad) (Duchi et al., 2011),
Adadelta (Zeiler, 2012), Root mean square propagation (RMSProp) (Hinton et al., 2012), Adaptive mo-
ment estimation (Adam) (Kingma & Ba, 2015), Yogi (Zaheer et al., 2018), Adaptive mean square gradient
(AMSGrad) (Reddi et al., 2018), AdaFom (Chen et al., 2019), AdaBound (Luo et al., 2019), Adam with
decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019) and AdaBelief (Zhuang et al., 2020). Reddi
et al. (2018) proposed a general framework of adaptive optimization methods that encapsulates many of the
popular adaptive methods in Euclidean space.

Bonnabel (2013) proposed Riemannian stochastic gradient descent (RSGD), the most basic Riemannian
stochastic optimization algorithm. In particular, Riemannian stochastic variance reduction algorithms, such
as Riemannian stochastic variance-reduced gradient (RSVRG) (Zhang et al., 2016), Riemannian stochastic
recursive gradient (RSRG) (Kasai et al., 2018), and Riemannian stochastic path-integrated differential es-
timator (R-SPIDER) (Zhang et al., 2018; Zhou et al., 2019), are based on variance reduction methods in
Euclidean space. There are several prior studies on Riemannian adaptive optimization methods for specific
Riemannian manifolds. In particular, Kasai et al. (2019) proposed a Riemannian adaptive stochastic gradi-
ent algorithm on matrix manifolds (RASA). RASA is an adaptive optimization method on matrix manifolds
(e.g., the Stiefel manifold or the Grassmann manifold), with a convergence analysis under the upper-Hessian
bounded and retraction L-smooth assumptions (see (Kasai et al., 2019, Section 4) for details). However,
RASA is not a direct extension of the adaptive optimization methods commonly used in deep learning, and
it works only for diminishing step sizes. On the cartesian product of Riemannian manifolds, RAMSGrad
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(Bécigneul & Ganea, 2019) and modified RAMSGrad (Sakai & Iiduka, 2021), direct extensions of AMSGrad,
have been proposed as methods that work on Cartesian products of Riemannian manifolds. In particular,
Roy et al. (2018) proposed cRAMSProp and applied it to several Riemannian stochastic optimizations.
However, they did not provide a convergence analysis of cRAMSProp. More recently, Riemannian stochastic
optimization methods, Sharpness-aware minimization on Riemannian manifolds (Riemannian SAM) (Yun &
Yang, 2024) and Riemannian natural gradient descent (RNGD) (Hu et al., 2024), were proposed.

1.1 Contributions

Motivated by the above discussion, we propose a framework of adaptive optimization methods on Rieman-
nian submanifolds of Euclidean space (Algorithm 1) that is based on the framework (Reddi et al., 2018,
Algorithm 1) proposed by Reddi, Kale and Kumar for Euclidean space. Our framework incorporates the
mini-batch strategy that is often used in deep learning. Important examples of Riemannian submanifolds
of the Euclidean space include the unit sphere and the Stiefel manifold. Moreover, within this framework,
we propose AMSGrad on embedded submanifolds of Euclidean space (Algorithm 2) as a direct extension
of AMSGrad. In addition, we give convergence analyses (Theorem 3.7) valid for both a constant step size
(Theorem 3.8) and diminishing step size (Theorem 3.9). Our analyses not only ensure that the proposed
method converges to the optimal solution, but also reveal the relationship between the convergence rate and
mini-batch size. Moreover, we numerically compare the performances of several methods based on Algo-
rithm 1, including Algorithm 2, with the existing methods. In the numerical experiments, we applied the
algorithms to principal component analysis (PCA) (Kasai et al., 2018; Roy et al., 2018) and the low-rank
matrix completion (LRMC) problem (Boumal & Absil, 2015; Kasai et al., 2019; Hu et al., 2024), which can
be considered to be Riemannian optimization problems.

Our first contribution is to propose a general framework of Riemannian adaptive optimization methods
(Algorithm 1) and AMSGrad on embedded submanifolds of Euclidean space (Algorithm 2). In particular,
the proposed method incorporates the mini-batch strategy. Our second contribution is to give convergence
analyses of Algorithms 1 and 2. In particular, we emphasize that the proposed method can use both constant
and diminishing step sizes (Theorems 3.8 and 3.9), in contrast to RASA (Kasai et al., 2019), which only uses
a diminishing step size. The third contribution is to compare the proposed methods with RSGD and RASA
in numerical experiments.

2 Mathematical Preliminaries

Let Rd be a d-dimensional Euclidean space with inner product ⟨x, y⟩2 := x⊤y, which induces the norm ∥·∥2.
Let R++ be the set of positive real numbers, i.e., R++ := {x ∈ R | x > 0}. Id denotes a d×d identity matrix.
For square matrices X,Y ∈ Rd×d, we write X ≺ Y (resp. X ⪯ Y ) if Y − X is a positive-definite (resp.
positive-semidefinite) matrix. For two matricesX and Y of the same dimension, X⊙Y denotes the Hadamard
product, i.e., element-wise product. Let max(X,Y ) be the element-wise maximum. Let Sd (resp. Sd

+, Sd
++)

be the set of d× d symmetric (resp. symmetric positive-semidefinite, symmetric positive-definite) matrices,
i.e., Sd := {X ∈ Rd×d | X⊤ = X}, Sd

+ := {X ∈ Rd×d | X ⪰ O} and Sd
++ := {X ∈ Rd×d | X ≻ O}. Let Dd

be the set of d× d diagonal matrices. Let Od be the orthogonal group, i.e., Od := {X ∈ Rd×d | X⊤X = Id}.

Let M be an embedded submanifold of Rd. Moreover, let TxM be the tangent space at a point x ∈ M
and TM be the tangent bundle of M . Let 0x be the zero element of TxM . The inner product ⟨·, ·⟩2 of a
Euclidean space Rd induces a Riemannian metric ⟨·, ·⟩x of M at x ∈M according to ⟨ξ, η⟩x = ⟨ξ, η⟩2 = ξ⊤η

for ξ, η ∈ TxM ⊂ TxRd ∼= Rd. The norm of η ∈ TxM is defined as ∥η∥x =
√
η⊤η = ∥η∥2. Let Px : TxRd ∼=

Rd → TxM be the orthogonal projection onto TxM (see Absil et al. (2008)). For a smooth map F : M → N
between two manifolds M and N , DF (x) : TxM → TF (x)N denotes the derivative of F at x ∈ M . The
Riemannian gradient grad f(x) of a smooth function f : M → R at x ∈ M is defined as a unique tangent
vector at x satisfying ⟨grad f(x), η⟩x = Df(x)[η] for any η ∈ TxM .
Definition 2.1 (Retraction). Let M be a manifold. Any smooth map R : TM → M is called a retraction
on M if it has the following properties.

• Rx(0x) = x for all x ∈M ;
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• With the canonical identification T0x
TxM ∼= TxM , DRx(0x) = idTxM : TxM → TxM for all x ∈M ,

where Rx denotes the restriction of R to TxM .

2.1 Examples

The unite sphere Sd−1 := {x ∈ Rd | ∥x∥2 = 1} is an embedded manifold of Rd. The tangent space TxSn−1

at x ∈ Sd−1 is given by TxSn−1 = {η ∈ Rd | η⊤x = 0}. The induced Riemannian metric on Sd−1 is given by
⟨ξ, η⟩x = ⟨ξ, η⟩2 := ξ⊤η for ξ, η ∈ TxSd−1. The orthogonal projection Px : Rd → TxSd−1 onto the tangent
space TxSn−1 is given by Px(η) = (Id − xx⊤)η for x ∈ Sd−1 and η ∈ TxSd−1.

An important example is the Stiefel manifold (Absil et al., 2008, Chapter 3.3.2), which is defined as St(p, n) :=
{X ∈ Rn×p | X⊤X = Ip} for n ≥ p. St(p, n) is an embedded manifold of Rn×d. The tangent space Tx St(p, n)
at X ∈ St(p, n) is given by

TX St(p, n) = {η ∈ Rn×p | X⊤η + η⊤X = O}.

The induced Riemannian metric on St(p, n) is given by ⟨ξ, η⟩X = tr(ξ⊤η) for ξ, η ∈ TX St(p, n). The
orthogonal projection onto the tangent space TX St(p, n) is given by PX(η) = η − X sym(X⊤η) for X ∈
St(p, n), η ∈ TX St(p, n), where sym(A) := (A + A⊤)/2. The Stiefel manifold St(p, n) reduces to the
orthogonal groups when n = p, i.e. St(p, p) = Op.

Moreover, we will also consider the Grassmann manifold (Absil et al., 2008, Chapter 3.4.4) Gr(p, n) :=
St(p, n)/Op. Let X ∈ St(p, n) be a representative of [X] := {XQ | Q ∈ Op} ∈ Gr(p, n). We denote the
horizontal lift of η ∈ T[X] Gr(p, n) at X by η̄X ∈ TX St(p, n). The Riemannian metric of the Grassmann
manifold Gr(p, n) is endowed with ⟨ξ, η⟩[X] :=

〈
ξ̄X , η̄X

〉
2 for ξ, η ∈ T[X] Gr(p, n). The orthogonal projection

onto the tangent space T[X] Gr(p, n) is defined through

P[X](η) = (In −XX⊤)η̄X ,

for [X] ∈ Gr(p, n) and η ∈ T[X] Gr(p, n).

2.2 Riemannian stochastic optimization problem

We focus on minimizing a objective function f : M → R of the form,

f(x) = 1
N

N∑
i=1

fi(x),

where fi is a smooth function for i = 1, . . . , N . We use the mini-batch strategy as follows (see Iiduka
(2024) for detail). sk,i is a random variable generated from the i-th sampling at the k-th iteration, and
sk := (sk,1, . . . , sk,b)⊤ is independent of (xk)∞

k=1, where b (≤ N) is the batch size. To simplify the notation,
we denote the expectation Esk

with respect to sk by Ek. From the independence of s1, s2, . . . , sk, we can
define the total expectation E by E1E2 · · ·Ek. We define the mini-batch stochastic gradient grad fBk

(xk) of
f at the k-th iteration by

grad fBk
(xk) := 1

b

b∑
i=1

grad fsk,i
(xk). (1)

Our main objective is to find a local minimizer of f , i.e., a stationary point x⋆ ∈M satisfying grad f(x⋆) =
0x⋆

.

2.3 Proposed general framework of Riemannian adaptive methods

Reddi et al. (2018) provided a general framework of adaptive gradient methods in Euclidean space. We
devised Algorithm 1 by generalizing that framework to an embedded manifold of Rd. The main difference
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from the Euclidean setting is computing the projection of H−1
k mk onto the tangent space Txk

M by the
orthogonal projection Pxk

. Algorithm 1 requires sequences of maps, (ϕk)∞
k=1 and (ψk)∞

k=1, such that ϕk :
Tx1M × · · · × Txk

M → Rd and ψk : Tx1M × · · · × Txk
M → Dd ∩ Sd

++, respectively. Note that Algorithm
1 is still abstract because the maps (ϕk)∞

k=1 and (ψk)∞
k=1 are not specified. Algorithm 1 is the extension of

a general framework in Euclidean space proposed by Reddi, Kale and Kumar (Reddi et al., 2018). In the
Euclidean setting (i.e., M = Rd), the orthogonal projection Pxk

yields an identity map and this corresponds
to the Euclidean version of the general framework.

Algorithm 1 The general framework of Riemannian adaptive optimization methods on an embedded sub-
manifold of Rd.
Require: Initial point x1 ∈ M , retraction R : TM → M , step sizes (αk)∞

k=1 ⊂ R++, sequences of maps
(ϕk)∞

k=1, (ψk)∞
k=1.

Ensure: Sequence (xk)∞
k=1 ⊂M .

1: k ← 1.
2: loop
3: gk = grad fBk

(xk).
4: mk = ϕk(g1, . . . , gk) ∈ Rd.
5: Hk = ψk(g1, . . . , gk) ∈ Dd ∩ Sd

++.
6: xk+1 = Rxk

(−αkPxk
(H−1

k mk)).
7: k ← k + 1.
8: end loop

Although Algorithm 1 is an optimization method on Riemannian manifold M , since gk ∈ Txk
M ⊂ Rd,

mk ∈ Rd and Hk ∈ Dd ∩ Sd
++ ⊂ Rd×d, we can directly use (ϕn)∞

n=1 and (ψn)∞
n=1 to extend the Euclidean

adaptive gradient methods.

Here, SGD is the most basic method; it uses

ϕk(g1, . . . , gk) = gk, ψk(g1, . . . , gk) = Id.

Algorithm 1 with these maps corresponds to RSGD (Bonnabel, 2013) in the Riemannian setting. AdaGrad
(Duchi et al., 2011), the first adaptive gradient method in Euclidean space that propelled research on adaptive
methods, uses the sequences of maps ϕk(g1, . . . , gk) = gk and

vk = vk−1 + gk ⊙ gk,

ψk(g1, . . . , gk) = diag(√vk,1, . . . ,
√
vk,d) + ϵId,

where v0 = 0 ∈ Rd and ϵ > 0. Here, we will denote the i-th component of vk by vk,i. The exponential
moving average variant of AdaGrad is often used in deep-learning training. The most basic variant is
RMSProp (Hinton et al., 2012), which uses the sequences of maps ϕk(g1, . . . , gk) = gk and

vk = β2vk−1 + (1− β2)gk ⊙ gk,

ψk(g1, . . . , gk) = diag(√vk,1, . . . ,
√
vk,d) + ϵId,

where v0 = 0 ∈ Rd and ϵ > 0. Both Algorithm 1 with these maps and cRMSProp (Roy et al., 2018) can be
considered extensions of RMSProp to Riemannian manifolds. They differ from each other in that parallel
transport is needed to compute the search direction of cRMSProp, but it is not needed in our method.

Adam (Kingma & Ba, 2015) is one of the most common variants; it uses the sequence of maps,

mk = β1mk−1 + (1− β1)gk, ϕk(g1, . . . , gk) = mk

1− βk+1
1

, (2)

and

vk = β2vk−1 + (1− β2)gk ⊙ gk, v̂k = vk

1− βk+1
2

,

ψk(g1, . . . , gk) = diag(
√
v̂k,1, . . . ,

√
v̂k,d) + ϵId, (3)
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where m0 = 0 ∈ Rd and v0 = 0 ∈ Rd. β1 = 0.9, β2 = 0.999 and ϵ = 10−8 are typically recommended values.
Moreover, within the general framework (Algorithm 1), we propose the following algorithm as an extension
of AMSGrad (Reddi et al., 2018) in Euclidean space.

Algorithm 2 AMSGrad on an embedded submanifold of Rd.
Require: Initial point x1 ∈ M , retraction R : TM → M , step sizes (αk)∞

k=1 ⊂ R++, hyperparameters
β1, β2 ∈ [0, 1), ϵ > 0.

Ensure: Sequence (xk)∞
k=1 ⊂M .

1: Set m0 = 0, v0 = 0 and v̂0 = 0.
2: k ← 1.
3: loop
4: gk = grad fBk

(xk).
5: mk = β1mk−1 + (1− β1)gk.
6: vk = β2vk−1 + (1− β2)gk ⊙ gk.
7: v̂k = max(v̂k−1, vk).
8: Hk = diag(

√
v̂k,1, . . . ,

√
v̂k,d) + ϵId.

9: xk+1 = Rxk
(−αkPxk

(H−1
k mk)).

10: k ← k + 1.
11: end loop

3 Convergence analysis

3.1 Assumptions and useful lemmas

We make the following Assumptions 3.1 (A1)–(A4). (A1) and (A2) include the standard conditions. (A3)
assumes the boundedness of the gradient. (A4) is an assumption on the Lipschitz continuity of the gradient.
(A5) assumes that a lower bound exists.
Assumption 3.1. Let (xk)∞

k=1 be a sequence generated by Algorithm 1.

(A1) Ek[grad fsk,i
(xk)] = grad f(xk) for all k ≥ 1 and i = 1, . . . , b.

(A2) There exists σ2 > 0 such that

Ek

[∥∥grad fsk,i
(xk)− grad f(xk)

∥∥2
2

]
≤ σ2,

for all k ≥ 1 and i = 1, . . . , b.

(A3) There exists G,B > 0 such that ∥grad f(xk)∥2 ≤ G and ∥grad fBk
(xk)∥2 ≤ B for all k ≥ 1.

(A4) There exists a constant L > 0 such that

|D(f ◦Rx)(η)[η]−Df(x)[η]| ≤ L ∥η∥2
2 ,

for all x ∈M , η ∈ TxM .

(A5) f is bounded below by f⋆ ∈ R.

Lemma 3.2. Suppose that Assumption 3.1 (A1) holds. Let (xk)∞
k=1 be a sequence generated by Algorithm

1. Then,

Ek [grad fBk
(xk)] = grad f(xk),

for all k ≥ 1.

Proof. See Appendix A.
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Lemma 3.3. Suppose that Assumptions 3.1 (A1) and (A2) hold. Let (xk)∞
k=1 be a sequence generated by

Algorithm 1. Then,

Ek

[
∥grad fBk

(xk)∥2
2

]
≤ σ2

b
+ ∥grad f(xk)∥2

2

for all k ≥ 1.

Proof. See Appendix B.

It is known that if Assumption 3.1 (A4) holds, so does the following Proposition 3.4. This property is known
as retraction L-smooth (see Huang et al. (2015); Kasai et al. (2018) for details).
Proposition 3.4. Suppose that Assumption 3.1 (A4) holds. Then,

f(Rx(η)) ≤ f(x) + ⟨grad f(x), η⟩2 + L

2 ∥η∥
2
2 ,

for all x ∈M and η ∈ TxM .

3.2 Convergence analysis of Algorithm 1

The main difficulty in analyzing the convergence of adaptive gradient methods is due to the stochastic
momentum mk = ϕk(g1, . . . , gk). As a way to overcome this challenge in Euclidean space, Zhou et al. (2024);
Yan et al. (2018); Chen et al. (2019) defined a new sequence zk,

zk = xk + β1

1− β1
(xk − xk−1).

However, this strategy does not work in the Riemannian setting. Therefore, by following the policy of Zaheer
et al. (2018), let us analyze the case in which ϕk(g1, . . . , gk) = gk. To simplify the notation, we denote the
i-th component of gk (resp. vk, v̂k) by gk,i (resp. vk,i, v̂k,i).
Lemma 3.5. Suppose that Assumption 3.1 (A3) holds. Then, the sequence (xk)∞

k=1 ⊂ M generated by
Algorithm 2 satisfies

v̂k,i ≤ B2,

for all k ≥ 1 and i = 1, . . . , d.

Proof. See Appendix C.

Lemma 3.6. Suppose that Assumption 3.1 (A4) holds. If ϕk(g1, . . . , gk) = gk and H−1
k ⪯ νId for all k ≥ 1

and some ν > 0, then the sequence (xk)∞
k=1 ⊂M generated by Algorithm 1 satisfies

f(xk+1) ≤ f(xk) +
〈
grad f(xk),−αkH

−1
k gk

〉
2 + Lα2

kν
2

2 ∥gk∥2
2 ,

for all k ≥ 1.

Proof. See Appendix D.

Theorem 3.7. Suppose that Assumptions 3.1 (A1)–(A5) hold. Moreover, let us assume that αk+1 ≤ αk,
ϕk(g1, . . . , gk) = gk, αkH

−1
k ⪰ αk+1H

−1
k+1 and there exist µ, ν > 0 such that µId ⪯ H−1

k ⪯ νId for all k ≥ 1.
Then, the sequence (xk)∞

k=1 ⊂M generated by Algorithm 1 satisfies

K∑
k=1

αk

(
µ− Lαkν

2

2

)
E
[
∥grad f(xk)∥2

2

]
≤ C1 + C2

b

K∑
k=1

α2
k,

for some constant C1, C2 > 0.
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Remark: Since Algorithm 2 satisfies v̂k+1,i := max(v̂k,i, vk+1,i) ≥ v̂k,i, it together with αk+1 ≤ αk, leads to
αk/(

√
v̂k,i + ϵ) ≥ αk+1/(

√
v̂k+1,i + ϵ). Moreover, from Lemma 3.5,

1
B + ϵ

≤ 1√
v̂k,i + ϵ

≤ 1
ϵ
,

which implies (B + ϵ)−1Id ⪯ H−1
k ⪯ ϵ−1Id. Therefore, Algorithm 2 satisfies the assumption αkH

−1
k ⪰

αk+1H
−1
k+1 and µId ⪯ H−1

k ⪯ νId with µ = (B + ϵ)−1 and ν = ϵ−1.

Proof. We denote grad f(xk) by g(xk). First, let us consider the case of k = 1. From Lemma 3.6, we have

f(x2) ≤ f(x1) +
〈
g(x1),−α1H

−1
1 g1

〉
2 + Lα2

1ν
2

2 ∥g1∥2
2 .

By taking E1[·] of both sides, we obtain

E1[f(x2)] ≤ f(x1) +
〈
g(x1),−α1E1[H−1

1 g1]
〉

2 + Lα2
1ν

2

2 E1

[
∥g1∥2

2

]
≤ f(x1) +

〈
g(x1),−α1E1[H−1

1 g1]
〉

2 + Lα2
1ν

2

2

(
σ2

b
+ ∥g(x1)∥2

2

)
where the second inequality comes from Lemma 3.3. By taking E[·] of both sides and rearranging terms, we
get

−Lα1ν
2

2 E
[
∥g(x1)∥2

2

]
≤ f(x1)− E[f(x2)] +

〈
g(x1),−α1E[H−1

1 g1]
〉

2 + Lα2
1σ

2ν2

2b .

By adding α1µG
2 to both sides, we obtain

α1µG
2 − Lα1ν

2

2 E
[
∥g(x1)∥2

2

]
≤ f(x1)− E[f(x2)] + Lα2

1σ
2ν2

2b +
〈
g(x1),−α1E[H−1

1 g1]
〉

2 + α1µG
2︸ ︷︷ ︸

C0

.

Here, we note that

α1µE
[
∥g(x1)∥2

2

]
≤ α1µG

2.

Therefore, we have

α1

(
µ− Lα1ν

2

2

)
E
[
∥g(x1)∥2

2

]
≤ f(x1)− E[f(x2)] + Lα2

1σ
2ν2

2b + C0. (4)

Next, let us consider the case of k ≥ 2. From Lemma 3.6, we have

f(xk+1) ≤ f(xk) +
〈
g(xk),−αk−1H

−1
k−1gk

〉
2 +

〈
g(xk), (αk−1H

−1
k−1 − αkH

−1
k )gk

〉
2 + Lα2

kν
2

2 ∥gk∥2
2

for all k ≥ 2. From Assumption 3.1 (A3), Lemma E.1, and αk−1H
−1
k−1 − αkH

−1
k ⪰ O, we have

f(xk+1) ≤ f(xk) +
〈
g(xk),−αk−1H

−1
k−1gk

〉
2 +GB tr(αk−1H

−1
k−1 − αkH

−1
k ) + Lα2

kν
2

2 ∥gk∥2
2 .

By taking Ek[·] of both sides, we obtain

Ek[f(xk+1)] ≤ f(xk) +
〈
g(xk),−αk−1H

−1
k−1Ek[gk]

〉
2

+GBEk[tr(αk−1H
−1
k−1 − αkH

−1
k )] + Lα2

kν
2

2 Ek

[
∥gk∥2

2

]
≤ f(xk)− αk−1

〈
g(xk), H−1

k−1g(xk)
〉

2

+GBEk[tr(αk−1H
−1
k−1 − αkH

−1
k )] + Lα2

kν
2

2

(
σ2

b
+ ∥g(xk)∥2

2

)
,
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where the first inequality comes from the independence of H−1
k−1 for sk and the second inequality comes from

Lemmas 3.2 and 3.3. Here, since H−1
k−1 ⪰ µId and αk ≤ αk−1, it follows that

−αk−1
〈
g(xk), H−1

k−1g(xk)
〉

2 ≤ −αkµ ∥g(xk)∥2
2 ,

which implies

Ek[f(xk+1)] ≤ f(xk)− αk

(
µ− Lαkν

2

2

)
∥g(xk)∥2

2 +GBEk[tr(αk−1H
−1
k−1 − αkH

−1
k )] + Lα2

kσ
2ν2

2b .

By taking E[·] of both sides, we have

E[f(xk+1)] ≤ E[f(xk)]− αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
+GBE[tr(αk−1H

−1
k−1 − αkH

−1
k )] + Lα2

kσ
2ν2

2b .

By rearranging the above inequality gives us

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
≤ E[f(xk)]− E[f(xk+1)] +GBE[tr(αk−1H

−1
k−1 − αkH

−1
k )] + Lα2

kσ
2ν2

2b . (5)

By summing (5) from k = 2 to k = K, we have

K∑
k=2

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
≤ E[f(x2)]− E[f(xK+1)] +GBE[tr(α1H

−1
1 − αKH

−1
K )] +

K∑
k=2

Lα2
kσ

2ν2

2b .

Since µId ⪯ H−1
K ⪯ νId for all k ≥ 1, it follows that tr(α1H

−1
1 ) ≤ α1νd and tr(αKH

−1
K ) ≥ 0. Here, we note

that E[f(xK+1)] ≥ f⋆, from Assumption 3.1 (A3). Therefore, we have

K∑
k=2

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
≤ E[f(x2)]− f⋆ +GBα1νd+

K∑
k=2

Lα2
kσ

2ν2

2b . (6)

Here, by adding both sides of (4) and (6), we have

K∑
k=1

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
≤ f(x1)− f⋆ + C0 +GBα1νd︸ ︷︷ ︸

C1

+ Lσ2ν2

2︸ ︷︷ ︸
C2

·1
b

K∑
k=1

α2
k.

This completes the proof.

Our convergence analysis (Theorem 3.7) allows the proposed framework (Algorithm 1) to use both constant
and diminishing steps sizes. Theorems 3.8 and 3.9 are convergence analyses of Algorithm 1 with constant
and diminishing steps sizes, respectively.
Theorem 3.8. Under the assumptions in Theorem 3.7 and assuming that the constant step size αk := α
satisfies 0 < α < 2µL−1ν−2, the sequence (xk)∞

k=1 ⊂M generated by Algorithm 1 satisfies

1
K

K∑
k=1

E
[
∥grad f(xk)∥2

2

]
= O

(
1
K

+ 1
b

)
.

Proof. We denote grad f(xk) by g(xk). From Theorem 3.7, we obtain

1
K

K∑
k=1

α

(
µ− Lαν2

2

)
E
[
∥g(xk)∥2

2

]
≤ C1

K
+ C2α

2

b
. (7)

8



Under review as submission to TMLR

Since 0 < α < 2µL−1ν−2, it follows that (2αµ − Lα2ν2)/2 > 0. Therefore, dividing both sides of (7) by
(2αµ− Lα2ν2)/2 gives

1
K

K∑
k=1

E
[
∥g(xk)∥2

2

]
≤ 2C1

2αµ− Lα2ν2 ·
1
K

+ 2C2α
2

2αµ− Lα2ν2 ·
1
b
.

This completes the proof.

Theorem 3.9. Under the assumptions in Theorem 3.7 and assuming that the diminishing step size αk :=
α/
√
k satisfies α ∈ (0, 1], the sequence (xk)∞

k=1 ⊂M generated by Algorithm 1 satisfies

1
K

K∑
k=1

E
[
∥grad f(xk)∥2

2

]
= O

((
1 + 1

b

)
logK√
K

)
.

Proof. We denote grad f(xk) by g(xk). Since (αk)∞
k=1 satisfies αk → 0 (k → ∞), there exists a natural

number k0 ≥ 1 such that, for all k ≥ 1, if k ≥ k0, then 0 < αk < 2µL−1ν−2. Therefore, we obtain

0 < µ− Lαkν
2

2 < µ,

for all k ≥ k0. From Theorem 3.7, we have
K∑

k=k0

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
≤ C1 + C2

b

K∑
k=1

α2
k −

k0−1∑
k=1

αk

(
µ− Lαkν

2

2

)
E
[
∥g(xk)∥2

2

]
,

for all K ≥ k0. Since (αk)∞
k=1 is monotone decreasing and αk > 0, we obtain

αK

(
µ− Lαk0ν

2

2

) K∑
k=k0

E
[
∥g(xk)∥2

2

]
≤ C1 + C2

b

K∑
k=1

α2
k +

k0−1∑
k=1

Lα2
kν

2E
[
∥g(xk)∥2

2

]
.

Dividing both sides of this inequality by 2−1KαK(2µ− Lαk0ν
2) > 0 yields

1
K

K∑
k=k0

E
[
∥g(xk)∥2

2

]
≤ 2
KαK(2µ− Lαk0ν

2)

(
C1 + C2

b

K∑
k=1

α2
k +

k0−1∑
k=1

Lα2
kν

2E
[
∥g(xk)∥2

2

])

= 1
KαK

· 2
2µ− Lαk0ν

2

(
C1 +

k0−1∑
k=1

Lα2
kν

2E
[
∥g(xk)∥2

2

])
︸ ︷︷ ︸

C3

+ 1
bKαK

· 2C2

2µ− Lαk0ν
2︸ ︷︷ ︸

C4

K∑
k=1

α2
k.

From this and αK := α/
√
K < 1, we obtain

1
K

K∑
k=1

E
[
∥g(xk)∥2

2

]
≤ 1
KαK

(
C3 + C4

b

K∑
k=1

α2
k

)
+ 1
KαK

k0−1∑
k=1

E
[
∥g(xk)∥2

2

]
= 1
α
√
K

(
C3 +

k0−1∑
k=1

E
[
∥g(xk)∥2

2

]
+ C4

b

K∑
k=1

α2
k

)
.

From α ∈ (0, 1], we have that
K∑

k=1
α2

k =
K∑

k=1

α2

k
≤

K∑
k=1

1
k
≤ 1 +

∫ K

1

dt

t
= 1 + logK.

9
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Therefore,

1
K

K∑
k=1

E
[
∥g(xk)∥2

2

]
≤ 1
α
√
K

(
C3 +

k0−1∑
k=1

E
[
∥g(xk)∥2

2

]
+ C4

b
+ C4

b
logK

)
.

This completes the proof.

4 Numerical Experiments

We experimentally compared our general framework of Riemannian adaptive optimization methods (Algo-
rithms 1) with several choices of (ϕn)∞

n=1 and (ψn)∞
n=1 with the following algorithms:

• RSGD (Bonnabel, 2013): Algorithm 1 with ϕk(g1, . . . , gk) = gk and ψk(g1, . . . , gk) = Id.

• RASA-LR, RASA-L, RASA-R (Kasai et al., 2019, Algorithm 1): β = 0.99.

• RAdam: Algorithm 1 with (ϕn)∞
n=1 defined by (2), (ψn)∞

n=1 defined by (3), β1 = 0.9, β2 = 0.999 and
ϵ = 10−8.

• RAMSGrad: Algorithm 2 with β1 = 0.9, β2 = 0.999 and ϵ = 10−8.

We experimented with both constant and diminishing step sizes. For each algorithm, we searched in the
set {10−1, 10−2, . . . , 10−8} for the best initial step size α ( both constant and diminishing). Note that the
constant (resp. diminishing) step size was determined to be αk = α (resp. αk = α/

√
k) for all k ≥ 1.

The experiments used a MacBook Air (M1, 2020) and the macOS Monterey version 12.2 operating system.
The algorithms were written in Python 3.12.1 with the NumPy 1.26.0 package and the Matplotlib 3.9.1
package. The Python implementations of the methods used in the numerical experiments are available at
https://anonymous.4open.science/r/202408-adaptive-0BA6/README.md.

4.1 Principal component analysis

We applied the algorithms to a principal component analysis (PCA) problem (Kasai et al., 2018; Roy et al.,
2018). For N given data points x1, . . . , xN ∈ Rn and p (≤ n), the PCA problem is equivalent to minimizing

f(U) := 1
N

N∑
i=1

∥∥xi − UU⊤xi

∥∥2
2 , (8)

on the Stiefel manifold St(p, n). Therefore, the PCA problem can be considered to be optimization problem
on the Stiefel manifold.

In the experiments, we set p to 10 and the batch size b to 210. We used the QR-based retraction on the
Stiefel manifold St(p, n) (Absil et al., 2008, Example 4.1.3), which is defined by

RX(η) := qf(X + η),

for X ∈ St(p, n) and η ∈ TX St(p, n), where qf(·) returns the Q-factor of the QR decomposition.

We evaluated the algorithms on training images of the MNIST dataset (LeCun et al., 1998) and the COIL100
dataset (Nene et al., 1996). The MNIST dataset contains 60,000 28 × 28 gray-scale images of handwritten
digits. We transformed every image into a 784-dimensional vector and normalized its pixel values to lie in
the range of [0, 1]. Thus, we set N = 60000 and n = 784. The COIL100 dataset contains 7,200 normalized
color camera images of the 100 objects taken from different angles. As in the previous study (Kasai et al.,
2019), we resized them to 32×32 pixels. Thus, we set N = 7200 and n = 1024.

Figure 1(a) (resp. Figure 1(b)) shows the performances of the algorithms with a constant (resp. diminishing)
step size for the objective function values defined by (8) with respect to the number of iterations on the

10
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MNIST dataset, while Figure 3(a) and 3(b) present those on the COIL100 dataset. Figure 2(a) (resp. 2(b))
presents the performances of the algorithms with a constant (resp. diminishing) step size for the norm of
the gradient of objective function defined by (8) with respect to the number of iterations on the MNIST
dataset, while Figure 4(a) and 4(b) present those on the COIL100 dataset. The experiments were performed
for three random initial points, and the thick line plots the average of all experiments. The area bounded
by the maximum and minimum values is painted the same color as the corresponding line.
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Figure 1: Objective function value defined by (8) versus number of iterations on the MNIST datasets.
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0 100 200 300 400 500
Number of iterations

2

4

6

8

10

No
rm

 o
f t

he
 g

ra
di

en
t o

f t
he

 o
bj

ec
tiv

e 
fu

nc
tio

n

RSGD
RAdam
RAMSGrad
RASA-L
RASA-R
RASA-LR

(b) diminishing learning rate

Figure 2: Norm of the gradient of objective function defined by (8) versus number of iterations on the MNIST
datasets.

Figure 1(a) indicates that RAdam and RAMSGrad (Algorithm 2) performed comparably to RASA-LR in
the sense of minimizing the objective function value. Figure 1(b) indicates that RAdam and RAMSGrad
(Algorithm 2) outperformed RASA-L and RASA-R. Figure 2(a) shows that RAMSGrad (Algorithm 2)
performed better than RASA-LR in the sense of minimizing the full gradient norm of the objective function.
Figure 3(a) indicates that RAdam and RAMSGrad (Algorithm 2) had the best performance in the sense
of minimizing the objective function value. Figure 3(b) indicates that RAdam and RAMSGrad (Algorithm
2) performed comparably to RASA-LR. Figure 4(a) shows that RAdam had the best performance in the
sense of minimizing the full gradient norm of the objective function. Figure 4(b) indicates that RAdam and
RAMSGrad (Algorithm 2) performed comparably to RASA-R and RASA-LR.
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Figure 3: Objective function value defined by (8) versus number of iterations on the COIL100 datasets.
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Figure 4: Norm of the gradient of objective function defined by (8) versus number of iterations on the
COIL100 datasets.
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4.2 Low-rank matrix completion

We applied the algorithms to the low-rank matrix completion (LRMC) problem (Boumal & Absil, 2015; Kasai
et al., 2019; Hu et al., 2024). The LRMC problem aims to recover a low-rank matrix from an incomplete
matrix X = (Xij) ∈ Rn×N . We denote the set of observed entries by Ω ⊂ {1, . . . , n}×{1, . . . , N}, i.e., (i, j) ∈
Ω if and only if Xij is known. Here, we defined the orthogonal projection PΩi : Rn → Rn : a 7→ PΩi(a) such
that the j-th element of PΩi

(a) is aj if (i, j) ∈ Ω, and 0 otherwise. Moreover, we defined qi : Rn×p×Rn → Rp

as

qi(U, x) := arg min
a∈Rp

∥PΩi
(Ua− x)∥2 , (9)

for i ≥ 1. By partitioning X = (x1, . . . , xN ), the rank-p LRMC problem is equivalent to minimizing

f(U) := 1
2N

N∑
i=1
∥PΩi

(Uqi(U, xi)− xi)∥2
2 , (10)

on the Grassmann manifold Gr(p, n). Therefore, the rank-p LRMC problem can be considered to be an
optimization problem on the Grassmann manifold (see Hu et al. (2024, Section 1) or Kasai et al. (2019,
Section 6.3) for details).

We evaluated the algorithms on the MovieLens-1M1 datasets (Harper & Konstan, 2015) and the Jester2

datasets for recommender systems. The MovieLens-1M datasets contains 1,000,209 ratings given by 6,040
users on 3,952 movies. Thus, we set N = 3952 and n = 6040. The Jester datasets contains ratings of 100
jokes given by 24,983 users with scores from −10 to 10. Thus, we set N = 24983 and n = 100.

In the experiments, we set p to 10 and the batch size b to 28. We used numpy.linalg.lstsq3 to solve the
least squares problem (9). We used a retraction based on a polar decomposition on the Grassmann manifold
Gr(p, n) (Absil et al., 2008, Example 4.1.3), which is defined through

R[X](η) := (X + η̄X)(Ip + η̄⊤
X η̄X)− 1

2 ,

for [X] ∈ Gr(p, n) and η ∈ T[X] Gr(p, n).

Figure 5(a) (resp. Figure 5(b)) shows the performances of the algorithms with a constant (resp. diminishing)
step size for objective function values defined by (10) with respect to the number of iterations on the
MovieLens-1M dataset, while Figure 7(a) and 7(b) present those on the Jester dataset. Figure 6(a) (resp.
6(b)) shows the performances of the algorithms with a constant (resp. diminishing) step size for the norm
of the gradient of the objective function defined by (8) with respect to the number of iterations on the
MovieLens-1M dataset, while Figure 7(a) and 7(b) present those on the Jester dataset. The experiments
were performed for three random initial points, and the thick line plots the average results of all experiments.
The area bounded by the maximum and minimum values is painted the same color as the corresponding
line.

Figure 5(a) indicates that RAMSGrad (Algorithm 2) performed better than RASA-L and RASA-LR in the
sense of minimizing the objective function value. Figure 5(b) shows that RAdam and RAMGRad (Algo-
rithm 2) performed comparably to RASA-L and RASA-LR. Figure 6(a) indicates that RAdam performed
comparably to RASA-R in the sense of minimizing the full gradient norm of the objective function. Figure
6(b) shows that RAdam outperformed RASA-R. Figure 7(a) and 7(b) indicate that RAMSGrad (Algorithm
2) performed better than RASA-LR in the sense of minimizing the objective function value. Figure 8(a)
indicates that RAdam performed comparably to RASA-L and RASA-R in the sense of minimizing the full
gradient norm of the objective function. Figure 8(b) shows that RAMSGrad (Algorithm 2) outperformed
RASA-L and RASA-R.

1https://grouplens.org/datasets/movielens/
2https://grouplens.org/datasets/jester
3https://numpy.org/doc/1.26/reference/generated/numpy.linalg.lstsq.html
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Figure 5: Objective function value defined by (10) versus number of epochs (iterations for the entire dataset)
on the MovieLens-1M datasets.

0 20 40 60 80 100
Number of iterations

0

5

10

15

20

25

30

35

No
rm

 o
f t

he
 g

ra
di

en
t o

f t
he

 o
bj

ec
tiv

e 
fu

nc
tio

n

RSGD
RAdam
RMSGrad
RASA-L
RASA-R
RASA-LR
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Figure 6: Norm of the gradient of objective function defined by (10) versus number of epochs (iterations for
the entire dataset) on the MovieLens-1M datasets.
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Figure 7: Objective function value defined by (10) versus number of epochs (iterations for the entire dataset)
on the Jester datasets.
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Figure 8: Norm of the gradient of objective function defined by (10) versus number of epochs (iterations for
the entire dataset) on the Jester datasets.
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5 Conclusion

This paper proposed a general framework of Riemannian adaptive optimization methods, which encapsu-
lates several stochastic optimization algorithms on Riemannian manifolds. The framework incorporates the
mini-batch strategy often used in deep learning. We also proposed AMSGrad that works on embedded sub-
manifolds of Euclidean space within our framework. In addition, we gave convergence analyses that are valid
for both a constant and diminishing step size. The analyses also revealed the relationship between the con-
vergence rate and mini-batch size. We numerically compared the AMSGrad with the existing algorithms by
applying them to the principal component analysis and the low-rank matrix completion problem, which can
be considered to be Riemannian optimization problems. Numerical experiments showed that the proposed
method performs well against PCA. RAdam and RAMSGrad performed well for constant and diminishing
step sizes especially on the COIL100 dataset.
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A Proof of Lemma 3.2

Proof. From (1), Assumption 3.1 (A1) and the linearity of Ek[·], we have

Ek [grad fBk
(xk)] = 1

b

b∑
i=1

Ek

[
grad fsk,i

(xk)
]

= grad f(xk).

This completes the proof.

B Proof of Lemma 3.3

Proof. From ∥a+ b∥2
2 = ∥a∥2

2 + 2 ⟨a, b⟩2 + ∥b∥2
2, we obtain

Ek

[
∥grad fBk

(xk)∥2
2

]
= Ek

[
∥grad fBk

(xk)− grad f(xk)∥2
2

]
+ 2Ek

[
⟨grad fBk

(xk)− grad f(xk), grad f(xk)⟩2
]

+ Ek

[
∥grad f(xk)∥2

2

]
, (11)

for all k ≥ 1. From (1) and Assumption 3.1 (A1), the first term on the right-hand side of (11) yields

Ek

[
∥grad fBk

(xk)− grad f(xk)∥2
]

= Ek

∥∥∥∥∥1
b

b∑
i=1

grad fsk,i
(xk)− grad f(xk)

∥∥∥∥∥
2

2


= 1
b2Ek

[
b∑

i=1

∥∥grad fsk,i
(xk)− grad f(xk)

∥∥2
2

]

≤ σ2

b
,

where the second equality comes from Assumption 3.1 (A2). From Lemma 3.2, the second term on the
right-hand side of (11) yields

2Ek

[
⟨grad fBk

(xk)− grad f(xk), grad f(xk)⟩2
]

= 2 ⟨Ek[grad fBk
(xk)]− grad f(xk), grad f(xk)⟩2

= 2 ⟨grad f(xk)− grad f(xk), grad f(xk)⟩2
= 0.

Therefore, we obtain

Ek

[
∥grad fBk

(xk)∥2
2

]
≤ σ2

b
+ ∥grad f(xk)∥2

2 ,

for all k ≥ 1. This completes the proof.

C Proof of Lemma 3.5

Proof. Note that from Assumption 3.1 (A3), we have

g2
k,i ≤ g2

k,1 + · · ·+ g2
k,d = ∥gk∥2

2 ≤ B
2

for all k ≥ 1 and i = 1, . . . , d. The proof is by induction. For k = 1, from 0 ≤ β2 < 1, we have
v̂1,i = v1,i := β2v0,i + (1− β2)g2

1,i = (1− β2)g2
1,i ≤ g2

1,i ≤ B2.

Suppose that v̂k−1,i ≤ B2. From vk−1,i ≤ v̂k−1,i ≤ B2, we have
vk,i = β2vk−1,i + (1− β2)g2

k,i ≤ β2B
2 + (1− β2)B2 = B2.

Thus, induction ensures that vk,i ≤ B2 for all k ≥ 1.
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D Proof of Lemma 3.6

Proof. We denote grad f(xk) by g(xk). From Proposition 3.4, we have

f(xk+1) ≤ f(xk) +
〈
g(xk),−αkPxk

(H−1
k gk)

〉
2 + L

2
∥∥−αkPxk

(H−1
k gk)

∥∥2
2 ,

for all k ≥ 1. From the linearity and symmetry of Pxk
, we obtain〈

g(xk),−αkPxk
(H−1

k gk)
〉

2 =
〈
Pxk

(g(xk)),−αkH
−1
k gk

〉
2 =

〈
g(xk),−αkH

−1
k gk

〉
2 .

From the symmetry of Pxk
and Pxk

◦ Pxk
= Pxk

, we have∥∥−αkPxk
(H−1

k gk)
∥∥2

2 = α2
k

∥∥Pxk
(H−1

k gk)
∥∥2

2

= α2
k

〈
Pxk

(H−1
k gk), Pxk

(H−1
k gk)

〉
2

= α2
k

〈
H−1

k gk, Pxk
(Pxk

(H−1
k gk))

〉
2

= α2
k

〈
H−1

k gk, Pxk
(H−1

k gk)
〉

2

≤ α2
k

∥∥H−1
k gk

∥∥
2

∥∥Pxk
(H−1

k gk)
∥∥

2 .

Here, when Pxk
(H−1

k gk) ̸= 0 ∈ Rd, it follows that∥∥−αkPxk
(H−1

k gk)
∥∥2

2 ≤ α
2
k

∥∥H−1
k gk

∥∥
2 ≤ α

2
kν

2 ∥gk∥2
2 ,

where the second inequality comes from H−1
k ⪯ νId. On the other hand, this inequality clearly holds if

Pxk
(H−1

k gk) = 0 ∈ Rd. Therefore, we obtain

f(xk+1) ≤ f(xk) +
〈
g(xk),−αkH

−1
k gk

〉
2 + Lα2

kν
2

2 ∥gk∥2
2 ,

for all k ≥ 1. This completes the proof.

E Linear algebra lemma

Lemma E.1. Let a = (a1, . . . , an)⊤ ∈ Rn, b = (b1, . . . , bn)⊤ ∈ Rn and D = diag(d1, . . . , dn) ∈ Sn
+ ∩ Dn. If

∥a∥2 ≤ A and ∥b∥2 ≤ B, then

a⊤Db ≤ AB tr(D).

Proof. From ∥a∥2 ≤ A and ∥b∥2 ≤ A, we have |ai| ≤ A and |bi| ≤ B for all i = 1, . . . , n. Therefore, we
obtain

a⊤Db =
n∑

i=1
aidibi ≤

n∑
i=1
|ai| · |bi| di ≤ AB

n∑
i=1

di ≤ AB tr(D).

This completes the proof.
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