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ABSTRACT

In this paper, we systematically study quantum algorithms for finding an ϵ-
approximate second-order stationary point (ϵ-SOSP) of a d-dimensional non-
convex function, a fundamental problem in nonconvex optimization, with noisy
zeroth- or first-order oracles as inputs. We first prove that, up to noise of
O(ϵ10/d5), perturbed accelerated gradient descent equipped with quantum gra-
dient estimation takes O(log d/ϵ1.75) quantum queries to find an ϵ-SOSP. We then
prove that standard perturbed gradient descent is robust to the noise of O(ϵ6/d4)
and O(ϵ/d0.5+ζ) for any ζ > 0 on the zeroth- and first-order oracles, respectively,
which provides a quantum algorithm with poly-logarithmic query complexity. We
then propose a stochastic gradient descent algorithm using quantum mean estima-
tion on the Gaussian smoothing of noisy oracles, which is robust to O(ϵ1.5/d) and
O(ϵ/

√
d) noise on the zeroth- and first-order oracles, respectively. The quantum

algorithm takes O(d2.5/ϵ3.5) and O(d2/ϵ3) queries to the two oracles, giving a
polynomial speedup over the classical counterparts. As a complement, we char-
acterize the domains where quantum algorithms can find an ϵ-SOSP with poly-
logarithmic, polynomial, or exponential number of queries in d, or the problem is
information-theoretically unsolvable even with an infinite number of queries. In
addition, we prove an Ω(ϵ−12/7) lower bound on ϵ for any randomized classical
and quantum algorithm to find an ϵ-SOSP using either noisy zeroth- or first-order
oracles.

1 INTRODUCTION

Optimization theory is a central topic in computer science and applied mathematics, with wide appli-
cations in machine learning, operations research, statistics, and many other areas. Currently, various
quantum algorithms for optimization have been proposed, ranging from linear programs (Casares &
Martin-Delgado, 2020; Rains, 1999) and semidefinite programs (Brandão & Svore, 2017; Brandão
et al., 2019; van Apeldoorn & Gilyén, 2019; van Apeldoorn et al., 2020b) to general convex opti-
mization (Chakrabarti et al., 2020; van Apeldoorn et al., 2020a; Sidford & Zhang, 2023) and non-
convex optimization (Zhang et al., 2021; Liu et al., 2022; Leng et al., 2023; Chen et al., 2023).

A crucial factor of quantum optimization algorithms is their robustness. On the one hand, current
quantum applications suffer from noises generated by near-term quantum devices (Preskill, 2018),
which may create adversarial perturbations in the worst-case that result in disastrous failures. To
deal with this issue, some (elements of) quantum algorithms, such as some adiabatic quantum al-
gorithms (Childs et al., 2001), quantum gates (Harrow & Nielsen, 2003), and machine learning
algorithms (Liu et al., 2021; Cross et al., 2015; Lu et al., 2020), are robustness against experimen-
tal noises or noisy quantum queries (Buhrman et al., 2007). An alternative solution is to develop
error correction (Gottesman, 1997) or error mitigation (Endo et al., 2018; 2021) mechanisms to re-
duce the influences of experimental noises. In the context of nonconvex optimization, developing
robust quantum algorithms is essential for future practical implementations of these algorithms on
near-term devices.

On the other hand, robustness is a natural and crucial requirement for solving classical optimization
problems. For instance, statistical machine learning, which is a widely explored task, concerns the
problem with data generated from an underlying probability distribution D (i.e., population), and
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optimizes the objective function (i.e., population risk) F defined by the expectation:

F (θ) = Ez∼D[L(θ; z)], (1)

where the expectation is averaged over all possible continuous loss functions {L(· ; z)} with z ∼ D.
The optimization algorithm does not access F directly but can take queries to the empirical risk
function f(θ) =

∑n
i=1 L(θ; zi)/n via querying the loss function values at L sample points. The

optimization of F given access to the empirical risk f is known as the empirical risk minimiza-
tion (Belloni et al., 2015; Jin et al., 2018a; Vapnik, 1991). Under this setting, the noisy evaluation
of F can be poorly behaved – it might have exponentially many shallow local minima even if F has
a good landscape and satisfies smoothness or Lipschitz assumptions (Auer et al., 1995; Brutzkus &
Globerson, 2017).

To analyze the problem of nonconvex optimization using noisy queries, previous literature on clas-
sical optimization (see e.g. (Bartlett & Mendelson, 2002; Boucheron et al., 2013)) assumed that f
and F are pointwise close to each other:

∥F − f∥∞ ≤ ν, (2)

where the error ν usually decays with the number of samples. Under this assumption, f may still
be non-smooth and contain additional shallow local minima independent of F . Nevertheless, it is
possible to exploit the pointwise closeness between f and F to escape from highly suboptimal local
minima that only exist in f and find an approximate local minimum of F .

Another nonconvex optimization model using noisy queries is to find local minima of F with em-
pirical first-order information (Jin et al., 2018a). Similar to (2), we query a stochastic gradient ∇f
uniformly close to the actual gradient ∇F . This model is widely considered in stochastic scenarios
where we evaluate the gradient information using a sampling procedure to zeroth-order function val-
ues. A well-known example is the stochastic gradient descent (Jin et al., 2021; Sun, 2019), where we
obtain an approximated gradient value by sampling mini-batch function values. As the mini-batch
size m increases, the gradient evaluation converges to the actual gradient with high probability:

∥∇F −∇f∥∞ ≤ ν̃, (3)

where the error ν̃ typically decreases with the mini-batch size m. Here, ∥∇F −∇f∥∞ take the
maximal value of the infinity-norm taken both over the input x and the d different entries of the
gradient at the x.

Various approaches have been developed to investigate the robustness of optimization algorithms
from different perspectives (Belloni et al., 2015; Zhang et al., 2017; Jin et al., 2018a; Risteski &
Li, 2016; Singer & Vondrák, 2015; Karabag et al., 2021; Roy et al., 2020; Zhang et al., 2022). In
the context of convex optimization, (Belloni et al., 2015) proposed an algorithm for finding an ϵ-
approximate global minimum of an approximate convex function, where ϵ is the precision guarantee
for the optimization output (see Assumption 1.1 and Assumption 1.2 for the formal definition). This
algorithm requires Õ(d7.5/ϵ2)1 queries to the stochastic noisy function evaluation oracle, which has
zero-mean and sub-Gaussian distributed noise. Very recently, (Li & Zhang, 2022) improved this
result by proposing a quantum algorithm with query complexity Õ(d5/ϵ) for the same task, giving a
polynomial quantum speedup compared to the classical counterpart. In addition, (Singer & Vondrák,
2015) proposed an information-theoretic lower bound for any convex optimization algorithms to
find minima within ϵ multiplicative error using noisy function evaluation oracles. In (Risteski & Li,
2016), an algorithm with optimal dependence on d was proposed to find an ϵ-approximate minimum
taking queries to noisy function evaluation oracles.

In the context of nonconvex optimization, (Chen et al., 2020; Zhang et al., 2017) considered query-
ing oracles with bounded noise ν ≤ O(ϵ2/d8), where ϵ is the precision and d is the dimension of
F . This work developed an efficient classical algorithm to escape from the noise-induced “shal-
low” local minima using simulated annealing and stochastic gradient Langevin dynamics (SGLD).
More recently, improved polynomial algorithms to solve the nonconvex optimization problem with
bounded noise of O(ϵ1.5/d) and O(ϵ/

√
d) using zeroth- and first-order noisy oracles were obtained

in (Jin et al., 2018a). Regarding quantum algorithms, (Zhang & Li, 2021; Childs et al., 2022) de-
veloped quantum algorithms for escaping from saddle points through quantum simulation with a

1The Õ notation omits poly-logarithmic terms, i.e., Õ(g) = O(g poly(log g)).
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precise quantum evaluation oracle via Jordan’s algorithm to calculate the gradient exponentially
faster than classical algorithms that query evaluation oracles. In practice, quantum evaluation ora-
cles suffer from empirical loss from the machine learning perspective and experimental noise from
the physical implementation perspective. However, as far as we know, nonconvex optimization by
quantum algorithms with a noisy evaluation oracle is widely open. This motivates our work to sys-
tematically explore the robustness of quantum algorithms with access to noisy quantum evaluation
oracles to escape from saddle points. This paper further discussed the noise threshold to guarantee
the existence of polynomial-query classical algorithms for finding an ϵ-approximate local minimum
of F . In contrast, little has been known about the influence of noises on quantum algorithms for
general nonconvex optimization problems, upon which this paper systematically investigates.

Nonconvex Optimization with Noisy Oracle. We consider the nonconvex optimization problem
with a twice-differentiable target function F : Rd → R satisfying

• F is B-bounded: supx∈Rd |F (x)| ≤ B;

• F is ℓ-smooth (ℓ-gradient Lipschitz): ∥∇F (x1)−∇F (x2)∥ ≤ ℓ∥x1 − x2∥, ∀x1,x2 ∈ Rd;

• F is ρ-Hessian Lipshitz:
∥∥∇2F (x1)−∇2F (x2)

∥∥ ≤ ρ∥x1 − x2∥, ∀x1,x2 ∈ Rd.

The goal is to find an ϵ-approximate second-order stationary point (ϵ-SOSP)2 such that

∥∇F (x)∥ ≤ ϵ, λmin(∇2F (x)) ≥ −√
ρϵ. (4)

Instead of directly querying F , we assume one can access a noisy function f that is pointwise close
to F .

Assumption 1.1 (Noisy evaluation query). The target function F is B-bounded, ℓ-smooth, and
ρ-Hessian Lipschitz, and we can query a noisy function f that is ν-pointwise close to F :

∥F − f∥∞ ≤ ν. (5)

We further consider finding an ϵ-SOSP of F given an alternative condition that the gradient ∇f of
function f is pointwise close to ∇F .

Assumption 1.2 (Noisy gradient query). The target function F is B-bounded, ℓ-smooth, and ρ-
Hessian Lipschitz, and we can query the gradient g := ∇f of an L-smooth function f . The gradient
g is pointwise close to gradient of F :

∥∇F −∇f∥∞ ≤ ν̃. (6)

In the quantum context, the oracles are unitary operators rather than classical procedures. Under
Assumption 1.1, one can query a quantum evaluation oracle (quantum zeroth-order oracle) Uf ,
which can be represented as

Uf (|x⟩ ⊗ |0⟩) → |x⟩ ⊗ |f(x)⟩ , ∀x ∈ Rd. (7)

Furthermore, quantum oracles allow coherent superpositions of queries. Given m vectors |x1⟩ , . . . ,
|xm⟩ ∈ Rd and a coefficient vector c ∈ Cm such that

∑m
i=1 |ci|

2
= 1, the quantum oracle outputs

Uf (
∑m

i=1 ci |xi⟩ ⊗ |0⟩) →
∑m

i=1 ci |xi⟩ ⊗ |f(xi)⟩. Compared to the classical evaluation oracle,
the ability to query different locations simultaneously in superposition is the essence of quantum
speedup. In addition, if a classical oracle can be implemented by a classical circuit, the correspond-
ing quantum oracle can be implemented by a quantum circuit of the same size.

Similarly, in the first-order scenario we assume that one can access the quantum gradient oracle Ug

under Assumption 1.2, which can be represented as

Ug(|x⟩ ⊗ |0⟩) → |x⟩ ⊗ |∇f(x)⟩ , ∀x ∈ Rd. (8)

2A more general target is to find an (ϵ, γ)-SOSP x such that ∥F (x)∥ ≤ ϵ and λmin(∇2F (x)) ≥ −γ.
The definition of an ϵ-SOSP in (4) was proposed first by (Nesterov & Polyak, 2006) and has been taken as a
standard assumption in the subsequent papers (Jin et al., 2017; 2018b; Xu et al., 2017; 2018; Carmon et al.,
2018; Agarwal et al., 2017; Tripuraneni et al., 2018; Fang et al., 2019; Jin et al., 2021; Zhang et al., 2021).
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We remark that quantum oracles are natural extensions of their classical counterparts, in line with
previous works (Chakrabarti et al., 2020; Zhang & Li, 2021; Apeldoorn et al., 2020; Garg et al.,
2021a; Zhang & Li, 2023). Notably, if a classical oracle is established by a classical arithmetic
circuit (composed of additions, multiplications, divisions, etc.), it is standard to construct a quantum
circuit of the same size for the arithmetic calculations (quantum additions, multiplications, divi-
sions, etc. that enable these calculations in superposition) as the corresponding quantum oracle.
Consequently, we believe our quantum algorithms hold promise to outperform black-box classical
algorithms in low-dimensional settings where the oracle is given as an explicit circuit. In other
words, we are not assuming the oracle for free, but we consider the same black-box optimization
setting as the classical counterpart, with essentially the same cost of constructing the oracle.

Contributions. In this paper, we conduct a systematic study of quantum algorithms for nonconvex
optimization using noisy oracles. Using zeroth- or first-order oracles as inputs, we rigorously char-
acterize different domains where quantum algorithms can find an ϵ-SOSP using poly-logarithmic,
polynomial, or exponential number of queries, respectively. We identify the domain where it is
information-theoretically unsolvable to find an ϵ-SOSP even using an infinite number of queries.

In some of the domains, we further develop lower bounds on the query complexity for any classical
algorithms and propose quantum algorithms with polynomial or exponential speedups compared
to either the classical lower bounds or the complexities of corresponding state-of-the-art classical
algorithms. We summarize our main results under Assumption 1.1 and Assumption 1.2 in Table 1
and Table 2, respectively. We (informally) introduce our results in this main body of the paper and
provide the intuition for the proofs. We leave the formal version of our results, the corresponding
algorithms, and the proofs to the full version of the paper (see supplementary materials).

Noise Strength Classical Bounds Quantum Bounds Speedup in d

ν = Ω(ϵ1.5) Unsolvable (Jin et al., 2018a) Unsolvable (Theorem 3.2) N/A
ν = O(ϵ1.5), ν = Ω̃(ϵ1.5/d) O(exp(d)), Ω(dlog d) (Jin et al., 2018a) Ω(dlog d) (Theorem 3.1) N/A
ν = O(ϵ1.5/d), ν = Ω̃(ϵ6/d4) Õ(d4/ϵ5) (Jin et al., 2018a; Zhang et al., 2017) Õ(d2.5/ϵ3.5) (Theorem 2.5) Polynomial
ν = Õ(ϵ6/d4), ν = Ω̃(ϵ10/d5) Ω(d/ log d) (Theorem 3.3) O(log4 d/ϵ2) (Theorem 2.3) Exponential
ν = Õ(ϵ10/d5) Ω(d/ log d)∗ (Theorem 3.3) O(log d/ϵ1.75) (Theorem 2.2) Exponential∗

Table 1: A summary of our results and comparisons with the state-of-the-art classical upper and
lower bounds under Assumption 1.1. The query complexities are highlighted in terms of the dimen-
sion d and the precision ϵ. (∗) In the last row, we can obtain the desired classical lower bound and
thus an exponential speedup in the query complexity when ν = Ω̃(poly(1/d, ϵ)) as Theorem 3.3
works for ν = Ω̃(poly(1/d, ϵ)).

Noise Strength Classical Bounds Quantum Bounds Speedup in d

ν̃ = Ω(ϵ) Unsolvable (Theorem 3.4) Unsolvable (Theorem 3.4) N/A
ν̃ = O(ϵ), ν̃ = Ω̃(ϵ/d0.5) Ω(dlog d) (Theorem 3.4) Ω(dlog d) (Theorem 3.4) N/A
ν̃ = Θ(ϵ/d0.5) O(d3/ϵ4) (Jin et al., 2018a) O(d2/ϵ3) (Theorem 2.6) Polynomial
ν̃ = O(ϵ/d0.5+ζ) O(log4 d/ϵ2) (Corollary 2.4) O(log4 d/ϵ2) (Corollary 2.4) No

Table 2: A summary of our results and comparisons with the state-of-the-art classical upper and
lower bounds under Assumption 1.2. In the last line, ζ > 0 and ζ = Ω(1/ log(d)) (for instance, this
is satisfied for any constant ζ > 0).

2 UPPER BOUNDS

In this section, we propose different quantum nonconvex optimization algorithms that are robust
against different levels of noise. The starting point is the quantum perturbed accelerated gradient
descent (PAGD) with accelerated negative curvature finding algorithm, which is inspired by the
noiseless nonconvex optimization algorithm in (Zhang & Li, 2021). To find an ϵ-SOSP of F using
quantum evaluation oracle specified in (7), an important step is to approximate the gradient at each
iteration. An ingenious quantum approach initiated by (Jordan, 2005) takes a uniform mesh around
the point and queries the quantum evaluation oracle (in uniform superposition) in phase using the
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standard phase kickback technique (Chakrabarti et al., 2020; Gilyén et al., 2019). Then by the Taylor
expansion, we have ∑

x

exp(if(x))x ≈
∑
x

d⊗
k=1

exp

(
i
∂f

∂xk
xk

)
xk. (9)

The algorithm finally recovers all the partial derivatives by applying a quantum Fourier transforma-
tion (QFT). We refer to (Chakrabarti et al., 2020) for a precise version of Jordan’s gradient estimation
algorithm.

Lemma 2.1 (Lemma 2.2, Chakrabarti et al. (2020)). Given a target function F and its noisy evalu-
ation f satisfying Assumption 1.1 with noisy rate ν, there exists a quantum algorithm that uses one
query to the noisy oracle defined in (7) and outputs a vector ∇̃F (x) such that

Pr
[∥∥∥∇̃F (x)−∇F (x)

∥∥∥ ≥ 400ωd
√
νℓ
]
≤ min

{
d

ω − 1
, 1

}
, ∀ω > 1. (10)

This lemma shows that with probability at least 1 − δ, one can use one query to the noisy zeroth-
oracle and obtain a vector ∇̃F (x) such that∥∥∥∇̃F (x)−∇F (x)

∥∥∥ ≤ O(d2
√
νℓ/δ). (11)

Our quantum perturbed accelerated gradient descent (PAGD) algorithm (see Algorithm 1 in the
supplementary material for details) replaces the gradient queries in Perturbed Accelerated Gradient
Descent (Zhang & Li, 2021; Zhang & Gu, 2022) with Jordan’s gradient estimation. The cost of this
substitution is analyzed using Lemma 2.1.

2.1 TINY NOISE: ROBUSTNESS OF PERTURBED ACCELERATED GRADIENT DESCENT

We consider adding tiny noise to the oracles in quantum gradient descent algorithms. In particular,
we consider the function pair (F, f) satisfying Assumption 1.1 and assume that one can access the
function values of the noisy evaluation function f . We remark that f may even be non-differentiable
or non-smooth. In addition, the noise between f and the target function F might introduce additional
SOSPs. Nevertheless, recent work (Zhang & Gu, 2022) indicates that the performance of PAGD (Jin
et al., 2018b; Zhang & Li, 2021) persists when the gradients are inexact. We rigorously prove that
the perturbed accelerated gradient descent algorithm with accelerated negative curvature (Zhang &
Li, 2021) equipped with Jordan’s algorithm for quantum gradient estimation (Jordan, 2005) is robust
to the tiny noise on zeroth-order oracles as follow:
Theorem 2.2 (Informal). Given a target function F and a noisy function f satisfying Assump-
tion 1.1 with ν = Ω(ϵ10/d5), there exists a quantum algorithm that finds an ϵ-SOSP of F with high
probability using Õ(log d/ϵ1.75) queries to the noisy zeroth-order oracle Uf .

We leave the formal version of Theorem 2.2, the corresponding algorithm, and the proof to Sec-
tion 2.1 of the supplementary material. Theorem 2.2 demonstrates that if the noise is small
enough, the impact on PAGD algorithm will not lead to an increase on the query complexity. If
ν = Ω(poly(ϵ, 1/d)), we further demonstrate that this robustness only exists for quantum algo-
rithms by proving a polynomial lower bound in Theorem 3.3 for any classical algorithm.

2.2 SMALL NOISE: ROBUSTNESS OF QUANTUM GRADIENT ESTIMATION

When the strength of noise increases, the negative curvature estimation in standard PAGD will fail.
In this case, we show the robustness of the gradient descent algorithm with quantum gradient esti-
mation against the noise. We consider the function pair (F, f) satisfying Assumption 1.1 when we
can access noisy function f . (Zhang et al., 2021; Chakrabarti et al., 2020) conveyed the conceptual
message that perturbed gradient descent (PGD) (Jin et al., 2021) algorithm with Jordan’s gradient
estimation (Jordan, 2005) possesses a certain degree of robustness to noise. In this work, we formal-
ize this intuition by presenting a concrete analysis on the convergence rate of PGD with noise, and
obtain the following result:
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Theorem 2.3 (Informal). Given a target function F and a noisy function f satisfying Assump-
tion 1.1 with ν ≤ Õ(ϵ6/d4), there exists a quantum algorithm that finds an ϵ-SOSP of F with high
probability using Õ(log4 d/ϵ2) queries to the noisy zeroth-order oracle Uf .

The formal version of Theorem 2.3, the corresponding algorithms, and the proof are given in Sec-
tion 2.2 of the supplementary material. Theorem 2.3 demonstrates if the noise on the zeroth-order
oracle is below a certain threshold, a quantum algorithm can find an ϵ-SOSP of F within a num-
ber of queries that is poly-logarithmic in terms of the dimension d. Similar to Theorem 2.2, this
robustness only exists in quantum algorithms and provide an exponential quantum speedup in the
query complexity compared to the classical counterpart. The key insight for such a speedup is as
follows. While a polynomial number of queries in dimension d is required for classical algorithms
to compute the gradient using zeroth-order oracles, quantum zeroth-order queries enable querying
function values at different positions in parallel due to quantum superposition. As a result, Jordan’s
algorithm for quantum gradient estimation computes the gradient using exponentially fewer queries
compared to classical counterparts, and such speedup is robust to noise up to O(ϵ6/d4).

It seems that Theorem 2.2 and Theorem 2.3 provide exponential speed-ups only when the noise
thresholds that decay as O(ϵ10/d5) or O(ϵ6/d4). However, we will prove later (see Theorem 3.1)
that when the noise rate is larger than Ω(ϵ1.5/d), a superpolynomial query complexity lower bound
of Ω(dlog d) queries for both classical and quantum algorithms is proved in our work. This suggests
that we have to focus on the noise regime below O(ϵ1.5/d) where one can find an algorithm (either
classical or quantum) that only requires polynomially many queries in d. Compared to this threshold,
the noise threshold of O(ϵ10/d5) or O(ϵ6/d4) where quantum algorithms have exponential speed-
ups compared to classical ones is only polynomially small. We can thus conclude that the noise
regime where an exponential quantum speedup is within a reasonable amplitude compared to the
noise regime where polynomial classical and quantum algorithms for this task exist.

We further extend Theorem 2.3 to function pair (F, f) satisfying Assumption 1.2. In particular, we
prove the following corollary indicating that the classical PGD iteration is robust against the noise of
ν̃ ≤ O(ϵ/d0.5+ζ) on the first-order gradient information, where ζ = Ω(1/ log(d)). In addition, we
can use the techniques above to prove the algorithmic upper bound for function pair (F, f) satisfying
Assumption 1.2 with ν̃ ≤ O(ϵ/d0.5+ζ) for ζ > 0 and ζ = Ω(1/ log(d)). We provide the following
corollary corresponding to the last line in Table 2.

Corollary 2.4. Suppose we have a target function F and a noisy function f satisfying Assump-
tion 1.2 with ν̃ ≤ O(ϵ/d0.5+ζ) for ζ > 0 and ζ = Ω(1/ log(d)). There exists an algorithm that
outputs an ϵ-SOSP of F satisfying Eq. (4) using O(log4 d/ϵ2) queries to Ug in (8) with high proba-
bility.

2.3 INTERMEDIATE NOISE: SPEEDUP FROM QUANTUM MEAN ESTIMATION

When the strength of noise keeps increasing, the robustness of Jordan’s algorithm will also fail to
handle the gap between the noisy function f and the target function F . To address this issue, we
develop a quantum algorithm based on the Gaussian smoothing of f inspired by (Jin et al., 2018a).
We consider function pairs (F, f) satisfying Assumption 1.1. We sample the value z[f(x + z) −
f(x)]/σ2, where z ∼ N (0, σ2I) is chosen from Gaussian distribution with parameter σ2 (Duchi
et al., 2015). We then apply quantum mean estimation to approximate the gradient from the samples
of stochastic gradients. The performance of the algorithm is given by the following theorem:

Theorem 2.5 (informal). Given a target function F and a noisy function f satisfying Assumption 1.1
with ν ≤ O(ϵ1.5/d), there exists a quantum algorithm that finds an ϵ-SOSP of F with high proba-
bility taking Õ(d2.5/ϵ3.5) queries to the noisy zeroth-order oracle Uf .

The formal version of Theorem 2.5, the corresponding algorithms, and the proof are given in Sec-
tion 3.1 of the supplementary material. Theorem 2.5 indicates that the quantum algorithm can
find an ϵ-SOSP of F using polynomial number of queries to f with bounded strength of noise
ν ≤ O(ϵ1.5/d). Recall that the state-of-art classical algorithm (Jin et al., 2018a) solves this problem
with the same noise strength ν ≤ O(ϵ1.5/d) using O(d4/ϵ5) queries, our algorithm provides a poly-
nomial improvement compared to the best known classical result in terms of both the dimension d
and the precision ϵ.
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(a) (b)

Figure 1: (a) The Sketch of the hard instance function for Theorem 3.1. The left figure illustrates
the construction in the domain and the right figure shows a two-dimensional example. (b) The
construction of the hard instance function for Theorem 3.4.

We consider the problem of finding an ϵ-SOSP of functions F taking queries to the quantum gradient
oracle in (8). Our approach leverages the fact that ∇f(x + z) is a stochastic gradient function of
the Gaussian smoothing of f where z ∼ N (0, σ2I) is chosen from Gaussian distribution with
parameter σ2. In particular, similar to the zeroth-order scenario, we apply quantum mean estimation
to approximate the gradient of the Gaussian smoothing, which leads to the following algorithmic
upper bound.
Theorem 2.6 (Informal). Given a target function F and the gradient information of a noisy function
f satisfying Assumption 1.2 with ν̃ ≤ O(ϵ/d0.5), there exists a quantum algorithm that finds an ϵ-
SOSP of F with high probability using Õ(d2/ϵ3) queries to the noisy first-order gradient oracle
Ug.

The formal version of Theorem 2.6, the corresponding algorithms, and the proof are given in Sec-
tion 3.2 of the supplementary material. Note that the tolerance on ν̃ and the query complexity is
larger compared to Theorem 2.5, where we access a zeroth-order oracle. The best-known classical
algorithm finding an ϵ-SOSP under Assumption 1.2 requires O(d3/ϵ4) queries. Hence, this quantum
algorithm also provides a polynomial reduction on the sample complexity compared to the classical
result.

3 LOWER BOUNDS

Input Oracle Noise Strength
Deterministic Classical

Lower Bounds
Randomized Classical and
Quantum Lower Bounds

Zeroth-order ν = 0

Ω(ϵ−12/7)

(Carmon et al., 2021)

N/A
Zeroth-order ν = Ω(ϵ−16/7/d) Ω(ϵ−12/7) (Theorem 3.5)
First-order ν̃ = 0 N/A
First-order ν̃ = Ω(ϵ−8/7/

√
d) Ω(ϵ−12/7) (Theorem 3.5)

Table 3: A summary of our results on classical and quantum query complexity lower bounds in ϵ
under Assumption 1.1 or Assumption 1.2, respectively. The query complexities are highlighted in
terms of the dimension d and the precision ϵ.

3.1 LARGE NOISE: QUANTUM QUERY COMPLEXITY LOWER BOUND IN d

In this work, we also provide lower bounds concerning d on the query complexity required for
any classical and quantum algorithms under Assumption 1.1 and Assumption 1.2. In particular, we
construct a hard instance inspired by (Jin et al., 2018a) (as shown in the left of Figure 1 (a)): we
define a target function F in a hypercube and use the hypercube to fill the entire space Rd. We start
from a “scale free” version of function pair (F, f), where we assume ρ = 1 and ϵ = 1. Denote
sinx := (sin(x1), ..., sin(xd)) and I(A) as the indicator function that has value 1 when A is true
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and 0 otherwise. We choose some constant µ and define the target function as

F (x) := h(sinx) + ∥sinx∥2, (12)

where h(x) := h1(v
⊤x) · h2

(√
∥x∥2 − (v⊤x)2

)
for some polynomials such that the landscape

of the function is given as the right of Figure 1(a). Here, the vector v is uniformly chosen from the
d-dimensional unit sphere. In addition, we can split the domain into different regions upon which
analysis and constructions are made separately:

• “ball” B(0, 3/µ) = {x ∈ Rd : ∥x∥ ≤ 3/µ} is the d-dimensional hyperball with radius
3/µ.

• “band” Sv = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ log d/
√
d}.

We provide the landscape of F and the region division in Figure 1 (a). The above construction
happens within a hyperball and we cannot fill the entire space Rd with hyperballs. Therefore, we
embed this hyperball into a hypercube and add two regions.

• “hypercube” H = [−π/2, π/2]d is the d-dimensional hypercube with length π.
• “padding” S2 = H − B(0, 3/µ).

With the above construction, we can fill the space Rd using these hypercubes. Meanwhile, the noisy
function f is defined as

f(x) =

{
∥ sinx∥2, x ∈ Sv,

F (x), x /∈ Sv.
(13)

The “band” region Sv is known as the non-informative region as any query to f in this area will
obtain no information regarding v. Intuitively, the metric of the non-informative area approaches 1
as d increases according to the measure of concentration. It is hard for any algorithm (both classical
and quantum) to find a point out of this region. In particular, the probability of classically querying
a point on Sv is bounded below by

Area(Sv)

Area(B(0, 3/µ))
≥ 1−O(d− log d). (14)

By adding noise to the zeroth- or first-order oracle f , we can erase the information of F such that
a limited number of classical or quantum queries cannot find any ϵ-SOSPs with high probability.
For a function pair (F, f) satisfying Assumption 1.1, our first result in this part is the following
quasi-polynomial lower bound.
Theorem 3.1 (Informal). We can find functions F and f satisfying Assumption 1.1 with ν =
Θ̃(ϵ1.5/d) such that any quantum algorithm requires at least Ω(dlog d) queries to Uf to find any
ϵ-SOSP of F with high probability.

Here, we provide the intuition. Consider a function F in a hyperball B(0, r) and embed the hy-
perball into a hypercube, with which we can cover the whole space. Next, we introduce noise to
create f with a non-informative area around 0 (in the sense that any query to this area will obtain
no information about any SOSPs of the target function F ). Then, we transfer this problem into
an unstructured search problem. The final lower bound for nonconvex optimization is obtained by
applying the quantum lower bound for unstructured search. We mention that the ϵ and the d depen-
dence for ν in Theorem 3.1 are tight up to logarithmic factors. The classical version of Theorem 3.1
is proved in (Jin et al., 2018a). The parallelism in quantum algorithms possesses the potential to
query different points in superposition. However, Theorem 3.1 demonstrates that the same query
complexity lower bound holds even for quantum algorithms.

If the noise ν keeps increasing, we can further prove the following lower bound that prevents any
quantum algorithm from finding any ϵ-SOSPs of target function F :
Theorem 3.2 (Informal). For any quantum algorithm, there exists a pair of functions (F, f) satisfy-
ing Assumption 1.1 with ν = Θ̃(ϵ1.5) such that it will fail, with large probability, to find any ϵ-SOSP
of F given access to f .
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Despite the quantum lower bound, we also propose a classical lower bound concerning nonconvex
optimization using zeroth-order oracle with noise strength ν = O(1/ poly(d)).
Theorem 3.3. For any ϵ ≤ ϵ0 < 1, where ϵ0 is some constant, there exists a function pair (F, f)
satisfying Assumption 1.1 with ν = Ω(1/ poly(d)), such that any classical algorithm that outputs
an ϵ-SOSP of F with high probability requires at least Ω(d/ log d) classical queries to the noisy
function f .

We prove Theorem 3.3 using an information-theoretic argument inspired by (Chakrabarti et al.,
2020). Theorem 2.2, Theorem 2.3, and Theorem 3.3 establish the exponential separation between
classical and quantum query complexities required for nonconvex optimization using oracles with
noise ν = Ω̃(poly(ϵ, 1/d)). This separation originates from the Jordan’s gradient estimation algo-
rithm (Jordan, 2005). Classically, querying the evaluation oracle can only provide information at
one point. Quantumly, however, one can take the superposition on different points and query the
quantum evaluation oracle in parallel (Gilyén et al., 2019; Chakrabarti et al., 2020).

Moreover, we can extend the above lower bound to function pairs (F, f) satisfying Assumption 1.2.
If the noise increases by even a factor that is logarithmic in d from Θ̃(ϵ/d0.5), we can prove an
exponential lower bound for any classical or quantum algorithm through a similar construction of
hard instance used in Theorem 3.1 (as shown in Figure 1 (b)). Unlike Theorem 3.1, we cannot
directly apply the hard instance (F, f) defined above because f is not differentiable (or more strictly,
not continuous). To address this problem, we construct a different noisy function f . For simplicity,
we focus on the “scale free” version here are leave the details in the full version of the paper. We
still define the target function F (x) = h(sinx) + ∥sinx∥2, which is the same with (12). We
uniformly choose v and divide the “hypercube” into different regions including: “hypercube” H =
[−π/2, π/2]d is the d-dimensional hypercube with length π; “ball” B(0, 3/µ) = {x ∈ Rd : ∥x∥ ≤
3/µ} is the d-dimensional ball with radius 3/µ; “band” S = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ w} with
w = O(log d/

√
d); and “padding” S2 = H − B(0, 3/µ). In particular, a new region is added as

• “non-informative band” Sv = {x ∈ B(0, 3/µ) : ⟨sinx,v⟩ ≤ 0.9w}.

Meanwhile, the noisy function f is defined as

f(x) =


∥ sinx∥2, x ∈ Sv,

∥ sinx∥2 + g(x), x ∈ S − Sv

F (x), x /∈ S,

(15)

where g(x) = h3(x) · h2(

√
∥sinx∥2 − (v⊤ sinx)2) and h3(x) = h1(v

⊤ sin(10x− 9wv/2)).

Moreover, if the noise increases to Ω(ϵ), there exists a similar hard instance with Theorem 3.2 that
prevents any classical or quantum algorithm from finding any ϵ-SOSP of F . Formally, we can extend
Theorem 3.1 and Theorem 3.2 in the context of Assumption 1.2:
Theorem 3.4 (Informal). We can find functions F and f satisfying Assumption 1.2 with ν̃ =
Θ̃(ϵ/d0.5) such that any classical or quantum algorithm that finds an ϵ-SOSP of F with high prob-
ability requires at least Ω(dlog d) queries to Ug. Moreover, for any classical or quantum algorithm,
we can find functions F and f satisfying Assumption 1.2 with ν̃ = Θ(ϵ) such that it will fail with
high probability.

3.2 QUANTUM QUERY COMPLEXITY LOWER BOUND IN ϵ

Finally, we establish query complexity lower bounds for classical and quantum nonconvex optimiza-
tion algorithms under Assumption 1.1 or Assumption 1.2, respectively (summarized in Table 3).
Theorem 3.5 (informal). There exists a function pair F and f satisfying either Assumption 1.1
or Assumption 1.2 with ν = Ω(ϵ−16/7/d) or ν̃ = Ω(ϵ−8/7/

√
d), respectively, and additionally

F (0) − infx F (x) ≤ ∆ for some constant ∆, such that any classical or quantum algorithm with
query complexity Ω

(
ϵ−12/7

)
will fail with high probability to find an ϵ-SOSP of target function F .

The intuition for Theorem 3.5 employs the hard instance inspired by (Carmon et al., 2020; 2021).
Previously, there have been two lower bounds concerning ϵ dependence that apply to classical al-
gorithms for nonconvex optimization. In (Carmon et al., 2020), it is proved that at least Ω(ϵ−3/2)

9
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queries are required in finding an ϵ-SOSP of a Hessian Lipshitz function F even provided both
zeroth- and first-order oracles for either random or deterministic classical algorithms. Using similar
techniques, (Carmon et al., 2021) further proved that deterministic classical algorithms using first-
order noiseless oracle require Ω(ϵ−12/7) queries to find an ϵ-SOSP of a Hessian Lipshitz function
F .

On the other hand, despite recent results on quantum lower bounds for optimization (Garg et al.,
2021a;b; Zhang & Li, 2023), there are settings where quantum lower bounds remain unresolved.
Specifically, although (Zhang & Li, 2023) showed that there is no quantum speedup for finding
an ϵ-FOSP of a p-th order smooth function with p-th order oracle for any p, it remains unclear
whether a quantum speedup exists for finding an ϵ-SOSP of a Hessian-Lipschitz function with only
a gradient oracle, where the order of the function smoothness and the given oracle differ. Notably,
this problem has been widely investigated in previous works on classical nonconvex optimization,
see e.g., (Agarwal et al., 2017; Allen-Zhu & Li, 2018; Liu et al., 2018). In this paper, we fill this
conceptual gap by extending the classical deterministic lower bound by (Carmon et al., 2021) to all
classical randomized algorithms and even quantum algorithms, given that noise exists in the function
evaluation. In particular, noise allows us to construct a hard instance by creating a non-informative
area around 0. According to the concentration of measure phenomenon, the non-informative area
will occupy an overwhelming proportion of the whole space. Technically, our hard instance is
also different from (Carmon et al., 2021) in the sense that we replace its quadratic scaling function
by a sine function as we have an additional B-bounded assumption on the function. Similar to
(Garg et al., 2021a;b; Zhang & Li, 2023), the hard instance we construct here exhibits a similar
property that, if the number of quantum queries is below a certain threshold, in expectation the
output state will barely change if we replace the quantum oracle by an oracle that only encodes
“partial” information of the objective function, where the missing information is crucial for any
(classical or quantum) algorithm to find an ϵ-SOSP of F . Moreover, our lower bound result in
Theorem 3.5 can be extended to finding ϵ-SOSPs when we waive the B-bounded requirement on F .

4 DISCUSSIONS

In the paper, we conduct a systematic study on the query complexity for quantum algorithms to find
ϵ-SOSP of a nonconvex function using noisy oracles. We prove a series of upper and lower bounds
under different noise regimes for first-order and second-order oracles. Our paper leaves several open
questions for future investigations:

• Can we further improve quantum algorithms for the task of nonconvex optimization using
noisy oracles? Can we obtain a quantum algorithm with better dependence on d and ϵ
compared to Theorem 2.5?

• Can we establish optimal quantum query complexity bounds for nonconvex optimization?
We would like to point out that for all noise ranges, nonconvex optimization in the classical
setting does not have optimal bounds neither, as shown in Table 1 and Table 2. As a result,
proving optimal quantum query complexity bounds may solicit more techniques and hard
instances. It might be helpful to investigate sublinear or poly-logarithmic quantum lower
bounds in dimension d on general optimization problems using either noiseless or noisy
oracles.

• We employ a simple model on the noise: only the upper bound of noise strength is consid-
ered. In general, can we demonstrate the robustness and speedups for nonconvex optimiza-
tion algorithms analytically under other noise assumptions (say, more practical quantum
noise models or stochastic noise models)?

• A further question one may ask is the quantum version of minimax optimal query com-
plexities. Although this is better understood in classical information theory, in the quantum
setting this is widely open in general. Some existing results can calculate the success prob-
ability of quantum algorithms when we have a fixed number of quantum queries (Zhandry,
2015; 2021), but their minimax properties are still open.
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