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ABSTRACT

Despite having achieved spectacular milestones in an array of important real-
world applications, most Reinforcement Learning (RL) methods are very brit-
tle concerning their hyperparameters. Notwithstanding the crucial importance of
setting the hyperparameters in training state-of-the-art agents, the task of hyper-
parameter optimization (HPO) in RL is understudied. In this paper, we propose
a novel gray-box Bayesian Optimization technique for HPO in RL, that enriches
Gaussian Processes with reward curve estimations based on generalized logis-
tic functions. In a very large-scale experimental protocol, comprising 5 popular
RL methods (DDPG, A2C, PPO, SAC, TD3), 22 environments (OpenAl Gym:
Mujoco, Atari, Classic Control), and 7 HPO baselines, we demonstrate that our
method significantly outperforms current HPO practices in RL.

1 INTRODUCTION

While Reinforcement Learning (RL) has celebrated amazing successes in many applications (Mnih
et al., 2015; |Silver et al.| 2016} (OpenAlL 2018} |Andrychowicz et al., [2020; |Degrave et al.| [2022),
it remains very brittle (Henderson et al., [2018; [Engstrom et al., [2020). The successes of RL are
achieved by leading experts in the field with many years of expertise in the “art” of RL, but the field
does not yet provide a technology that broadly yields successes off the shelf. A crucial hindrance for
both broader impact and faster progress in research is that an RL algorithm that has been well-tuned
for one problem does not necessarily work for another one; especially, optimal hyperparameters are
environment-specific and must be carefully tuned in order to yield strong performance.

Despite the crucial importance of strong hyperparameter settings in RL (Henderson et al.| 2018;
Chen et al.| 2018} [Zhang et al.,|2021; |/Andrychowicz et al., [2021), the field of hyperparameter opti-
mization (HPO) for RL is understudied. The field is largely dominated by manual tuning, compu-
tationally expensive hyperparameter sweeps, or population-based training which trains many agents
in parallel that exchange hyperparameters and states (Jaderberg et al., [2017). While these meth-
ods are feasible for large industrial research labs, they are costly, substantially increase the CO2
footprint of artificial intelligence research (Dhar} [2020), and make it very hard for smaller indus-
trial and academic labs to partake in RL research. In this paper, we address this gap, developing a
computationally efficient yet robust HPO method for RL.

The method we propose exploits the fact that reward curves tend to have similar shapes. As a result,
future rewards an agent collects with a given hyperparameter setting can be predicted quite well
based on initial rewards, providing a computationally cheap mechanism to compare hyperparame-
ter settings against each other. We combine this insight in a novel gray-boy Bayesian optimization
method that includes a parametric reward curve extrapolation layer in a neural network for comput-
ing a Gaussian process kernel.

In a large-scale empirical evaluation using 5 popular RL methods (DDPG, A2C, PPO, SAC, TD3),
22 environments (OpenAl Gym: Mujoco, Atari, Classic Control), and 7 HPO baselines, we demon-
strate that our resulting method, the Reward-Curve Gaussian Process (RCGP), yields state-of-the-art
performance across the board. In summary, our contributions are as follows:
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* We introduce a novel method for extrapolating initial reward curves of RL agents with
given hyperparameters based on partial learning curves with different hyperparameters.

* We introduce RCGP, a novel Bayesian optimization method that exploits such predictions
to allocate more budget to the most promising hyperparameter settings.

* We carry out the most comprehensive experimental analysis of HPO for RL we are aware
of to date (including 5 popular RL agents, 22 environments and 8 methods), concluding
that RGCP sets a new state of the art for optimizing RL hyperparameters in low compute
budgets.

To ensure reproducibility (another issue in modern RL) and broad use of RGCP, all our code is
open-sourced athttps://github.com/releaunifreiburg/RCGP.

2 RELATED WORK

RL training pipelines are complex and often brittle (Henderson et al.| 2018}, [Engstrom et al.| 2020;
Andrychowicz et al.,|2021). This makes RL difficult to use for novel applications. To mitigate this,
automated reinforcement learning (AutoRL; Parker-Holder et al.l [2022) aims to alleviate a human
practitioner from the tedious and error prone task of manually setting up the RL pipeline.

While there exists different approaches to automate the choice of algorithm, architecture (Miao
et al., |2022) or even environment components (Gleave et al., 2021)), in this work we focus on hy-
perparameter optimization (HPO; [Feurer & Hutter, 2019; [Bischl et al., 2021) for RL. There exist
various approaches in the literature of HPO for RL (see, e.g., [Eriksson et al., 2003; |Chen et al.,
2018 |Hertel et al.l [2020; |Ashraf et al., 2021, for a detailed survey we refer to Parker-Holder et al.
(2022)). Due to the non-stationarity of RL training, in recent years, most applications of hyper-
parameter optimization for RL have focused on dynamically adapting hyperparameters throughout
the run. For example, population based training (PBT; Jaderberg et al.l [2017) and variants thereof
(see, e.g., Franke et al., 2021} |[Parker-Holder et al., 2020) have found more wide-spread use in the
community. This style of HPO uses a population of agents to optimize their hyperparameters while
training. Parts of the population are used to explore different hyperparameter settings while the rest
are kept to exploit the so far best performing configurations. While this has proven a successful
HPO method, a drawback of population based methods is that they come with an increased compute
cost due to needing to maintain a population of parallel agents. Thus, most extensions of PBT, such
as PB2 (Parker-Holder et al., 2020), aim at reducing the required population size. Still, to guarantee
sufficient exploration, larger populations might be required which makes such methods hard to use
with small compute budgets.

In the field of automated machine learning (AutoML; Hutter et al.| [2019), multi-fidelity optimiza-
tion has gained popularity to reduce the cost of the optimization procedure. Such methods (see, e.g.,
Kandasamy et al., 2017; L1 et al.l 2017; |Klein et al., 2017a; [Falkner et al., [2018} |L1 et al., 2020;
Awad et al., [2021) leverage lower fidelities, such as dataset subsets, lower number of epochs or low
numbers of repetitions, to quickly explore the configuration space. For the special case of num-
ber of epochs as a fidelity, there also exists a rich literature on learning curve prediction (Swersky
et al., 2014; [Dombhan et al.| [2015; Baker et al.| [2017; |(Chandrashekaran & Lane, 2017 [Klein et al.,
2017b; [Wistuba et al., 2022)). Multi-fidelity optimization typically evaluates the most promising
configurations on higher fidelities, including the full budget. This style of optimization has proven
a cost-efficient way of doing HPO for many applications. Still, multi-fidelity optimization has been
explored only little in the context of RL. We are only aware of three such works: Runge et al.[(2019)
used a multi-fidelity optimizer to tune the hyperparameters of a PPO agent (Schulman et al., [2017)
that was tasked with learning to design RNA, allowing the so-tuned agent to substantially improve
over the state of the art. Nguyen et al.[(2020) also modelled the training curves, providing a signal
to guide the search. In the realm of model-based RL, it was shown that dynamic tuning methods
such as PBT can produce well-performing policies but often fail to generate robust results whereas
static multi-fidelity approaches produced much more stable configurations that might not result in as
high final rewards (Zhang et al.l|2021). Crucially, however, these previous studies did not evaluate
how multi-fidelity and PBT style methods compare in the low budget regime, a setting that is more
realistic for most research groups.
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3 PROPOSED METHOD

Hyperparameter Optimization (HPO) focuses on discovering the best hyperparameter configura-
tion A € A of a Machine Learning method. Gray-box HPO refers to the concept of cheaper and
approximate evaluations of the performance of hyperparameter configurations. For example, we
can approximately evaluate the final reward of the configurations of a deep RL method system after
every epoch of stochastic gradient descent (gray-box evaluations) (Swersky et al.l 2014} Wistuba
et al.| 2022), instead of waiting for the full convergence (black-box evaluations). The reward after a
budget b (i.e. after b epochs) is defined as R (A, b) : A x N — R. To address the noisieness of re-
ward curves of RL algorithms we smooth the curves using a best-so-far transformation. We average
rewards based on windows of h training steps, and select the highest reward at any past window, as:

1
RM™) (X p) = max -
0<b'<b—h h

h
> ROV +1). (1)
=1

From now on, we refer to the smoothed RM*) as the reward R. In addition, let us define
the cost (e.g., wall-clock time) of evaluating a configuration for a specific budget as C (\,b) :
A x N — R,. We define the history of N evaluated configurations and the respective bud-
get as HE) = {(\1,b1,R(A\1,b1)),..., Mk, br, R(\k,bx))}. A gray-box algorithm A is a
policy that recommends the next configuration to evaluate and its budget as (Ag41,bx41) =
A (H(K)) where A : (A x N x R+)K — A x N. Gray-box HPO formally focuses on poli-
cies A that are sequentially executed for as many steps (denoted K) as needed to reach a total
budget 2. The best policy discovers the configuration with the largest reward at any budget, as

argmax 4 maxX;—=i,... K R ((/\i+17 bi-i—l) = .A (HO))) s.t. K = I?(laneNJr Q> 25:1 C (/\i, bz)

Bayesian optimization (BO) is a very popular HPO policy that sequentially recommends hyper-
parameters to evaluate. BO operates in sequences of two steps: by (i) fitting a probabilistic regres-
sion model to approximate the observed performances R(\, b) of the evaluated configurations and
budgets in H; and (ii) applying an acquisition to select the next configuration to evaluate.

In the first step, we train Gaussian Processes (Snoek et al.l 2012) to approximate the observed
performances (i.e. R(\,b) =~ GP (A, b; 9)) by finding the optimal GP parameters 6* via MLE:

0" (H) == argglaXE()\,b,R()\7b))~pH log (R(A, D) [ A, b3 0) (2)

At the second step, we use an acquisition function, e.g. Expected Improvement (Snoek et al., [2012)
a: A x Ny — R, that scores how ”well” a previously unevaluated configuration might perform
at a future budget, based on the estimation of the GP fitted above. A naive gray-box BO can be
formalized as a special HPO policy, based on a fitted GP with parameters 6* from a history of ¢
evaluations H (%), that recommends the (i + 1)-th configuration as:

Ovrtsbin) = A (0 (H0)) = g o (vos 0 () @)

3.1 MULTI-FIDELITY GAUSSIAN PROCESSES WITH REWARD CURVES

A multi-fidelity Gaussian Process can be modeled as a standard GP with an augmented feature vector
z:= [\, b] € A x N (Nguyen et al., 2020; Song et al., 2019; Swersky et al.,2013)). From the history
of evaluations H5) we define the training features z; = [\;, b;] and their respective targets y; =
R (X, b;) fori € {1,..., K}. A kernel function measures the similarity of features as k (z;, z;) :
(A x N)2 — R. The aim of the GP is to estimate the posterior distribution of the unknown target
of a new observed test instance z, = [\, b.]. The covariance matrix between training features’ pairs
is defined as K (z,z) = [k(zi, zj)]y; ;- Similarly, the covariance between test-to-training features
is K (z«,2) = [k(24,2i)]y,;, and the test-to-test one as K (24,2+) = k(24,2,). Ultimately, the
posterior prediction of the unknown test target is:
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Algorithm 1: Gray-Box HPO for RL

Input : Search space A, initial design H(?), budget increment A;, max budget per agent b™>
Output: Best hyperparameter configuration \*

Evaluate initial configurations and budgets H := H©) ;

while still budget do

Fit a GP on H using Equations for estimating (), b), 02(\, b);

Run acquisition a (g, ) to select A" := arg max, ¢ a (u(A, b™), 02(X, b™));

Define the next budget until which to train the selected agent A"*":

ppext : (bmax {Ab ﬂAneXt : ()\next7 * ) € H)
:= min , ;

Ay + max b, otherwise
()\nex[7b1.)€H

Resume training agent with A™* until 5" and measure reward R (A", p"*');

Append to history H < H U {(A"X, pnXt| R (ANt pnext)) 1.

end

return Best configuration A\* with highest reward R(A\*,b);

max
(A*,b,R(A*,b))eH

1(z) = K (24,2) (K (2,2) + 051)71 Y, 4)
0% (z) = K (24, 2) — K (24, 2) (K (2,2) + 051)71 K (22,2)". 5)

It was recently pointed out that a sigmoidal relationship exists between the reward curve of Rein-
forcement Learning methods and the optimization budget (Nguyen et al.| [2020). In this paper, we
model the reward curve R (\,b) of configuration \ at budget b as a generalized logistic function
(Richard’s curve) with five coefficients (Richards} [1959). Furthermore, we do not naively fit one
sigmoid function on each reward curve for each hyperparameter configuration. Instead, we pro-
pose to condition the sigmoid coefficients on the hyperparameter configurations within a multi-layer
perceptron g : A — RS with weights w (where g(\, b; w); represents the i-th output neuron) as:

g (N w), — g (N w),
(1+g(\w), e*Q(A;w)w)l/g(’\‘w)Eﬂ

RO\ b;w) = g(\w), + (6)

In this paper, we propose a novel GP that exploits the pattern of the reward curve of the RL algorithm,
by introducing the sigmoidal reward curve of (Equation [6)). We augment the feature space with the
estimation of the reward curve as [\, b] — [, b, R (A, b; w)]. Therefore, the kernel becomes:

kO ([, bi], [\, bs] 5 w) = k ([Ai,bi,é(xi,bi;w)], [Aj,bj,é(xj,bj;w)]) . 7

We train the parameters w using the established machinery of kernel learning for GPs (Wilson et al.,
2016)) and then use this GP for gray-box HPO (Nguyen et al., 2020; |Song et al., 2019). We use Ex-
pected Improvement (Snoek et al., 2012)) at the highest budget b™** as an acquisition function. For
brevity, we omit the basics of BO here, however, we refer the interested reader to|Snoek et al.|(2012)).
In this context, the reward curve model of Equation @ offers crucial information in estimating the
full (b™**) performance of an unknown configuration (i.e., [, b™*] — [\, b™*, R (A, 0™ w)]), and
enables the acquisition function of the BO algorithm to discover performant hyper-parameter con-
figurations. We conducted an analysis on the predictive accuracy of our surrogate in Appendix [B.6]

Our novel gray-box HPO method is summarized by the pseudocode of Algorithm [T, We stress
that we are concurrently training one agent for each hyperparameter configuration, but we advance
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only one training procedure at a time, using an intelligent selection mechanism based on Bayesian
optimization. In the first stage, we fit a GP (line 3) using the aforementioned novel kernel func-
tion that combines hyperparameter configurations, budgets, and estimated rewards (Equations [}{7).
Afterward, we select the next configuration with the highest estimated acquisition at the end of the
convergence (line 4). Then we train the RL agent corresponding to the selected configuration for one
more budget increment (e.g. continue training for A, = 10° more training steps) and measure the
observed reward at the end of the next budget (lines 5-6). Note that line 5 defines the next budget for
both new configurations (AA": (A" . .) € H) as well as existing ones. We add the evaluation
to the history (line 7) and continue the BO procedure until no budget is left (line 3).

4 EXPERIMENTAL PROTOCOL

4.1 EXPERIMENTAL SETUP

We focus on evaluating the performance of our proposed method, RCGP (Reward-Curve GP), for
optimizing the hyperparameters of five popular model-free RL algorithms: PPO (Schulman et al.,
2017), A2C [Mnih et al.| (2016), DDPG (Lillicrap et al., 2016), SAC (Haarnoja et al., [2018)), and
TD3 (Fujimoto et al., 2018). In total, we consider 22 distinct Gym (Brockman et al., 2016) environ-
ments, grouped into the Atari (Bellemare et al.} 2013])), Classic Control, and Mujoco (Todorov et al.,
2012) categories. We denote the full list of environments and their respective action space types in
Appendix [A] and we list the search spaces for the hyperparameters of each RL algorithm in Table[T]

Table 1: Search spaces for HPO of PPO, A2C, DDPG, SAC, and TD3.

Algorithm Hyperparameters Hyperparameter Values
Learning rate (log;) {-6,—5,—4,-3,-2,—1}

PPO ¥ {0.8,0.9,0.95,0.98,0.99,1.0}
Clip {0.2,0.3,0.4}

A2C Learning rate (log;) {-6,-5,—4,-3,-2,—1}
~ {0.8,0.9,0.95,0.98,0.99, 1.0}
Learning rate (log;) {-6,-5,—4,-3,-2,—1}

DDPG ~ {0.8,0.9,0.95,0.98,0.99, 1.0}
T {0.0001, 0.001,0.005}
Learning rate (log;) {-6,-5,—4,-3,-2,-1}

SAC ~ {0.8,0.9,0.95,0.98,0.99, 1.0}
T {0.0001, 0.001, 0.005}
Learning rate (log;) {-6,—5,—4,-3,-2,—1}

TD3 ~ {0.8,0.9,0.95,0.98,0.99, 1.0}
r {0.0001, 0.001, 0.005}

We evaluated static hyperparameter optimization (HPO) methods by querying AutoRL-Benc
which is a tabular benchmark for AutoRL that contains reward curves for three different random
seeds belonging to runs of RL algorithms with every possible combination of hyperparameter val-
ues from the search spaces shown in Table[I} For the dynamic HPO methods (PBT (Jaderberg et al.l
2017) and PB2 (Parker-Holder et al., [2020), details in Section , we ran our own evaluations of
the RL pipelines. In every environment, we set the budget for all baselines to the run-time equiva-
lent of 10 full training procedures, based on the expected run-time figures of AutoRL-Bench. Each
training procedure consists of 10° steps on the training environment. All methods are evaluated
for ten seeds in each environment and RL algorithm. The plots show the mean and standard devi-
ations of the relative ranks of all methods, with the training timesteps in the x-axis. We detail the
evaluation protocol in Appendix [C] and the procedure we use to generate the plots in Appendix [D]
Furthermore, we included the code for evaluating the performance of all the HPO methods in our
GitHub repohttps://github.com/releaunifreiburg/RCGP

'"https://github.com/releaunifreiburg/AutoRL-Bench
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Figure 1: Rank comparison of RS, GP, and RCGP for the PPO search space in the Atari, Classic
Control, and MuJoCo environments.
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Figure 2: Rank comparison of RS, GP, and RCGP for the A2C search space in the Atari, Classic
Control, and MuJoCo environments.

4.2 BASELINES

We focus on comparing the performance of RCGP to existing HPO approaches within a given time
budget. We compare against three types of baselines. The first type includes standard baselines that
do not utilize fidelity information during optimization, namely:

* Random Search (RS) (Bergstra & Bengio, [2012) is a simple and common HPO baseline.
It optimizes hyperparameters by selecting configurations uniformly at random.

¢ Bayesian optimization with Gaussian Proccesses (GP) (Snoek et al., 2012) is another
standard HPO baseline, using GPs as the surrogate model in standard blackbox Bayesian
optimization. We used a GPytorch (Gardner et al., 2018)) implementation with a Matern
5/2 kernel.

The second type of baselines consists of multi-fidelity baselines which exploit intermediate learning
(ak.a. reward) curve information. Concretely, we compare against the following multi-fidelity HPO
techniques:

* BOHB (Falkner et all [2018)) is a multi-fidelity HPO baseline that combines Bayesian
optimization and Hyperband (Li et al., 2017). It uses tree-based Parzen estima-
tors (TPE) (Bergstra et al., |2011) as a surrogate model for Bayesian optimization. We
used the source code provided by the authors.

¢« SMAC (Lindauer et al., [2022) is a recent variant of BOHB that uses Random Forests (RF)
as a surrogate model. Here again, we used the implementation provided by the authors.

* DEHB (Awad et al.| 2021 is a state-of-the-art multi-fidelity HPO baseline that combines
Differential Evolution and Hyperband. We used the source code released by the authors.

The third type of baselines includes online HPO techniques (which apply different hyperparameter
configurations within a single RL agent training procedure). We compare against two state-of-the-art
online HPO methods in RL, that are based on evolutionary search:
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Figure 3: Ranks of BOHB, SMAC, DEHB, and RCGP in Atari, Classic control and MuJoCo envi-
roments for the PPO search space..
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Figure 4: Ranks of BOHB, SMAC, DEHB, and RCGP in Atari, Classic control and MuJoCo envi-
roments for the A2C search space.

* Population-Based Training (PBT) (Jaderberg et al.,2017) is an evolutionary HPO method
that dynamically optimizes the hyperparameters during the run of the algorithm (i.e., RL
agent training). It discards the worst-performing members of the population after a number
of steps and replaces them with new hyperparameter configurations that are generated by
perturbing the best-performing configuration. We used the PBT implementation in the Ray
Tune library (Liaw et al.,[2018)). To facilitate a fair comparison on a small compute budget
we follow the protocol of |Parker-Holder et al.| (2020) and use a population of 4 individuals.

* Population-based bandits (PB2) (Parker-Holder et al.|[2020) is a PBT-like dynamic HPO
method. It replaces the random perturbation with a time-varying GP, as a mechanism to
identify well-performing regions of the search space. Again, we used the implementation
of PB2 in the Ray Tune library (Liaw et al.2018]) with a population of 4 individuals.

5 RESEARCH HYPOTHESES AND EXPERIMENTAL RESULTS

Hypothesis 1: Using the reward curve information helps in discovering efficient hyperparameters
for model-free RL algorithms in the low budget regime.

We compare the performance of RCGP to RS and GP, as standard HPO baselines which do not utilize
learning curve information. We evaluate RS and GP for 10 full RL algorithm runs. Initially, RS,
GP, and RCGP start the search with the same 4 hyperparameter configurations sampled uniformly
at random. RCGP queries the learning curve of evaluation returns of these initial configurations
for the smallest budget of 10° steps on the training environment. RS, and GP, being black-box
optimization methods, query AutoRL-Bench for final evaluation returns after 10° training steps, for
both the initial and subsequently suggested configurations. Figure |I| shows the comparison on the
PPO search space for the Atari, Classic Control, and Mujoco classes of environments. Similarly,
Figure [2] presents the A2C results, while Figure [9] (Appendix [B) the results on the DDPG, SAC
and TD3 search spaces. In all the cases, RCGP outperforms RS and GP within the wall-clock time
budget of our experimental protocol. In Appendix [B.2] we also compare to enhanced variants of
the black-box HPO methods, which evaluate configurations at smaller budgets. We conclude that
gray-box HPO is more efficient than black-box HPO in RL.
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Figure 5: Ranks of PBT, PB2, and RCGP for the PPO search space in the Atari, Classic Control,
and Mujoco environments.
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Figure 6: Ranks of PBT, PB2, and RCGP for the A2C search space in the Atari, Classic Control,
and Mujoco environments.

Hypothesis 2: RCGP outperforms state-of-the-art multi-fidelity HPO methods in optimizing the
hyperparameters of model-free RL algorithms.

We compare the performance of RCGP to BOHB, SMAC and DEHB, as state-of-the-art multi-
fidelity HPO baselines. We evaluate each method for the equivalent time of 10 full RL algorithm
runs. Initially, all four methods start the search with the same 4 hyperparameter configurations
sampled uniformly at random. Figure[3|shows the performance comparison on the PPO search space
for the Atari, Classic Control, and Mujoco classes of environments. On the other hand Figure|§| and
[T0] (Appendix [B) include the experiments on the A2C, DDPG, SAC, and TD3 search spaces. In
all experiments, our method RCGP on average outperforms BOHB, SMAC, and DEHB in the low
budget regime of up to 10 full function evaluations. We therefore conclude that RCGP sets the state-
of-the-art in gray-box HPO for RL. We also compared to variants of the multi-fidelity HPO baselines
that use max-smoothed reward curves, as detailed in Appendix @ In addition, we conducted an
analysis of the gain of running the HPO procedure for longer budgets, as detailed in Appendix

Hypothesis 3: Our method outperforms PBT and PB2, the state-of-the-art HPO in RL.

In this experiment, we compare our method RCGP to PBT and PB2, to assess the efficiency of our
gray-box HPO technique against state-of-the-art dynamic HPO methods. For ensuring a fair compar-
ison, we evaluated PB2 and PBT using the recommended population size of 4 (Parker-Holder et al.,
2020), leading to a budget equivalence of 4 full training routines. In addition, all three optimiza-
tion methods use an initial design consisting of the same 4 hyperparameter configurations sampled
uniformly at random. Figure [5] shows the performance comparison on the PPO search space for
the Atari, Classic Control, and Mujoco environments. The associated experiments of Figure [6] and
[TT] (Appendix [B), include experiments on A2C, DDPG, SAC, and TD3. The plots show RCGP
clearly outperforms PBT and PB2 in the low budget regime of up to 4 full function evaluations.
Although PBT and PB2 are able to dynamically configure the hyperparameters of an RL algorithm,
they require extensive parallel resources, and thus perform sub-optimally on the low budget regime.
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Figure 7: Rank comparison of RCGP (i) without reward curve model, (ii) with raw reward curve
information, and (iii) with max-smoothing of the reward curve, for the PPO search space in the
Atari, Classic Control, and Mujoco environments.
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Figure 8: Rank comparison of RCGP (i) without reward curve model, (ii) with raw reward curve
information, and (iii) with max-smoothing of the reward curve curve, for the A2C search space in
the Atari, Classic Control, and Mujoco environments.

5.1 ABLATING OUR DESIGN CHOICES

Throughout the paper we based our technical novelty on the hypothesis that reward curves have
predictable shapes, and as a result, we can model them accurately with generalized logistic functions
(Equation [6)). In this section, we ablate the effect of enriching the feature-space of our surrogate
with the reward curve estimations, i.e. [A,b] — [\, b, R(/\, b;w)]. The ablations of Figure
demonstrate that using our novel reward curve modeling offers a major boost on the quality of
the optimization. In addition, we ablate the effect of the max-smoothing transformation of the
reward curves (Equation [T). The empirical results further demonstrate that smoothing the noisy
reward curves improves the performance of RCGP in the low-budget regime, especially as the early
segments of reward curves are very noisy.

6 CONCLUSION

Reinforcement Learning (RL) is one of the premier research sub-areas of Machine Learning, due to
the impressive achievements of modern RL methods. Unfortunately, the performance of trained RL
agents depends heavily on the choice of the methods’ hyperparameters. In this paper we introduced
anovel gray-box HPO method that fits Gaussian Processes (GP) to partially-observed reward curves.
Our GP variant fuses hyperparameter configurations, budget information and reward curve models
based on generalized logistic functions. In a large-scale experimental protocol we demonstrated
that our proposed method significantly advances the state-of-the-art for HPO in RL. Especially, we
largely outperform evolutionary search HPO methods in RL (PBT and PB2), as well as existing
gray-box HPO techniques.
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A RL ENVIRONMENTS

Table 2: List of environments for the experiments.

Environment Class Environment Name Action Space
Pong-v0
Alien-v0
BankHeist-v0
BeamRider-v0
Breakout-v0
Enduro-v0
Phoenix-v0
Atari Seaquest-v0 Discrete
Spacelnvaders-v0
Riverraid-v0
Tennis-v0
Skiing-v0
Boxing-v0
Bowling-v0
Asteroids-v0
CartPole-v1
MountainCar-v0 Discrete
Acrobot-v1

Classic Control

Pendulum-v0 Continuous
Ant-v2

MuJoCo Hopper-v2 Continuous
Humanoid-v2

B ADDITIONAL EXPERIMENTAL RESULTS

In this Section we present additional experimental results, including other search spaces (DDPG,
SAC, and TD3) in comparisons to the black-box HPO baselines modified to run suggested
configurations for a smaller budget than the budget of a full RL algorithm training procedure in
[B.2] comparison to PBT running on a continuous version of the PPO search space in [B.3] as well as
average episodic reward plots comparing PBT, PB2, SMAC, BOHB, DEHB, and RCGP in We
additionally show average normalized regret plots comparing SMAC, BOHB, DEHB, and RCGP in
In we evaluate the predictive performance of RCGP with the max-smoothing transforma-
tion of the learning curves, and the version trained using non-transformed learning curves.

B.1 RESULTS ON OTHER SEARCH SPACES

In Figures [O} [IT] we show the average rank for the baselines and RCGP across 10 seeds and all
MuJoCo environments for the DDPG, SAC, and TD3 search spaces.

B.2 COMPARISON TO BLACK-BOX BASELINES

In Figures 12} 20] we show the average rank for the black-box HPO baselines with a modified search
protocol and RCGP. To allow the black-box baselines to search for more configurations within the
maximum search budget, during the search the suggested configurations are evaluated for é, i and
% of a full RL algorithm training procedure. During plotting, we still adhere to the same plotting

protocol as indicated in Algorithm

B.3 SENSIBILITY OF SEARCH SPACE DISCRETIZATION

Figure 21] shows a comparison of RCGP, PBT optimizing on the discrete search space of PPO (as
specified in Table[I)), as well as PBT optimizing on a continuous version of this search space, with

15



Published as a conference paper at ICLR 2023

DDPG SAC TD3
3 3 3
) ~SE—=aPY
52 2 2
o
A 1 M 1 ._’_4-?—-——\_/
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Timesteps le7 Timesteps le7 Timesteps le7
- GP —— RS —— RCGP

Figure 9: Rank comparison of RS, GP, and RCGP in the MuJoCo enviroments for the DDPG, SAC,
and TD3 search spaces.
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Figure 10: Ranks of BOHB, SMAC, DEHB, and RCGP in the MuJoCo enviroments for the DDPG,
SAC, and TD3 search space.

the same bounds as the discrete version. We label the latter as PBT-cont. The performance of PBT is
visibly similar compared to PBT-cont on the MUJOCO environments, thus showing the sensibility
of the discretization.

B.4 AVERAGE EPISODIC REWARD PLOTS

In Figures 22} [26] we show the average episodic reward across the search budget for PBT, PB2, and
RCGP in each environment for each search space. Figures 27} [31] show the average episodic reward
across the search budget for SMAC, BOHB, DEHB, and RCGP in each environment for each search
space. All these methods use non-transformed episodic reward curves. We show the comparison in
terms of average episodic reward of the grey-box baselines and RCGP using max-smoothed episodic
reward curves in Figures[32} [36]

B.5 NORMALIZED REGRET PLOTS

A common metric in the HPO community for evaluating the distance of the discovered configuration
(a.k.a. incumbent) to the optimal configuration (a.k.a. oracle) is the regret defined as (oracle - in-
cumbent). If we let the HPO run longer we are going to discover the oracle in the best-case scenario.
In our tabular benchmark, the oracle is known (we can argmax the final returns of all possible hyper-
parameter configurations), therefore we can directly assess the potential gain of running longer HPO
by computing the regret. Furthermore, a percentual difference variant is (oracle - incumbent)/oracle,
which shows the potential gain in percentage.

We show the performance of SMAC, BOHB, DEHB, and RCGP in terms of average percentual
regret for each environment in all search spaces in Figures 37} B1} All four methods use max-
smoothed episodic reward curves. As can be observed the percentual regret is between 10% and

1%.

16



Published as a conference paper at ICLR 2023

DDPG SAC TD3

Rank
N
N
N

0 1 2 3 0 1 2 3 0 1 2 3
Timesteps le6 Timesteps le6 Timesteps le6
- PB2 —— PBT —— RCGP

Figure 11: Ranks of PBT, PB2, and RCGP in the Mujoco enviroments for the TD3 search space.
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Figure 12: Average ranks of RS, GP, and RCGP in each environment for the PPO search space. RS
and GP evaluate each suggested configuration during the search for é of the full budget (12 - 10*
training timesteps).

Therefore, letting our HPO run till infinity will improve the results between 1% to 10% in the best-
case scenario..

B.6 PREDICTIVE PERFORMANCE OF RCGP

In Figure[d2| we show the predictive performance, and the rank correlation of RCGP. The plots show
as y-axis (i) the predictive error (square error) and (ii) the Pearson correlation. The x-axis indicates
the length of the reward curves which we train RCGP on, in order to estimate the final return. The
ground-truth final return is the final return of the non-max-smoothed reward curve.

In terms of predictive accuracy, the plots show that the error decreases as a longer segment of the
reward curve is observed. The squared error of RCGP using max-smoothed curves for training is
higher than the version using the original reward curve to train. However, in terms of the correlation
of ranks of the predicted vs. the ground truth values of the final return, RCGP with max-smoothing
has a significantly larger correlation between estimated and final return values. As the correlation
is more essential for HPO than the forecasting loss, these plots provide a strong analysis explaining
the superiority of our method in terms of HPO performance.

C EVALUATION PrROTOCOL

We detail the evaluation protocol we use for all baselines and RCGP in Algorithm 2]

D PLOTTING PROTOCOL

The detailed procedure that we use to generate the plots showing the rank of the methods is shown
in Algorithm 3]
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Figure 13: Average ranks of RS, GP, and RCGP in each environment for the PPO search space. RS
and GP evaluate each suggested configuration during the search for i of the full budget (25 - 10*
training timesteps).
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Figure 14: Average ranks of RS, GP, and RCGP in each environment for the PPO search space. RS
and GP evaluate each suggested configuration during the search for % of the full budget (50 - 10*
training timesteps).

Algorithm 2: Evaluation protocol
1 for seed in SEEDS do

2 for different budgets B do
3 1. Search phase:
4 Run HPO for a budget B and return the best hyperparameter configuration.
5 2. Evaluation phase:
6 Take the best configuration returned in step 1.
7 Train it for the full budget.
8 Evaluate it for 10 episodes and output the mean final return of these episodes.
9 end
10 end

E AUTORL-BENCH REWARD CURVES

To further motivate our design choice for modeling the reward curves using a generalised logistic
function, we have plotted the reward curves in the AutoRL-Bench tabular benchmark. Figures[3}
show the reward curves for the PPO, A2C, DDPG, SAC, and TD3 search spaces, respectively.
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Figure 15: Average ranks of RS, GP, and RCGP in each environment for the A2C search space. RS
and GP evaluate each suggested configurations during the search for % of the full budget (12 - 10*
training timesteps).
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Figure 16: Average ranks of RS, GP, and RCGP in each environment for the A2C search space. RS
and GP evaluate each suggested configurations during the search for % of the full budget (25 - 10*
training timesteps).

Algorithm 3: Plotting protocol
for seed in SEEDS do

for different budgets B in the x-axis do
Compute the y-axis by following steps (i) and (ii):
(i) for each environment in a benchmark do

for each method do

| Get final return (step 2 in Algorithm 2).

end

Compute the rank of each method for that environment based on the returns.
end

(i) Compute the mean of the ranks across the environments in step (i) for each
method.

end

12 end
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Figure 17: Average ranks of RS, GP, and RCGP in each environment for the A2C search space. RS

and GP evaluate each suggested configurations during the search for % of the full budget (50 - 10*
training timesteps).
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Figure 18: Average ranks of RS, GP, and RCGP in the MuJoCo enviroments for the DDPG, SAC,
and TD3 search spaces. RS and GP evaluate each suggested configurations during the search for %
of the full budget (12 - 10* training timesteps).
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Figure 19: Average ranks of RS, GP, and RCGP in the MuJoCo enviroments for the DDPG, SAC,
and TD3 search spaces. RS and GP evaluate each suggested configurations during the search for i
of the full budget (25 - 10* training timesteps).
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Figure 20: Average ranks of RS, GP, and RCGP in the MuJoCo enviroments for the DDPG, SAC,
and TD3 search spaces. RS and GP evaluate each suggested configurations during the search for %
of the full budget (50 - 10* training timesteps).
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Figure 21: Ranks of RCGP, PBT (optimizing in the discrete search space of AutoRL-Bench), and
PBT-cont (optimizing in a continuous search space with the same boundaries as the AutoRL-Bench
search space) in the MuJoCo enviroments for the PPO search space.
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Figure 22: Average reward of PBT, PB2, and RCGP in each enviroment for the PPO search space.
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Figure 23: Average reward of PBT, PB2, and RCGP in each enviroment for the A2C search space.
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Figure 24: Average reward of PBT, PB2, and RCGP in each of the MuJoCo enviroments for the

DDPG search space.
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Figure 25: Average reward of PBT, PB2, and RCGP in each of the MuJoCo enviroments for the

SAC search space.
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Figure 26: Average reward of PBT, PB2, and RCGP in each of the the MuJoCo enviroments for the

TD3 search space.
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Figure 27: Average reward of SMAC, BOHB, DEHB, and RCGP in each environment for the PPO
search space using non-transformed episodic reward curves.
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Figure 28: Average reward of SMAC, BOHB, DEHB, and RCGP in each environment for the A2C
search space using non-transformed episodic reward curves.
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Figure 29: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the MuJoCo enviro-
ments for the DDPG search space using non-transformed episodic reward curves.
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Figure 30: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the MuJoCo enviro-
ments for the SAC search space using non-transformed episodic reward curves.
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Figure 31: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the the MuJoCo envi-
roments for the TD3 search space using non-transformed episodic reward curves.
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Figure 32: Average reward of SMAC, BOHB, DEHB, and RCGP in each environment for the PPO
search space using max-smoothed episodic reward curves.
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Figure 33: Average reward of SMAC, BOHB, DEHB, and RCGP in each environment for the A2C
search space using max-smoothed episodic reward curves.
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Figure 34: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the MuJoCo enviro-
ments for the DDPG search space using max-smoothed episodic reward curves.
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Figure 35: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the MuJoCo enviro-
ments for the SAC search space using max-smoothed episodic reward curves.
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Figure 36: Average reward of SMAC, BOHB, DEHB, and RCGP in each of the the MuJoCo envi-
roments for the TD3 search space using max-smoothed episodic reward curves.
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Figure 37: Performance in terms of normalized regret for SMAC, BOHB, DEHB, and RCGP in
each environment for the PPO search space using max-smoothed episodic reward curves.



Published as a conference paper at ICLR 2023

Pong-vO0 Alien-v0 BankHeist-vO BeamRider-v0
‘qé 100 100 4 100 4
(o)}
- 1071 5
T 10714 1071 4
& 1071 5
© -2 |
£ 10
g 1072 -l T T T T 10_2 -l T
0 5 0 1 0 1 0 5
Timestepsle6 Timestepsle7 Timestepsle7 le6
Breakout-v0 Enduro-vO Phoenix-v0 Seaquest-v0
2 100 100 4 100 { 100 4
o |
&
-1 |
T 1074 10 j
B 107 5 1071
g 10-2 -
S 1072 5
b=
0 1 0 5 0 5 0 1
le7 le6 le6 le7
Spacelnvaders-v0 Riverraid-v0 Tennis-v0 Skiing-v0
= 100 4 100 4 10! 4 101 4
(0]
« 1
el 10— 4
(9] -
N : 1071
r_é 1072 A 10-1
B 10—2 4
z
0 1 0 1 0 5 0 2
le7 le7 le6 le6
Boxing-vO0 Bowling-v0 . Asteroids-v0 CartPole-v1
§ 10"
§ 100 - 10° 4 100 -
- : 1071 A |
N
% —2 | 102 A 1072 A
g 10 10—3 4
o
z
0 5 0.0 2.5 0 1 0 1
le6 le6 le7 le7
MountainCar-v0 Acrobot-v1 Pendulum-v0 Ant-v2
8
g 100 100 4 100 100 4
o
s |
g 10711
© -2 10—2 i
£ 1072 4 1074
o
=
0 1 0 1 0 1 0 1
le7 le7 Timestepsle7 Timestepsle7
Hopper-v2 Humanoid-v2
2
g 100 10°
o
kel 1
107
® 1072 4
€ 10721
o
=4
0 1 0 1
Timestepsle7 Timestepsle7
— SMAC —— BOHB —— DEHB —— RCGP

32
Figure 38: Performance in terms of normalized regret for SMAC, BOHB, DEHB, and RCGP in
each environment for the A2C search space using max-smoothed episodic reward curves.
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Figure 39: Performance in terms of normalized regret for SMAC, BOHB, DEHB, and RCGP in
each of the MuJoCo enviroments for the DDPG search space using max-smoothed episodic reward
curves.
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Figure 40: Performance in terms of normalized regret for SMAC, BOHB, DEHB, and RCGP in
each of the MuJoCo environments for the SAC search space using max-smoothed episodic reward
curves.
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Figure 41: Performance in terms of normalized regret for SMAC, BOHB, DEHB, and RCGP in each
of the MuJoCo enviroments for the TD3 search space using max-smoothed episodic reward curves.

33



Published as a conference paper at ICLR 2023

PPO A2C
101 1
< 10! =
s s
v v
_ 1071
g 107! B
S g
o T3
»n 10-3 »n 10
02 0.4 0.6 0.8 1.0 02 0.4 0.6 08 10
le6 le6
5 1.0 5101
© ®
o o
5 0.5 50.5
(&} (@]
5 s
8 0.0 —— RCGP (no max-transform) £ 0.0 —— RCGP (no max-transform)
3 — RCGP 3 — RCGP
a a
02 0.4 06 08 10 0.2 0.4 0.6 08 1.0
Timesteps le6 Timesteps le6
(a) (b)
DDPG SAC
10!
5 5
& 1071 & 1071
he] he]
o o
© ©
3 3
& 1073 g 102
0.2 0.4 06 08 10 02 0.4 06 08 10
le6 le6
c c 1.0
) 1.0 2 —— RCGP (no max-transform)
3 © —— RCGP
o e
5 0.5 5 0.5
@) (@]
c c
g 00 —— RCGP (no max-transform) 2
i — RCGP © 0.0
& 05 : : : : : & : : : , ,
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Timesteps le6 Timesteps le6
(©) (d)
TD3
S
& 1071
ke
g
©
3
& 1073
02 0.4 06 08 10
le6
,5 1.0
©
Los
o
&)
c
& 0.01 — RCGP (no max-transform)
58 — RCGP
a
0.2 0.4 0.6 0.8 1.0
Timesteps le6
©)

Figure 42: Predictive performance of RCGP in terms of squared error and Pearson correlation co-
efficient for the PPO, A2C, DDPG, SAC and, TD3 search spaces using max-transformed episodic
reward curves. 34
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Figure 43: Reward curves of PPO on the environments included in AutoRL-Bench.
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Figure 44: Reward curves of A2C on the environments included in AutoRL-Bench.
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Figure 46: Reward curves of SAC on the environments included in AutoRL-Bench.
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Figure 47: Reward curves of TD3 on the environments included in AutoRL-Bench.
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