
TRANSDUCTIVE LEARNING FOR OUT-OF-DISTRIBUTION MOLECULAR PROPERTY PREDICTION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Predicting molecular properties outside the training data distribution (Out-of-
012 Distribution, OOD) is critical for accelerating drug discovery. This task requires
013 models to extrapolate beyond known property ranges and generalize to novel chem-
014 ical structures—a common failure point for standard machine learning models in
015 realistic drug discovery scenarios. While transductive analogical reasoning shows
016 promise, prior methods are often constrained by fixed descriptors and single-anchor
017 comparisons. To overcome these limitations, we introduce Multi-Anchor Latent
018 Transduction (MALT) framework, which operates directly within a learned latent
019 space. MALT can leverage embeddings from any powerful, pre-trained molecular
020 encoder to select multiple relevant analogues of query molecule. It then integrates
021 the query and anchor embeddings to generate a final prediction. On rigorous OOD
022 benchmarks targeting shifts in both property values and chemical features, MALT
023 consistently improves generalization over standard inductive baselines. Notably,
024 our framework also matches or surpasses the in-distribution performance of these
025 base models. These findings establish multi-anchor transduction in latent space as
026 an effective strategy to augment existing molecular encoders, enabling robust and
027 extrapolative predictions needed to solve challenging discovery tasks.
028

1 INTRODUCTION

030 Machine learning(ML), particularly deep learning, holds immense promise for accelerating scientific
031 discovery in drug development and materials science by learning complex structure-property relation-
032 ships from data (1; 2). However, a critical limitation hinders their reliable deployment: their frequent
033 inability to generalize to out-of-distribution (OOD) data. This weakness stems from the violation of
034 the standard IID assumption, which causes dramatic performance drops and overconfident incorrect
035 predictions (3). In practice, models inevitably encounter molecules with novel scaffolds or different
036 property ranges (2; 4; 5), creating distribution shifts that generic OOD techniques often fail to address
037 for structured molecular data (4; 6; 7).

038 In practical drug discovery, these OOD challenges manifest in two crucial ways. First is **covariate**
039 **shift**, a major barrier as pharmaceutical companies often work with proprietary compounds built
040 on specific chemical scaffolds absent from public training data (8); this demands model robustness
041 to novel structures (4; 6). Another common scenario in the pharmaceutical industry is **label shift**,
042 where models are required to extrapolate beyond the observed range of property values in order to
043 optimize the activities of lead compounds or identify potential hazards and toxicity beyond the range
044 of training data (3; 9). Standard inductive models struggle with both challenges, often failing on even
045 more difficult phenomena like activity cliffs (10), where minor structural changes cause large potency
046 differences.

047 Transductive learning offers a complementary paradigm better suited for OOD challenges, particularly
048 extrapolation (11; 12). It makes predictions based on analogical reasoning between a query and
049 known training examples (9). However, existing transductive models are often limited by: (1) relying
050 on a single "best" anchor, which is brittle if no perfect analogy exists, and (2) performing reasoning in
051 a fixed descriptor space, potentially missing deeper similarities captured by learned representations.

052 To address these limitations and enhance OOD generalization for *both* covariate and label shifts, we
053 propose a flexible transductive learning framework. Our approach operates within learned latent
054 spaces and integrates seamlessly with **any pre-trained molecular encoder**, capturing rich chemical

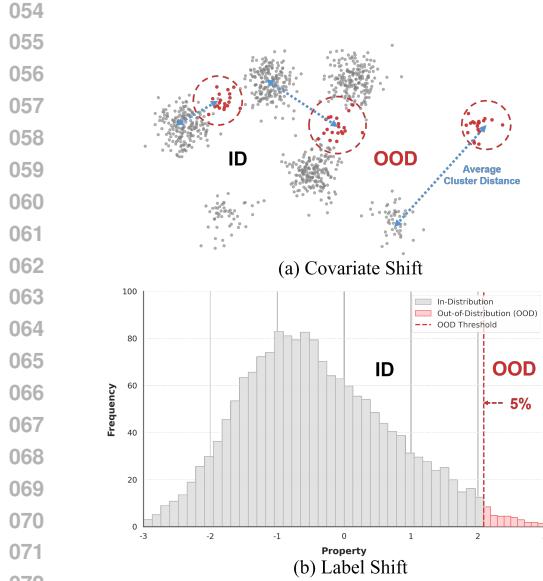


Figure 1: OOD challenges include: (a) covariate shift, where the model must generalize to molecules with new chemical structures, and (b) label shift, where the model must extrapolate to predict properties outside its training range. (c) MALT’s transductive mechanism uses a memory bank of training examples to find multiple relevant anchors for given query molecule and particular task. By fusing the query’s features with those of its closest anchors in a learned latent space, MALT produces more robust and accurate OOD predictions

knowledge. Instead of a single analogy, our method identifies and reasons with multiple relevant anchor molecules from the training data, dynamically fusing information from the query and its anchors to enable a more robust and nuanced prediction.

Our contributions are as follows:

- We introduce a novel, model-agnostic transductive framework that enhances existing molecular encoders by performing analogical reasoning in learned latent spaces, overcoming the fixed-descriptor limitations of prior work to enable richer chemical representations.
- We propose a multi-anchor latent reasoning mechanism that synthesizes information from multiple training analogs. This approach overcomes the brittleness of single-anchor methods, yielding more robust predictions by aggregating diverse chemical context.
- Through rigorous evaluation on practical OOD benchmarks, we demonstrate our framework systematically addresses both covariate and label shifts, improving OOD generalization. Ablation studies further validate the contributions of our multi-anchor design and training strategies, confirming their role in achieving robust performance that also matches or surpasses baseline results on ID tasks.

2 RELATED WORKS

2.1 THE CHALLENGE OF OUT-OF-DISTRIBUTION GENERALIZATION

ML models excel at interpolation within their training domain but struggle to extrapolate reliably. The ability to extrapolate is critical for discovering molecules with exceptional properties and is invaluable for adapting to proprietary chemical spaces (13; 14). Developing models that overcome these OOD limitations is therefore essential for trustworthy ML-driven discovery. Models often fail when encountering data that differs significantly from their training distribution because they are typically developed under the assumption that data is independently and identically distributed (IID) (6). This assumption is frequently violated in real-world applications, where models must

contend with novel chemical structures, unseen experimental conditions, or new property ranges. This distribution shift, depicted in Figure 1(a), can cause severe performance degradation and yield unreliable, overconfident predictions, limiting the practical utility of these models (3; 4). While general OOD techniques exist for graph-structured data (15), the unique complexities of molecular data necessitate domain-specific solutions.

In molecular modeling, OOD shifts can stem from multiple sources, such as variations in not only in core molecular scaffolds but to molecular size, biological targets, or experimental protocols (2; 6; 16). These shifts manifest in two primary forms (1):

1. Covariate Shift: The distribution of molecular features, $P(X)$, changes. This typically occurs when the model must predict properties for novel chemical structures not represented in the training set (Figure 1(a), Top).
2. Label Shift: The marginal distribution of the target property, $P(Y)$, changes. This is relevant when extrapolating to property values that are rare or entirely absent in the training data (Figure 1(a), Bottom). In this scenario, the underlying relationship $P(Y|X)$ is assumed to be stable, but the model must make accurate predictions for Y values in sparsely populated regions of the target space.

2.2 STRATEGIES FOR OOD MOLECULAR PROPERTY PREDICTION(MPP)

Much of the work on out-of-distribution (OOD) molecular modeling has aimed to improve the robustness of inductive models. One common strategy is learning invariant representations (6; 17), which seeks to identify stable, predictive structural features across different data environments. However, capturing true invariance is difficult and often requires specific environmental labels that aren't always available. Another approach, uncertainty quantification (UQ) (3), uses prediction confidence to detect potential OOD failures. While useful for flagging unreliable predictions, UQ doesn't inherently improve the model's accuracy on OOD samples without further adaptation (18), and some methods can be resource-intensive and complex (19). A third strategy involves leveraging unlabeled data through methods like self-supervised or semi-supervised learning (7). For instance, domain-adaptive pre-training (DAPT) can enhance encoder representations by continuing pre-training on data similar to the target task. Other techniques use pseudo-labeling to integrate unlabeled data directly into training, though this risks propagating errors from inaccurate labels (20). While these methods improve encoders through more training, our work introduces a complementary, transductive approach that enhances them via analogical reasoning at inference time.

2.3 TRANSDUCTIVE STRATEGIES FOR OOD EXTRAPOLATION

Transductive learning aids OOD extrapolation by incorporating test queries X_{test} alongside training data $\{(X_{train}, Y_{train})\}$. It often employs analogical extrapolative reasoning, comparing a query x to training examples x' , improving robustness for OOD inputs or target values beyond the training range. One transductive approach is Test-Time Adaptation (TTA) (12; 21; 22), which adapts model parameters using unlabeled test batches to handle domain shifts. TTA focuses on model adaptation rather than direct prediction via training analogies and can be computationally intensive at inference.

Bilinear Transduction (9; 11) is a transductive method that formalizes analogical reasoning for out-of-distribution (OOD) prediction. This approach enables extrapolation by learning how properties change as functions of compositional differences, rather than learning direct mappings from materials to properties. Instead of learning a direct mapping $h : \mathcal{X} \rightarrow \mathcal{Y}$, it learns to predict a target value y_i from an anchor point x_j and their difference vector $\Delta x = x_i - x_j$ using a bilinear predictor of the form:

$$h_\theta(\Delta x, x) = f_\theta(\Delta x) \odot q_\theta(x) \quad (1)$$

where f_θ and g_θ are neural networks and \odot represents element-wise multiplication.

The model is trained using only pairs where the anchor has lower property values than the target ($y_j < y_i$), ensuring the model learns to extrapolate from lower to higher property values. The training objective minimizes:

$$\mathcal{L}(\theta) = \sum_{i=1}^n \sum_{j: y_j < y_i} \ell(h_\theta(x_i - x_j, x_j), y_i) \quad (2)$$

162 where the difference vectors form the constrained set $D_{\Delta X}^{tr} = \{x_i - x_j \mid x_i, x_j \in D_X^{tr}, y_j < y_i\}$.
163

164 For a test query x_{te} , an anchor x_{an} is selected from the training set by minimizing the distance to the
165 nearest training difference:

166

$$x_{an} = \arg \min_{x_{an} \in D_X^{tr}} \{\|x_{te} - x_{an} - \Delta x_{tr}\|_2 \mid \Delta x_{tr} \in D_{\Delta X}^{tr}\} \quad (3)$$

167

168 The final prediction is then calculated as $y_{te} = h_{\theta}(x_{te} - x_{an}, x_{an})$.
169

170 Key limitations of this approach include: (1) reliance on hand-crafted descriptors rather than learned
171 representations, (2) no uncertainty quantification in anchor selection, leading to potential brittleness
172 from using a single anchor point, and (3) often reduced in-distribution accuracy compared to standard
173 regression approaches.
174

175 Our proposed framework addresses these shortcomings by employing multi-anchor reasoning directly
176 within learned latent representations derived from powerful molecular encoders, aiming for more
177 robust and nuanced analogical predictions. We provide a detailed qualitative (Appendix A) and
178 systematic chemical analysis (Appendix B) of anchors. Together, these sections highlight our model's
179 ability to select informative and diverse anchors under distribution shifts—demonstrating a key
180 strength of our approach.
181

182 3 METHODS

183

184 Our proposed framework augments standard inductive molecular property predictors with a trans-
185ductive component operating in the latent space. The core idea is to leverage similarities between a
186 query molecule embedding and those of multiple anchor molecules from the training set to improve
187 prediction. The framework consists of three main components: an "arbitrary" molecular encoder
188 (responsible for memory bank creation), a latent-space multi-anchor selection component (the trans-
189duction module), and a multi-anchor prediction head. The detailed pseudocode for our training
190 and inference procedures can be found in Appendix C. An overview of the model architecture is
191 presented in Appendix D. The choice to use multiple anchors is theoretically motivated, as this fusion
192 mechanism can be shown to achieve a tighter test error bound compared to single-anchor methods,
193 thereby improving OOD generalization (see Appendix K for the full derivation). A detailed analysis
194 of the framework's computational overhead is provided in Appendix M.
195

196 3.1 MEMORY BANK

197

198 The foundation for the transductive component is a memory bank Z_{train} containing fixed-dimensional
199 latent embeddings $z_i \in \mathbb{R}^d$ for all molecules (m_i, y_i) in the training set \mathcal{D}_{train} . This allows the
200 framework to explicitly leverage similarities within the training data during prediction by serving as
201 the source for anchor point selection.

202 Embeddings $z = \mathcal{E}(M)$ are generated using a modular molecular encoder \mathcal{E} . The framework
203 design allows substituting **any arbitrary architecture**. In our experiments, we utilized several
204 molecular encoders, including pretrained Graph Isomorphism Network (GIN) models (23), pretrained
205 sequence-based models operating on SMILES (24), and a widely used Message Passing Neural
206 Network (MPNN) model (25). The encoder can be initialized using various strategies, such as
207 loading pretrained weights, using weights previously fine-tuned on \mathcal{D}_{train} , or starting from random
208 initialization.

209 Crucially, unless explicitly frozen, the encoder \mathcal{E} is trained end-to-end with the transduction module
210 and prediction head components, allowing its parameters $\theta_{\mathcal{E}}$ to be updated during the main training
211 loop (Refer to Table 8 for more information regarding training strategies). Consequently, the memory
212 bank embeddings Z_{train} must remain consistent with the evolving encoder. Thus, Z_{train} is periodically
213 regenerated (e.g., every N epochs) by re-applying the updated encoder \mathcal{E} to all training molecules
214 $M_i \in \mathcal{D}_{train}$ (represented as SMILES (26) or graphs, depending on the encoder). Despite updating
215 the memory bank every epoch, we did not observe a prohibitive increase in overall training time or
computational requirements (refer to Appendix M for detailed computational overload analysis).

216 The memory bank used by the transduction module at any given point is thus formally defined based
217 on the current encoder state:

$$Z_{train} = \{z_i = \mathcal{E}(m_i; \theta_{\mathcal{E}}) \mid (m_i, y_i) \in \mathcal{D}_{train}\} \quad (4)$$

221 3.2 TRANSDUCTION MODULE: LATENT-SPACE MULTI-ANCHOR SELECTION

223 Given a query molecule m_{query} and its latent embedding $z_{query} = \mathcal{E}(m_{query})$, the transduction
224 module \mathcal{T} selects k anchor embeddings $Z_{\text{anchors}} = \{z_{a_1}, \dots, z_{a_k}\}$ from the memory bank Z_{train} .
225 This selection is based on similarity or distance metrics (e.g., cosine similarity and Euclidean distance)
226 calculated between the query z_{query} and the embeddings z_i within Z_{train} . The transduction module
227 outputs the selected anchor embeddings Z_{anchors} and potentially their corresponding similarity/distance
228 scores W_{anchors} relative to the query. In our experiments we chose Top-K with Euclidean distance as
229 our default choice. A detailed comparison and explanation of anchor selection methods experimented
230 is presented in Appendix E, which also outlines the evaluation process and provides the rationale for
231 our default choice.

232 3.3 MULTI-ANCHOR PREDICTION HEAD

234 The prediction head \mathcal{P} integrates information from the query embedding z_{query} and the selected
235 anchor embeddings Z_{anchors} to produce the final property prediction \hat{y}_{query} . We employ a multi-head
236 cross-attention mechanism where z_{query} attends to the anchor embeddings Z_{anchors} (serving as keys
237 and values) to derive an attended anchor representation z_{attn} .

$$z_{\text{attn}} = \text{MultiHeadAttention}(Q = z_{query}, K = Z_{\text{anchors}}, V = Z_{\text{anchors}}) \quad (5)$$

238 This attended representation z_{attn} is then combined with the original query embedding z_{query} . Optionally,
239 the original anchor similarity/distance scores W_{anchors} can also be incorporated at this stage
240 to provide the final layers with explicit information about the relevance of each selected anchor. The
241 resulting fused representation (containing information from z_{query} , z_{attn} , and potentially W_{anchors})
242 is processed through subsequent layers (e.g., an MLP consisting of linear layers and activation
243 functions) to produce the final prediction \hat{y}_{query} . The advantage of using multi-anchors and our
244 prediction head is further analyzed in the ablation studies.

247 4 PERFORMANCE EVALUATION

249 4.1 EXPERIMENTAL SETTINGS

251 **Datasets** To rigorously evaluate our framework, we selected datasets from three distinct and
252 complementary benchmarks designed to test performance under various distribution shifts, ensuring
253 a thorough assessment across diverse chemical properties and demanding OOD scenarios.

- 255 • MoleculeNet (27): Widely used benchmark for its broad range of properties, including
256 quantum mechanics, physical chemistry, biophysics, and physiology of molecules . We
257 selected standard regression and classification tasks, aligning with methodologies from prior
258 work (9).
- 259 • DrugOOD (2): To focus on targeted OOD challenges in drug discovery, we employed this
260 systematic curator for drug target binding affinity prediction . We specifically used its
261 curated IC₅₀ and EC₅₀ datasets with a scaffold splitting strategy for classification, following
262 the setup in (17).
- 263 • Activity Cliffs (28): To assess performance on a particularly difficult OOD challenge, we
264 used the activity cliffs benchmark. This scenario tests a model on structurally similar
265 compounds that exhibit large differences in potency. The OOD test set for this benchmark
266 consists of molecule pairs with high structural similarity but at least a tenfold difference in
267 potency, evaluated across 30 different macromolecular targets.

268 **Splits** To rigorously evaluate OOD generalization, we employ a variety of data splitting strategies
269 that induce different types of distributional shifts. These include standard approaches for structural

270 novelty (covariate shift) and property value extrapolation (label shift), as well as more complex,
271 chemically meaningful scenarios designed to mimic real-world drug discovery challenges.
272

273 For inducing standard **covariate shifts**, which test generalization to new chemical structures, we
274 follow established methodologies. For MoleculeNet datasets, we adopt the approach from (29), which
275 uses spectral clustering on molecular cyclic skeletons to identify and separate the most structurally
276 dissimilar molecules into an OOD test set. As validated in Appendix F, this method effectively
277 creates a structural divide. For the DrugOOD classification task (2), we also include experiments
278 where covariate shift is defined by molecular size (2, DrugOOD_{ori})).
279

280 To address the critique that standard scaffold splits may not fully capture the complexity of real-world
281 challenges, we incorporated two additional, more practical OOD scenarios:
282

- 283 • **Activity Cliffs:** Following (28), the OOD test set is constructed from molecule pairs with
284 high structural similarity but at least a tenfold difference in potency.
- 285 • **Lo-Hi Benchmark:** This split simulates two distinct stages of a drug discovery campaign:
286 Hit Identification (HI) and Lead Optimization (LO). Following (30), this setup provides a
287 more realistic assessment of a model’s utility in a prospective drug discovery pipeline.
288

289 For evaluating **label shift** extrapolation, we adopt the straightforward strategy from (9). In this setup,
290 the OOD test set consists of molecules possessing the highest target property values, specifically
291 those falling within the top 5% of the dataset’s target value range. An accompanying ID test set is
292 created by randomly sampling from the remaining 95% of the data.
293

294 **Evaluation metrics** Following the evaluation criteria adopted by baseline models, we use AUROC
295 to evaluate performance on classification tasks, including DrugOOD(IC₅₀, EC₅₀) and MoleculeNet
296 (BBBP, ClinTox, SIDER). For regression tasks, we report MAE for MoleculeNet (BACE, ESOL,
297 FreeSolv, Lipophilicity) and Lo-Hi benchmarks. For the Activity Cliffs benchmark, we report RMSE
298 following prior work.
299

300 **Baselines** To evaluate the effectiveness of our proposed framework, we compare its performance
301 against several relevant baselines.
302

303 We include standard inductive-learning based MPP models. These represent the performance achiev-
304 able using the base encoders without the transductive augmentation and were fine-tuned and evaluated
305 under the same experimental conditions as our proposed method:
306

- 307 • **Chempred (25):** A widely used directed message-passing neural network architecture for
308 MPP.
- 309 • **Pretrained GIN (23):** A Graph Isomorphism Network(GIN) model, pre-trained on both su-
310 pervised graph-level property prediction and atom-level context prediction as self-supervised
311 pre-training strategies, learning from a dataset of 2 million molecules sourced from ZINC15
312 (31).
- 313 • **SMI-TED (24):** A Transformer-based encoder-decoder pre-trained using self-supervised
314 learning on a large, curated dataset from PubChem (32) containing 91 million SMILES
315 strings.
- 316 • **UniMol (33):** SE(3)-equivariant Transformer pretrained on 209M molecular conformations
317 and 3.2M protein pockets with 3D position recovery + masked-atom prediction, finetuned
318 on each dataset for property prediction.
- 319 • **iMoLD (17):** A framework for learning invariant molecular representations in a latent
320 discrete space. It employs a "first-encoding-then-separation" strategy with an encoding
321 GNN and a residual vector quantization module, along with a task-agnostic self-supervised
322 learning objective to enhance out-of-distribution generalization.

323 We also include a transductive framework as a baseline, which is evaluated using either standard
324 chemical features or embeddings from the inductive-learning models mentioned above:
325

- 326 • **Bilinear Transduction (BLT, (9):** Rooted from (11), learns analogies between differences
327 in RDKit (34) descriptors and corresponding property changes. This mechanism enables
328

324
325 Table 1: Performance (MAE) for Test_{ID} and Test_{OOD} Across Covariate Shift (X-Split) and Label
326 Shift (Y-Split) Regression Benchmarks. Lower is better. For each split type and method group, best
327 result is bolded, second best is underlined. **Green background** indicates improvement over inductive
328 counterpart. **Orange background** indicates improvement over baseline transductive learning.

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350	BACE		ESOL		FreeSolv		Lipophilicity		
		Method	Embedding	Test_{ID}	Test_{OOD}	Test_{ID}	Test_{OOD}	Test_{ID}	Test_{OOD}	
Covariate Shift (X-Splits)										
<i>Inductive</i>										
Chempred		0.5001 ± 0.0113	0.8848 ± 0.0403	0.5117 ± 0.0214	0.5117 ± 0.0214	0.1992 ± 0.0079	0.3369 ± 0.0269	0.3949 ± 0.0098	0.5097 ± 0.0191	
GIN		0.4727 ± 0.0094	0.7730 ± 0.0314	0.5415 ± 0.0178	0.5415 ± 0.0178	0.2928 ± 0.0122	0.3957 ± 0.0347	0.4461 ± 0.0068	0.5741 ± 0.0093	
SMI-TED		0.3615 ± 0.0181	0.6939 ± 0.0265	0.4508 ± 0.0178	0.4508 ± 0.0178	0.2401 ± 0.0110	0.3470 ± 0.0227	0.4275 ± 0.0136	0.5556 ± 0.0180	
iMoLD		0.4283 ± 0.0161	0.8658 ± 0.0743	0.2713 ± 0.0257	0.5941 ± 0.0497	0.2450 ± 0.0209	0.4297 ± 0.1343	0.4526 ± 0.0288	0.5958 ± 0.0264	
UniMol		0.3760 ± 0.1131	0.6130 ± 0.0198	0.1740 ± 0.0311	0.3930 ± 0.0139	0.1740 ± 0.0169	0.2750 ± 0.0237	0.3500 ± 0.0238	0.4370 ± 0.0031	
<i>Transductive (BLT)</i>										
RDKit		0.5649 ± 0.0455	0.6667 ± 0.0683	0.3850 ± 0.0297	0.3850 ± 0.0297	0.1787 ± 0.0082	0.2850 ± 0.0452	0.5120 ± 0.0124	0.6252 ± 0.0259	
GIN		0.7585 ± 0.0328	0.9279 ± 0.0507	0.7383 ± 0.0296	0.7383 ± 0.0296	0.5244 ± 0.0353	0.4348 ± 0.0500	0.6908 ± 0.0248	0.9009 ± 0.0232	
SMI-TED		0.6578 ± 0.0537	0.7914 ± 0.1152	0.9769 ± 0.1049	0.9769 ± 0.1049	0.3762 ± 0.0433	0.3795 ± 0.0558	0.7080 ± 0.0106	0.7810 ± 0.0284	
<i>Transductive (Ours)</i>										
MALT-RDKit		0.3306 ± 0.0236	0.6079 ± 0.0530	0.2188 ± 0.0120	0.3658 ± 0.0120	0.1266 ± 0.0081	0.2391 ± 0.0163	0.3879 ± 0.0091	0.6138 ± 0.0091	
MALT-Chempred		0.2847 ± 0.0165	0.7783 ± 0.0553	0.2180 ± 0.0049	0.5072 ± 0.0154	<u>0.1522</u> ± 0.0043	0.2999 ± 0.0164	0.3474 ± 0.0135	0.4894 ± 0.0263	
MALT-GIN		0.3317 ± 0.0083	0.6333 ± 0.0347	<u>0.2103</u> ± 0.0113	0.5305 ± 0.0120	0.1919 ± 0.0126	0.3388 ± 0.0255	0.3370 ± 0.0007	0.5369 ± 0.0007	
SMI-SMI-TED		0.3037 ± 0.0046	0.6716 ± 0.0569	0.2057 ± 0.0052	0.4322 ± 0.0118	0.1584 ± 0.0247	0.2613 ± 0.0329	0.3608 ± 0.0120	0.5417 ± 0.0164	
MALT-UniMol		0.3430 ± 0.0179	0.4340 ± 0.0120	0.1670 ± 0.0067	0.3920 ± 0.0092	0.1660 ± 0.0082	0.2710 ± 0.0013	0.3050 ± 0.0156	0.4300 ± 0.0046	
<i>Label Shift (Y-Splits)</i>										
<i>Inductive</i>										
Chempred		0.4509 ± 0.0092	1.1331 ± 0.0410	0.1955 ± 0.0057	0.4506 ± 0.0319	0.1967 ± 0.0083	0.3931 ± 0.0432	0.3560 ± 0.0080	0.6801 ± 0.0272	
GIN		0.4976 ± 0.0090	0.7343 ± 0.0235	0.2356 ± 0.0076	0.5293 ± 0.0086	0.2486 ± 0.0246	0.5544 ± 0.0229	0.3886 ± 0.0037	0.7241 ± 0.0135	
SMI-TED		0.3676 ± 0.0113	0.8741 ± 0.0660	0.2166 ± 0.0079	0.4607 ± 0.0272	0.3419 ± 0.0275	0.3954 ± 0.0620	0.3555 ± 0.0102	0.6499 ± 0.0578	
iMoLD		0.8107 ± 0.0019	1.5493 ± 0.0182	0.7219 ± 0.0016	1.7868 ± 0.0112	0.6953 ± 0.0047	1.6511 ± 0.0127	0.7758 ± 0.0005	1.5294 ± 0.0095	
UniMol		0.3680 ± 0.0312	1.0040 ± 0.0101	<u>0.1750</u> ± 0.0291	0.5470 ± 0.0032	0.1660 ± 0.0019	0.1680 ± 0.0131	0.3260 ± 0.0338	0.6840 ± 0.0039	
<i>Transductive (BLT)</i>										
RDKit		0.5864 ± 0.1217	1.0728 ± 0.1962	0.2422 ± 0.0103	0.5132 ± 0.0295	0.3534 ± 0.0299	0.5124 ± 0.0327	0.4320 ± 0.0253	0.8367 ± 0.0332	
GIN		0.7169 ± 0.0322	1.2719 ± 0.0345	0.4860 ± 0.0328	<u>0.9057</u> ± 0.0197	0.4588 ± 0.0206	0.7246 ± 0.0402	0.6679 ± 0.0166	1.1019 ± 0.0393	
SMI-TED		0.6006 ± 0.0996	1.2039 ± 0.1153	0.4536 ± 0.0516	0.9019 ± 0.0771	0.4683 ± 0.0864	0.9240 ± 0.0595	0.6360 ± 0.0649	1.1211 ± 0.0672	
<i>Transductive (Ours)</i>										
MALT-RDKit		0.3819 ± 0.0254	0.7833 ± 0.0285	0.1862 ± 0.0077	0.4906 ± 0.0172	<u>0.1492</u> ± 0.0080	0.3305 ± 0.0503	0.3246 ± 0.0103	0.7430 ± 0.0103	
MALT-Chempred		0.3461 ± 0.0097	0.7705 ± 0.0287	0.1734 ± 0.0070	0.4994 ± 0.0114	0.1469 ± 0.0179	0.2753 ± 0.0530	0.3185 ± 0.0104	0.6444 ± 0.0151	
MALT-GIN		0.3861 ± 0.0097	0.7340 ± 0.0121	0.1845 ± 0.0093	0.4989 ± 0.0267	0.1583 ± 0.0165	0.2637 ± 0.0220	0.3195 ± 0.0108	0.4690 ± 0.0108	
SMI-SMI-TED		0.3546 ± 0.0164	0.8326 ± 0.0141	0.1852 ± 0.0096	0.5390 ± 0.0199	<u>0.1716</u> ± 0.0061	0.2856 ± 0.0427	0.3300 ± 0.0097	0.6609 ± 0.0331	
MALT-UniMol		0.3440 ± 0.0213	0.8220 ± 0.0146	0.2030 ± 0.0121	0.4190 ± 0.0047	0.1610 ± 0.0031	0.1200 ± 0.0038	0.3080 ± 0.0011	0.5850 ± 0.0027	

351
352 Table 2: Performance (AUROC) for Test_{OOD} Covariate Shift (X-Split) Classification. For DrugOOD,
353 we follow the split done in (2) (DrugOOD_{ori}). We also include the results following the split
354 introduced in (29) (DrugOOD_{ours}, MoleculeNet_{ours}). Higher values are better. Best results bolded,
355 second best underlined. **Green background** shows improvement over inductive models; **Orange
356 background** shows RDKit (Ours) improvement over baseline transductive learning.

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	DrugOOD _{ori}		DrugOOD _{ours}		MoleculeNet _{ours}			
		Method	Embedding	EC50	IC50	EC50	IC50	BBBP	
<i>Inductive</i>									
<i>Transductive (BLT)</i>									
Chempred		0.6423 ± 0.0041	0.6577 ± 0.0011	0.7614 ± 0.0325	0.8132 ± 0.0139	0.7719 ± 0.1097	0.9483 ± 0.0114	0.6150 ± 0.0514	
GIN		0.6632 ± 0.0076	0.6866 ± 0.0013	0.7696 ± 0.0096	0.8424 ± 0.0032	0.7610 ± 0.0206	0.8102 ± 0.0190	0.4747 ± 0.0198	
SMI-TED		0.5912 ± 0.0376	0.6367 ± 0.0252	0.7094 ± 0.0325	0.6367 ± 0.0252	0.5948 ± 0.1802	0.9020 ± 0.1146	0.5513 ± 0.0346	
iMoLD		0.6884 ± 0.0058	0.6779 ± 0.0088	0.7821 ± 0.0188	0.7873 ± 0.0131	0.8247 ± 0.0608	0.8973 ± 0.0284	0.6550 ± 0.0307	
<i>Transductive (Ours)</i>									
MALT-RDKit		0.6658 ± 0.0141	0.6659 ± 0.0131	0.7532 ± 0.0236	0.8055 ± 0.0088	0.8095 ± 0.0240	0.9395 ± 0.0206	0.8095 ± 0.0240	
MALT-Chempred		0.6485 ± 0.0072	<u>0.6759</u> ± 0.0057	0.7953 ± 0.0187	0.8330 ± 0.0099	0.8671 ± 0.0108	0.9517 ± 0.0085	0.6727 ± 0.0344	
MALT-GIN		0.6959 ± 0.0110	0.6632 ± 0.0014	0.8138 ± 0.0147	0.8499 ± 0.0106	0.8039 ± 0.0193	0.8122 ± 0.0107	0.5970 ± 0.0351	
SMI-SMI-TED		<u>0.6826</u> ± 0.0126	0.6694 ± 0.0092	0.7899 ± 0.0161	0.6524 ± 0.0062	0.8684 ± 0.0279	0.9510 ± 0.0071	0.6057 ± 0.0273	

378 extrapolation beyond the range of the training data. In our comparative analysis, we employ
379 BLT not only with standard RDKit descriptors but also with embeddings obtained from two
380 of the previously listed inductive models: Pretrained GIN and SMI-TED .

381 4.2 PERFORMANCE COMPARISON

382 Our framework demonstrates a consistent and significant improvement in OOD generalization across
383 a wide array of regression and classification benchmarks. By operating in a learned latent space and

leveraging multiple anchors, MALT not only enhances the performance of strong inductive base models but also substantially outperforms existing transductive methods (Table 1, Table 2). To visually complement results for regression tasks, we provide parity plots in Appendix I that compare predicted versus true values and embedding space transformations of anchors in Appendix J. As shown in the parity plots, for a majority of the tasks, MALT increases performance and embedding space transformations show that important anchors cluster towards each other after transductive learning.

Enhancing Inductive Models on Standard Benchmarks As shown in Table 1, augmenting standard inductive encoders (Chemprop, GIN, SMI-TED) with our transductive module consistently improves performance on both covariate (X-Splits) and label (Y-Splits) shift regression tasks. The improvements, highlighted in green, are evident across nearly all datasets for both ID and OOD test sets. This pattern holds for classification tasks under covariate shift (Table 2), where MALT boosts the AUROC of the base models. This confirms that our modular, transductive reasoning component effectively enhances the predictive power of various molecular encoders. In many cases, our augmented models achieve the best overall performance (indicated in bold).

Outperforming Transductive Baselines MALT also demonstrates a clear advantage over the BLT baseline from (9). When using identical RDKit descriptors, our model (*Ours (RDKit)*) achieves a consistently lower MAE than *BLT (RDKit)* across all regression settings (highlighted in orange in Table 1) and a higher AUROC in all classification tasks (Table 2).

Crucially, while BLT struggles to effectively utilize the rich representations from pretrained GIN and SMI-TED embeddings—often performing worse than its own RDKit variant—our framework excels. MALT successfully integrates these advanced embeddings, leading to robust OOD performance and demonstrating a unique capability to adapt learned latent representations for transductive reasoning. A detailed analysis of this is shown in Appendix A and Appendix B.

Realistic Drug Discovery Scenarios To validate our framework’s practical utility beyond standard academic benchmarks, we evaluated it on more complex and chemically meaningful OOD scenarios. Results on these experiments additionally confirm MALT’s robustness and effectiveness in settings that closely mimic real-world challenges.

- **Activity Cliffs:** We tested MALT on a challenging activity cliffs benchmark, where minor structural changes lead to large potency differences (28). As detailed in Appendix L, MALT-enhanced models achieved a top-2 rank far more frequently than their base counterparts across 30 pharmacological endpoints. This resulted in substantial median RMSE reductions of up to 12.7% for OOD data, showcasing MALT’s ability to navigate difficult regions of the chemical space.
- **Lo-Hi Benchmark:** Our framework was further evaluated on the Lo-Hi benchmark (30), which simulates the Hit Identification (HI) and Lead Optimization (LO) stages of a drug discovery campaign. MALT-Chemprop consistently outperformed hyperparameter-tuned Chemprop baseline across most splits. Notably, MALT achieved performance gains of 31.58% on the FreeSolv LO split and over 20% on several scaffold-based splits (see Appendix L), validating its effectiveness in a realistic discovery pipeline.

4.3 ABLATION STUDIES

To validate the key architectural and methodological choices of our framework, we conducted a series of ablation studies. These experiments systematically investigate the impact of the encoder training strategy, the necessity of the multi-anchor selection mechanism, the model’s robustness to noisy information, and its advantages over simpler non-learning baselines. All corresponding result tables can be found in Appendix H.

Importance of Jointly Training the Encoder and Transduction Module We first investigated the optimal training strategy for the molecular encoder \mathcal{E} within our transductive framework. As shown in Table 8, we compared strategies where the encoder was either pre-finetuned on the task and/or adapted (i.e., its weights were updated) during the main transductive training phase. The results unequivocally show that the best performance is achieved with the ‘Finetune O, Adapt O’ strategy,

432 where a task-finetuned encoder is jointly trained with the transduction module. This confirms that
433 allowing the encoder to adapt creates a more effective latent space that is optimized not just for the
434 task, but for the analogical reasoning required by the transduction module.
435

436 **Multi-Anchor Selection Strategy Validation** Our framework’s core hypothesis is that using
437 multiple, high-quality anchors is superior to single-anchor or arbitrary-anchor methods. The results
438 in Table 9 strongly support this. The findings show that multiple anchors consistently outperform a
439 single anchor, as performance improves with the number of anchors (k) increasing from 1 to 10. For
440 instance, on the FreeSolv Y-Split for TestOOD, using a single anchor ($k = 1$) results in an MAE of
441 0.3642, whereas our default strategy with 10 anchors achieves a significantly lower MAE of 0.2637.
442 Furthermore, the relevance of the selected anchors is paramount, demonstrating that top-ranked
443 anchors are essential. A model using the top 10 anchors for the Lipo Y-Split (TestOOD) achieves an
444 MAE of 0.4690. In contrast, a model using the same number of lower-ranked anchors (11th to 20th)
445 performs much worse, with an MAE of 0.4879. This demonstrates that the learned embedding space
446 is meaningful, correctly identifying the most informative analogies for prediction.
447

448 **Robustness to Noisy Anchors** A potential failure mode for a multi-anchor system is sensitivity to
449 noisy or irrelevant anchors. We tested MALT’s resilience by deliberately replacing top-ranked anchors
450 with the lowest-ranked (“noisiest”) ones from the training set. As shown in Table 10, the framework
451 demonstrates graceful degradation rather than catastrophic failure. For example, on the Lipo X-Split
452 (TestOOD), replacing 5 out of 10 anchors with the worst possible choices only increases MAE from
453 0.4736 to 0.4748. This resilience indicates that the model’s attention mechanism successfully learns
454 to discount the influence of irrelevant anchors, a crucial feature for robust real-world performance.
455

456 **Disentangling Representation and Reasoning from Simple Retrieval** To prove our model learns
457 more than a simple similarity search, we compared the full MALT-GIN against several k-nearest
458 neighbor (k-NN) baselines that average property values. The results in Table 11 yield two insights.
459 First, MALT learns an appropriate task-specific representation. A k-NN model using embeddings
460 from our trained MALT-GIN outperforms k-NN using embeddings from the pretrained GIN or
461 ECFP fingerprints. This confirms our end-to-end training produces a more effective latent space for
462 the task. Second, the fusion mechanism adds value beyond retrieval. The full MALT-GIN model
463 outperforms the k-NN baseline that uses its own powerful embeddings. This performance gap isolates
464 the contribution of the attention-based fusion head, proving that the model’s ability to intelligently
465 weigh and integrate anchor information is critical to its success.
466

467 **Scalability on Large-Scale Datasets** Finally, to confirm that our framework’s advantages are not
468 limited to smaller benchmarks, we evaluated it on the QM9 dataset (>133,000 molecules) for HOMO
469 and LUMO prediction. The results in Table 12 show that MALT-enhanced models maintain their
470 performance edge, outperforming their base inductive counterparts. This confirms that our approach
471 scales effectively to large scientific datasets while preserving its robust performance benefits.
472

473 5 CONCLUSION

474 We introduced a multi-anchor transductive framework for molecular property prediction, designed
475 to improve generalization in out-of-distribution settings. Operating in the latent space of pretrained
476 encoders, our model-agnostic approach advances beyond inductive baselines and prior single-anchor
477 transductive methods. By relating each target molecule to multiple training instances, the framework
478 enables more robust and adaptive representation learning in novel chemical spaces and can be applied
479 in a plug-and-play fashion to any arbitrary encoder. Comprehensive experiments and ablation studies
480 confirm that MALT enhances both OOD generalization and in-distribution performance, consistently
481 surpassing existing transductive baselines. Future work includes exploring more principled anchor
482 selection, developing scalable search strategies to mitigate computational cost, and hybrid strategies
483 with fallback mechanisms when transductive learning underperforms.
484
485

486 **6 ETHICS STATEMENT**
487

488 This work develops a multi-anchor transductive framework for molecular property prediction to
489 accelerate drug discovery and materials science. While designed for beneficial applications, we
490 acknowledge the dual-use potential—techniques enabling therapeutic compound discovery could
491 theoretically be misused to design harmful substances. We emphasize the importance of responsible
492 development and deployment of such predictive models.

493 Our research follows established ethical guidelines for computational chemistry and machine learning.
494 All datasets are publicly available and properly cited, with no proprietary data or human subjects
495 involved. We encourage practitioners to implement our framework within appropriate institutional
496 oversight and regulatory frameworks, especially for sensitive applications like pharmaceutical devel-
497 opment or chemical synthesis.

498

499 **7 LLM USAGE**
500

501 We used a large language model (LLM) as a general-purpose assistant for writing—suggesting
502 phrasing, improving grammar and clarity, and helping with organization and citation formatting. The
503 LLM also provided lightweight coding help (e.g., debugging minor errors and refactoring scripts); all
504 ideas, analyses, and final text/code were created and verified by the authors.

505

506 **8 REPRODUCIBILITY STATEMENT**
507

508 Upon acceptance, the full code will be released publicly. We have released an anonymous github
509 link and data link as well as our code in the supplementary materials. In the paper, we also provide
510 comprehensive resources for reproduction. Complete hyperparameter configurations are in Table 7
511 and Appendix G. Our framework architecture is documented in Section 3, with additional details
512 in Appendix D including algorithms for memory bank construction and inference. Appendix K
513 includes a theoretical analysis and justification of our multi-anchor approach compared to bilinear
514 transduction. Appendix E provides systematic evaluation of anchor selection methods, justifying
515 our Top-K with Euclidean distance approach. All baseline implementations are detailed in Section
516 4.1. Data preprocessing and splitting methodologies are also covered in Section 4.1 and Appendix
517 F, which validates our split method. Results include statistical reporting across multiple runs with
518 different seeds, and with additional ablation studies in Section 4.3 and Appendix H. Computational
519 overhead analysis is provided in Appendix M.

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES

541

542 [1] J. Liu, Z. Shen, Y. He, X. Zhang, R. Xu, H. Yu, and P. Cui, “Towards out-of-distribution
543 generalization: A survey,” 2023.

544 [2] Y. Ji, L. Zhang, J. Wu, B. Wu, L.-K. Huang, T. Xu, Y. Rong, L. Li, J. Ren, D. Xue, H. Lai, S. Xu,
545 J. Feng, W. Liu, P. Luo, S. Zhou, J. Huang, P. Zhao, and Y. Bian, “Drugood: Out-of-distribution
546 (ood) dataset curator and benchmark for ai-aided drug discovery – a focus on affinity prediction
547 problems with noise annotations,” 2022.

548 [3] A. P. Soleimany, A. Amini, S. Goldman, D. Rus, S. N. Bhatia, and C. W. Coley, “Evidential
549 deep learning for guided molecular property prediction and discovery,” *ACS central science*,
550 vol. 7, no. 8, pp. 1356–1367, 2021.

551 [4] P. Tossou, C. Wognum, M. Craig, H. Mary, and E. Noutahi, “Real-world molecular out-of-
552 distribution: Specification and investigation,” *Journal of Chemical Information and Modeling*,
553 vol. 64, no. 3, pp. 697–711, 2024.

554 [5] K. Li, A. N. Rubungo, X. Lei, D. Persaud, K. Choudhary, B. DeCost, A. B. Dieng, and
555 J. Hattrick-Simpers, “Probing out-of-distribution generalization in machine learning for materi-
556 als,” *Communications Materials*, vol. 6, no. 1, p. 9, 2025.

557 [6] N. Yang, K. Zeng, Q. Wu, X. Jia, and J. Yan, “Learning substructure invariance for out-of-
558 distribution molecular representations,” *Advances in Neural Information Processing Systems*,
559 vol. 35, pp. 12964–12978, 2022.

560 [7] F. Wu, S. Jin, S. Li, and S. Z. Li, “Instructor-inspired machine learning for robust molecular
561 property prediction,” *Advances in Neural Information Processing Systems*, vol. 37, pp. 116202–
562 116222, 2024.

563 [8] M. Oldenhof, G. Ács, B. Pejó, A. Schuffenhauer, N. Holway, N. Sturm, A. Dieckmann,
564 O. Fortmeier, E. Boniface, C. Mayer, *et al.*, “Industry-scale orchestrated federated learning
565 for drug discovery,” in *Proceedings of the aaai conference on artificial intelligence*, vol. 37,
566 pp. 15576–15584, 2023.

567 [9] N. Segal, A. Netanyahu, K. P. Greenman, P. Agrawal, and R. Gomez-Bombarelli, “Known
568 unknowns: Out-of-distribution property prediction in materials and molecules,” *arXiv preprint
569 arXiv:2502.05970*, 2025.

570 [10] G. M. Maggiora, “On outliers and activity cliffs why qsar often disappoints,” 2006.

571 [11] A. Netanyahu, A. Gupta, M. Simchowitz, K. Zhang, and P. Agrawal, “Learning to extrapolate:
572 A transductive approach,” *arXiv preprint arXiv:2304.14329*, 2023.

573 [12] G. Chen, J. Zhang, X. Xiao, and Y. Li, “Graphta: Test time adaptation on graph neural networks,”
574 *arXiv preprint arXiv:2208.09126*, 2022.

575 [13] H. Shimakawa, A. Kumada, and M. Sato, “Extrapolative prediction of small-data molecular
576 property using quantum mechanics-assisted machine learning,” *npj Computational Materials*,
577 vol. 10, no. 1, p. 11, 2024.

578 [14] E. R. Antoniuk, S. Zaman, T. Ben-Nun, P. Li, J. Diffenderfer, B. Demirci, O. Smolenski, T. Hsu,
579 A. M. Hiszpanski, K. Chiu, *et al.*, “Boom: Benchmarking out-of-distribution molecular property
580 predictions of machine learning models,” *arXiv preprint arXiv:2505.01912*, 2025.

581 [15] H. Li, X. Wang, Z. Zhang, and W. Zhu, “Out-of-distribution generalization on graphs: A survey,”
582 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.

583 [16] Q. Guo, S. Hernandez-Hernandez, and P. J. Ballester, “Scaffold splits overestimate virtual
584 screening performance,” in *International Conference on Artificial Neural Networks*, pp. 58–72,
585 Springer, 2024.

586 [17] X. Zhuang, Q. Zhang, K. Ding, Y. Bian, X. Wang, J. Lv, H. Chen, and H. Chen, “Learning
587 invariant molecular representation in latent discrete space,” *Advances in Neural Information
588 Processing Systems*, vol. 36, pp. 78435–78452, 2023.

594 [18] T. Yin, G. Panapitiya, E. D. Coda, and E. G. Saldanha, “Evaluating uncertainty-based active
595 learning for accelerating the generalization of molecular property prediction,” *Journal of*
596 *Cheminformatics*, vol. 15, no. 1, p. 105, 2023.

597 [19] S. Jiang, S. Qin, R. C. Van Lehn, P. Balaprakash, and V. M. Zavala, “Uncertainty quantification
598 for molecular property predictions with graph neural architecture search,” *Digital Discovery*,
599 vol. 3, no. 8, pp. 1534–1553, 2024.

600 [20] E. Arazo, D. Ortego, P. Albert, N. E. O’Connor, and K. McGuinness, “Pseudo-labeling and
601 confirmation bias in deep semi-supervised learning,” 2020.

602 [21] J. Liang, R. He, and T. Tan, “A comprehensive survey on test-time adaptation under distribution
603 shifts,” *International Journal of Computer Vision*, vol. 133, no. 1, pp. 31–64, 2025.

604 [22] L. Chen, Y. Zhang, Y. Song, Y. Shan, and L. Liu, “Improved test-time adaptation for domain
605 generalization,” in *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
606 Recognition*, pp. 24172–24182, 2023.

607 [23] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec, “Strategies for
608 pre-training graph neural networks,” *arXiv preprint arXiv:1905.12265*, 2019.

609 [24] E. Soares, V. Shirasuna, E. V. Brazil, R. Cerqueira, D. Zubarev, and K. Schmidt, “A large
610 encoder-decoder family of foundation models for chemical language,” 2024.

611 [25] E. Heid, K. P. Greenman, Y. Chung, S.-C. Li, D. E. Graff, F. H. Vermeire, H. Wu, W. H. Green,
612 and C. J. McGill, “Chemprop: a machine learning package for chemical property prediction,”
613 *Journal of Chemical Information and Modeling*, vol. 64, no. 1, pp. 9–17, 2023.

614 [26] D. Weininger, “Smiles, a chemical language and information system. 1. introduction to method-
615 ology and encoding rules,” *Journal of chemical information and computer sciences*, vol. 28,
616 no. 1, pp. 31–36, 1988.

617 [27] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and
618 V. Pande, “Moleculenet: a benchmark for molecular machine learning,” *Chemical science*,
619 vol. 9, no. 2, pp. 513–530, 2018.

620 [28] D. Van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the limitations of molecular machine
621 learning with activity cliffs,” *Journal of chemical information and modeling*, vol. 62, no. 23,
622 pp. 5938–5951, 2022.

623 [29] D. van Tilborg, L. Rossen, and F. Grisoni, “Molecular deep learning at the edge of chemical
624 space,” *ChemRxiv*, 2025.

625 [30] S. Steshin, “Lo-hi: Practical ml drug discovery benchmark,” *Advances in Neural Information
626 Processing Systems*, vol. 36, pp. 64526–64554, 2023.

627 [31] T. Sterling and J. J. Irwin, “Zinc 15-ligand discovery for everyone,” *Journal of chemical
628 information and modeling*, vol. 55, no. 11, pp. 2324–2337, 2015.

629 [32] Y. Wang, J. Xiao, T. O. Suzek, J. Zhang, J. Wang, and S. H. Bryant, “Pubchem: a public
630 information system for analyzing bioactivities of small molecules,” *Nucleic acids research*,
631 vol. 37, no. suppl_2, pp. W623–W633, 2009.

632 [33] G. Zhou, Z. Gao, Q. Ding, H. Zheng, H. Xu, Z. Wei, L. Zhang, and G. Ke, “Uni-mol: A
633 universal 3d molecular representation learning framework,” 2023.

634 [34] G. Landrum *et al.*, “Rdkit: A software suite for cheminformatics, computational chemistry, and
635 predictive modeling,” *Greg Landrum*, vol. 8, no. 31.10, p. 5281, 2013.

636 [35] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvassy, P.-E. Mazaré, M. Lomeli, L. Hosseini,
637 and H. Jégou, “The faiss library,” *arXiv preprint arXiv:2401.08281*, 2024.

638

639

640

641

642

643

644

645

646

647

648 A QUALITATIVE ANCHOR ANALYSIS

651 To evaluate the effectiveness of multi-anchor reasoning within learned latent spaces, we compared
 652 the Top-5 anchors selected by our model and by BLT after training. As illustrated in Figure 2, we
 653 analyzed three representative molecules from the Test_{OOD} dataset: (1) a randomly selected molecule
 654 (Random), (2) a molecule with the lowest average Maximum Common Substructure (MCS) similarity
 655 to training set scaffolds (Extreme Covariate Shift), and (3) a molecule with the highest target property
 656 value (Extreme Label Shift).

(a) Random						
	Query		Top 5 Anchors			
Ours						
	Property	1.6678	1.3194	1.2807	1.4597	1.2807
	MCS similarity	1.0000	0.6364	0.0559	0.7778	0.0000
BLT						
	Property	1.6678	0.7930	-0.1031	1.4597	0.3178
	MCS similarity	1.0000	0.0000	0.0000	0.7778	0.0000
(b) Extreme Covariate Shift						
	Query		Top 5 Anchors			
Ours						
	Property	1.6397	1.3388	0.9169	0.8283	1.0098
	MCS similarity	1.0000	0.0000	0.0000	0.0000	0.0000
BLT						
	Property	1.6397	0.8283	-0.7563	0.3614	-0.6112
	MCS similarity	1.0000	0.0000	0.0000	0.0000	0.0000
(c) Extreme Label Shift						
	Query		Top 5 Anchors			
Ours						
	Property	2.1517	1.3775	1.0001	1.3291	1.0630
	MCS similarity	1.0000	0.7778	0.3247	0.3247	0.2747
BLT						
	Property	2.1517	-0.8337	-0.5483	-0.1612	0.9227
	MCS similarity	1.0000	0.0000	0.0000	0.0000	0.3889

697 Figure 2: Comparison between Top 5 anchors retrieved by our model and BLT in ESOL dataset. Red
 698 highlights indicate the Maximum Common Substructure (MCS) between the query molecule and each
 699 corresponding anchor molecule. (a) Random: a randomly selected molecule from the Test_{OOD} dataset.
 700 (b) Extreme Covariate Shift: a molecule from the Test_{OOD} dataset with lowest average Maximum
 701 Common Substructure (MCS) similarity to Train set scaffolds. (c) Extreme Label Shift: a molecule
 from the Test_{OOD} dataset with the highest target property value.

For each case, we assessed the alignment between the query and selected anchors in terms of both molecular property values and MCS similarity. Our method consistently selected anchors that were more functionally and structurally similar to the query compared to those selected by BLT. In contrast, BLT’s selected anchors often exhibited greater divergence from the query in both dimensions. Notably, in the Extreme Covariate Shift case, our model demonstrated a clear advantage by capturing nuanced structural and chemical similarities that BLT—constrained by fixed input descriptors—failed to represent. This highlights the strength of learned latent representations in generalizing to structurally dissimilar molecules. In the Extreme Label Shift case, where no single anchor offers a perfect analogy, our model benefited from leveraging multiple complementary anchors. This multi-anchor strategy enabled the model to integrate diverse signals and make accurate predictions, whereas BLT’s reliance on a single anchor limited its effectiveness. These results underscore the utility of multi-anchor reasoning in addressing the inherent limitations of single-anchor analogical inference.

B SYSTEMATIC CHEMICAL ANALYSIS OF ANCHOR SELECTION

To provide a quantitative understanding of the anchor selection mechanism, we perform a comprehensive chemical analysis comparing the training data, the out-of-distribution (OOD) query molecules, and the anchors selected by our model. This multifaceted analysis examines physicochemical properties, structural features, and quantitative similarity metrics, revealing the chemical principles that guide anchor selection.

B.1 PHYSICOCHEMICAL PROPERTY ANALYSIS

We first compared the distributions of key physicochemical properties: molecular weight (MW), logarithm of the partition coefficient (LogP), and topological polar surface area (TPSA). The analysis, summarized in Table 3, covers both scaffold-based (X-split) and property-based (Y-split) OOD scenarios. The results consistently show that the model selects anchors with properties that are intermediate between the training distribution and the OOD queries. This suggests that the model does not merely select the most similar molecules but rather identifies anchors that chemically bridge the gap between the training and OOD domains.

Table 3: Physicochemical Property Comparison. For each dataset, results are presented for both the scaffold-based (X-split, left) and property-based (Y-split, right) OOD settings.

Dataset	Property	X-Split			Y-Split		
		Train Mean (Median)	OOD (Query) Mean (Median)	Anchors Mean (Median)	Train Mean (Median)	OOD (Query) Mean (Median)	Anchors Mean (Median)
BACE	Mol. Weight	481.7 (465.6)	447.1 (452.0)	476.3 (422.5)	472.3 (457.5)	617.4 (608.7)	579.1 (579.8)
	LogP	3.11 (3.12)	3.62 (4.60)	3.31 (3.52)	3.12 (3.13)	3.10 (3.30)	3.36 (3.37)
	TPSA	95.3 (91.2)	97.5 (78.2)	101.1 (85.6)	93.5 (89.6)	128.3 (111.9)	113.1 (108.3)
ESOL	Mol. Weight	196.6 (179.2)	337.2 (307.3)	275.9 (268.4)	209.7 (192.0)	108.5 (88.1)	145.1 (108.1)
	LogP	2.38 (2.30)	3.58 (4.17)	3.18 (3.40)	2.58 (2.44)	0.07 (0.39)	0.61 (1.01)
	TPSA	33.7 (26.0)	56.4 (56.7)	46.5 (41.6)	34.8 (26.3)	42.1 (26.6)	48.4 (28.7)
FreeSolv	Mol. Weight	134.8 (120.2)	258.6 (241.3)	123.9 (118.2)	141.0 (122.1)	102.9 (100.2)	111.3 (99.0)
	LogP	1.88 (1.74)	3.83 (3.75)	1.68 (1.56)	1.91 (1.75)	2.71 (2.76)	2.29 (2.04)
	TPSA	20.3 (17.1)	18.7 (9.2)	21.5 (20.2)	21.0 (18.5)	0.0 (0.0)	0.2 (0.0)
Lipo	Mol. Weight	387.2 (390.9)	320.6 (305.8)	404.8 (401.9)	381.4 (386.5)	417.1 (423.5)	419.6 (427.4)
	LogP	3.31 (3.31)	2.71 (2.37)	3.29 (3.22)	3.22 (3.22)	4.39 (4.25)	3.90 (3.68)
	TPSA	79.8 (80.7)	65.6 (63.2)	81.6 (83.1)	79.4 (80.0)	69.6 (69.2)	75.8 (76.1)

B.2 STRUCTURAL AND FRAGMENT ANALYSIS

To investigate the structural basis of anchor selection, we analyzed the prevalence of molecular scaffolds and fragments using Murcko scaffolds, BRICS motifs, and RECAP fragments. The results, shown for the X-split in Tables 4 and 5, reveal that the selected anchors share significantly more relevant structural motifs with the OOD queries than a random sample from the training set would. This demonstrates that anchors are chosen for their fundamental structural relevance to the query molecule, providing a chemically sound basis for prediction.

756
 757
 758
 759 **Table 4: Top Scaffolds and Structural Diversity Metrics for the X-Split.**
 760

761 Dataset	762 Data Type	763 Top 1 Scaffold (Count)	764 Top 2 Scaffold (Count)	765 Entropy	766 Diversity
BACE	Train	<chem>O=C1NC=NC1(c1cccc1)c1cccc1</chem> (52)	<chem>O=S1(=O)CC(Cc2cccc2)CC([NH2+]C</chem> <chem>c2cccc2)C1(50)</chem>	8.327	0.445
	OOD	<chem>c1ccc(-c2ccc(-c3cccc3)n2Cc2ccc</chem> <chem>cn2)cc1(14)</chem>	<chem>c1cccc1(7)</chem>	4.173	0.527
	Anchors	<chem>C1=NC2(CO1)c1cccc10c1ccc(-c3cc</chem> <chem>ccc3)cc12(105)</chem>	<chem>O=S1(=O)CC(Cc2cccc2)CC([NH2+]C</chem> <chem>c2cccc2)C1(28)</chem>	5.234	0.169
ESOL	Train	No Scaffold (303)	<chem>c1cccc1(234)</chem>	4.797	0.217
	OOD	<chem>O=C(OCc1cccc(Oc2cccc2)c1)C1CC1</chem> (7)	<chem>O=c1oc2cccc2cc1Cc1cccc1(2)</chem>	5.280	0.833
	Anchors	<chem>c1cccc1(77)</chem>	<chem>O=C1CC(=O)NC(=O)N1(51)</chem>	5.297	0.168
FreeSolv	Train	No Scaffold (305)	<chem>c1cccc1(143)</chem>	2.656	0.079
	OOD	<chem>c1ccc(Cn2ccnc2)cc1(1)</chem>	<chem>c1ccc(Cc2cccc2)cc1(1)</chem>	3.907	1.000
	Anchors	No Scaffold (92)	<chem>c1cccc1(31)</chem>	1.901	0.080
Lipo	Train	<chem>c1ccc(-c2cccc2)cc1(31)</chem>	<chem>O=C(Cc1cccc1)NC1CCN(CCC(c2cccc</chem> <chem>c2)c2cccc2)C1(28)</chem>	10.539	0.587
	OOD	<chem>c1cccc1(76)</chem>	<chem>c1ccnnc1(6)</chem>	5.000	0.462
	Anchors	<chem>c1cnc(-c2ccc(C3CCCC3)cc2)cn1</chem> (53)	<chem>O=S(=O)(NCC(c1cccc1)N1CCCCC1)</chem> <chem>c1cccc1(47)</chem>	8.373	0.291

776
 777 **Table 5: Analysis of Common BRICS Motifs and RECAP Fragments for the X-Split.**
 778
 779
 780

781 Dataset	Data Type	BRICS Analysis				RECAP Analysis			
		Top 1 (Count)	Top 2 (Count)	Diversity	Entropy	Top 1 (Count)	Top 2 (Count)	Diversity	Entropy
BACE	Train	<chem>*N*(729)</chem>	<chem>*c1cccc(*c1(655)</chem>	-	-	<chem>*C(C)=O(205)</chem>	<chem>*S(C(=O)=O(141)</chem>	0.323	8.641
	OOD	<chem>*C*(43)</chem>	<chem>*c1ccc(*c1(29)</chem>	-	-	<chem>*c1ccc(*n1*(25)</chem>	<chem>*Cc1ccc(N)n1(20)</chem>	0.382	5.403
	Anchors	<chem>*N*(262)</chem>	<chem>*c1cccc1(247)</chem>	-	-	<chem>*c1cccc1(122)</chem>	<chem>*c1ccc(*n1*(121)</chem>	0.114	6.431
ESOL	Train	<chem>*CC(131)</chem>	<chem>*O*(105)</chem>	0.447	8.155	<chem>*C(C)C(30)</chem>	<chem>*C(C)=O(29)</chem>	0.474	7.614
	OOD	<chem>*c1cccc1(16)</chem>	<chem>*O*(14)</chem>	0.503	5.761	<chem>*c1cccc1(10)</chem>	<chem>*CC1C(C(=O)=O)C1(C)C(6)</chem>	0.600	5.218
	Anchors	<chem>*O*(97)</chem>	<chem>*CC(71)</chem>	0.179	6.582	<chem>*C(C)=O(39)</chem>	<chem>*C(C)C(28)</chem>	0.280	6.492
FreeSolv	Train	<chem>*CC(49)</chem>	<chem>*OC(45)</chem>	0.578	7.991	<chem>*C(C)=O(16)</chem>	<chem>*OC(15)</chem>	0.460	6.249
	OOD	<chem>*c1cccc1(4)</chem>	<chem>*C*(2)</chem>	0.848	4.681	<chem>*O(2)</chem>	<chem>*Cc1cccc1(1)</chem>	0.917	3.418
	Anchors	<chem>*O*(22)</chem>	<chem>*CC(15)</chem>	0.398	5.943	<chem>*C[C@H]C(O)(6)</chem>	<chem>*CCCC(6)</chem>	0.508	4.571
Lipo	Train	<chem>*N*(2018)</chem>	<chem>*C(*)=O(1225)</chem>	0.116	7.642	<chem>*O(434)</chem>	<chem>*c1cccc1(335)</chem>	0.286	9.959
	OOD	<chem>*N*(62)</chem>	<chem>*C(*)=O(52)</chem>	0.294	6.715	<chem>*O(18)</chem>	<chem>*N1CCN(*C)C1(16)</chem>	0.556	7.508
	Anchors	<chem>*N*(1093)</chem>	<chem>*c1cccc1(693)</chem>	0.071	7.019	<chem>*O(219)</chem>	<chem>*c1cccc1(206)</chem>	0.175	8.778

793
 794 **Table 6: Tanimoto Similarity Between OOD Queries and Training Set Molecules’ Morgan Finger-
 795 prints. For each dataset, results for the X-split and Y-split are shown, respectively.**
 796
 797

801 Similarity Type	Comparison	BACE		ESOL		FreeSolv		Lipo	
		X	Y	X	Y	X	Y	X	Y
804 Whole Molecule	Query vs. Anchor	0.495	0.835	0.382	0.187	0.048	0.262	0.313	0.532
	Query vs. Non-anchor	0.328	0.438	0.094	0.046	0.054	0.067	0.220	0.291
806 Scaffold	Query vs. Anchor	0.351	0.808	0.314	0.567	0.075	0.762	0.180	0.516
	Query vs. Non-anchor	0.193	0.295	0.098	0.020	0.060	0.008	0.116	0.216

810 **B.3 QUANTITATIVE SIMILARITY COMPARISON**
811

812 Finally, we quantified the similarity between OOD queries and their selected anchors using Tanimoto
813 similarity with ECFP4 fingerprints. We compared this to the similarity between queries and all other
814 non-anchor molecules in the training set. As shown in Table 6, the results demonstrate a clear and
815 consistent pattern across all datasets and OOD splits.

816 These analyses reveal two global trends:
817

818 1. **Anchors are significantly more similar to queries than non-anchors.** This finding
819 holds true across different datasets, OOD split types, and for both whole-molecule and
820 scaffold-level similarity.
821 2. **The similarity gap is particularly large for scaffolds.** This highlights the model’s ability
822 to identify molecules with fundamentally similar core structures to serve as anchors, which
823 is critical for making chemically sound and generalizable predictions.

824

825 **C ALGORITHM PSEUDOCODE**
826

827 **Algorithm 1 Train**

828 1: **Input:** Training data $\mathcal{D}_{\text{train}} = \{(m_i, y_i)\}$
829 2: **Components:** Encoder \mathcal{E} , Transduction Module \mathcal{T} , Multi-Anchor Prediction Head \mathcal{P} , Task Loss $\mathcal{L}_{\text{task}}$
830

831 3: **Initialize:** Parameters for $\mathcal{E}, \mathcal{T}, \mathcal{P}$; Optimizer; Scheduler
832 4: $Z_{\text{train}} \leftarrow \{\mathcal{E}(m_i) \mid (m_i, y_i) \in \mathcal{D}_{\text{train}}\}$ ▷ Initialize Memory Bank with initial \mathcal{E}
833

834 5: **for** epoch = 1 to Max Epochs **do** ▷ Periodically update Memory Bank
835 6: **if** epoch mod $N_{\text{update}} = 0$ **then** ▷ Use current \mathcal{E}
836 7: $Z_{\text{train}} \leftarrow \{\mathcal{E}(m_i) \mid (m_i, y_i) \in \mathcal{D}_{\text{train}}\}$
837 8: **end if**
838 9: **for** each batch $(M_{\text{batch}}, y_{\text{batch}})$ from $\mathcal{D}_{\text{train}}$ **do** ▷ Encode batch
839 10: $z_{\text{batch}} \leftarrow \mathcal{E}(M_{\text{batch}})$ ▷ Retrieve k anchors and weights
840 11: $Z_{\text{anchors}}, W_{\text{anchors}} \leftarrow \mathcal{T}(z_{\text{batch}}, Z_{\text{train}})$ ▷ Multi-anchor prediction
841 12: $\hat{y}_{\text{batch}} \leftarrow \mathcal{P}(z_{\text{batch}}, Z_{\text{anchors}}, W_{\text{anchors}})$ ▷ Compute batch loss
842 13: $\mathcal{L} \leftarrow \mathcal{L}_{\text{task}}(\hat{y}_{\text{batch}}, y_{\text{batch}})$
843 14: Backpropagate \mathcal{L} to update $\theta_{\mathcal{E}}, \theta_{\mathcal{P}}, \theta_{\mathcal{T}}$
844 15: **end for**
845 16: **end for**
846 17: **return** Trained parameters $\theta_{\mathcal{E}}, \theta_{\mathcal{P}}, \theta_{\mathcal{T}}$, Final Memory Bank Z_{train}

847 **Algorithm 2 Inference**

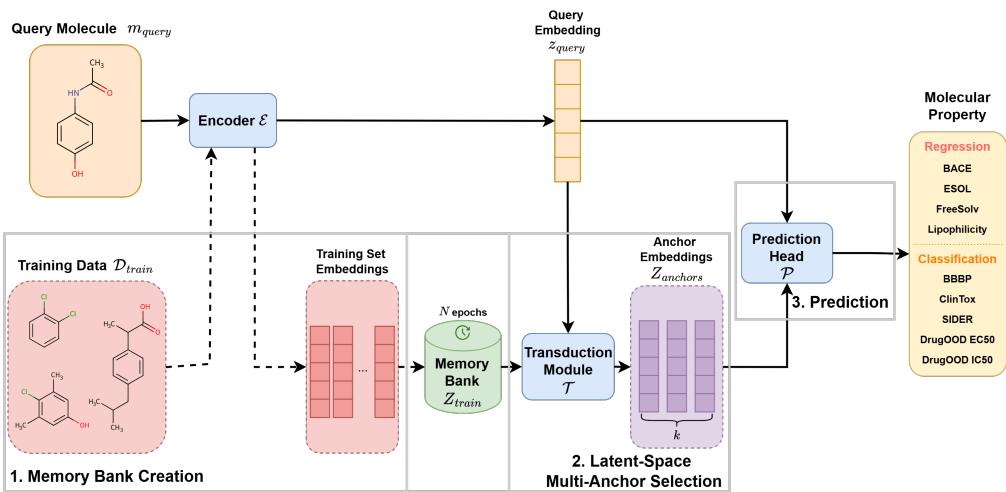
848 1: **Input:** Final Memory Bank $Z_{\text{train}}, m_{\text{query}}$
849 2: **Components:** Trained Molecular Encoder \mathcal{E} , Transduction Module \mathcal{T} , Trained Multi-Anchor Prediction
850 Head \mathcal{P}
851

852 3: $z_{\text{query}} \leftarrow \mathcal{E}(m_{\text{query}}; \theta_{\mathcal{E}})$
853 4: $Z_{\text{anchors}}, W_{\text{anchors}} \leftarrow \mathcal{T}(z_{\text{query}}, Z_{\text{train}}; \theta_{\mathcal{T}})$
854 5: $\hat{y}_{\text{query}} \leftarrow \mathcal{P}(z_{\text{query}}, Z_{\text{anchors}}, W_{\text{anchors}}; \theta_{\mathcal{P}})$

855 6: **return** Predictions \hat{y}_{query}

856
857
858
859
860
861
862
863

864 D MODEL STRUCTURE



865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 3: Overview of our proposed latent-space multi-anchor transductive framework

E ANCHOR SELECTION METHODS

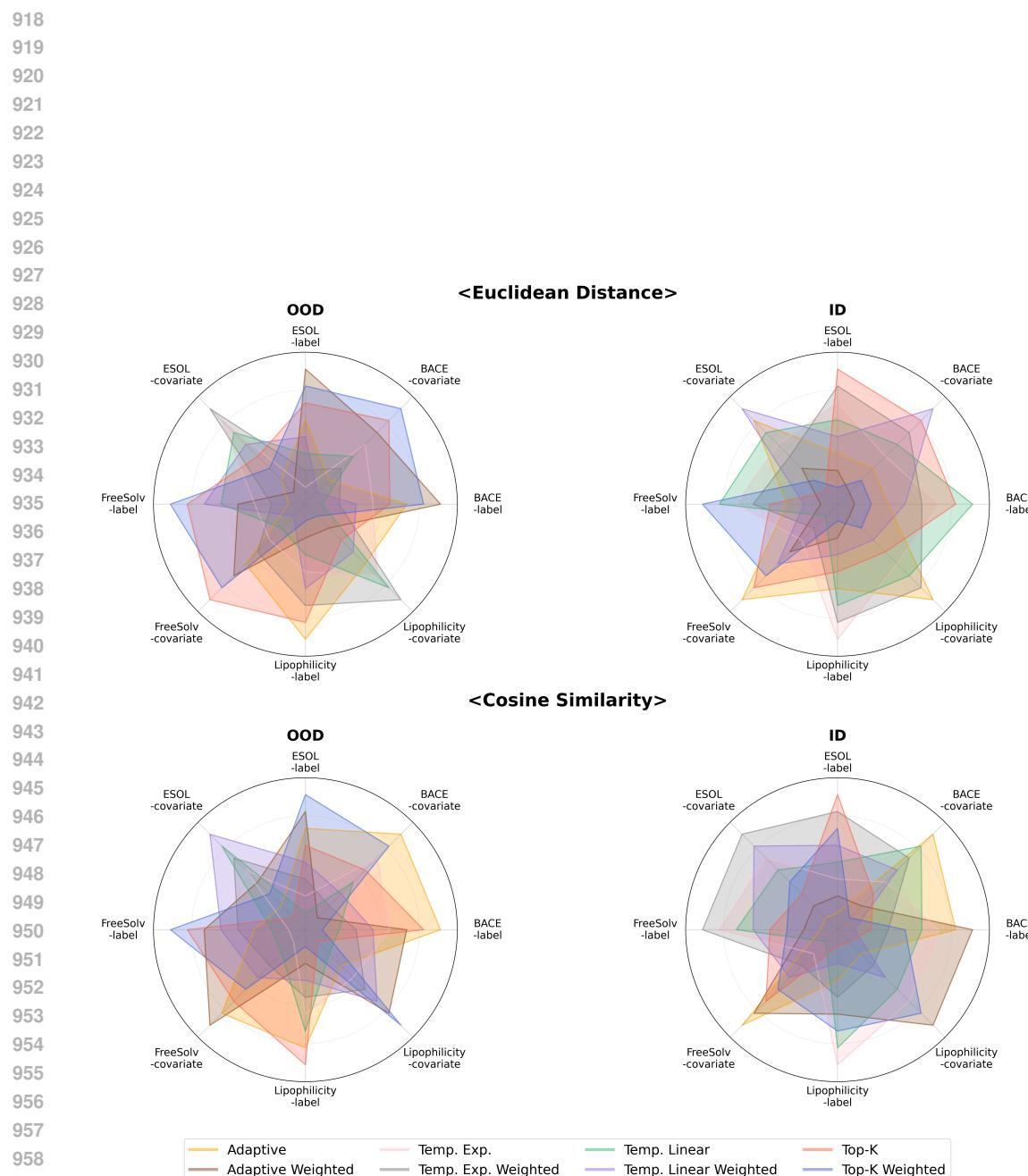
To investigate the importance and impact of different anchor selection strategies within our transductive learning framework, we evaluated several approaches. These methods primarily differ in how they identify relevant anchors from the Train, balancing factors such as similarity to the query, anchor diversity, or adaptation to local data density. Key approaches considered include selecting the straightforward Top-K most similar anchors, methods that aim for a diverse set of anchors, adaptive selection techniques, and temperature-based sampling which introduces stochasticity. The choice of distance metric, such as Euclidean distance or cosine similarity, also plays a significant role within these strategies.

We explored the following strategies:

- **Top-k:** Selects the k anchors closest (or most similar) to the query embedding.
- **Adaptive Selection:** Dynamically adjusts the number of selected anchors k_{adaptive} (within predefined bounds) based on the estimated local density of training samples around the query embedding in the latent space. Anchors beyond this adaptive count might be masked or ignored in subsequent steps.
- **Temperature Sampling:** Samples k anchors based on a probability distribution derived from the latent space similarities (or distances) to the query. The distribution is sharpened or softened by a temperature parameter τ ; lower temperatures approximate Top-k selection, while higher temperatures increase the probability of selecting less similar anchors, promoting randomness.

Figure 4 provides a comparative visualization of several of these anchor selection strategies, specifically focusing on their performance on various benchmark datasets.

The radar plots in Figure 4 illustrate these relative performances. Across the comprehensive set of evaluations detailed in this section, and considering factors such as performance consistency, robustness, and simplicity, the Top-K strategy utilizing Euclidean distance emerged as a strong and reliable default choice for our experiments.



960 Figure 4: Performance (MAE) of anchor selection strategies by rank, depicting (a) Euclidean-based
961 metrics and (b) Cosine-based similarity/distance metrics based methods. Each axis corresponds to a
962 specific benchmark dataset).

963
964
965
966
967
968
969
970
971

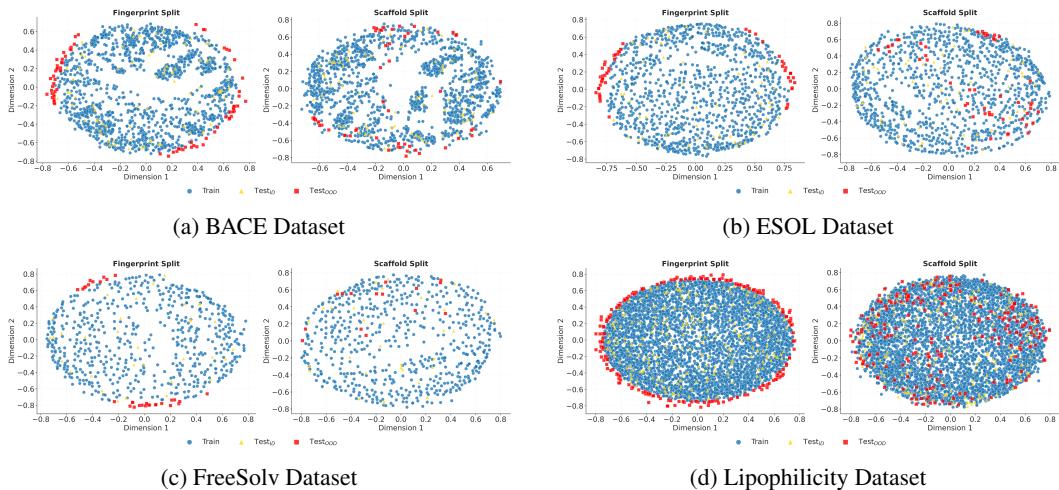
972 F SPLIT METHODS 973

974 The method used to split data into **Train**, **Test_{ID}**, and **Test_{OOD}** sets is crucial for rigorously evaluating
975 a model's generalization capabilities. As visualized in Figure 5, a Multidimensional Scaling (MDS)
976 projection based on pairwise Tanimoto similarity between molecular fingerprints initially suggests
977 that a fingerprint-based split yields a more distinct separation between train and OOD samples
978 compared to a scaffold-based split. However, this apparent clarity can be misleading, fingerprint-level
979 similarity does not inherently capture or reflect scaffold-level dissimilarity, which is often a more
980 relevant measure of structural novelty in drug discovery and molecular design.

981 To more directly and robustly assess the introduction of structural novelty in the OOD set, we
982 evaluated the similarity between **Test_{OOD}** and train molecules using three distinct Bemis-Murcko(BM)
983 scaffold-level similarity metrics. The results, presented in Figure 6, demonstrate the comparative
984 efficacy of scaffold-based versus fingerprint-based splitting strategies:

- 985 • **Scaffold Tanimoto Similarity (Figure 6a):** When assessed using Tanimoto similarity at the
986 BM scaffold level, the scaffold-based split consistently produces a **Test_{OOD}** set with lower
987 similarity to the **Train**. This indicates a clear introduction of structurally dissimilar scaffolds
988 in the **Test_{OOD}** under this splitting regime.
- 989 • **Scaffold Maximum Common Substructure (MCS) Similarity (Figure 6b):** The trend
990 continues with MCS similarity, a more stringent measure of structural overlap. Scaffold
991 splits again result in **Test_{OOD}** samples that have lower MCS similarity to **Train** set, an effect
992 that is particularly evident in the ESOL and FREESOLV datasets.
- 993 • **Scaffold CATS Pharmacophore Similarity (Figure 6c):** Using CATS pharmacophore
994 similarity, which captures 3D pharmacophoric features of the scaffolds, scaffold splits
995 generally tend to lower the functional similarity of the **Test_{OOD}** set. However, this effect is
996 less pronounced and shows more variability across the different datasets compared to the
997 Tanimoto and MCS metrics.
- 998

999 Collectively, these analyses, particularly the significant reductions in similarity observed with the
1000 Tanimoto and MCS metrics (Figure 6a and 6b), validate our adoption of scaffold-based splitting.
1001 This approach provides a more rigorous and principled methodology for creating **Test_{OOD}** sets with
1002 genuine structural novelty, which is essential for evaluating the true generalization capabilities of
1003 models in structure-based settings.



1021 Figure 5: Chemical space distribution comparison for fingerprint and scaffold splits across four
1022 molecular property datasets. Each panel displays a 2D MDS projection based on molecular fingerprint
1023 Tanimoto similarity. Colors distinguish **Train**, **Test_{ID}**, and **Test_{OOD}** samples.

1026

1027

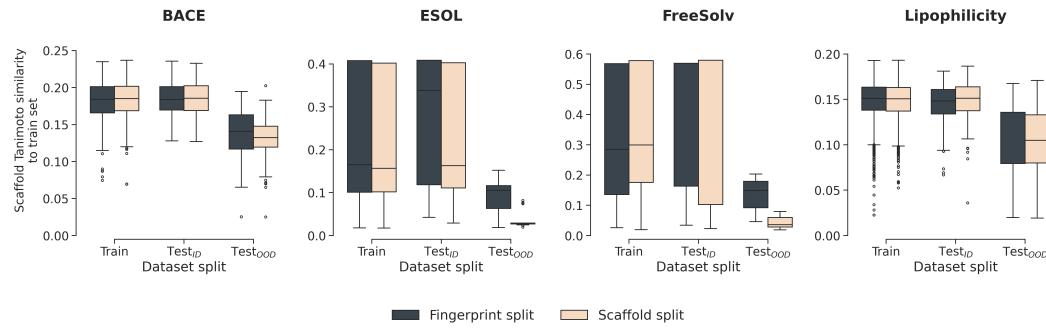
1028

1029

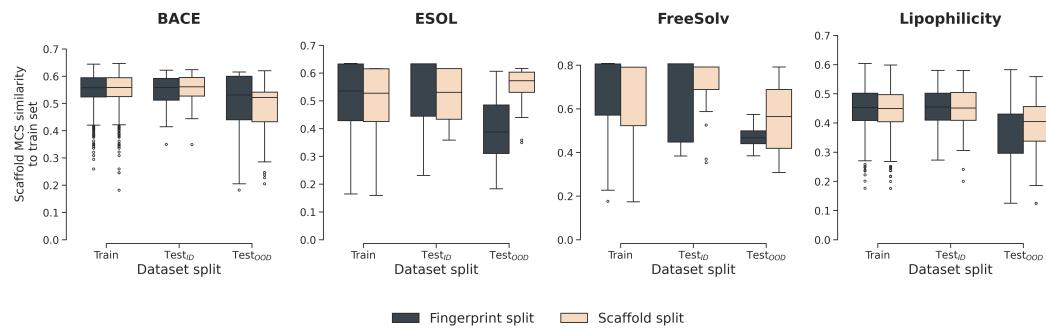
1030

1031

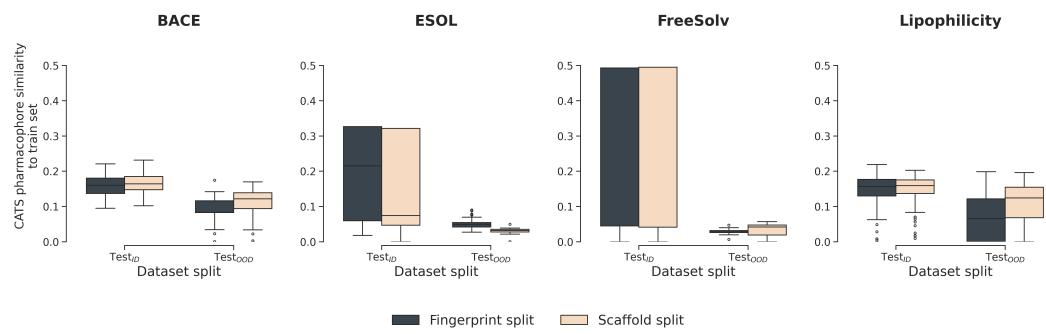
1032



(a) Bemis-Murcko scaffold Tanimoto similarity.



(b) Bemis-Murcko scaffold Maximum Common Substructure (MCS) similarity.



(c) Bemis-Murcko scaffold CATS pharmacophore similarity.

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

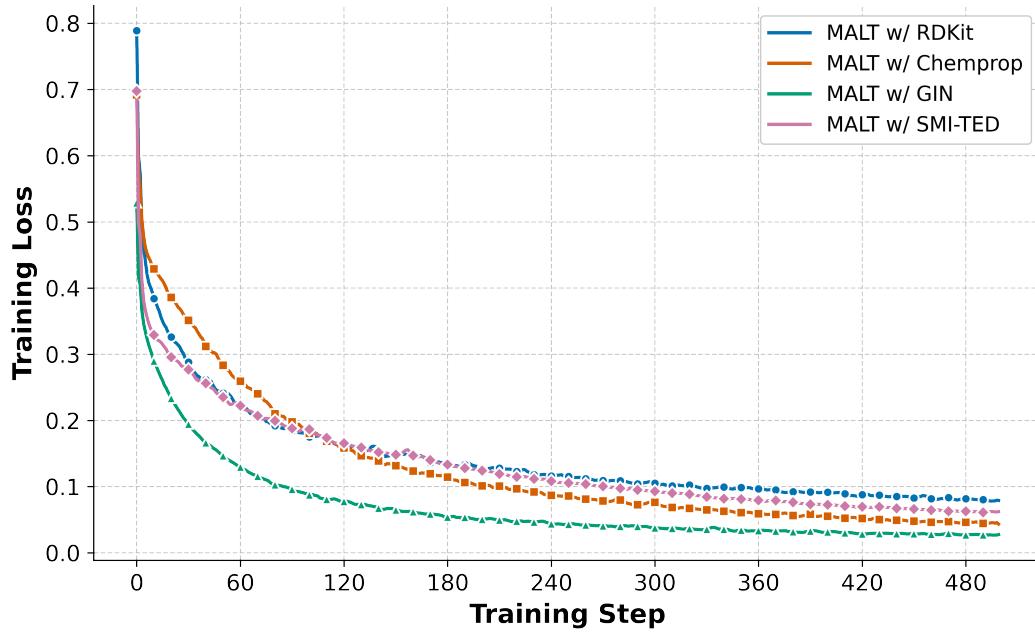
Figure 6: Comparison of scaffold-level similarity between the test sets and the training set for fingerprint VS scaffold splits, evaluated using three Bemis-Murcko scaffold similarity criteria: (a) Tanimoto similarity, (b) Maximum Common Substructure (MCS) similarity, and (c) CATS pharmacophore similarity. Distributions show similarity values for Training, Test_{ID} (scaffold), Test_{OOD} (scaffold), Test_{ID} (fingerprint), and Test_{OOD} (fingerprint) sets. Scaffold splits generally yield lower similarity for the Test_{OOD} set, indicating stronger structural and functional distributional shifts.

1080 G IMPLEMENTATION DETAILS

1081
 1082 We trained all models on 4 * AMD EPYC 7742 64-Core Processor (256 cores) CPUs, 8 * RTX
 1083 3090 GPUs, 512GB RAM. We set 500 epochs as default and 100 epochs for large models(SMI-TED
 1084 and Unimol). Hyperparameter configurations and training loss curves are presented in Table 7 and
 1085 Figure 7. Checkpoints are collected at the final epoch, after convergence.

1086
 1087 Table 7: Hyperparameter configurations for experimental setup.

1089 Parameters	1090 Settings	1091 Values
1092 Batch Size		1093 64, 128, 256, 512
1094 Epochs	1095 Inductive Models BLT, MALT (regression) BLT (classification) MALT (classification)	1096 10, 30, 50, 100 1097 100, 200, 500, 1000 1098 100, 500, 1000, 2000 1099 10, 20, 50, 100
1100 Number of anchors k		1101 1, 3, 5, 10
1102 Learning Rate		1103 $10^{-3}, 10^{-4}, 10^{-5}$



1121
 1122 Figure 7: Comparison of training loss curves for MALT variants using RDKit, Chemprop, GIN, and
 1123 SMI-TED representations across 500 training steps.

1134 H FURTHER ABLATION STUDY RESULTS

1135
1136 Table 8: Performance (MAE) Comparison of Encoder Training Strategies. Strategies involve inductive
1137 finetuning ("Finetune O/X") and whether the encoder is adapted during transduction ("Adapt O") or
1138 kept frozen ("Adapt X"). Cell colors in orange indicate settings where "Finetune O, Adapt O" shows
1139 lower MAE. Green indicates when other settings result in lower MAE. Bold: lowest MAE in column.

1141 Setting	1142 Models	1143 BACE		1143 ESOL		1143 FreeSolv		1143 Lipophilicity	
		1144 Test _{ID}	1144 Test _{OOD}						
Covariate Shift (X-Splits)									
Finetune X, Adapt X	Chemprop	0.4508 ± 0.0321	1.0973 ± 0.1283	0.2995 ± 0.0265	0.6525 ± 0.0569	0.2145 ± 0.0250	0.5827 ± 0.1009	0.5273 ± 0.0133	0.8090 ± 0.0330
1145	Pretrained GNN	0.3212 ± 0.0074	0.6763 ± 0.0624	0.2612 ± 0.0082	0.5326 ± 0.0031	0.2120 ± 0.0047	0.4389 ± 0.0380	0.3648 ± 0.0023	0.5606 ± 0.0102
1146	SMI-TED light	0.3767 ± 0.0171	0.8553 ± 0.0431	0.3187 ± 0.0182	0.5508 ± 0.0156	0.2878 ± 0.0204	0.5210 ± 0.0461	0.4036 ± 0.0076	0.5584 ± 0.0160
Finetune O, Adapt X	Chemprop	0.3944 ± 0.0183	0.9481 ± 0.0341	0.2061 ± 0.0183	0.4676 ± 0.0423	0.1487 ± 0.0124	0.3423 ± 0.0498	0.3758 ± 0.0160	0.5545 ± 0.0199
1147	Pretrained GNN	0.2991 ± 0.0097	0.6810 ± 0.0712	0.2101 ± 0.0116	0.5310 ± 0.0113	0.1868 ± 0.0103	0.3694 ± 0.0362	0.3517 ± 0.0100	0.5478 ± 0.0064
1148	SMI-TED light	0.3342 ± 0.0192	0.6487 ± 0.0390	0.2363 ± 0.0115	0.4141 ± 0.0175	0.1989 ± 0.0076	0.3272 ± 0.0352	0.4036 ± 0.0076	0.5584 ± 0.0160
Finetune O, Adapt O	Chemprop	0.2847 ± 0.0165	0.7783 ± 0.0553	0.2180 ± 0.0049	0.5072 ± 0.0154	0.1522 ± 0.0043	0.2999 ± 0.0164	0.3474 ± 0.0135	0.4894 ± 0.0263
1149	Pretrained GNN	0.3317 ± 0.0083	0.6333 ± 0.0347	0.2103 ± 0.0113	0.5305 ± 0.0120	0.1919 ± 0.0126	0.3388 ± 0.0255	0.3370 ± 0.0007	0.5369 ± 0.0007
1150	SMI-TED light	0.3037 ± 0.0046	0.6716 ± 0.0569	0.2057 ± 0.0052	0.4322 ± 0.0118	0.1497 ± 0.0161	0.2613 ± 0.0329	0.3608 ± 0.0120	0.5417 ± 0.0164
Label Shift (Y-Splits)									
Finetune X, Adapt X	Chemprop	0.4572 ± 0.0263	1.0237 ± 0.1289	0.2594 ± 0.0229	0.5097 ± 0.0229	0.3075 ± 0.0270	0.3461 ± 0.0525	0.4991 ± 0.0305	0.9026 ± 0.0708
1153	Pretrained GNN	0.3999 ± 0.0057	0.7052 ± 0.0254	0.2293 ± 0.0084	0.5607 ± 0.0134	0.2124 ± 0.0269	0.3453 ± 0.0156	0.3479 ± 0.0113	0.5004 ± 0.0068
1154	SMI-TED light	0.4104 ± 0.0139	0.9685 ± 0.0343	0.3686 ± 0.0068	0.8628 ± 0.0175	0.2868 ± 0.0163	0.8585 ± 0.0448	0.5246 ± 0.0052	1.1654 ± 0.0363
Finetune O, Adapt X	Chemprop	0.4132 ± 0.0325	0.9366 ± 0.0706	0.1941 ± 0.0079	0.4173 ± 0.0284	0.2019 ± 0.0173	0.2009 ± 0.0516	0.3489 ± 0.0141	0.5797 ± 0.0571
1155	Pretrained GNN	0.4057 ± 0.0111	0.7464 ± 0.0158	0.1849 ± 0.0090	0.5000 ± 0.0283	0.1386 ± 0.0151	0.3516 ± 0.0186	0.3497 ± 0.0767	0.4903 ± 0.0051
1156	SMI-TED light	0.3592 ± 0.0092	0.9228 ± 0.0226	0.2167 ± 0.0140	0.5566 ± 0.0281	0.2493 ± 0.0245	0.4763 ± 0.0395	0.3480 ± 0.0113	0.7379 ± 0.0206
Finetune O, Adapt O	Chemprop	0.3461 ± 0.0097	0.7705 ± 0.0287	0.1734 ± 0.0070	0.4994 ± 0.0114	0.1469 ± 0.0179	0.2753 ± 0.0530	0.3185 ± 0.0104	0.6444 ± 0.0151
1157	Pretrained GNN	0.3861 ± 0.0097	0.7340 ± 0.0121	0.1845 ± 0.0093	0.4989 ± 0.0267	0.1585 ± 0.0165	0.2637 ± 0.0220	0.3195 ± 0.0108	0.4690 ± 0.0108
1158	SMI-TED light	0.3546 ± 0.0164	0.8326 ± 0.0141	0.1852 ± 0.0096	0.5390 ± 0.0199	0.1716 ± 0.0061	0.2856 ± 0.0427	0.3300 ± 0.0097	0.6609 ± 0.0331

1159
1160 Table 9: Performance(MAE) Comparison of Top k Anchor Selection Strategies. Best results bolded,
1161 second best underlined. Performance shown across varying k values.

1164 Anchor Strategy	1165 Covariate Shift (X-Splits)								1165 Label Shift (Y-Splits)							
	1166 Test _{OOD}				1166 Test _{ID}				1166 Test _{OOD}				1166 Test _{ID}			
	BACE	Esol	FreeSolv	Lipo	BACE	Esol	FreeSolv	Lipo	BACE	Esol	FreeSolv	Lipo	BACE	Esol	FreeSolv	Lipo
Top k																
$k = 1$	0.6446	0.5804	0.4210	0.5409	0.3464	0.2658	0.2154	0.3724	0.7510	0.5424	0.4001	0.5860	0.3886	0.2397	0.1697	0.3398
$k = 3$	0.6933	0.5652	0.4031	0.5343	0.3171	0.2061	0.1906	0.3402	0.7587	0.5044	0.3715	0.4713	0.4041	0.2154	0.1423	0.3191
$k = 5$	0.6333	0.5515	0.3797	0.5263	0.3028	0.2151	0.1875	0.3443	0.7607	0.5040	0.3573	0.4842	0.4028	0.1906	0.1421	0.3125
Ours (Top 10)	0.6333	0.5305	0.3388	0.5369	0.3317	0.2103	0.1919	0.3370	0.7340	0.4989	0.2637	0.4690	0.3861	0.1845	0.1585	0.3195
Ours (10 \pm k th)																
$k = 1$	0.6675	0.5255	0.3726	0.6028	0.3557	0.2327	0.2094	0.3860	0.8211	0.5068	0.3642	0.4954	0.4446	0.2017	0.1536	0.3646
$k = 3$	0.6664	0.5218	0.3809	0.5677	0.3380	0.2209	0.1985	0.3729	0.8129	0.4997	0.3679	0.4903	0.4406	0.1906	0.1448	0.3494
$k = 5$	0.6710	0.5224	0.3847	0.5575	0.3326	0.2194	0.1943	0.3718	0.8062	0.5032	0.3694	0.4915	0.4409	0.1887	0.1412	0.3418
$k = 10$	0.6715	0.5259	0.3783	0.5516	0.3237	0.2212	0.1953	0.3758	0.7896	0.5022	0.3783	0.4879	0.4345	0.1892	0.1345	0.3419

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188

1189

1190

1191 Table 10: MALT-GIN’s Robustness to Noisy Anchors. Performance (MAE) is shown for Test_{ID} and
 1192 Test_{OOD} as the number of top-ranked anchors is replaced by the lowest-ranked (noisiest) ones. The
 1193 model shows stable performance, indicating the attention mechanism effectively discounts irrelevant
 1194 information.

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Noisy Anchors	BACE		ESOL		FreeSolv		Lipophilicity	
	Test_{ID}	Test_{OOD}	Test_{ID}	Test_{OOD}	Test_{ID}	Test_{OOD}	Test_{ID}	Test_{OOD}
Covariate Shift (X-Splits)								
0 (Default)	0.3338	0.7290	0.2142	0.5572	0.2085	0.4477	0.3003	0.4736
1	0.3583	0.6343	0.2281	0.5683	0.2133	0.4395	0.2992	0.4713
3	0.3338	0.9222	0.2158	0.6063	0.2206	0.4603	0.3003	0.4746
5	0.3269	0.8346	0.2186	0.5853	0.2175	0.4486	0.3009	0.4748
Label Shift (Y-Splits)								
0 (Default)	0.4191	0.7115	0.2160	0.5395	0.2086	0.4235	0.3024	0.4743
1	0.4206	0.6879	0.2264	0.5146	0.2139	0.4074	0.3019	0.4746
3	0.4344	0.7271	0.2287	0.5279	0.2207	0.4393	0.3020	0.4736
5	0.4061	0.7068	0.2264	0.5041	0.2181	0.4298	0.3027	0.4747

1214 Table 11: Comparison of MALT-GIN against k-NN averaging baselines on the OOD test set (Covariate
 1215 Shift). The full MALT model outperforms all simpler retrieval-based methods. Best results are in
 1216 **bold**.

Method	BACE	ESOL	FreeSolv	Lipo
MALT-GIN (Ours)	0.633	0.531	0.339	0.537
<i>k</i> -NN Averaging Baselines (MAE)				
MALT-GIN embedding	0.726	0.585	0.618	0.597
Pretrained GIN embedding	0.890	0.695	0.396	0.871
ECFP (Tanimoto)	0.841	0.773	0.551	0.921
Random Selection	1.385	1.365	0.949	1.252

1231 Table 12: OOD performance (MAE) on QM9 HOMO and LUMO prediction. Best results for each
 1232 target are in **bold**.

Model	HOMO	LUMO
MALT(Chemprop)	1.9960 ± 0.0010	0.9900 ± 0.0184
Chemprop	2.3452 ± 0.0405	1.1904 ± 0.0244
MALT(GIN)	2.2502 ± 0.0723	1.2799 ± 0.0047
Pre-trained GIN	2.3488 ± 0.0150	1.4612 ± 0.0189

1242 **I PARITY PLOT**
1243

1244 To assess the effectiveness of our method across both inductive and transductive settings, we present
1245 parity plots comparing the predicted and true values on various datasets and split types. As shown
1246 in Figure 8 and Figure 9, we evaluate several inductive models (Chemprop, GIN, and SMI-TED)
1247 and their MALT-enhanced variants under the label split. Across all base architectures, the MALT-
1248 integrated models yield predictions that are more closely aligned with the ideal diagonal and achieve
1249 lower mean absolute error (MAE), demonstrating consistent performance gains. In the transductive
1250 setting, Figure 10 compares the baseline BLT model with our proposed MALT-based model across
1251 four datasets and two OOD splits (covariate and label). In most cases, our method reduces the
1252 prediction error and aligns the outputs more tightly with the ground truth, validating its generalization
1253 capability under both feature and label distribution shifts.

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

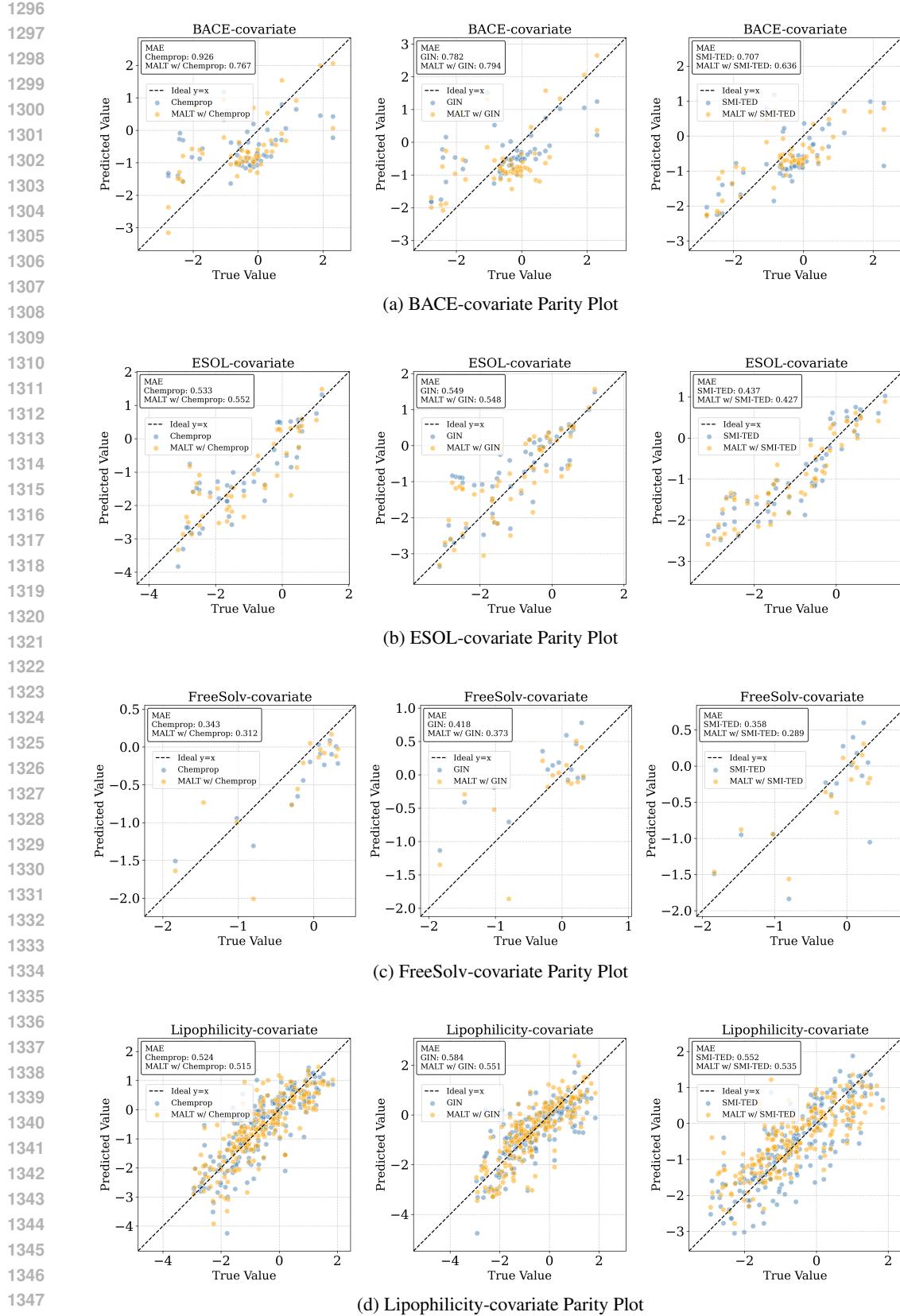
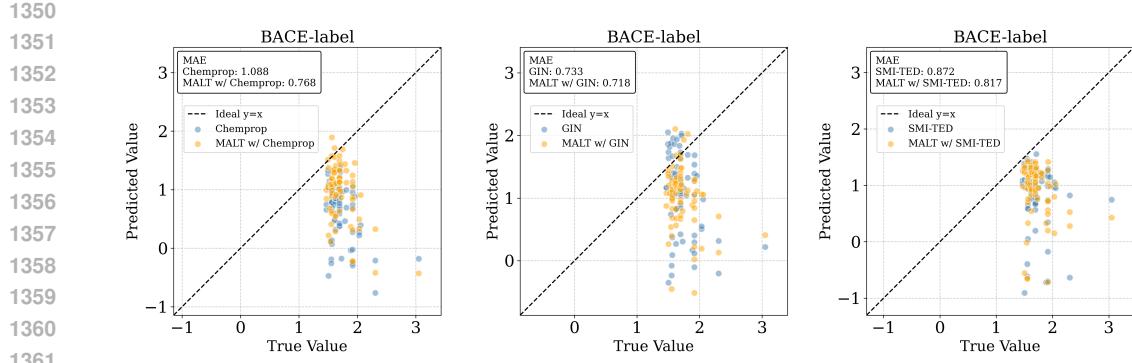
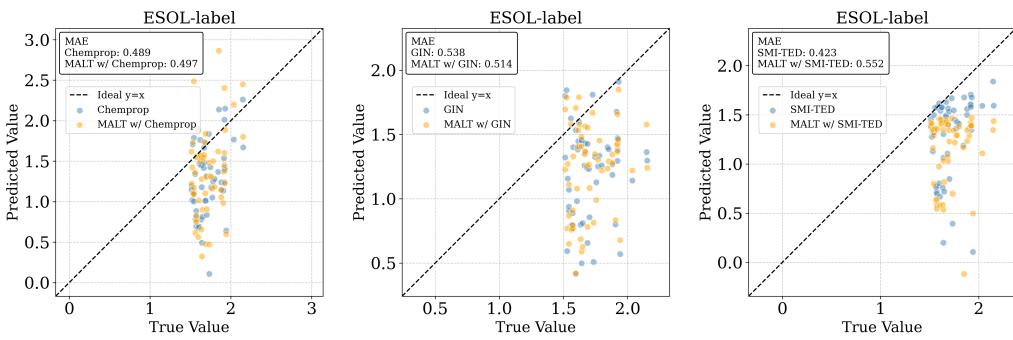


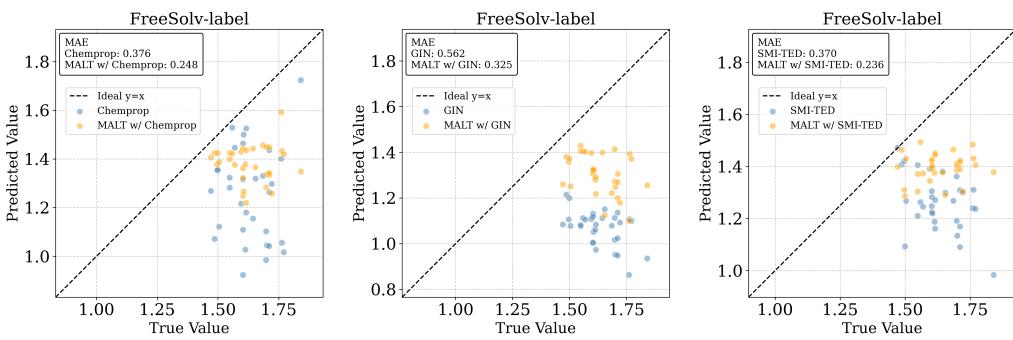
Figure 8: Parity plots comparing various inductive models and their MALT-enhanced variants under the covariate split.



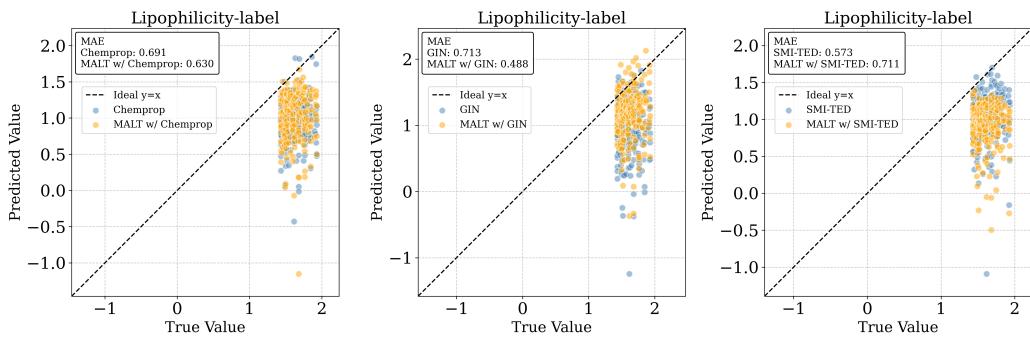
(a) BACE-label Parity Plot



(b) ESOL-label Parity Plot



(c) FreeSolv-label Parity Plot



(d) Lipophilicity-label Parity Plot

1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 9: Parity plots comparing various inductive models and their MALT-enhanced variants under the label split.

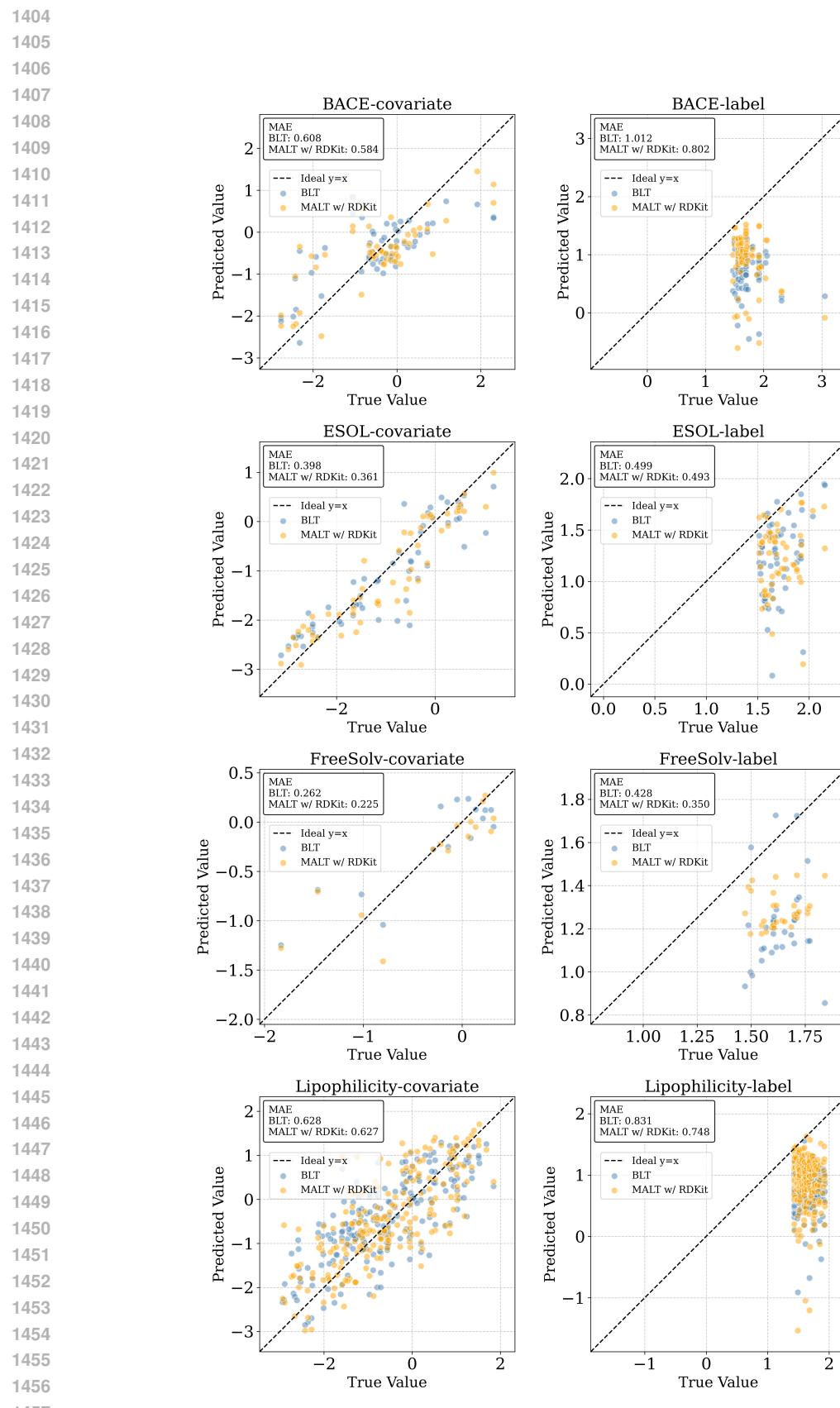


Figure 10: Parity plot comparison between BLT and MALT trained with RDkit across different datasets.

1458
1459

J EMBEDDING SPACE TRANSFORMATION COMPARISON

1460
1461
1462
1463
1464
1465

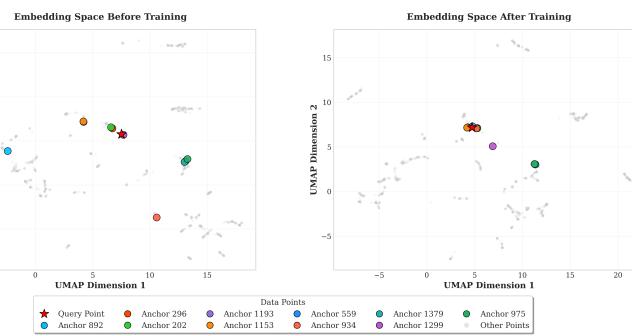
To further understand how our model reshapes the representation space, we visualize the embedding space of molecules before and after training using t-SNE. As illustrated in Figure 11 and Figure 12, we observe that the selected query point (red star) becomes more tightly clustered with its corresponding anchor points after training. This consistent contraction across multiple datasets suggests that the model effectively aligns semantically similar molecules in the latent space, promoting smoother generalization to OOD queries.

1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

Embedding Space Transformation (Query #18)

1513



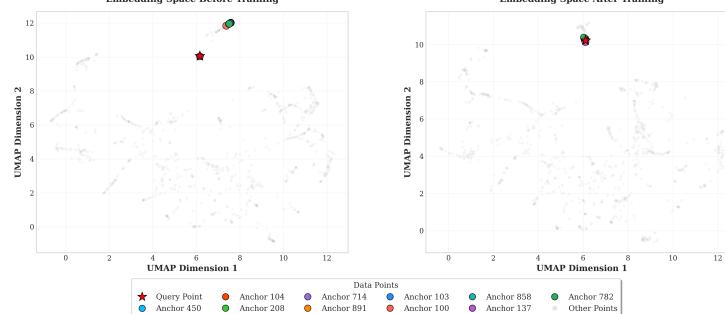
1514

(a) BACE-covariate Embedding Space Transformation Before vs. After Training

1515

Embedding Space Transformation (Query #10)

1516



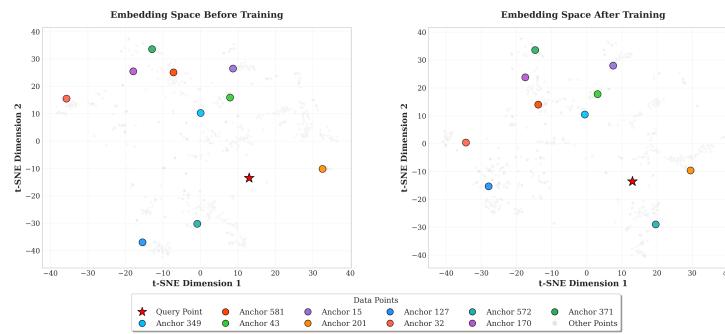
1517

(b) ESOL-covariate Embedding Space Transformation Before vs. After Training

1518

Embedding Space Transformation with Anchor Points (Query #4)

1519



1520

(c) FreeSolv-covariate Embedding Space Transformation Before vs. After Training

1521

Embedding Space Transformation with Anchor Points (Query #175)

1522

1523

(d) Lipophilicity-covariate Embedding Space Transformation Before vs. After Training

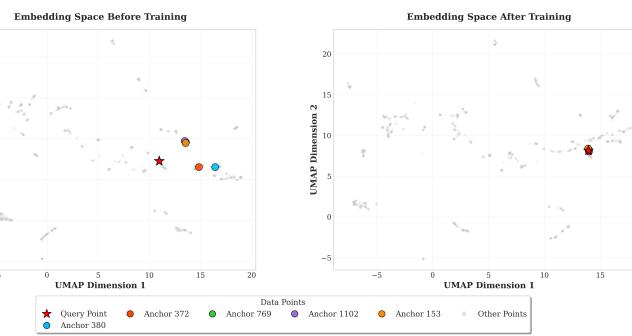
1524

Figure 11: Embedding space transformation from selected anchor embeddings before and after MALT training with GIN under the covariate split.

1566

Embedding Space Transformation (Query #54)

1567



1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

(a) BACE-label Embedding Space Transformation Before vs. After Training

1579

Embedding Space Transformation (Query #0)

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

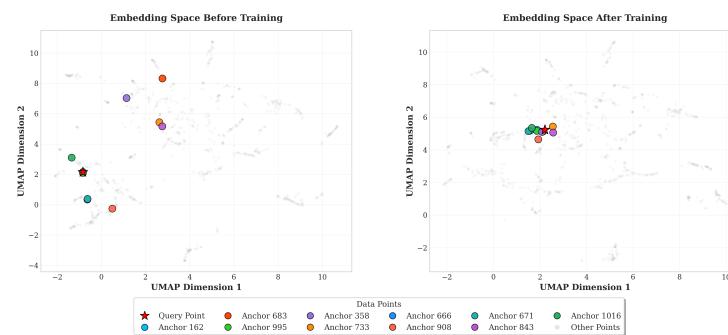
1616

1617

1618

1619

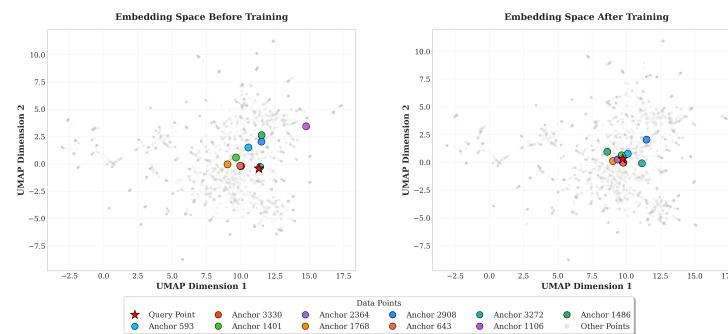
(a) BACE-label Embedding Space Transformation Before vs. After Training

Embedding Space Transformation (Query #0)

(b) ESOL-label Embedding Space Transformation Before vs. After Training

Embedding Space Transformation with Anchor Points (Query #0)

(c) FreeSolv-label Embedding Space Transformation Before vs. After Training

Embedding Space Transformation (Query #83)

(d) Lipophilicity-label Embedding Space Transformation Before vs. After Training

Figure 12: Embedding space transformation from selected anchor embeddings before and after MALT training with GIN under the label split.

1620 K THEORETICAL ANALYSIS OF MULTI-ANCHOR FUSION

1621
1622 We analyze why fusing multiple anchors improves OOD generalization. Working in a latent space
1623 \mathcal{Z} induced by a frozen encoder $E : \mathcal{X} \rightarrow \mathcal{Z}$, subtraction is well-defined so we can apply BLT in
1624 $(\Delta z, z')$ as in (11). (BLT Assumptions 3.1–3.3 and Thm. 1 are stated over $(\Delta x, x')$; with $z = E(x)$ the same
1625 setup holds over $(\Delta z, z')$ under the same assumptions.)

1626
1627 **Setup.** For a query x with $z = E(x)$ and a set of anchors $S(x) \subseteq \mathcal{Z}$, define the single-anchor
1628 predictor

$$1629 \quad h_\theta^{(z')}(x) := \langle f_\theta(z - z'), g_\theta(z') \rangle, \quad z' \in S(x),$$

1630 and the fused predictor

$$1631 \quad H_\Theta(x) := \sum_{z' \in S(x)} \alpha(x, z') h_\theta^{(z')}(x), \quad \alpha(x, z') \geq 0, \quad \sum_{z' \in S(x)} \alpha(x, z') = 1.$$

1632 Write $\alpha_j = \alpha(x, z^{(j)})$, $h^{(j)} = h_\theta^{(z^{(j)})}$, and let $y_*(x)$ be the scalar target. Define $\varepsilon_j(x) = h^{(j)}(x) -$
1633 $y_*(x)$, its conditional mean $\mu_j(x) = \mathbb{E}[\varepsilon_j(x) | x]$, and centered part $\eta_j(x) = \varepsilon_j(x) - \mu_j(x)$. We
1634 also use the anchor-indexed error $\varepsilon(x, z') := h_\theta^{(z')}(x) - y_*(x)$.
1635

1636 **Anchor mixture at test time.** An anchor selection rule is a conditional distribution $Q(\cdot | x)$
1637 supported on $S(x)$, which induces latent joint distributions

$$1638 \quad \overline{D}_{\text{train}} : (\Delta z, z') \quad \text{and} \quad \overline{D}_{\text{test}}^Q : (\Delta z, z') \text{ with } z' \sim Q(\cdot | x), \quad \Delta z = z - z'.$$

1639 We assume BLT Assumptions 3.1–3.3 hold in latent space for $(\overline{D}_{\text{train}}, \overline{D}_{\text{test}}^Q)$.
1640

1641 **Effective number of anchors and correlation control.** For fixed x ,

$$1642 \quad k_{\text{eff}}(x) := \frac{1}{\sum_j \alpha_j^2} \in [1, |S(x)|], \quad k_{\text{eff}}^{\min} := \inf_x k_{\text{eff}}(x).$$

1643 Assume bounded conditional cross-correlation among centered errors:

$$1644 \quad |\text{Corr}(\eta_j(x), \eta_\ell(x) | x)| \leq \rho \in [0, 1) \quad \text{for all } j \neq \ell, \quad (6)$$

1645 with the convention that $\text{Corr} = 0$ if either conditional variance is zero.
1646

1647 **Lemma K.1** (Variance bound under bounded cross-correlation). *For any fixed x ,*

$$1648 \quad \mathbb{E} \left[\left(\sum_j \alpha_j \eta_j(x) \right)^2 \mid x \right] \leq \left(\frac{1-\rho}{k_{\text{eff}}(x)} + \rho \right) \cdot \max_j \text{Var}(\eta_j(x) | x).$$

1649 *Proof.* Let $\Sigma_{j\ell} = \text{Cov}(\eta_j, \eta_\ell | x)$ and $\sigma_{\max}^2 = \max_j \Sigma_{jj}$. By equation 6, $|\Sigma_{j\ell}| \leq \rho \sqrt{\Sigma_{jj} \Sigma_{\ell\ell}} \leq$
1650 $\rho \sigma_{\max}^2$ for $j \neq \ell$. Hence
1651

$$1652 \quad \alpha^\top \Sigma \alpha \leq \sigma_{\max}^2 \left(\sum_j \alpha_j^2 + \rho \sum_{j \neq \ell} \alpha_j \alpha_\ell \right) = \sigma_{\max}^2 \left((1 - \rho) \sum_j \alpha_j^2 + \rho \right) = \sigma_{\max}^2 \left(\frac{1-\rho}{k_{\text{eff}}(x)} + \rho \right).$$

1653 \square

1654 **Theorem K.2** (Conditional MSE decomposition for fusion). *Under equation 6 and convex weights,*

$$1655 \quad \mathbb{E} \left[(H_\Theta(x) - y_*(x))^2 \mid x \right] \leq \underbrace{\left(\sum_j \alpha_j \mu_j(x) \right)^2}_{\text{squared bias}} + \left(\frac{1-\rho}{k_{\text{eff}}(x)} + \rho \right) \cdot \max_j \text{Var}(\eta_j(x) | x).$$

1656 *Consequently,*

$$1657 \quad R_{\text{test}}(H_\Theta) \leq \mathbb{E} \left[\left(\sum_j \alpha_j \mu_j(x) \right)^2 \right] + \left(\frac{1-\rho}{k_{\text{eff}}^{\min}} + \rho \right) \cdot \mathbb{E} \left[\max_j \text{Var}(\eta_j(x) | x) \right].$$

1658 *If $\mu_j(x) \equiv 0$ (per-anchor calibration), the multiplicative improvement on the variance term is
1659 $\frac{1-\rho}{k_{\text{eff}}^{\min}} + \rho \leq 1$, with equality only if $k_{\text{eff}}^{\min} = 1$ or $\rho = 1$.*
1660

1661 *Proof.* Write $H_\Theta - y_* = \sum_j \alpha_j \varepsilon_j = \sum_j \alpha_j \mu_j + \sum_j \alpha_j \eta_j$ and apply Lemma K.1 to the centered
1662 part. For the population bound, note $k_{\text{eff}}(x) \geq k_{\text{eff}}^{\min}$ and take expectations over x .
1663 \square

1674 **Connection to BLT.** Let $Q_\alpha(\cdot | x)$ be the distribution on $S(x)$ with density $\alpha(x, \cdot)$. Assume BLT
 1675 Assumptions 3.1–3.3 hold in latent space for $(\overline{D}_{\text{train}}, \overline{D}_{\text{test}}^{Q_\alpha})$ so that BLT Thm. 1 applies (11).
 1676

1677 **Theorem K.3** (BLT-on-mixture bound for H_Θ). *With squared loss and Assumption above,*

1678
$$R_{\text{test}}(H_\Theta) \leq \mathbb{E}_{(x, z') \sim \overline{D}_{\text{test}}^{Q_\alpha}}[(h_\theta^{(z')}(x) - y_\star(x))^2] \leq C_{\text{BLT}} \cdot R_{\text{train}}, \quad C_{\text{BLT}} = \text{poly}(\kappa, M/\sigma).$$

 1679

1680
 1681 *Proof.* For fixed x , Jensen yields $(H_\Theta(x) - y_\star(x))^2 \leq \sum_{z'} \alpha(x, z') (h_\theta^{(z')}(x) - y_\star(x))^2$. Taking
 1682 expectations gives the first inequality; BLT Thm. 1 gives the second. \square
 1683

1684 **Putting it together.** Combining Theorems K.2 and K.3,

1685
$$R_{\text{test}}(H_\Theta) \leq \min \left\{ C_{\text{BLT}} R_{\text{train}}, \mathbb{E} \left[\left(\sum_j \alpha_j \mu_j(x) \right)^2 \right] + \left(\frac{1-\rho}{k_{\text{eff}}^{\min}} + \rho \right) \mathbb{E} \left[\max_j \text{Var}(\eta_j(x) | x) \right] \right\}.$$

 1686

1687 If, in addition, $\text{Var}(\eta_j(x) | x) \leq \sigma^2$ uniformly over x, j , the last expectation can be replaced by σ^2 .
 1688

1690 L FURTHER EXPERIMENTS ACROSS PRACTICAL DRUG DISCOVERY 1691 SCENARIOS

1692 To further address the issue that standard scaffold splits may not fully capture the complexity of
 1693 real-world distributional shifts, we evaluated our framework on two more practical and chemically
 1694 meaningful OOD scenarios: activity cliffs and the Lo-Hi drug discovery benchmark.
 1695

1696 L.1 PERFORMANCE ON ACTIVITY CLIFFS BENCHMARK

1697 We augmented our evaluation with an **activity cliffs** benchmark, a difficult OOD challenge where
 1698 structurally similar compounds exhibit large differences in potency. Using the dataset from (28),
 1699 we defined the OOD test set as molecule pairs with high structural similarity but at least a tenfold
 1700 difference in potency.

1701 Across 30 pharmacological endpoints, our MALT framework demonstrated superior performance.
 1702 As summarized in Table 13, MALT-enhanced models achieved a top-2 rank far more frequently than
 1703 their base counterparts on both in-distribution and OOD(activity cliff) data, resulting in substantial
 1704 median RMSE reductions. The detailed per-dataset results are presented in Table 14 and Table 15.

1705 Table 13: Comprehensive performance summary on the activity cliffs benchmark across 29 datasets.
 1706 MALT significantly increases the number of top-2 finishes and reduces the median RMSE compared
 1707 to its base models on both ID and OOD splits.

Model	Test Split	MALT Top-2	Base Top-2	Median RMSE Reduction (%)
GIN	In-Distribution	2	1	8.1%
	OOD	18	2	12.7%
Chemprop	In-Distribution	11	0	8.7%
	OOD	16	3	7.1%
UniMol	In-Distribution	28	16	7.9%
	OOD	14	5	3.9%

1721 L.2 PERFORMANCE ON LO-HI DRUG DISCOVERY BENCHMARK

1722 We further tested our model on the Lo-Hi benchmark (30), which simulates two distinct stages of a
 1723 drug discovery campaign: Hit Identification (HI) and Lead Optimization (LO). HI is about identifying
 1724 novel, patentable drug-like molecules far from the training set, testing a model’s generalization.
 1725 LO is about optimizing known hits by predicting effects of small modifications, testing a model’s
 1726 fine-grained sensitivity. As shown in Table 16, MALT-GIN consistently outperforms baseline GIN
 1727 model in LO splits, demonstrating performance gains.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740 Table 14: Detailed In-Distribution Results (RMSE) for the Activity Cliffs Benchmark. The best result
1741 is in **bold** and the second-best is underlined.

1742

1743

Dataset	MALT(GIN)	GIN	MALT(Chemprop)	Chemprop	MALT_UniMol	UniMol
CHEMBL1862_Ki	0.837	0.840	0.852	0.961	0.707	0.800
CHEMBL1871_Ki	0.676	0.655	<u>0.634</u>	0.646	0.535	0.652
CHEMBL2034_Ki	0.586	0.839	0.780	0.809	<u>0.637</u>	0.713
CHEMBL2047_EC50	0.760	0.705	<u>0.633</u>	0.794	0.616	0.715
CHEMBL204_Ki	0.739	0.891	<u>0.709</u>	0.859	0.629	0.720
CHEMBL2147_Ki	0.842	1.008	0.688	0.801	0.567	<u>0.609</u>
CHEMBL214_Ki	0.663	0.777	<u>0.576</u>	0.660	0.563	0.614
CHEMBL218_EC50	0.770	0.816	0.811	0.823	0.644	<u>0.699</u>
CHEMBL219_Ki	0.799	0.826	<u>0.692</u>	0.784	0.656	0.706
CHEMBL228_Ki	0.730	0.843	0.719	0.764	0.664	<u>0.678</u>
CHEMBL231_Ki	0.722	0.788	0.734	0.812	0.610	0.699
CHEMBL233_Ki	0.842	0.950	<u>0.770</u>	0.837	0.736	0.772
CHEMBL234_Ki	0.753	0.845	0.718	0.768	0.646	0.700
CHEMBL235_EC50	0.705	0.767	0.626	0.705	0.546	<u>0.610</u>
CHEMBL236_Ki	0.791	0.849	0.754	0.781	0.697	0.744
CHEMBL237_EC50	0.842	0.905	0.666	0.976	<u>0.777</u>	0.910
CHEMBL237_Ki	0.728	0.854	0.667	0.728	<u>0.674</u>	0.701
CHEMBL238_Ki	0.648	0.696	0.630	0.738	0.559	<u>0.622</u>
CHEMBL239_EC50	0.695	0.679	<u>0.639</u>	0.685	0.625	0.709
CHEMBL244_Ki	0.711	0.944	0.717	0.807	0.669	<u>0.694</u>
CHEMBL262_Ki	0.810	0.804	0.838	0.946	0.697	<u>0.761</u>
CHEMBL264_Ki	0.652	0.725	0.580	0.635	0.541	0.564
CHEMBL2835_Ki	0.426	0.462	0.339	0.433	0.462	<u>0.417</u>
CHEMBL287_Ki	0.791	0.809	0.761	0.793	0.660	<u>0.697</u>
CHEMBL2971_Ki	0.696	0.785	0.662	0.719	0.609	<u>0.649</u>
CHEMBL3979_EC50	0.598	0.726	0.660	0.715	<u>0.621</u>	0.654
CHEMBL4005_Ki	0.648	0.780	0.638	0.698	0.492	<u>0.569</u>
CHEMBL4203_Ki	0.883	<u>0.849</u>	0.918	0.952	0.825	0.888
CHEMBL4792_Ki	0.882	0.751	<u>0.678</u>	0.792	0.614	0.681

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782
1783
1784
1785 Table 15: Detailed OOD Results (RMSE) for the Activity Cliffs Benchmark. The best result is in
1786 **bold** and the second-best is underlined.

Dataset	MALT(GIN)	GIN	MALT(Chemprop)	Chemprop	MALT_UniMol	UniMol
CHEMBL1862_Ki	0.765	1.041	0.811	0.846	<u>0.782</u>	0.833
CHEMBL1871_Ki	1.064	0.859	<u>0.909</u>	0.984	0.928	0.980
CHEMBL2034_Ki	<u>0.836</u>	1.045	0.940	0.952	0.827	0.843
CHEMBL2047_EC50	0.827	<u>0.694</u>	0.625	0.772	0.838	0.756
CHEMBL204_Ki	<u>0.905</u>	1.128	0.954	1.074	0.853	0.916
CHEMBL2147_Ki	0.635	1.182	0.658	0.836	<u>0.649</u>	0.708
CHEMBL214_Ki	0.771	0.883	<u>0.775</u>	0.796	0.797	0.797
CHEMBL218_EC50	0.802	0.853	<u>0.790</u>	0.849	0.733	0.813
CHEMBL219_Ki	0.757	0.863	<u>0.775</u>	0.821	0.840	0.874
CHEMBL228_Ki	0.727	0.887	<u>0.729</u>	0.881	0.846	0.806
CHEMBL231_Ki	0.982	1.034	0.908	0.833	0.923	<u>0.861</u>
CHEMBL233_Ki	0.878	0.995	<u>0.883</u>	0.950	0.890	0.903
CHEMBL234_Ki	0.734	0.875	0.619	0.707	<u>0.669</u>	0.701
CHEMBL235_EC50	0.830	0.889	0.770	0.838	<u>0.814</u>	0.859
CHEMBL236_Ki	0.855	0.936	0.885	0.924	0.799	<u>0.849</u>
CHEMBL237_EC50	0.905	0.972	0.940	0.999	<u>0.914</u>	1.014
CHEMBL237_Ki	<u>0.802</u>	0.993	0.782	0.853	0.803	0.827
CHEMBL238_Ki	<u>0.682</u>	0.709	0.723	0.748	0.681	0.748
CHEMBL239_EC50	0.829	0.948	<u>0.899</u>	0.996	0.938	0.940
CHEMBL244_Ki	<u>0.803</u>	1.138	0.762	0.888	0.853	0.881
CHEMBL262_Ki	0.864	1.143	0.921	0.928	0.736	<u>0.799</u>
CHEMBL264_Ki	0.695	0.886	0.689	0.768	0.721	0.714
CHEMBL2835_Ki	0.755	0.927	<u>0.905</u>	0.959	1.029	0.921
CHEMBL287_Ki	0.742	0.849	0.824	0.886	0.699	<u>0.713</u>
CHEMBL2971_Ki	0.685	0.857	<u>0.831</u>	0.899	0.846	0.930
CHEMBL3979_EC50	0.707	0.859	0.702	0.777	<u>0.703</u>	0.783
CHEMBL4005_Ki	0.751	0.875	0.804	<u>0.768</u>	0.791	0.810
CHEMBL4203_Ki	1.212	1.215	1.228	<u>1.173</u>	1.204	1.110
CHEMBL4792_Ki	0.647	0.729	<u>0.687</u>	0.798	0.674	0.734

1816
1817
1818
1819
1820
1821 Table 16: Comparison of MAE for GIN baseline vs. MALT-GIN on the Lo-Hi Benchmarks. Performance gains are shown for MALT. Best results are in **bold**.
1822
1823

Split	Dataset	GIN (Baseline)	MALT-GIN (Ours)	Gain (%)
HI (Realistic OOD)	BACE	0.8476 ± 0.0343	1.1882 ± 0.0488	-40.2%
	ESOL	0.4088 ± 0.0054	0.3979 ± 0.0087	2.7%
	FreeSolv	0.3571 ± 0.0268	0.3010 ± 0.0111	15.7%
	Lipo	0.5211 ± 0.0047	0.5758 ± 0.0145	-10.5%
LO (Realistic OOD)	BACE	0.7158 ± 0.0097	0.6791 ± 0.0181	5.1%
	ESOL	0.3423 ± 0.0099	0.3267 ± 0.0138	4.6%
	FreeSolv	0.4069 ± 0.0128	0.2393 ± 0.0118	41.2%
	Lipo	0.5012 ± 0.0057	0.4598 ± 0.0067	8.3%

1836 M COMPUTATIONAL OVERHEAD ANALYSIS 1837

1838 To address the scalability and practicality of our framework, we analyzed the computational overhead
1839 in three key areas: training, inference, and memory bank construction. Our findings show that the
1840 framework scales favorably and can be optimized for large-scale applications.
1841

1842 M.1 TRAINING OVERHEAD: ANCHOR SELECTION & MEMORY UPDATES 1843

1844 To assess training overhead, we compared our transductive MALT framework against a standard
1845 inductive GNN on two datasets of vastly different sizes: **BACE** (1,513 molecules) and **QM9** (133,885
1846 molecules). The primary additional costs of our framework are **Memory Update** and **Anchor
1847 Selection**. As shown in Tables 17, the total overhead per epoch was +52% on the small BACE dataset
1848 and +43% on the large QM9 dataset, indicating favorable scaling as the dataset size grows. However,
1849 as the dataset size increases, we can adjust the framework to update the memory bank every N epochs
1850 for efficient learning. For all the experiments we have conducted, we updated the memory bank every
1851 epoch.
1852

1853 Table 17: Per-Epoch Training Time Breakdown. Values in each cell are shown for the BACE dataset
1854 → QM9 dataset.
1855

1855 Training Component	1856 Inductive Model (s)	1857 MALT Framework (s)	1858 Overhead (s)
1859 Forward Pass (Total)	0.0693 → 14.9002	0.0800 → 17.7365	+0.0107 → +2.8364
1860 Query Embedding Extraction	0.0000 → 0.0000	0.0633 → 9.0935	+0.0633 → +9.0935
1861 Anchor Selection	0.0000 → 0.0000	0.0052 → 7.0040	+0.0052 → +7.0040
1862 Prediction Head	0.0000 → 0.0000	0.0115 → 1.6390	+0.0115 → +1.6390
1863 Backward Pass	0.1241 → 8.3738	0.1340 → 8.1957	+0.0099 → -0.1781
1864 Memory Update	0.0000 → 0.0000	0.0993 → 12.8468	+0.0993 → +12.8468
1865 Data Loading	0.0065 → 5.6589	0.0042 → 4.2272	-0.0023 → -1.4316
1866 Other Overhead	0.0367 → 4.1498	0.0418 → 4.2201	+0.0051 → +0.0703
1867 TOTAL EPOCH TIME	0.2366 → 33.0827	0.3592 → 47.2264	+0.1226 → +14.1437

1868 M.2 INFERENCE OVERHEAD: BRUTE-FORCE VS. FAISS OPTIMIZATION 1869

1870 To quantify inference overhead, we benchmarked the **Anchor Selection** step (nearest-neighbor
1871 search). Our brute-force PyTorch implementation was compared against **Faiss** (35) library over
1872 memory banks ranging from 10k to 10M vectors for different embedding dimensions. As shown
1873 in Table 18, for smaller memory banks ($\leq 100k$ vectors), our simple implementation is often faster.
1874 However, for larger banks and higher dimensions, Faiss provides a significant speedup, demonstrating
1875 a clear path to optimization for production-level applications.
1876

1877 Table 18: Faiss vs. PyTorch Nearest-Neighbor Search. Values in each cell are shown for embedding
1878 dimensions $D = 256 \rightarrow D = 128 \rightarrow D = 64$.
1879

1879 Bank Size	1880 PyTorch Init (ms)	1881 Faiss Init (ms)	1882 PyTorch Search (ms)	1883 Faiss Search (ms)	1884 Speedup
10k	1.84 → 1.89 → 1.70	91.5 → 160 → 93.1	0.22 → 0.16 → 0.15	0.32 → 0.31 → 0.36	0.68x → 0.50x → 0.41x
100k	16.9 → 20.2 → 12.4	162 → 228 → 116.5	1.45 → 1.00 → 0.62	1.47 → 1.76 → 2.26	0.99x → 0.57x → 0.27x
500k	128.7 → 86.3 → 94.5	394 → 306 → 212	7.24 → 5.09 → 3.09	6.57 → 7.79 → 10.28	1.10x → 0.65x → 0.30x
1M	175.1 → 148.2 → 129.6	672 → 506 → 382	14.48 → 10.20 → 6.14	12.94 → 15.44 → 20.39	1.12x → 0.66x → 0.30x
10M	2706.7 → 2240.5 → 1308.4	6317 → 4652 → 2653	134.70 → 102.20 → 61.44	127.70 → 152.00 → 202.10	1.05x → 0.67x → 0.30x

1885 M.3 MEMORY BANK CONSTRUCTION: BUILD TIME & MEMORY FOOTPRINT 1886

1887 We also evaluated the one-time cost of building the memory bank on datasets ranging from 10^3
1888 to 10^6 molecules. This procedure is performed once with gradients disabled to extract and store
1889 each molecule’s embedding. As shown in Table 19, the process scales linearly with the number of
1890 molecules, with embedding extraction being the main bottleneck (71% of the total time).
1891

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912

1913 Table 19: Memory Bank Construction Time and Size Scaling.
1914

1915	Dataset Size	Total Time (s)	Data Loading (s)	Embedding Extraction (s)	Concatenation (s)	Memory Size (MB)
1916	1,000	0.274	0.004	0.194	0.028	0.98
1917	5,000	0.771	0.006	0.540	0.014	4.88
1918	10,000	1.594	0.007	1.106	0.018	9.77
1919	50,000	7.709	0.044	5.517	0.148	48.83
1920	100,000	15.538	0.096	10.872	0.321	97.66
1921	500,000	75.837	0.396	53.686	1.782	488.28
1922	1,000,000	151.713	0.790	108.333	3.147	976.56

1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943