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ABSTRACT

Predicting molecular properties outside the training data distribution (Out-of-
Distribution, OOD) is critical for accelerating drug discovery. This task requires
models to extrapolate beyond known property ranges and generalize to novel chem-
ical structures—a common failure point for standard machine learning models in
realistic drug discovery scenarios. While transductive analogical reasoning shows
promise, prior methods are often constrained by fixed descriptors and single-anchor
comparisons. To overcome these limitations, we introduce Multi-Anchor Latent
Transduction (MALT) framework, which operates directly within a learned latent
space. MALT can leverage embeddings from any powerful, pre-trained molecular
encoder to select multiple relevant analogues of query molecule. It then integrates
the query and anchor embeddings to generate a final prediction. On rigorous OOD
benchmarks targeting shifts in both property values and chemical features, MALT
consistently improves generalization over standard inductive baselines. Notably,
our framework also matches or surpasses the in-distribution performance of these
base models. These findings establish multi-anchor transduction in latent space as
an effective strategy to augment existing molecular encoders, enabling robust and
extrapolative predictions needed to solve challenging discovery tasks.

1 INTRODUCTION

Machine learning(ML), particularly deep learning, holds immense promise for accelerating scientific
discovery in drug development and materials science by learning complex structure-property relation-
ships from data (1; 2). However, a critical limitation hinders their reliable deployment: their frequent
inability to generalize to out-of-distribution (OOD) data. This weakness stems from the violation of
the standard IID assumption, which causes dramatic performance drops and overconfident incorrect
predictions (3). In practice, models inevitably encounter molecules with novel scaffolds or different
property ranges (2; 4; 5), creating distribution shifts that generic OOD techniques often fail to address
for structured molecular data (4; 6; 7).

In practical drug discovery, these OOD challenges manifest in two crucial ways. First is covariate
shift, a major barrier as pharmaceutical companies often work with proprietary compounds built
on specific chemical scaffolds absent from public training data (8); this demands model robustness
to novel structures (4; 6). Another common scenario in the pharmaceutical industry is label shift,
where models are required to extrapolate beyond the observed range of property values in order to
optimize the activities of lead compounds or identify potential hazards and toxicity beyond the range
of training data (3; 9). Standard inductive models struggle with both challenges, often failing on even
more difficult phenomena like activity cliffs (10), where minor structural changes cause large potency
differences.

Transductive learning offers a complementary paradigm better suited for OOD challenges, particularly
extrapolation (11; 12). It makes predictions based on analogical reasoning between a query and
known training examples (9). However, existing transductive models are often limited by: (1) relying
on a single "best" anchor, which is brittle if no perfect analogy exists, and (2) performing reasoning in
a fixed descriptor space, potentially missing deeper similarities captured by learned representations.

To address these limitations and enhance OOD generalization for both covariate and label shifts, we
propose a flexible transductive learning framework. Our approach operates within learned latent
spaces and integrates seamlessly with any pre-trained molecular encoder, capturing rich chemical
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Figure 1: OOD challenges include: (a) covariate shift, where the model must generalize to molecules
with new chemical structures, and (b) label shift, where the model must extrapolate to predict
properties outside its training range. (c) MALT’s transductive mechanism uses a memory bank of
training examples to find multiple relevant anchors for given query molecule and particular task. By
fusing the query’s features with those of its closest anchors in a learned latent space, MALT produces
more robust and accurate OOD predictions

knowledge. Instead of a single analogy, our method identifies and reasons with multiple relevant
anchor molecules from the training data, dynamically fusing information from the query and its
anchors to enable a more robust and nuanced prediction.

Our contributions are as follows:

• We introduce a novel, model-agnostic transductive framework that enhances existing molec-
ular encoders by performing analogical reasoning in learned latent spaces, overcoming the
fixed-descriptor limitations of prior work to enable richer chemical representations.

• We propose a multi-anchor latent reasoning mechanism that synthesizes information from
multiple training analogs. This approach overcomes the brittleness of single-anchor methods,
yielding more robust predictions by aggregating diverse chemical context.

• Through rigorous evaluation on practical OOD benchmarks, we demonstrate our framework
systematically addresses both covariate and label shifts, improving OOD generalization.
Ablation studies further validate the contributions of our multi-anchor design and training
strategies, confirming their role in achieving robust performance that also matches or
surpasses baseline results on ID tasks.

2 RELATED WORKS

2.1 THE CHALLENGE OF OUT-OF-DISTRIBUTION GENERALIZATION

ML models excel at interpolation within their training domain but struggle to extrapolate reliably.
The ability to extrapolate is critical for discovering molecules with exceptional properties and is
invaluable for adapting to proprietary chemical spaces (13; 14). Developing models that overcome
these OOD limitations is therefore essential for trustworthy ML-driven discovery. Models often
fail when encountering data that differs significantly from their training distribution because they
are typically developed under the assumption that data is independently and identically distributed
(IID) (6). This assumption is frequently violated in real-world applications, where models must
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contend with novel chemical structures, unseen experimental conditions, or new property ranges.
This distribution shift, depicted in Figure 1(a), can cause severe performance degradation and yield
unreliable, overconfident predictions, limiting the practical utility of these models (3; 4). While
general OOD techniques exist for graph-structured data (15), the unique complexities of molecular
data necessitate domain-specific solutions.

In molecular modeling, OOD shifts can stem from multiple sources, such as variations in not only in
core molecular scaffolds but to molecular size, biological targets, or experimental protocols (2; 6; 16)
. These shifts manifest in two primary forms (1):

1. Covariate Shift: The distribution of molecular features, P (X), changes. This typically
occurs when the model must predict properties for novel chemical structures not represented
in the training set (Figure 1(a), Top).

2. Label Shift: The marginal distribution of the target property, P (Y ), changes. This is relevant
when extrapolating to property values that are rare or entirely absent in the training data
(Figure 1(a), Bottom). In this scenario, the underlying relationship P (Y |X) is assumed to
be stable, but the model must make accurate predictions for Y values in sparsely populated
regions of the target space.

2.2 STRATEGIES FOR OOD MOLECULAR PROPERTY PREDICTION(MPP)

Much of the work on out-of-distribution (OOD) molecular modeling has aimed to improve the
robustness of inductive models. One common strategy is learning invariant representations (6; 17),
which seeks to identify stable, predictive structural features across different data environments.
However, capturing true invariance is difficult and often requires specific environmental labels that
aren’t always available. Another approach, uncertainty quantification (UQ) (3), uses prediction
confidence to detect potential OOD failures. While useful for flagging unreliable predictions, UQ
doesn’t inherently improve the model’s accuracy on OOD samples without further adaptation (18),
and some methods can be resource-intensive and complex (19). A third strategy involves leveraging
unlabeled data through methods like self-supervised or semi-supervised learning (7). For instance,
domain-adaptive pre-training (DAPT) can enhance encoder representations by continuing pre-training
on data similar to the target task. Other techniques use pseudo-labeling to integrate unlabeled data
directly into training, though this risks propagating errors from inaccurate labels (20). While these
methods improve encoders through more training, our work introduces a complementary, transductive
approach that enhances them via analogical reasoning at inference time.

2.3 TRANSDUCTIVE STRATEGIES FOR OOD EXTRAPOLATION

Transductive learning aids OOD extrapolation by incorporating test queries Xtest alongside training
data {(Xtrain, Ytrain)}. It often employs analogical extrapolative reasoning, comparing a query x
to training examples x′, improving robustness for OOD inputs or target values beyond the training
range. One transductive approach is Test-Time Adaptation (TTA) (12; 21; 22), which adapts model
parameters using unlabeled test batches to handle domain shifts. TTA focuses on model adaptation
rather than direct prediction via training analogies and can be computationally intensive at inference.

Bilinear Transduction (9; 11) is a transductive method that formalizes analogical reasoning for out-
of-distribution (OOD) prediction. This approach enables extrapolation by learning how properties
change as functions of compositional differences, rather than learning direct mappings from materials
to properties. Instead of learning a direct mapping h : X → Y , it learns to predict a target value yi
from an anchor point xj and their difference vector ∆x = xi − xj using a bilinear predictor of the
form:

hθ(∆x, x) = fθ(∆x)⊙ gθ(x) (1)
where fθ and gθ are neural networks and ⊙ represents element-wise multiplication.

The model is trained using only pairs where the anchor has lower property values than the target
(yj < yi), ensuring the model learns to extrapolate from lower to higher property values. The training
objective minimizes:

L(θ) =
n∑

i=1

∑
j:yj<yi

ℓ(hθ(xi − xj , xj), yi) (2)
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where the difference vectors form the constrained set Dtr
∆X = {xi − xj | xi, xj ∈ Dtr

X , yj < yi}.

For a test query xte, an anchor xan is selected from the training set by minimizing the distance to the
nearest training difference:

xan = arg min
xan∈Dtr

X

{∥xte − xan −∆xtr∥2 | ∆xtr ∈ Dtr
∆X} (3)

The final prediction is then calculated as yte = hθ(xte − xan, xan).

Key limitations of this approach include: (1) reliance on hand-crafted descriptors rather than learned
representations, (2) no uncertainty quantification in anchor selection, leading to potential brittleness
from using a single anchor point, and (3) often reduced in-distribution accuracy compared to standard
regression approaches.

Our proposed framework addresses these shortcomings by employing multi-anchor reasoning directly
within learned latent representations derived from powerful molecular encoders, aiming for more
robust and nuanced analogical predictions. We provide a detailed qualitative (Appendix A) and
systematic chemical analysis (Appendix B) of anchors. Together, these sections highlight our model’s
ability to select informative and diverse anchors under distribution shifts—demonstrating a key
strength of our approach.

3 METHODS

Our proposed framework augments standard inductive molecular property predictors with a trans-
ductive component operating in the latent space. The core idea is to leverage similarities between a
query molecule embedding and those of multiple anchor molecules from the training set to improve
prediction. The framework consists of three main components: an "arbitrary" molecular encoder
(responsible for memory bank creation), a latent-space multi-anchor selection component (the trans-
duction module), and a multi-anchor prediction head. The detailed pseudocode for our training
and inference procedures can be found in Appendix C. An overview of the model architecture is
presented in Appendix D. The choice to use multiple anchors is theoretically motivated, as this fusion
mechanism can be shown to achieve a tighter test error bound compared to single-anchor methods,
thereby improving OOD generalization (see Appendix K for the full derivation). A detailed analysis
of the framework’s computational overhead is provided in Appendix M.

3.1 MEMORY BANK

The foundation for the transductive component is a memory bank Ztrain containing fixed-dimensional
latent embeddings zi ∈ Rd for all molecules (mi, yi) in the training set Dtrain. This allows the
framework to explicitly leverage similarities within the training data during prediction by serving as
the source for anchor point selection.

Embeddings z = E(M) are generated using a modular molecular encoder E . The framework
design allows substituting any arbitrary architecture. In our experiments, we utilized several
molecular encoders, including pretrained Graph Isomorphism Network (GIN) models (23), pretrained
sequence-based models operating on SMILES (24), and a widely used Message Passing Neural
Network (MPNN) model (25). The encoder can be initialized using various strategies, such as
loading pretrained weights, using weights previously fine-tuned on Dtrain, or starting from random
initialization.

Crucially, unless explicitly frozen, the encoder E is trained end-to-end with the transduction module
and prediction head components, allowing its parameters θE to be updated during the main training
loop (Refer to Table 8 for more information regarding training strategies). Consequently, the memory
bank embeddings Ztrain must remain consistent with the evolving encoder. Thus, Ztrain is periodically
regenerated (e.g., every N epochs) by re-applying the updated encoder E to all training molecules
Mi ∈ Dtrain (represented as SMILES (26) or graphs, depending on the encoder). Despite updating
the memory bank every epoch, we did not observe a prohibitive increase in overall training time or
computational requirements (refer to Appendix M for detailed computational overload analysis).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

The memory bank used by the transduction module at any given point is thus formally defined based
on the current encoder state:

Ztrain = {zi = E(mi; θE) | (mi, yi) ∈ Dtrain} (4)

3.2 TRANSDUCTION MODULE: LATENT-SPACE MULTI-ANCHOR SELECTION

Given a query molecule mquery and its latent embedding zquery = E(mquery), the transduction
module T selects k anchor embeddings Zanchors = {za1 , . . . , zak

} from the memory bank Ztrain.
This selection is based on similarity or distance metrics (e.g., cosine similarity and Euclidean distance)
calculated between the query zquery and the embeddings zi within Ztrain. The transduction module
outputs the selected anchor embeddings Zanchors and potentially their corresponding similarity/distance
scores Wanchors relative to the query. In our experiments we chose Top-K with Euclidean distance as
our default choice. A detailed comparison and explanation of anchor selection methods experimented
is presented in Appendix E, which also outlines the evaluation process and provides the rationale for
our default choice.

3.3 MULTI-ANCHOR PREDICTION HEAD

The prediction head P integrates information from the query embedding zquery and the selected
anchor embeddings Zanchors to produce the final property prediction ŷquery . We employ a multi-head
cross-attention mechanism where zquery attends to the anchor embeddings Zanchors (serving as keys
and values) to derive an attended anchor representation zattn.

zattn = MultiHeadAttention(Q = zquery,K = Zanchors, V = Zanchors) (5)

This attended representation zattn is then combined with the original query embedding zquery. Op-
tionally, the original anchor similarity/distance scores Wanchors can also be incorporated at this stage
to provide the final layers with explicit information about the relevance of each selected anchor. The
resulting fused representation (containing information from zquery, zattn, and potentially Wanchors)
is processed through subsequent layers (e.g., an MLP consisting of linear layers and activation
functions) to produce the final prediction ŷquery. The advantage of using multi-anchors and our
prediction head is further analyzed in the ablation studies.

4 PERFORMANCE EVALUATION

4.1 EXPERIMENTAL SETTINGS

Datasets To rigorously evaluate our framework, we selected datasets from three distinct and
complementary benchmarks designed to test performance under various distribution shifts, ensuring
a thorough assessment across diverse chemical properties and demanding OOD scenarios.

• MoleculeNet (27): Widely used benchmark for its broad range of properties, including
quantum mechanics, physical chemistry, biophysics, and physiology of molecules . We
selected standard regression and classification tasks, aligning with methodologies from prior
work (9).

• DrugOOD (2): To focus on targeted OOD challenges in drug discovery, we employed this
systematic curator for drug target binding affinity prediction . We specifically used its
curated IC50 and EC50 datasets with a scaffold splitting strategy for classification, following
the setup in (17).

• Activity Cliffs (28): To assess performance on a particularly difficult OOD challenge, we
used the activity cliffs benchmark. This scenario tests a model on structurally similar
compounds that exhibit large differences in potency. The OOD test set for this benchmark
consists of molecule pairs with high structural similarity but at least a tenfold difference in
potency, evaluated across 30 different macromolecular targets.

Splits To rigorously evaluate OOD generalization, we employ a variety of data splitting strategies
that induce different types of distributional shifts. These include standard approaches for structural
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novelty (covariate shift) and property value extrapolation (label shift), as well as more complex,
chemically meaningful scenarios designed to mimic real-world drug discovery challenges.

For inducing standard covariate shifts, which test generalization to new chemical structures, we
follow established methodologies. For MoleculeNet datasets, we adopt the approach from (29), which
uses spectral clustering on molecular cyclic skeletons to identify and separate the most structurally
dissimilar molecules into an OOD test set. As validated in Appendix F, this method effectively
creates a structural divide. For the DrugOOD classification task (2), we also include experiments
where covariate shift is defined by molecular size (2, DrugOODori)).

To address the critique that standard scaffold splits may not fully capture the complexity of real-world
challenges, we incorporated two additional, more practical OOD scenarios:

• Activity Cliffs: Following (28), the OOD test set is constructed from molecule pairs with
high structural similarity but at least a tenfold difference in potency.

• Lo-Hi Benchmark: This split simulates two distinct stages of a drug discovery campaign:
Hit Identification (HI) and Lead Optimization (LO). Following (30), this setup provides a
more realistic assessment of a model’s utility in a prospective drug discovery pipeline.

For evaluating label shift extrapolation, we adopt the straightforward strategy from (9). In this setup,
the OOD test set consists of molecules possessing the highest target property values, specifically
those falling within the top 5% of the dataset’s target value range. An accompanying ID test set is
created by randomly sampling from the remaining 95% of the data.

Evaluation metrics Following the evaluation criteria adopted by baseline models, we use AUROC
to evaluate performance on classification tasks, including DrugOOD(IC50, EC50) and MoleculeNet
(BBBP, ClinTox, SIDER). For regression tasks, we report MAE for MoleculeNet (BACE, ESOL,
FreeSolv, Lipophilicity) and Lo-Hi benchmarks. For the Activity Cliffs benchmark, we report RMSE
following prior work.

Baselines To evaluate the effectiveness of our proposed framework, we compare its performance
against several relevant baselines.

We include standard inductive-learning based MPP models. These represent the performance achiev-
able using the base encoders without the transductive augmentation and were fine-tuned and evaluated
under the same experimental conditions as our proposed method:

• Chemprop (25): A widely used directed message-passing neural network architecture for
MPP.

• Pretrained GIN (23): A Graph Isomorphism Network(GIN) model, pre-trained on both su-
pervised graph-level property prediction and atom-level context prediction as self-supervised
pre-training strategies, learning from a dataset of 2 million molecules sourced from ZINC15
(31).

• SMI-TED (24): A Transformer-based encoder-decoder pre-trained using self-supervised
learning on a large, curated dataset from PubChem (32) containing 91 million SMILES
strings.

• iMoLD (17): A framework for learning invariant molecular representations in a latent
discrete space. It employs a "first-encoding-then-separation" strategy with an encoding
GNN and a residual vector quantization module, along with a task-agnostic self-supervised
learning objective to enhance out-of-distribution generalization.

We also include a transductive framework as a baseline, which is evaluated using either standard
chemical features or embeddings from the inductive-learning models mentioned above:

• Bilinear Transduction (BLT, (9)): Rooted from (11), learns analogies between differences
in RDKit (33) descriptors and corresponding property changes. This mechanism enables
extrapolation beyond the range of the training data. In our comparative analysis, we employ
BLT not only with standard RDKit descriptors but also with embeddings obtained from two
of the previously listed inductive models: Pretrained GIN and SMI-TED .
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Table 1: Performance (MAE) for TestID and TestOOD Across Covariate Shift (X-Split) and Label
Shift (Y-Split) Regression Benchmarks. Lower is better. For each split type and method group, best
result is bolded, second best is underlined. Green background indicates improvement over inductive
counterpart. Orange background indicates improvement over baseline transductive learning.

BACE ESOL FreeSolv Lipophilicity
Method Embedding TestID TestOOD TestID TestOOD TestID TestOOD TestID TestOOD

Covariate Shift (X-Splits)
Inductive

Chemprop 0.5001 ±0.0113 0.8848 ±0.0403 0.5117 ±0.0214 0.5117 ±0.0214 0.1992 ±0.0079 0.3369 ±0.0269 0.3949 ±0.0098 0.5097 ±0.0191

GIN 0.4727 ±0.0094 0.7730 ±0.0314 0.5415 ±0.0178 0.5415 ±0.0178 0.2928 ±0.0122 0.3957 ±0.0347 0.4461 ±0.0068 0.5741 ±0.0093

SMI-TED 0.3615 ±0.0189 0.6939 ±0.0265 0.4508 ±0.0178 0.4508 ±0.0178 0.2401 ±0.0110 0.3470 ±0.0227 0.4275 ±0.0136 0.5556 ±0.0180

Transductive (BLT)
RDKit 0.5649 ±0.0455 0.6667 ±0.0683 0.3850 ±0.0297 0.3850 ±0.0297 0.1787 ±0.0082 0.2850 ±0.0452 0.5120 ±0.0124 0.6252 ±0.0259

GIN 0.7585 ±0.0328 0.9279 ±0.0507 0.7383 ±0.0296 0.7383 ±0.0296 0.5244 ±0.0353 0.4348 ±0.0500 0.6908 ±0.0248 0.9009 ±0.0232

SMI-TED 0.6578 ±0.0537 0.7914 ±0.1152 0.9769 ±0.1049 0.9769 ±0.1049 0.3762 ±0.0433 0.3795 ±0.0558 0.7080 ±0.0106 0.7810 ±0.0284

Transductive (Ours)
MALT-RDKit 0.3306 ±0.0236 0.6079 ±0.0530 0.2188 ±0.0120 0.3658 ±0.0120 0.1266 ±0.0081 0.2391 ±0.0163 0.3879 ±0.0091 0.6138 ±0.0091

MALT-Chemprop 0.2847 ±0.0165 0.7783 ±0.0553 0.2180 ±0.0049 0.5072 ±0.0154 0.1522 ±0.0043 0.2999 ±0.0164 0.3474 ±0.0135 0.4894 ±0.0263

MALT-GIN 0.3317 ±0.0083 0.6333 ±0.0347 0.2103 ±0.0113 0.5305 ±0.0120 0.1919 ±0.0126 0.3388 ±0.0255 0.3370 ±0.0007 0.5369 ±0.0007

MALT-SMI-TED 0.3037 ±0.0046 0.6716 ±0.0569 0.2057 ±0.0052 0.4322 ±0.0118 0.1584 ±0.0247 0.2613 ±0.0329 0.3608 ±0.0120 0.5417 ±0.0164

Label Shift (Y-Splits)
Inductive

Chemprop 0.4509 ±0.0092 1.1331 ±0.0410 0.1955 ±0.0057 0.4506 ±0.0319 0.1967 ±0.0083 0.3931 ±0.0432 0.3560 ±0.0080 0.6801 ±0.0272

GIN 0.4976 ±0.0090 0.7343 ±0.0235 0.2356 ±0.0076 0.5293 ±0.0086 0.2486 ±0.0246 0.5544 ±0.0229 0.3886 ±0.0037 0.7241 ±0.0135

SMI-TED 0.3676 ±0.0113 0.8741 ±0.0660 0.2166 ±0.0079 0.4607 ±0.0272 0.3419 ±0.0275 0.3954 ±0.0620 0.3555 ±0.0102 0.6499 ±0.0578

Transductive (BLT)
RDKit 0.5864 ±0.1217 1.0728 ±0.1962 0.2422 ±0.0103 0.5132 ±0.0295 0.3534 ±0.0299 0.5124 ±0.0327 0.4320 ±0.0253 0.8367 ±0.0332

GIN 0.7169 ±0.0322 1.2719 ±0.0345 0.4860 ±0.0328 0.9057 ±0.0197 0.4588 ±0.0206 0.7246 ±0.0402 0.6679 ±0.0166 1.1019 ±0.0393

SMI-TED 0.6006 ±0.0996 1.2039 ±0.1153 0.4536 ±0.0516 0.9019 ±0.0771 0.4683 ±0.0864 0.9240 ±0.0595 0.6360 ±0.0649 1.1211 ±0.0672

Transductive (Ours)
MALT-RDKit 0.3819 ±0.0254 0.7833 ±0.0285 0.1862 ±0.0077 0.4906 ±0.0172 0.1492 ±0.0080 0.3305 ±0.0503 0.3246 ±0.0103 0.7430 ±0.0103

MALT-Chemprop 0.3461 ±0.0097 0.7705 ±0.0287 0.1734 ±0.0070 0.4994 ±0.0114 0.1469 ±0.0179 0.2753 ±0.0530 0.3185 ±0.0104 0.6444 ±0.0151

MALT-GIN 0.3861 ±0.0097 0.7340 ±0.0121 0.1845 ±0.0093 0.4989 ±0.0267 0.1585 ±0.0165 0.2637 ±0.0220 0.3195 ±0.0108 0.4690 ±0.0108

MALT-SMI-TED 0.3546 ±0.0164 0.8326 ±0.0141 0.1852 ±0.0096 0.5390 ±0.0199 0.1716 ±0.0061 0.2856 ±0.0427 0.3300 ±0.0097 0.6609 ±0.0331

Table 2: Performance (AUROC) for TestOOD Covariate Shift (X-Split) Classification. For DrugOOD,
we follow the split done in (2) (DrugOODori). We also include the results following the split
introduced in (29)(DrugOODours, MoleculeNetours ). Higher values are better. Best results bolded,
second best underlined. Green background shows improvement over inductive models; Orange
background shows RDKit (Ours) improvement over baseline transductive learning.

DrugOODori DrugOODours MoleculeNetours

Method Embedding EC50 IC50 EC50 IC50 BBBP ClinTox SIDER

Inductive
Chemprop 0.6423 ± 0.0041 0.6577 ± 0.0011 0.7614 ± 0.0325 0.8132 ± 0.0139 0.7719 ± 0.1097 0.9483 ± 0.0114 0.6150 ± 0.0514
GIN 0.6632 ± 0.0076 0.6866 ± 0.0013 0.7696 ± 0.0096 0.8424 ± 0.0032 0.7610 ± 0.0206 0.8102 ± 0.0190 0.4747 ± 0.0198
SMI-TED 0.5912 ± 0.0376 0.6367 ± 0.0252 0.7094 ± 0.0325 0.6367 ± 0.0252 0.5948 ± 0.1802 0.9020 ± 0.1146 0.5513 ± 0.0346
iMoLD 0.6884 ± 0.0058 0.6779 ± 0.0088 0.7821 ± 0.0188 0.7873 ± 0.0131 0.8247 ± 0.0608 0.8973 ± 0.0284 0.6550 ± 0.0307

Transductive (BLT)
RDKit 0.5864 ± 0.0044 0.6239 ± 0.0097 0.5638 ± 0.0091 0.7457 ± 0.0057 0.6807 ± 0.0372 0.7616 ± 0.1296 0.5768 ± 0.0658
GIN 0.5962 ± 0.0079 0.5588 ± 0.0023 0.7076 ± 0.0084 0.6626 ± 0.0052 0.5889 ± 0.0600 0.8102 ± 0.0352 0.6232 ± 0.0619
SMI-TED 0.5895 ± 0.0106 0.6446 ± 0.0060 0.8030 ± 0.0112 0.7726 ± 0.0044 0.7686 ± 0.0727 0.8422 ± 0.0504 0.5542 ± 0.0679

Transductive (Ours)
MALT-RDKit 0.6658 ± 0.0141 0.6659 ± 0.0131 0.7532 ± 0.0236 0.8055 ± 0.0088 0.8095 ± 0.0240 0.9395 ± 0.0206 0.8095 ± 0.0240
MALT-Chemprop 0.6485 ± 0.0072 0.6759 ± 0.0057 0.7953 ± 0.0187 0.8330 ± 0.0099 0.8671 ± 0.0108 0.9517 ± 0.0085 0.6727 ± 0.0344
MALT-GIN 0.6959 ± 0.0110 0.6632 ± 0.0014 0.8138 ± 0.0147 0.8499 ± 0.0106 0.8039 ± 0.0193 0.8122 ± 0.0107 0.5970 ± 0.0351
MALT-SMI-TED 0.6826 ± 0.0126 0.6694 ± 0.0092 0.7899 ± 0.0161 0.6524 ± 0.0062 0.8684 ± 0.0279 0.9510 ± 0.0071 0.6057 ± 0.0273

4.2 PERFORMANCE COMPARISON

Our framework demonstrates a consistent and significant improvement in OOD generalization across
a wide array of regression and classification benchmarks. By operating in a learned latent space and
leveraging multiple anchors, MALT not only enhances the performance of strong inductive base
models but also substantially outperforms existing transductive methods(Table 1, Table 2). To visually
complement results for regression tasks, we provide parity plots in Appendix I that compare predicted
versus true values and embedding space transformations of anchors in Appendix J. As shown in
the parity plots, for a majority of the tasks, MALT increases performance and embedding space
transformations show that important anchors cluster towards each other after transductive learning.
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Enhancing Inductive Models on Standard Benchmarks As shown in Table 1, augmenting
standard inductive encoders (Chemprop, GIN, SMI-TED) with our transductive module consistently
improves performance on both covariate (X-Splits) and label (Y-Splits) shift regression tasks. The
improvements, highlighted in green, are evident across nearly all datasets for both ID and OOD
test sets. This pattern holds for classification tasks under covariate shift (Table 2), where MALT
boosts the AUROC of the base models. This confirms that our modular, transductive reasoning
component effectively enhances the predictive power of various molecular encoders. In many cases,
our augmented models achieve the best overall performance (indicated in bold).

Outperforming Transductive Baselines MALT also demonstrates a clear advantage over the BLT
baseline from (9). When using identical RDKit descriptors, our model (Ours (RDKit)) achieves a
consistently lower MAE than BLT (RDKit) across all regression settings (highlighted in orange in
Table 1) and a higher AUROC in all classification tasks (Table 2).

Crucially, while BLT struggles to effectively utilize the rich representations from pretrained GIN and
SMI-TED embeddings—often performing worse than its own RDKit variant—our framework excels.
MALT successfully integrates these advanced embeddings, leading to robust OOD performance and
demonstrating a unique capability to adapt learned latent representations for transductive reasoning.
A detailed analysis of this is shown in Appendix A and Appendix B.

Realistic Drug Discovery Scenarios To validate our framework’s practical utility beyond standard
academic benchmarks, we evaluated it on more complex and chemically meaningful OOD scenarios.
Results on these experiments additionally confirm MALT’s robustness and effectiveness in settings
that closely mimic real-world challenges.

• Activity Cliffs: We tested MALT on a challenging activity cliffs benchmark, where minor
structural changes lead to large potency differences (28). As detailed in Appendix L, MALT-
enhanced models achieved a top-2 rank far more frequently than their base counterparts
across 30 pharmacological endpoints. This resulted in substantial median RMSE reductions
of up to 12.7% for OOD data, showcasing MALT’s ability to navigate difficult regions of
the chemical space.

• Lo-Hi Benchmark: Our framework was further evaluated on the Lo-Hi benchmark (30),
which simulates the Hit Identification (HI) and Lead Optimization (LO) stages of a drug
discovery campaign. MALT-Chemprop consistently outperformed hyperparameter-tuned
Chemprop baseline across most splits. Notably, MALT achieved performance gains of
31.58% on the FreeSolv LO split and over 20% on several scaffold-based splits (see Ap-
pendix L), validating its effectiveness in a realistic discovery pipeline.

4.3 ABLATION STUDIES

To validate the key architectural and methodological choices of our framework, we conducted a series
of ablation studies. These experiments systematically investigate the impact of the encoder training
strategy, the necessity of the multi-anchor selection mechanism, the model’s robustness to noisy
information, and its advantages over simpler non-learning baselines. All corresponding result tables
can be found in Appendix H.

Importance of Jointly Training the Encoder and Transduction Module We first investigated the
optimal training strategy for the molecular encoder E within our transductive framework. As shown
in Table 8, we compared strategies where the encoder was either pre-finetuned on the task and/or
adapted (i.e., its weights were updated) during the main transductive training phase. The results
unequivocally show that the best performance is achieved with the ‘Finetune O, Adapt O’ strategy,
where a task-finetuned encoder is jointly trained with the transduction module. This confirms that
allowing the encoder to adapt creates a more effective latent space that is optimized not just for the
task, but for the analogical reasoning required by the transduction module.

Multi-Anchor Selection Strategy Validation Our framework’s core hypothesis is that using
multiple, high-quality anchors is superior to single-anchor or arbitrary-anchor methods. The results
in Table 9 strongly support this. The findings show that multiple anchors consistently outperform a
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single anchor, as performance improves with the number of anchors (k) increasing from 1 to 10. For
instance, on the FreeSolv Y-Split for TestOOD, using a single anchor (k = 1) results in an MAE of
0.3642, whereas our default strategy with 10 anchors achieves a significantly lower MAE of 0.2637.
Furthermore, the relevance of the selected anchors is paramount, demonstrating that top-ranked
anchors are essential. A model using the top 10 anchors for the Lipo Y-Split (TestOOD) achieves an
MAE of 0.4690. In contrast, a model using the same number of lower-ranked anchors (11th to 20th)
performs much worse, with an MAE of 0.4879. This demonstrates that the learned embedding space
is meaningful, correctly identifying the most informative analogies for prediction.

Robustness to Noisy Anchors A potential failure mode for a multi-anchor system is sensitivity to
noisy or irrelevant anchors. We tested MALT’s resilience by deliberately replacing top-ranked anchors
with the lowest-ranked (“noisiest”) ones from the training set. As shown in Table 10, the framework
demonstrates graceful degradation rather than catastrophic failure. For example, on the Lipo X-Split
(TestOOD), replacing 5 out of 10 anchors with the worst possible choices only increases MAE from
0.4736 to 0.4748. This resilience indicates that the model’s attention mechanism successfully learns
to discount the influence of irrelevant anchors, a crucial feature for robust real-world performance.

Disentangling Representation and Reasoning from Simple Retrieval To prove our model learns
more than a simple similarity search, we compared the full MALT-GIN against several k-nearest
neighbor (k-NN) baselines that average property values. The results in Table 11 yield two insights.
First, MALT learns a appropriate task-specific representation. A k-NN model using embeddings
from our trained MALT-GIN outperforms k-NN using embeddings from the pretrained GIN or
ECFP fingerprints. This confirms our end-to-end training produces a more effective latent space for
the task. Second, the fusion mechanism adds value beyond retrieval. The full MALT-GIN model
outperforms the k-NN baseline that uses its own powerful embeddings. This performance gap isolates
the contribution of the attention-based fusion head, proving that the model’s ability to intelligently
weigh and integrate anchor information is critical to its success.

Scalability on Large-Scale Datasets Finally, to confirm that our framework’s advantages are not
limited to smaller benchmarks, we evaluated it on the QM9 dataset (>133,000 molecules) for HOMO
and LUMO prediction. The results in Table 12 show that MALT-enhanced models maintain their
performance edge, outperforming their base inductive counterparts. This confirms that our approach
scales effectively to large scientific datasets while preserving its robust performance benefits.

5 CONCLUSION

We introduced a multi-anchor transductive framework for molecular property prediction, designed to
improve generalization in out-of-distribution settings. Operating in the latent space of pre-trained
encoders, our model-agnostic approach advances beyond inductive baselines and prior single-anchor
transductive methods. By relating each target molecule to multiple training instances, the framework
enables more robust and adaptive representation learning in novel chemical spaces.

Comprehensive experiments and ablation studies, including evaluations on massive datasets, confirm
that this strategy enhances both OOD generalization and in-distribution performance, consistently
surpassing existing transductive baselines. Despite these strengths, several limitations remain. The
effectiveness of the framework is inherently tied to the quality and diversity of the chosen encoder,
and the anchor selection process may introduce sensitivity to dataset biases. Moreover, while we
demonstrated scalability to large datasets, the computational cost can be substantial for certain
encoders, making runtime efficiency encoder-dependent.

Future work should explore more principled anchor selection, develop scalable search strategies
to mitigate computational burden, and strengthen theoretical understanding of transductive adapta-
tion. At the same time, given the dual-use potential of predictive models in chemistry, responsible
development and deployment remain essential.
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6 ETHICS STATEMENT

This work develops a multi-anchor transductive framework for molecular property prediction to
accelerate drug discovery and materials science. While designed for beneficial applications, we
acknowledge the dual-use potential—techniques enabling therapeutic compound discovery could
theoretically be misused to design harmful substances. We emphasize the importance of responsible
development and deployment of such predictive models.

Our research follows established ethical guidelines for computational chemistry and machine learning.
All datasets are publicly available and properly cited, with no proprietary data or human subjects
involved. We encourage practitioners to implement our framework within appropriate institutional
oversight and regulatory frameworks, especially for sensitive applications like pharmaceutical devel-
opment or chemical synthesis.

7 LLM USAGE

We used a large language model (LLM) as a general-purpose assistant for writing—suggesting
phrasing, improving grammar and clarity, and helping with organization and citation formatting. The
LLM also provided lightweight coding help (e.g., debugging minor errors and refactoring scripts); all
ideas, analyses, and final text/code were created and verified by the authors.

8 REPRODUCIBILITY STATEMENT

Upon acceptance, the full code will be released publicly. We have released an anonymous github
link and data link as well as our code in the supplementary materials. In the paper, we also provide
comprehensive resources for reproduction. Complete hyperparameter configurations are in Table 7
and Appendix G. Our framework architecture is documented in Section 3, with additional details
in Appendix D including algorithms for memory bank construction and inference. Appendix K
includes a theoretical analysis and justification of our multi-anchor approach compared to bilinear
transduction. Appendix E provides systematic evaluation of anchor selection methods, justifying
our Top-K with Euclidean distance approach. All baseline implementations are detailed in Section
4.1. Data preprocessing and splitting methodologies are also covered in Section 4.1 and Appendix
F, which validates our split method. Results include statistical reporting across multiple runs with
different seeds, and with additional ablation studies in Section 4.3 and Appendix H. Computational
overhead analysis is provided in Appendix M.
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A QUALITATIVE ANCHOR ANALYSIS

To evaluate the effectiveness of multi-anchor reasoning within learned latent spaces, we compared
the Top-5 anchors selected by our model and by BLT after training. As illustrated in Figure 2, we
analyzed three representative molecules from the TestOOD dataset: (1) a randomly selected molecule
(Random), (2) a molecule with the lowest average Maximum Common Substructure (MCS) similarity
to training set scaffolds (Extreme Covariate Shift), and (3) a molecule with the highest target property
value (Extreme Label Shift).

Figure 2: Comparison between Top 5 anchors retrieved by our model and BLT in ESOL dataset. Red
highlights indicate the Maximum Common Substructure (MCS) between the query molecule and each
corresponding anchor molecule. (a) Random: a randomly selected molecule from the TestOOD dataset.
(b) Extreme Covariate Shift: a molecule from the TestOOD dataset with lowest average Maximum
Common Substructure (MCS) similarity to Train set scaffolds. (c) Extreme Label Shift: a molecule
from the TestOOD dataset with the highest target property value.
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For each case, we assessed the alignment between the query and selected anchors in terms of both
molecular property values and MCS similarity. Our method consistently selected anchors that were
more functionally and structurally similar to the query compared to those selected by BLT. In contrast,
BLT’s selected anchors often exhibited greater divergence from the query in both dimensions. Notably,
in the Extreme Covariate Shift case, our model demonstrated a clear advantage by capturing nuanced
structural and chemical similarities that BLT—constrained by fixed input descriptors—failed to
represent. This highlights the strength of learned latent representations in generalizing to structurally
dissimilar molecules. In the Extreme Label Shift case, where no single anchor offers a perfect analogy,
our model benefited from leveraging multiple complementary anchors. This multi-anchor strategy
enabled the model to integrate diverse signals and make accurate predictions, whereas BLT’s reliance
on a single anchor limited its effectiveness. These results underscore the utility of multi-anchor
reasoning in addressing the inherent limitations of single-anchor analogical inference.

B SYSTEMATIC CHEMICAL ANALYSIS OF ANCHOR SELECTION

To provide a quantitative understanding of the anchor selection mechanism, we perform a comprehen-
sive chemical analysis comparing the training data, the out-of-distribution (OOD) query molecules,
and the anchors selected by our model. This multifaceted analysis examines physicochemical prop-
erties, structural features, and quantitative similarity metrics, revealing the chemical principles that
guide anchor selection.

B.1 PHYSICOCHEMICAL PROPERTY ANALYSIS

We first compared the distributions of key physicochemical properties: molecular weight (MW),
logarithm of the partition coefficient (LogP), and topological polar surface area (TPSA). The analysis,
summarized in Table 3, covers both scaffold-based (X-split) and property-based (Y-split) OOD
scenarios. The results consistently show that the model selects anchors with properties that are
intermediate between the training distribution and the OOD queries. This suggests that the model
does not merely select the most similar molecules but rather identifies anchors that chemically bridge
the gap between the training and OOD domains.

Table 3: Physicochemical Property Comparison. For each dataset, results are presented for both the
scaffold-based (X-split, left) and property-based (Y-split, right) OOD settings.

X-Split Y-Split
Dataset Property Train OOD (Query) Anchors Train OOD (Query) Anchors

Mean (Median) Mean (Median) Mean (Median) Mean (Median) Mean (Median) Mean (Median)

BACE
Mol. Weight 481.7 (465.6) 447.1 (452.0) 476.3 (422.5) 472.3 (457.5) 617.4 (608.7) 579.1 (579.8)
LogP 3.11 (3.12) 3.62 (4.60) 3.31 (3.52) 3.12 (3.13) 3.10 (3.30) 3.36 (3.37)
TPSA 95.3 (91.2) 97.5 (78.2) 101.1 (85.6) 93.5 (89.6) 128.3 (111.9) 113.1 (108.3)

ESOL
Mol. Weight 196.6 (179.2) 337.2 (307.3) 275.9 (268.4) 209.7 (192.0) 108.5 (88.1) 145.1 (108.1)
LogP 2.38 (2.30) 3.58 (4.17) 3.18 (3.40) 2.58 (2.44) 0.07 (0.39) 0.61 (1.01)
TPSA 33.7 (26.0) 56.4 (56.7) 46.5 (41.6) 34.8 (26.3) 42.1 (26.6) 48.4 (28.7)

FreeSolv
Mol. Weight 134.8 (120.2) 258.6 (241.3) 123.9 (118.2) 141.0 (122.1) 102.9 (100.2) 111.3 (99.0)
LogP 1.88 (1.74) 3.83 (3.75) 1.68 (1.56) 1.91 (1.75) 2.71 (2.76) 2.29 (2.04)
TPSA 20.3 (17.1) 18.7 (9.2) 21.5 (20.2) 21.0 (18.5) 0.0 (0.0) 0.2 (0.0)

Lipo
Mol. Weight 387.2 (390.9) 320.6 (305.8) 404.8 (401.9) 381.4 (386.5) 417.1 (423.5) 419.6 (427.4)
LogP 3.31 (3.31) 2.71 (2.37) 3.29 (3.22) 3.22 (3.22) 4.39 (4.25) 3.90 (3.68)
TPSA 79.8 (80.7) 65.6 (63.2) 81.6 (83.1) 79.4 (80.0) 69.6 (69.2) 75.8 (76.1)

B.2 STRUCTURAL AND FRAGMENT ANALYSIS

To investigate the structural basis of anchor selection, we analyzed the prevalence of molecular
scaffolds and fragments using Murcko scaffolds, BRICS motifs, and RECAP fragments. The results,
shown for the X-split in Tables 4 and 5, reveal that the selected anchors share significantly more
relevant structural motifs with the OOD queries than a random sample from the training set would.
This demonstrates that anchors are chosen for their fundamental structural relevance to the query
molecule, providing a chemically sound basis for prediction.
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Table 4: Top Scaffolds and Structural Diversity Metrics for the X-Split.

Dataset Data Type Top 1 Scaffold (Count) Top 2 Scaffold (Count) Entropy Diversity

BACE
Train O=C1NC=NC1(c1ccccc1)c1ccccc1

(52)
O=S1(=O)CC(Cc2ccccc2)CC([NH2+]C

c2ccccc2)C1 (50)
8.327 0.445

OOD c1ccc(-c2ccc(-c3ccccc3)n2Cc2ccc

cn2)cc1 (14)
c1ccccc1 (7) 4.173 0.527

Anchors C1=NC2(CO1)c1ccccc1Oc1ccc(-c3cc

ccc3)cc12 (105)
O=S1(=O)CC(Cc2ccccc2)CC([NH2+]C

c2ccccc2)C1 (28)
5.234 0.169

ESOL
Train No Scaffold (303) c1ccccc1 (234) 4.797 0.217
OOD O=C(OCc1cccc(Oc2ccccc2)c1)C1CC1

(7)
O=c1oc2ccccc2cc1Cc1ccccc1 (2) 5.280 0.833

Anchors c1ccccc1 (77) O=C1CC(=O)NC(=O)N1 (51) 5.297 0.168

FreeSolv
Train No Scaffold (305) c1ccccc1 (143) 2.656 0.079
OOD c1ccc(Cn2ccnc2)cc1 (1) c1ccc(Cc2ccccc2)cc1 (1) 3.907 1.000
Anchors No Scaffold (92) c1ccccc1 (31) 1.901 0.080

Lipo
Train c1ccc(-c2ccccc2)cc1 (31) O=C(Cc1ccccc1)NC1CCN(CCC(c2cccc

c2)c2ccccc2)CC1 (28)
10.539 0.587

OOD c1ccccc1 (76) c1ccncc1 (6) 5.000 0.462
Anchors c1cnc(-c2ccc(C3CCCCC3)cc2)cn1

(53)
O=S(=O)(NCC(c1ccccc1)N1CCCCCC1)

c1ccccc1 (47)
8.373 0.291

Table 5: Analysis of Common BRICS Motifs and RECAP Fragments for the X-Split.

BRICS Analysis RECAP Analysis
Dataset Data Type Top 1 (Count) Top 2 (Count) Diversity Entropy Top 1 (Count) Top 2 (Count) Diversity Entropy

BACE
Train *N* (729) *c1cccc(*)c1 (655) - - *C(C)=O (205) *S(C)(=O)=O (141) 0.323 8.641
OOD *C* (43) *c1ccc(*)cc1 (29) - - *c1ccc(*)n1* (25) *Cc1cccc(N)n1 (20) 0.382 5.403
Anchors *N* (262) *c1ccccc1 (247) - - *c1ccccc1 (122) *c1ccc(*)n1* (121) 0.114 6.431

ESOL
Train *CC (131) *O* (105) 0.447 8.155 *C(C)C (30) *C(C)=O (29) 0.474 7.614
OOD *c1ccccc1 (16) *O* (14) 0.503 5.761 *c1ccccc1 (10) *CC1C(C(*)=O)C1(C)C (6) 0.600 5.218
Anchors *O* (97) *CC (71) 0.179 6.582 *C(C)=O (39) *C(C)C (28) 0.280 6.492

FreeSolv
Train *CC (49) *OC (45) 0.578 7.991 *C(C)=O (16) *OC (15) 0.460 6.249
OOD *c1ccccc1 (4) *C* (2) 0.848 4.681 *O (2) *Cc1ccccc1 (1) 0.917 3.418
Anchors *O* (22) *CC (15) 0.398 5.943 *C[C@H](C)O (6) *CCCC (6) 0.508 4.571

Lipo
Train *N* (2018) *C(*)=O (1225) 0.116 7.642 *O (434) *c1ccccc1 (335) 0.286 9.959
OOD *N* (62) *C(*)=O (52) 0.294 6.715 *O (18) *N1CCN(*)CC1 (16) 0.556 7.508
Anchors *N* (1093) *c1ccccc1 (693) 0.071 7.019 *O (219) *c1ccccc1 (206) 0.175 8.778

Table 6: Tanimoto Similarity Between OOD Queries and Training Set Molecules’ Morgan Finger-
prints. For each dataset, results for the X-split and Y-split are shown, respectively.

BACE ESOL FreeSolv Lipo

Similarity Type Comparison X Y X Y X Y X Y

Whole Molecule Query vs. Anchor 0.495 0.835 0.382 0.187 0.048 0.262 0.313 0.532
Query vs. Non-anchor 0.328 0.438 0.094 0.046 0.054 0.067 0.220 0.291

Scaffold Query vs. Anchor 0.351 0.808 0.314 0.567 0.075 0.762 0.180 0.516
Query vs. Non-anchor 0.193 0.295 0.098 0.020 0.060 0.008 0.116 0.216
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B.3 QUANTITATIVE SIMILARITY COMPARISON

Finally, we quantified the similarity between OOD queries and their selected anchors using Tanimoto
similarity with ECFP4 fingerprints. We compared this to the similarity between queries and all other
non-anchor molecules in the training set. As shown in Table 6, the results demonstrate a clear and
consistent pattern across all datasets and OOD splits.

These analyses reveal two global trends:

1. Anchors are significantly more similar to queries than non-anchors. This finding
holds true across different datasets, OOD split types, and for both whole-molecule and
scaffold-level similarity.

2. The similarity gap is particularly large for scaffolds. This highlights the model’s ability
to identify molecules with fundamentally similar core structures to serve as anchors, which
is critical for making chemically sound and generalizable predictions.

C ALGORITHM PSEUDOCODE

Algorithm 1 Train
1: Input: Training data Dtrain = {(mi, yi)}
2: Components: Encoder E , Transduction Module T , Multi-Anchor Prediction Head P , Task Loss Ltask

3: Initialize: Parameters for E , T ,P; Optimizer; Scheduler
4: Ztrain ← {E(mi) | (mi, yi) ∈ Dtrain} ▷ Initialize Memory Bank with initial E
5: Update T with Ztrain

6: for epoch = 1 to Max Epochs do
7: if epoch mod Nupdate = 0 then ▷ Periodically update Memory Bank
8: Ztrain ← {E(mi) | (mi, yi) ∈ Dtrain} ▷ Use current E
9: Update T with new Ztrain

10: end if
11: for each batch (Mbatch, ybatch) from Dtrain do
12: zbatch ← E(Mbatch) ▷ Encode batch
13: Zanchors,Wanchors ← T (zbatch, Ztrain) ▷ Retrieve k anchors and weights
14: ŷbatch ← P(zbatch, Zanchors,Wanchors) ▷ Multi-anchor prediction
15: L ← Ltask(ŷbatch, ybatch) ▷ Compute batch loss
16: Backpropagate L to update θE , θP
17: end for
18: end for
19: return Trained parameters θE , θP , Final Memory Bank Ztrain

Algorithm 2 Inference
1: Input: Final Memory Bank Ztrain , mquery
2: Components: Trained Molecular Encoder E , Transduction Module T , Trained Multi-Anchor Prediction

Head P

3: zquery ← E(mquery; θE)
4: Zanchors,Wanchors ← T (zquery, Ztrain)
5: ŷquery ← P(zquery, Zanchors,Wanchors; θP)

6: return Predictions ŷquery
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D MODEL STRUCTURE

Figure 3: Overview of our proposed latent-space multi-anchor transductive framework

E ANCHOR SELECTION METHODS

To investigate the importance and impact of different anchor selection strategies within our trans-
ductive learning framework, we evaluated several approaches. These methods primarily differ in
how they identify relevant anchors from the Train, balancing factors such as similarity to the query,
anchor diversity, or adaptation to local data density. Key approaches considered include selecting the
straightforward Top-K most similar anchors, methods that aim for a diverse set of anchors, adaptive
selection techniques, and temperature-based sampling which introduces stochasticity. The choice of
distance metric, such as Euclidean distance or cosine similarity, also plays a significant role within
these strategies.

We explored the following strategies:

• Top-k: Selects the k anchors closest (or most similar) to the query embedding.
• Adaptive Selection: Dynamically adjusts the number of selected anchors kadaptive (within

predefined bounds) based on the estimated local density of training samples around the
query embedding in the latent space. Anchors beyond this adaptive count might be masked
or ignored in subsequent steps.

• Temperature Sampling: Samples k anchors based on a probability distribution derived
from the latent space similarities (or distances) to the query. The distribution is sharpened
or softened by a temperature parameter τ ; lower temperatures approximate Top-k selec-
tion, while higher temperatures increase the probability of selecting less similar anchors,
promoting randomness.

Figure 4 provides a comparative visualization of several of these anchor selection strategies, specifi-
cally focusing on their performance on various benchmark datasets.

The radar plots in Figure 4 illustrate these relative performances. Across the comprehensive set
of evaluations detailed in this section, and considering factors such as performance consistency,
robustness, and simplicity, the Top-K strategy utilizing Euclidean distance emerged as a strong and
reliable default choice for our experiments.
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Figure 4: Performance (MAE) of anchor selection strategies by rank, depicting (a) Euclidean-based
metrics and (b) Cosine-based similarity/distance metrics based methods. Each axis corresponds to a
specific benchmark dataset).
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F SPLIT METHODS

The method used to split data into Train, TestID, and TestOOD sets is crucial for rigorously evaluating
a model’s generalization capabilities. As visualized in Figure 5, a Multidimensional Scaling (MDS)
projection based on pairwise Tanimoto similarity between molecular fingerprints initially suggests
that a fingerprint-based split yields a more distinct separation between train and OOD samples
compared to a scaffold-based split. However, this apparent clarity can be misleading, fingerprint-level
similarity does not inherently capture or reflect scaffold-level dissimilarity, which is often a more
relevant measure of structural novelty in drug discovery and molecular design.

To more directly and robustly assess the introduction of structural novelty in the OOD set, we
evaluated the similarity between TestOOD and train molecules using three distinct Bemis-Murcko(BM)
scaffold-level similarity metrics. The results, presented in Figure 6, demonstrate the comparative
efficacy of scaffold-based versus fingerprint-based splitting strategies:

• Scaffold Tanimoto Similarity (Figure 6a): When assessed using Tanimoto similarity at the
BM scaffold level, the scaffold-based split consistently produces a TestOOD set with lower
similarity to the Train. This indicates a clear introduction of structurally dissimilar scaffolds
in the TestOOD under this splitting regime.

• Scaffold Maximum Common Substructure (MCS) Similarity (Figure 6b): The trend
continues with MCS similarity, a more stringent measure of structural overlap. Scaffold
splits again result in TestOOD samples that have lower MCS similarity to Train set, an effect
that is particularly evident in the ESOL and FREESOLV datasets.

• Scaffold CATS Pharmacophore Similarity (Figure 6c): Using CATS pharmacophore
similarity, which captures 3D pharmacophoric features of the scaffolds, scaffold splits
generally tend to lower the functional similarity of the TestOOD set. However, this effect is
less pronounced and shows more variability across the different datasets compared to the
Tanimoto and MCS metrics.

Collectively, these analyses, particularly the significant reductions in similarity observed with the
Tanimoto and MCS metrics (Figure 6a and 6b), validate our adoption of scaffold-based splitting.
This approach provides a more rigorous and principled methodology for creating TestOOD sets with
genuine structural novelty, which is essential for evaluating the true generalization capabilities of
models in structure-based settings.

(a) BACE Dataset (b) ESOL Dataset

(c) FreeSolv Dataset (d) Lipophilicity Dataset

Figure 5: Chemical space distribution comparison for fingerprint and scaffold splits across four
molecular property datasets. Each panel displays a 2D MDS projection based on molecular fingerprint
Tanimoto similarity. Colors distinguish Train, TestID, and TestOOD samples.
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(a) Bemis-Murcko scaffold Tanimoto similarity.

(b) Bemis-Murcko scaffold Maximum Common Substructure (MCS) similarity.

(c) Bemis-Murcko scaffold CATS pharmacophore similarity.

Figure 6: Comparison of scaffold-level similarity between the test sets and the training set for
fingerprint VS scaffold splits, evaluated using three Bemis-Murcko scaffold similarity criteria:
(a) Tanimoto similarity, (b) Maximum Common Substructure (MCS) similarity, and (c) CATS
pharmacophore similarity. Distributions show similarity values for Training, TestID (scaffold),
TestOOD (scaffold), TestID (fingerprint), and TestOOD (fingerprint) sets. Scaffold splits generally yield
lower similarity for the TestOOD set, indicating stronger structural and functional distributional shifts.
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G IMPLEMENTATION DETAILS

We trained all models on 4 * AMD EPYC 7742 64-Core Processor (256 cores) CPUs, 8 * RTX 3090
GPUs, 512GB RAM. We set 500 epochs for all tasks. Hyperparameter configurations and training
loss curves are presented in Table 7 and Figure 7.

Table 7: Hyperparameter configurations for experimental setup.

Parameters Settings Values
Batch Size 64, 128, 256, 512

Epochs

Inductive Models 10, 30, 50, 100

BLT, MALT (regression) 100, 200, 500, 1000
BLT (classification) 100, 500, 1000, 2000
MALT (classification) 10, 20, 50, 100

Number of anchors k 1, 3, 5, 10

Learning Rate 10−3, 10−4, 10−5

Figure 7: Comparison of training loss curves for MALT variants using RDKit, Chemprop, GIN, and
SMI-TED representations across 500 training steps.
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H FURTHER ABLATION STUDY RESULTS

Table 8: Performance (MAE) Comparison of Encoder Training Strategies. Strategies involve inductive
finetuning ("Finetune O/X") and whether the encoder is adapted during transduction ("Adapt O") or
kept frozen ("Adapt X"). Cell colors in orange indicate settings where "Finetune O, Adapt O" shows
lower MAE. Green indicates when other settings result in lower MAE. Bold: lowest MAE in column.

BACE ESOL FreeSolv Lipophilicity
Setting Models TestID TestOOD TestID TestOOD TestID TestOOD TestID TestOOD

Covariate Shift (X-Splits)
Finetune X, Adapt X Chemprop 0.4508 ±0.0321 1.0973 ±0.1283 0.2995 ±0.0265 0.6525 ±0.0569 0.2145 ±0.0250 0.5827 ±0.1009 0.5273 ±0.0133 0.8090 ±0.0330

Pretrained GNN 0.3212 ±0.0074 0.6763 ±0.0624 0.2612 ±0.0082 0.5326 ±0.0031 0.2120 ±0.0047 0.4389 ±0.0380 0.3648 ±0.0023 0.5606 ±0.0102

SMI-TED light 0.3767 ±0.0171 0.8553 ±0.0431 0.3187 ±0.0182 0.5508 ±0.0156 0.2878 ±0.0204 0.5210 ±0.0461 0.4036 ±0.0076 0.5584 ±0.0160

Finetune O, Adapt X Chemprop 0.3944 ±0.0183 0.9481 ±0.0341 0.2061 ±0.0183 0.4676 ±0.0423 0.1487 ±0.0124 0.3423 ±0.0498 0.3758 ±0.0160 0.5545 ±0.0199

Pretrained GNN 0.2991 ±0.0097 0.6810 ±0.0712 0.2101 ±0.0116 0.5310 ±0.0113 0.1868 ±0.0103 0.3694 ±0.0362 0.3517 ±0.0100 0.5478 ±0.0064

SMI-TED light 0.3342 ±0.0192 0.6487 ±0.0390 0.2363 ±0.0115 0.4141 ±0.0175 0.1989 ±0.0076 0.3272 ±0.0352 0.4036 ±0.0076 0.5584 ±0.0160

Finetune O, Adapt O Chemprop 0.2847 ±0.0165 0.7783 ±0.0553 0.2180 ±0.0049 0.5072 ±0.0154 0.1522 ±0.0043 0.2999 ±0.0164 0.3474 ±0.0135 0.4894 ±0.0263

Pretrained GNN 0.3317 ±0.0083 0.6333 ±0.0347 0.2103 ±0.0113 0.5305 ±0.0120 0.1919 ±0.0126 0.3388 ±0.0255 0.3370 ±0.0007 0.5369 ±0.0007

SMI-TED light 0.3037 ±0.0046 0.6716 ±0.0569 0.2057 ±0.0052 0.4322 ±0.0118 0.1497 ±0.0161 0.2613 ±0.0329 0.3608 ±0.0120 0.5417 ±0.0164

Label Shift (Y-Splits)
Finetune X, Adapt X Chemprop 0.4572 ±0.0263 1.0237 ±0.1289 0.2594 ±0.0229 0.5097 ±0.0229 0.3075 ±0.0270 0.3461 ±0.0525 0.4991 ±0.0305 0.9026 ±0.0708

Pretrained GNN 0.3999 ±0.0057 0.7052 ±0.0254 0.2293 ±0.0084 0.5607 ±0.0134 0.2124 ±0.0269 0.3453 ±0.0156 0.3479 ±0.0113 0.5004 ±0.0068

SMI-TED light 0.4104 ±0.0139 0.9685 ±0.0343 0.3686 ±0.0068 0.8628 ±0.0175 0.2868 ±0.0163 0.8585 ±0.0448 0.5246 ±0.0052 1.1654 ±0.0363

Finetune O, Adapt X Chemprop 0.4132 ±0.0325 0.9366 ±0.0706 0.1941 ±0.0079 0.4173 ±0.0284 0.2019 ±0.0173 0.2009 ±0.0516 0.3489 ±0.0141 0.5797 ±0.0571

Pretrained GNN 0.4057 ±0.0111 0.7464 ±0.0158 0.1849 ±0.0090 0.5000 ±0.0283 0.1386 ±0.0151 0.3516 ±0.0186 0.3497 ±0.0767 0.4903 ±0.0051

SMI-TED light 0.3592 ±0.0092 0.9228 ±0.0226 0.2167 ±0.0140 0.5566 ±0.0281 0.2493 ±0.0245 0.4763 ±0.0395 0.3480 ±0.0113 0.7379 ±0.0206

Finetune O, Adapt O Chemprop 0.3461 ±0.0097 0.7705 ±0.0287 0.1734 ±0.0070 0.4994 ±0.0114 0.1469 ±0.0179 0.2753 ±0.0530 0.3185 ±0.0104 0.6444 ±0.0151

Pretrained GNN 0.3861 ±0.0097 0.7340 ±0.0121 0.1845 ±0.0093 0.4989 ±0.0267 0.1585 ±0.0165 0.2637 ±0.0220 0.3195 ±0.0108 0.4690 ±0.0108

SMI-TED light 0.3546 ±0.0164 0.8326 ±0.0141 0.1852 ±0.0096 0.5390 ±0.0199 0.1716 ±0.0061 0.2856 ±0.0427 0.3300 ±0.0097 0.6609 ±0.0331

Table 9: Performance(MAE) Comparison of Top k Anchor Selection Strategies. Best results bolded,
second best underlined. Performance shown across varying k values.

Covariate Shift (X-Splits) Label Shift (Y-Splits)
TestOOD TestID TestOOD TestID

Anchor Strategy BACE Esol FreeSolv Lipo BACE Esol FreeSolv Lipo BACE Esol FreeSolv Lipo BACE Esol FreeSolv Lipo
Top k
k = 1 0.6504 0.5255 0.3726 0.6028 0.3429 0.2327 0.2094 0.3860 0.8211 0.5068 0.3642 0.5860 0.4446 0.2017 0.1536 0.3646
k = 3 0.6565 0.5218 0.3809 0.5677 0.3272 0.2209 0.1985 0.3729 0.8129 0.4997 0.3679 0.4713 0.4406 0.1906 0.1448 0.3494
k = 5 0.6422 0.5224 0.3847 0.5575 0.3288 0.2194 0.1943 0.3718 0.8062 0.5032 0.3694 0.4842 0.4409 0.1887 0.1412 0.3418

Ours (Top 10) 0.6333 0.5305 0.3388 0.5369 0.3317 0.2103 0.1919 0.3370 0.7340 0.4989 0.2637 0.4690 0.3861 0.1845 0.1585 0.3195

Ours (11th to (10 + k)th)
k = 1 0.6675 0.5255 0.3726 0.6028 0.3557 0.2327 0.2094 0.3860 0.8211 0.5068 0.3642 0.4954 0.4446 0.2017 0.1536 0.3646
k = 3 0.6664 0.5218 0.3809 0.5677 0.3380 0.2209 0.1985 0.3729 0.8129 0.4997 0.3679 0.4903 0.4406 0.1906 0.1448 0.3494
k = 5 0.6710 0.5224 0.3847 0.5575 0.3326 0.2194 0.1943 0.3718 0.8062 0.5032 0.3694 0.4915 0.4409 0.1887 0.1412 0.3418
k = 10 0.6715 0.5259 0.3783 0.5516 0.3237 0.2212 0.1953 0.3758 0.7896 0.5022 0.3783 0.4879 0.4345 0.1892 0.1345 0.3419
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Table 10: MALT-GIN’s Robustness to Noisy Anchors. Performance (MAE) is shown for TestID and
TestOOD as the number of top-ranked anchors is replaced by the lowest-ranked (noisiest) ones. The
model shows stable performance, indicating the attention mechanism effectively discounts irrelevant
information.

BACE ESOL FreeSolv Lipophilicity
Noisy Anchors TestID TestOOD TestID TestOOD TestID TestOOD TestID TestOOD

Covariate Shift (X-Splits)
0 (Default) 0.3338 0.7290 0.2142 0.5572 0.2085 0.4477 0.3003 0.4736
1 0.3583 0.6343 0.2281 0.5683 0.2133 0.4395 0.2992 0.4713
3 0.3338 0.9222 0.2158 0.6063 0.2206 0.4603 0.3003 0.4746
5 0.3269 0.8346 0.2186 0.5853 0.2175 0.4486 0.3009 0.4748

Label Shift (Y-Splits)
0 (Default) 0.4191 0.7115 0.2160 0.5395 0.2086 0.4235 0.3024 0.4743
1 0.4206 0.6879 0.2264 0.5146 0.2139 0.4074 0.3019 0.4746
3 0.4344 0.7271 0.2287 0.5279 0.2207 0.4393 0.3020 0.4736
5 0.4061 0.7068 0.2264 0.5041 0.2181 0.4298 0.3027 0.4747

Table 11: Comparison of MALT-GIN against k-NN averaging baselines on the OOD test set (Covariate
Shift). The full MALT model outperforms all simpler retrieval-based methods. Best results are in
bold.

Method BACE ESOL FreeSolv Lipo

MALT-GIN (Ours) 0.633 0.531 0.339 0.537
k-NN Averaging Baselines (MAE)
MALT-GIN embedding 0.726 0.585 0.618 0.597
Pretrained GIN embedding 0.890 0.695 0.396 0.871
ECFP (Tanimoto) 0.841 0.773 0.551 0.921
Random Selection 1.385 1.365 0.949 1.252

Table 12: OOD performance (MAE) on QM9 HOMO and LUMO prediction. Best results for each
target are in bold.

Model HOMO LUMO

MALT(Chemprop) 1.9960 ± 0.0010 0.9900 ± 0.0184
Chemprop 2.3452 ± 0.0405 1.1904 ± 0.0244

MALT(GIN) 2.2502 ± 0.0723 1.2799 ± 0.0047
Pre-trained GIN 2.3488 ± 0.0150 1.4612 ± 0.0189
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I PARITY PLOT

To assess the effectiveness of our method across both inductive and transductive settings, we present
parity plots comparing the predicted and true values on various datasets and split types. As shown
in Figure 8 and Figure 9, we evaluate several inductive models (Chemprop, GIN, and SMI-TED)
and their MALT-enhanced variants under the label split. Across all base architectures, the MALT-
integrated models yield predictions that are more closely aligned with the ideal diagonal and achieve
lower mean absolute error (MAE), demonstrating consistent performance gains. In the transductive
setting, Figure 10 compares the baseline BLT model with our proposed MALT-based model across
four datasets and two OOD splits (covariate and label). In most cases, our method reduces the
prediction error and aligns the outputs more tightly with the ground truth, validating its generalization
capability under both feature and label distribution shifts.
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(a) BACE-covariate Parity Plot

(b) ESOL-covariate Parity Plot

(c) FreeSolv-covariate Parity Plot

(d) Lipophilicity-covariate Parity Plot

Figure 8: Parity plots comparing various inductive models and their MALT-enhanced variants under
the covariate split.
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(a) BACE-label Parity Plot

(b) ESOL-label Parity Plot

(c) FreeSolv-label Parity Plot

(d) Lipophilicity-label Parity Plot

Figure 9: Parity plots comparing various inductive models and their MALT-enhanced variants under
the label split.
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Figure 10: Parity plot comparison between BLT and MALT trained with RDkit across different
datasets.
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J EMBEDDING SPACE TRANSFORMATION COMPARISON

To further understand how our model reshapes the representation space, we visualize the embedding
space of molecules before and after training using t-SNE. As illustrated in Figure 11 and Figure 12, we
observe that the selected query point (red star) becomes more tightly clustered with its corresponding
anchor points after training. This consistent contraction across multiple datasets suggests that the
model effectively aligns semantically similar molecules in the latent space, promoting smoother
generalization to OOD queries.
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(a) BACE-covariate Embedding Space Transformation Before vs. After Training

(b) ESOL-covariate Embedding Space Transformation Before vs. After Training

(c) FreeSolv-covariate Embedding Space Transformation Before vs. After Training

(d) Lipophilicity-covariate Embedding Space Transformation Before vs. After Training

Figure 11: Embedding space transformation from selected anchor embeddings before and after
MALT training with GIN under the covariate split.
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(a) BACE-label Embedding Space Transformation Before vs. After Training

(b) ESOL-label Embedding Space Transformation Before vs. After Training

(c) FreeSolv-label Embedding Space Transformation Before vs. After Training

(d) Lipophilicity-label Embedding Space Transformation Before vs. After Training

Figure 12: Embedding space transformation from selected anchor embeddings before and after
MALT training with GIN under the label split.
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K THEORETICAL ANALYSIS OF MULTI-ANCHOR FUSION

We analyze why fusing multiple anchors improves OOD generalization. Working in a latent space
Z induced by a frozen encoder E : X → Z , subtraction is well-defined so we can apply BLT in
(∆z, z′) as in (11). (BLT Assumptions 3.1–3.3 and Thm. 1 are stated over (∆x, x′); with z=E(x) the same
setup holds over (∆z, z′) under the same assumptions.)

Setup. For a query x with z = E(x) and a set of anchors S(x) ⊆ Z , define the single–anchor
predictor

h
(z′)
θ (x) :=

〈
fθ(z − z′), gθ(z

′)
〉
, z′ ∈ S(x),

and the fused predictor

HΘ(x) :=
∑

z′∈S(x)

α(x, z′)h
(z′)
θ (x), α(x, z′) ≥ 0,

∑
z′∈S(x)

α(x, z′) = 1.

Write αj = α(x, z(j)), h(j) = h
(z(j))
θ , and let y⋆(x) be the scalar target. Define εj(x) = h(j)(x)−

y⋆(x), its conditional mean µj(x) = E[εj(x) | x], and centered part ηj(x) = εj(x) − µj(x). We
also use the anchor-indexed error ε(x, z′) := h

(z′)
θ (x)− y⋆(x).

Anchor mixture at test time. An anchor selection rule is a conditional distribution Q(· | x)
supported on S(x), which induces latent joint distributions

Dtrain : (∆z, z′) and D
Q

test : (∆z, z′) with z′ ∼ Q(· | x), ∆z = z − z′.

We assume BLT Assumptions 3.1–3.3 hold in latent space for (Dtrain, D
Q

test).

Effective number of anchors and correlation control. For fixed x,

keff(x) :=
1∑
j α

2
j

∈ [1, |S(x)|], kmin
eff := inf

x
keff(x).

Assume bounded conditional cross–correlation among centered errors:∣∣Corr(ηj(x), ηℓ(x) | x)∣∣ ≤ ρ ∈ [0, 1) for all j ̸= ℓ, (6)
with the convention that Corr = 0 if either conditional variance is zero.
Lemma K.1 (Variance bound under bounded cross–correlation). For any fixed x,

E
[(∑

j αj ηj(x)
)2 ∣∣∣ x] ≤

(
1−ρ

keff (x)
+ ρ

)
·max

j
Var(ηj(x) | x).

Proof. Let Σjℓ = Cov(ηj , ηℓ | x) and σ2
max = maxj Σjj . By equation 6, |Σjℓ| ≤ ρ

√
ΣjjΣℓℓ ≤

ρ σ2
max for j ̸= ℓ. Hence

α⊤Σα ≤ σ2
max

∑
j

α2
j + ρ

∑
j ̸=ℓ

αjαℓ

 = σ2
max

(1− ρ)
∑
j

α2
j + ρ

 = σ2
max

(
1−ρ

keff (x)
+ ρ

)
.

Theorem K.2 (Conditional MSE decomposition for fusion). Under equation 6 and convex weights,

E
[(
HΘ(x)− y⋆(x)

)2 ∣∣∣ x] ≤
(∑

j αj µj(x)
)2

︸ ︷︷ ︸
squared bias

+
(

1−ρ
keff (x)

+ ρ
)
·max

j
Var(ηj(x) | x).

Consequently,

Rtest(HΘ) ≤ E
[(∑

j αj µj(x)
)2]

+
(

1−ρ
kmin
eff

+ ρ
)
· E
[
maxj Var(ηj(x) | x)

]
.

If µj(x) ≡ 0 (per–anchor calibration), the multiplicative improvement on the variance term is
1−ρ
kmin
eff

+ ρ ≤ 1, with equality only if kmin
eff = 1 or ρ = 1.

Proof. Write HΘ − y⋆ =
∑

j αjεj =
∑

j αjµj +
∑

j αjηj and apply Lemma K.1 to the centered
part. For the population bound, note keff(x) ≥ kmin

eff and take expectations over x.
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Connection to BLT. Let Qα(· | x) be the distribution on S(x) with density α(x, ·). Assume BLT
Assumptions 3.1–3.3 hold in latent space for (Dtrain, D

Qα

test) so that BLT Thm. 1 applies (11).
Theorem K.3 (BLT-on-mixture bound for HΘ). With squared loss and Assumption above,

Rtest(HΘ) ≤ E
(x,z′)∼D

Qα
test

[
(h

(z′)
θ (x)− y⋆(x))

2
]
≤ CBLT ·Rtrain, CBLT = poly(κ,M/σ).

Proof. For fixed x, Jensen yields (HΘ(x) − y⋆(x))
2 ≤

∑
z′ α(x, z′) (h

(z′)
θ (x) − y⋆(x))

2. Taking
expectations gives the first inequality; BLT Thm. 1 gives the second.

Putting it together. Combining Theorems K.2 and K.3,

Rtest(HΘ) ≤ min
{
CBLT Rtrain, E

[(∑
j αj µj(x)

)2]
+
(

1−ρ
kmin
eff

+ ρ
)
E
[
maxj Var(ηj(x) | x)

]}
.

If, in addition, Var(ηj(x) | x) ≤ σ2 uniformly over x, j, the last expectation can be replaced by σ2.

L FURTHER EXPERIMENTS ACROSS PRACTICAL DRUG DISCOVERY
SCENARIOS

To further address the issue that standard scaffold splits may not fully capture the complexity of
real-world distributional shifts, we evaluated our framework on two more practical and chemically
meaningful OOD scenarios: activity cliffs and the Lo-Hi drug discovery benchmark.

L.1 PERFORMANCE ON ACTIVITY CLIFFS BENCHMARK

We augmented our evaluation with an activity cliffs benchmark, a difficult OOD challenge where
structurally similar compounds exhibit large differences in potency. Using the dataset from (28),
we defined the OOD test set as molecule pairs with high structural similarity but at least a tenfold
difference in potency.

Across 30 pharmacological endpoints, our MALT framework demonstrated superior performance.
As summarized in Table 13, MALT-enhanced models achieved a top-2 rank far more frequently than
their base counterparts on both in-distribution and OOD(activity cliff) data, resulting in substantial
median RMSE reductions. The detailed per-dataset results are presented in Table 14 and Table 15.

Table 13: Comprehensive performance summary on the activity cliffs benchmark across 30 datasets.
MALT significantly increases the number of top-2 finishes and reduces the median RMSE compared
to its base models on both ID and OOD splits.

Model Test Split MALT Top-2 Base Top-2 Median RMSE Reduction (%)

GIN In-Distribution 18 5 8.2%
OOD 25 3 12.7%

Chemprop In-Distribution 27 9 9.1%
OOD 28 5 7.0%

L.2 PERFORMANCE ON LO-HI DRUG DISCOVERY BENCHMARK

We further tested our model on the Lo-Hi benchmark (30), which simulates two distinct stages of a
drug discovery campaign: Hit Identification (HI) and Lead Optimization (LO). Hi is about identifying
novel, patentable drug-like molecules far from the training set, testing a model’s generalization.
Lo is about optimizing known hits by predicting effects of small modifications, testing a model’s
fine-grained sensitivity. As shown in Table 16, MALT-GIN consistently outperforms baseline GIN
model in LO splits, demonstrating performance gains.
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Table 14: Detailed In-Distribution Results (RMSE) for the Activity Cliffs Benchmark. The best result
is in bold and the second-best is underlined.

Dataset MALT(GIN) GIN MALT(Chemprop) Chemprop

CHEMBL1862 0.837 0.840 0.852 0.961
CHEMBL1871 0.676 0.655 0.634 0.646
CHEMBL2034 0.586 0.839 0.780 0.809
CHEMBL2047 0.760 0.705 0.633 0.794
CHEMBL204 0.739 0.891 0.709 0.859
CHEMBL2147 0.842 1.008 0.688 0.801
CHEMBL214 0.663 0.777 0.576 0.660
CHEMBL218 0.770 0.816 0.811 0.823
CHEMBL219 0.799 0.826 0.692 0.784
CHEMBL228 0.730 0.843 0.719 0.764
CHEMBL231 0.722 0.788 0.734 0.812
CHEMBL233 0.842 0.950 0.770 0.837
CHEMBL234 0.753 0.845 0.718 0.768
CHEMBL235 0.705 0.767 0.626 0.705
CHEMBL236 0.791 0.849 0.754 0.781
CHEMBL237 0.842 0.905 0.666 0.976
CHEMBL237 0.728 0.854 0.667 0.728
CHEMBL238 0.648 0.696 0.630 0.738
CHEMBL239 0.695 0.679 0.639 0.685
CHEMBL244 0.711 0.944 0.717 0.807
CHEMBL262 0.810 0.804 0.838 0.946
CHEMBL264 0.652 0.725 0.580 0.635
CHEMBL2835 0.426 0.462 0.339 0.433
CHEMBL287 0.791 0.809 0.761 0.793
CHEMBL2971 0.696 0.785 0.662 0.719
CHEMBL3979 0.598 0.726 0.660 0.715
CHEMBL4005 0.648 0.780 0.638 0.698
CHEMBL4203 0.883 0.849 0.918 0.952
CHEMBL4616 0.686 0.824 0.736 0.826
CHEMBL4792 0.882 0.751 0.678 0.792
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Table 15: Detailed OOD Results (RMSE) for the Activity Cliffs Benchmark. The best result is in
bold and the second-best is underlined.

Dataset MALT(GIN) GIN MALT(Chemprop) Chemprop

CHEMBL1862 0.765 1.041 0.811 0.846
CHEMBL1871 1.064 0.859 0.909 0.984
CHEMBL2034 0.836 1.045 0.940 0.952
CHEMBL2047 0.827 0.694 0.625 0.772
CHEMBL204 0.905 1.128 0.954 1.074
CHEMBL2147 0.635 1.182 0.658 0.836
CHEMBL214 0.771 0.883 0.775 0.796
CHEMBL218 0.802 0.853 0.790 0.849
CHEMBL219 0.757 0.863 0.775 0.821
CHEMBL228 0.727 0.887 0.729 0.881
CHEMBL231 0.982 1.034 0.908 0.833
CHEMBL233 0.878 0.995 0.883 0.950
CHEMBL234 0.734 0.875 0.619 0.707
CHEMBL235 0.830 0.889 0.770 0.838
CHEMBL236 0.855 0.936 0.885 0.924
CHEMBL237 0.905 0.972 0.940 0.999
CHEMBL237 0.802 0.993 0.782 0.853
CHEMBL238 0.682 0.709 0.723 0.748
CHEMBL239 0.829 0.948 0.899 0.996
CHEMBL244 0.803 1.138 0.762 0.888
CHEMBL262 0.864 1.143 0.921 0.928
CHEMBL264 0.695 0.886 0.689 0.768
CHEMBL2835 0.755 0.927 0.905 0.959
CHEMBL287 0.742 0.849 0.824 0.886
CHEMBL2971 0.685 0.857 0.831 0.899
CHEMBL3979 0.707 0.859 0.702 0.777
CHEMBL4005 0.751 0.875 0.804 0.768
CHEMBL4203 1.212 1.215 1.228 1.173
CHEMBL4616 0.820 0.824 0.804 0.801
CHEMBL4792 0.647 0.729 0.687 0.798

Table 16: Comparison of MAE for GIN baseline vs. MALT-GIN on the Lo-Hi Benchmarks. Perfor-
mance gains are shown for MALT. Best results are in bold.

Split Dataset GIN (Baseline) MALT-GIN (Ours) Gain (%)

HI (Realistic OOD)

BACE 0.8476 ± 0.0343 1.1882 ± 0.0488 -40.2%
ESOL 0.4088 ± 0.0054 0.3979 ± 0.0087 2.7%
FreeSolv 0.3571 ± 0.0268 0.3010 ± 0.0111 15.7%
Lipo 0.5211 ± 0.0047 0.5758 ± 0.0145 -10.5%

LO (Realistic OOD)

BACE 0.7158 ± 0.0097 0.6791 ± 0.0181 5.1%
ESOL 0.3423 ± 0.0099 0.3267 ± 0.0138 4.6%
FreeSolv 0.4069 ± 0.0128 0.2393 ± 0.0118 41.2%
Lipo 0.5012 ± 0.0057 0.4598 ± 0.0067 8.3%
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M COMPUTATIONAL OVERHEAD ANALYSIS

To address the scalability and practicality of our framework, we analyzed the computational overhead
in three key areas: training, inference, and memory bank construction. Our findings show that the
framework scales favorably and can be optimized for large-scale applications.

M.1 TRAINING OVERHEAD: ANCHOR SELECTION & MEMORY UPDATES

To assess training overhead, we compared our transductive MALT framework against a standard
inductive GNN on two datasets of vastly different sizes: BACE (1,513 molecules) and QM9 (133,885
molecules). The primary additional costs of our framework are Memory Update and Anchor
Selection. As shown in Tables 17, the total overhead per epoch was +52% on the small BACE dataset
and +43% on the large QM9 dataset, indicating favorable scaling as the dataset size grows. However,
as the dataset size increases, we can adjust the framework to update the memory bank every N epochs
for efficient learning. For all the experiments we have conducted, we updated the memory bank every
epoch.

Table 17: Per-Epoch Training Time Breakdown. Values in each cell are shown for the BACE dataset
→ QM9 dataset.

Training Component Inductive Model (s) MALT Framework (s) Overhead (s)
Forward Pass (Total) 0.0693 → 14.9002 0.0800 → 17.7365 +0.0107 → +2.8364
Query Embedding Extraction 0.0000 → 0.0000 0.0633 → 9.0935 +0.0633 → +9.0935
Anchor Selection 0.0000 → 0.0000 0.0052 → 7.0040 +0.0052 → +7.0040
Prediction Head 0.0000 → 0.0000 0.0115 → 1.6390 +0.0115 → +1.6390
Backward Pass 0.1241 → 8.3738 0.1340 → 8.1957 +0.0099 → –0.1781
Memory Update 0.0000 → 0.0000 0.0993 → 12.8468 +0.0993 → +12.8468
Data Loading 0.0065 → 5.6589 0.0042 → 4.2272 –0.0023 → –1.4316
Other Overhead 0.0367 → 4.1498 0.0418 → 4.2201 +0.0051 → +0.0703

TOTAL EPOCH TIME 0.2366 → 33.0827 0.3592 → 47.2264 +0.1226 → +14.1437

M.2 INFERENCE OVERHEAD: BRUTE-FORCE VS. FAISS OPTIMIZATION

To quantify inference overhead, we benchmarked the Anchor Selection step (nearest-neighbor
search). Our brute-force PyTorch implementation was compared against Faiss (34) library over
memory banks ranging from 10k to 10M vectors for different embedding dimensions. As shown
in Table 18, for smaller memory banks (≤ 100k vectors), our simple implementation is often faster.
However, for larger banks and higher dimensions, Faiss provides a significant speedup, demonstrating
a clear path to optimization for production-level applications.

Table 18: Faiss vs. PyTorch Nearest-Neighbor Search. Values in each cell are shown for embedding
dimensions D = 256 → D = 128 → D = 64.

Bank Size PyTorch Init (ms) Faiss Init (ms) PyTorch Search (ms) Faiss Search (ms) Speedup
10k 1.84 → 1.89 → 1.70 91.5 → 160 → 93.1 0.22 → 0.16 → 0.15 0.32 → 0.31 → 0.36 0.68×→ 0.50×→ 0.41×

100k 16.9 → 20.2 → 12.4 162 → 228 → 116.5 1.45 → 1.00 → 0.62 1.47 → 1.76 → 2.26 0.99×→ 0.57×→ 0.27×
500k 128.7 → 86.3 → 94.5 394 → 306 → 212 7.24 → 5.09 → 3.09 6.57 → 7.79 → 10.28 1.10×→ 0.65×→ 0.30×

1M 175.1 → 148.2 → 129.6 672 → 506 → 382 14.48 → 10.20 → 6.14 12.94 → 15.44 → 20.39 1.12×→ 0.66×→ 0.30×
10M 2706.7 → 2240.5 → 1308.4 6317 → 4652 → 2653 134.70 → 102.20 → 61.44 127.70 → 152.00 → 202.10 1.05×→ 0.67×→ 0.30×

M.3 MEMORY BANK CONSTRUCTION: BUILD TIME & MEMORY FOOTPRINT

We also evaluated the one-time cost of building the memory bank on datasets ranging from 103

to 106 molecules. This procedure is performed once with gradients disabled to extract and store
each molecule’s embedding. As shown in Table 19, the process scales linearly with the number of
molecules, with embedding extraction being the main bottleneck ( 71% of the total time).
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Table 19: Memory Bank Construction Time and Size Scaling.

Dataset Size Total Time (s) Data Loading (s) Embedding Extraction (s) Concatenation (s) Memory Size (MB)
1,000 0.274 0.004 0.194 0.028 0.98
5,000 0.771 0.006 0.540 0.014 4.88

10,000 1.594 0.007 1.106 0.018 9.77
50,000 7.709 0.044 5.517 0.148 48.83

100,000 15.538 0.096 10.872 0.321 97.66
500,000 75.837 0.396 53.686 1.782 488.28

1,000,000 151.713 0.790 108.333 3.147 976.56
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