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Abstract—Today’s robot policies exhibit subpar performance
when faced with the challenge of generalizing to novel environ-
ments. Therefore, adapting to and learning from online human
corrections is essential but a non-trivial endeavor: not only do
robots need to remember human feedback over time to retrieve the
right information in new settings and reduce the intervention rate,
but also they would need to be able to respond to feedback that can
take arbitrary corrections about high-level human preferences to
low-level adjustments to skill parameters. In this work, we present
Distillation and Retrieval of Online Corrections (DROC), an LLM-
based system that can respond to arbitrary forms of language
feedback, distill generalizable knowledge from corrections, and
retrieve relevant past experiences based on textual and visual
similarity for improving performance in novel settings. DROC
is able to respond to a sequence of online language corrections
that address failures in both high-level task plans and low-level
skill primitives. We demonstrate DROC effectively distills the
relevant information from the sequence of online corrections in a
knowledge base and retrieves that knowledge in settings with new
task or object instances. DROC outperforms baseline CaP [1]
by using only half of the total number of corrections needed in
the first round and requires little to no corrections after two
iterations.

I. INTRODUCTION

From generating high-level plans to writing robot code – pre-
trained large language models (LLMs) have shown to exhibit
a wide range of capabilities on robots that can in-context
adapt to feedback and adjust to language corrections. For
example, InnerMonologue [2] and ReAct [3] show that LLMs
can use language feedback to modify task-level step-by-step
plans, while Language-to-Reward demonstrates that LLMs
can respond to low-level feedback by changing the reward
function [4]. In many cases, these feedback mechanisms have
shown to be important for improving LLM-driven policies in
their capacity to adapt to new settings [5–8].

While prior work can respond to language corrections, they
often take a rigid approach that does not allow for arbitrary
forms of human feedback. For instance, a human user might
provide an instruction “Put the scissors in the top drawer” as
shown in Fig. 1, which leads to a robot planning on “picking
up the scissors”. However, if the drawer is not already open,
the correct plan requires the robot to first open the drawer
before picking up the scissors. A human observing the robot
might decide to provide corrective language that addresses this
planning error. With such a correction, the robot can finally
proceed with the correct high-level plan, and attempt to “open
the top drawer”. However, the primitive that the robot executes
might miss the grasp point on the handle. A human observer
again can provide language corrections to guide the robot to
finally achieve the skill primitive proposed by the task planner.
Considering this example, it is non-trivial to interpret these

different types of feedback: to interpret the first correction (“You
should open the drawer first”), one needs to know the robot’s
original plan; responding to the second correction (“Move a little
bit to the right”) requires the robot to infer what reference frame
the human is using for directions; and for the next correction
(“a bit more”), the robot needs to know the last round of action
it took. The ability to respond to these arbitrary corrections
requires a method that is flexible enough to identify if the
corrections are about the high-level task or low-level skill
primitives, and is able to leverage the prior context when
responding to a sequence of online corrections.

In addition, handling corrections is predominantly done in
a temporary fashion in prior work – limited by what can fit
within context length of the language model, and can be lost
if not saved as the input context buffer overrides past feedback
interactions with new ones. This can be frustrating if a robot
needs to be corrected for every new task for the same underlying
reason. As an example, in Fig. 1, the robot should be able to
learn that it has only one arm and reuse this constraint when
planning for future tasks. However, remembering the relevant
information from a sequence of language corrections such as
skill parameters can be challenging in more general settings
beyond remembering simple constraints.

In this work, we address these challenges and enable
LLM-based robot policies to respond to arbitrary forms of
feedback and further remember and retrieve feedback for
future tasks. We present DROC (Distillation and Retrieval
of Online Corrections), a simple yet surprisingly effective
formulation for responding to, remembering, and retrieving
feedback. A key aspect of DROC is that it effectively uses
an LLM to directly infer how-to-respond, what-to-remember,
and what-to-retrieve. Specifically, DROC prompts an LLM to
reason about relevant context required to respond to online
corrections further identifying if the correction is about high-
level task plans or low-level skill primitives. DROC distills
language feedback into re-usable knowledge via LLMs to
improve generalization of both high-level plans and low-level
skill primitives to new settings while reducing the number of
human corrections needed over time. Finally, DROC leverages
visual similarities of objects for knowledge retrieval when
language alone is not sufficient. Experiments across multiple
long-horizon manipulation tasks show that DROC excels at (i)
responding to online corrections, and (ii) adapting to new
objects and configurations while consistently reducing the
number of human corrections needed over time. DROC also
performs better in terms of success rate and requires fewer
corrections in new tasks compared to baselines such as Code
as Policies (CaP) [1] and variants with simpler implementation



Figure 1: Overview of DROC with example task “put the scissors in the top drawer”: the human interrupted the robot when it attempts to pick up the
scissors before opening the drawer, the correction handler regenerated a plan accordingly and the knowledge extractor extracts a high-level constraint; during
executing the skill of opening top drawer, the human interrupted again to correct the grasping pose of the robot by providing two low-level commands.

of distillation or retrieval mechanisms.

II. RELATED WORK

LLM-powered Robotics. Recent research has demonstrated
planning capabilities of LLMs in robotics, including zero-shot
generation of high-level task plans [9–12], adapting based on
human feedback when uncertain about the task plan [2, 7], and
directly producing robot code [1, 13]. In addition, LLMs are
used in a variety of settings beyond task planning in robotics
and human-robot interaction such as reward design [4, 14,
15], in-context learning [16], and reasoning about multimodal
inputs such as gestures [17]. While most prior works focus
on leveraging LLMs for task-level reasoning or generating
high-level primitives in code, recent works have also studied
effectively leveraging LLMs along with vision language models
(VLMs) for responding to fine-grained language such as “move
a bit to the right” by either leveraging reward functions [4],
voxelized representations [18], or keypoints [19]. On the other
hand, a number of recent approaches have been leveraging
VLMs directly as a success detector to ground the LLM plans
and identify failures [20, 21]. However, existing VLMs are not
trained on manipulation data, and hence are not able to detect
or provide fine-grained feedback to fix low-level mistakes such
as missing a grasping point by a few centimeters. While some
prior work address correcting low-level failures and others
address planning-level errors, none of the prior work can tackle
corrections at both levels. Meanwhile, prior literature do not
consider knowledge distillation and long-term generalization
from corrections for LLM-based robot policies, and are only
concerned about immediate responses to language corrections.
Knowledge Base for LLMs. Knowledge bases have previously
been shown to be effective for retrieving examples when
few-shot prompting LLMs [22–26]. Given a new example,
in-context learning relies on the new example’s similarity to
previous examples to generate a response [27]. This makes
retrieval-augmentation rather straightforward for traditional
Q&A tasks – relevant examples can be sampled from the
knowledge base by simply measuring the similarity between

input questions (e.g., via sentence embeddings [28–30]). How-
ever to synthesize large amounts of feedback for robotics tasks,
similarity-based methods are not enough; the method must
also be able to summarize feedback [31, 32]. The design of
DROC combines LLM capabilities previously demonstrated
independently: (i) summarizing multiple rounds of feedback
(a mechanism shared by [3, 32]), and (ii) to autonomously
partition feedback into high-level or low-level to cover a broader
range of re-usable adjustments [31] – in ways that together
enable new modes of generalization from language feedback
to new robot tasks or environments.
Learning from Language Corrections. Literature outside
LLM-based frameworks has also explored how to incorporate
language corrections for adapting policies. A body of work
developed methods for training a policy conditioned on past
rollouts and language corrections so that it can iteratively
improve using human feedback [33–35] . Prior methods also
propose to learn cost maps for modifying robot plans with
natural language [6]. Both of these categories of work learn how
to update a policy or a plan through post-hoc offline language
corrections. Our method responds to human online corrections
that modify the robot’s behavior as it executes, so that a user
can help the robot to recover from mistakes. However, there are
a number of recent techniques that enable responding to real-
time language corrections [36–38]. These works either make
restrictive assumptions such as using distributed correspondence
graphs to ground language, or they require extensive amount
of language corrections and demonstrations. In contrast, our
work does not require training data for interpreting corrections,
and leverages LLMs to directly generate robot code given the
language corrections.

III. DROC:
DISTILLATION AND RETRIEVAL OF ONLINE CORRECTIONS

In this section, we first present our problem formulation,
then present our method, DROC, by discussing how to generate
robot plans and skills in response to language corrections, and
describing how to distill and retrieve generalizable knowledge.



Problem Formulation. Consider a manipulation problem
defined by a natural language instruction L (e.g., "put the
scissors in the drawer"). Directly generating control sequences
in response to this instruction can be extremely hard because
L may be complex and long-horizon. We leverage a task
planner T : L ÞÑ pℓ1, ℓ2, . . . , ℓM q to decompose the high-
level instruction into low-level skills (e.g., "open the drawer",
"pick up the scissors"). For each skill, a skill composer maps
the skill to the control policy S : ℓ ÞÑ p. We follow Code-
as-Policies (CaP) [1] and represent p as a code snippet. In
practice, both T and S are not perfect and can make errors
due to a variety of factors such as perception or control errors.
A human interacting with this robot would only identify these
errors while the robot is executing the skill. As shown in Fig. 1,
the human only realizes the planner made a mistake when they
see the robot attempt to pick up the scissors first. Once they
spot the errors, the human can issue an arbitrary number of
corrections during the execution of each skill pi until ℓi is
fulfilled or the plan P “ pℓ1, ℓ2, . . . , ℓM q is correctly modified.
We denote cij as the human language correction and sij as the
solution to the correction, where the subscript j stands for
the round of corrections. sij takes the form of two types of
language programs: 1) triggering T to generate the correct
plan, or 2) triggering S to execute another language skill. At
the end of correction round j, we define the interaction history
as Hi

j “
Ť

t“1:jpP, ℓi, pi, c
i
t, s

i
tq. We denote the total number

of corrections at the end of the task to be J . The goal of a
learning agent is to reduce the amortized number of corrections
across tasks: J̄ “ 1

N

řN
k“1 Jk, where Jk is the total number

of corrections at the end of task Lk P tL1:Nu.
The DROC framework. DROC can be decomposed into three
reasoning modules: correction handler C (how-to-respond),
knowledge extractor E (what-to-remember), and knowledge
retriever R (what-to-retrieve). To generate the solution sij to
the human correction cij , we first extract relevant knowledge
from the history Hi

j´1 with the correction handler C and decide
whether it should generate a modified plan (triggering T with
added constraint) or code policy (triggering S with relevant
history) to address the user’s correction, i.e., sij “ CpHi

j´1q.
Upon the completion of a plan or a skill, E distills generalizable
knowledge from the full interaction history H and saves it to the
knowledge base B. The saved knowledge can be retrieved later
from B by the knowledge retriever R to guide task planning
or skill composing. We first introduce how task planner T and
skill composer S are implemented.
Task planning with T . To ground the output plan P “

pℓ1, ℓ2, . . . , ℓM q, we provide scene information, few-shot exam-
ples, and rule constraints to guide the plan generation. Below
is the template of the prompt along with an example:
Your role is to break down instructions into smaller sub-tasks.

# Examples: ...

Constraints:

1. The robot should manipulate one object and only move its gripper once

in each sub-task.

2. If the instruction is ambiguous, first refer to the constraints to

see whether you can replace the ambiguous reference; if not just leave

it as is.

3. Tablewares should be put in the top drawer.

Object state: top drawer(closed), bottom drawer(open), spoon(on table),

salt(in bottom drawer)

Instruction: put the spoon into the drawer

Plan: 1: "Open the top drawer",

2: "Pick up the spoon",

3: "Put down the spoon into the top drawer",

4: "Close the top drawer"

We define some initial constraints (1 and 2) in the prompt
to enforce the hierarchical abstraction between T and S, and
handle human’s ambiguous object reference. The initial object
states are provided by humans, which do not need to be
complete as they can be updated by LLM after each task
execution or correction in the knowledge distillation phase. The
constraints are also modifiable during that phase (e.g., constraint
3). In practice, one could use vision-language models (VLMs)
as scene descriptors to obtain object states; however, we found
existing open-source VLMs are sensitive to viewpoints and
object locations, and require extensive prompt tuning.
Skill composing with S. To ground the code policy pi
generated by S, we provide function APIs and few-shot
examples to an LLM that generates the code corresponding to
each skill primitive, similar to the practice in prior work [1].

The skill composer can use perception APIs to call a
VLM-based perceiver to detect the task-related object. For
implementing the VLM perceiver, we use Segment-Anything
[39] to obtain all objects’ masks in the scene, and use CLIP [40]
to label each mask. DROC also provides task-related knowledge
to S, which can be used as primitive parameters to guide
code generation. Such task-related knowledge is obtained from
the knowledge distillation and retrieval phase, which will be
discussed later.
Correction handling with C. Given a language correction cij ,
DROC prompts the LLM to decide whether the correction is
high-level (pertains to a constraint e.g., “robot can only grasp
one object at a time”, user preference) or low-level (primitive
parameter e.g., relative gripper pose, or object information),
then extracts relevant context from the (short-term) interaction
history and passes it as additional input language context to
the LLM for subsequent task planning and code-writing. A
naïve instantiation of the knowledge extractor E would be
one that is prompted with the entire interaction history H
and outputs the corresponding knowledge, which results in
lengthy context that buries important information required
for reasoning. At the same time we observe that cij alone is
semantically meaningful enough for deciding what history to
retrieve for interpreting it. Thus, we only provide cij to the
LLM, and limit the retrievable history to four categories: (a)
Last interaction. (b) Initial interaction. (c) Task plan. (d) No
dependence. The prompt template we use is presented below:
A human is issuing corrections to a robot, which encounters errors

during executing a task. These corrections may depend on the robot's

past experiences. Your task is to determine what does a correction

depend on: (a) Last interaction. (b) Initial interaction. (c) Task plan.

(d) No dependence.

# Examples: ...

"Move right a little bit": (d)

"Keep going": (a)



"You should first open the fridge": (c)

"Now you can continue": (b)

Once Hi
r is retrieved, C will prompt the LLM again to

generate the solution sij . We implement two types of correction
handlers CT and CS depending on the error level, and sij can
be a re-plan or a new code policy. The prompt structures of
CT and CS are similar to that of T and S , with (Hi

r, cij) and
additional guidance concatenated at the end of the prompts.
Once sij is generated, we execute it on the robot, and repeat
the above process until either the skill ℓi is fulfilled or the plan
P has been successfully modified.

To enable easy corrections and adaptations, we ground
each correction to the related object or the task. For fine-
grained corrections, we prompt CS to reason about whether
the reference frame is an absolute frame or an object-centric
frame. We empirically observe that human users tend to issue
corrections in the object-centric frame. For example, when the
robot is executing the task “open the drawer”, the correction
“move forward a bit” should be interpreted as “move towards
the drawer a bit”, which requires the knowledge of the drawer’s
frame to properly deal with the correction. In this case, we
leverage LLMs’ common sense and prompt it to calculate the
reference frame given the point cloud of the object. We also
ground the scale of movements to the size of the related object
whenever the correction contains vague distance expressions
(e.g., “a little bit”), which makes our system more adaptable.

Knowledge Distillation with E . Given a history log with task
instructions, generated LLM outputs, and several rounds of
feedback interleaved, DROC prompts the LLM to summarize
task-related knowledge, variables to save, modified code/plan,
and updated states, then stores this relevant information into the
knowledge base. At the end of each skill or plan, we provide
the skill description ℓi and the interaction history H to E and
use chain-of-thought prompting [41] to first reason about what
are the types of knowledge that can be generalized to similar
tasks in the future, and then extract the values of these types
of knowledge from H . Below is the template of the prompt:

Your task is to extract reusable knowledge from the provided interaction

history.

# Examples: ...

Task name: {TASK_NAME}

Task-related knowledge: # LLM's answer here

Interaction history: {HISTORY}

Variables to save: # LLM's answer here

Modified code/plan: # LLM's answer here

Updated object state: # LLM's answer here

In our implementation, we separate the plan-level distillation
and the skill-level distillation prompts. Examples of plan-level
knowledge include task constraints (e.g., “the scissors cannot
be put in a full drawer”), robot constraints (e.g., “the robot
can only grasp one thing at a time”), and user preferences
(e.g., “The user prefer milk to coke”). Examples of skill-level
knowledge are task parameters (e.g., gripper pose, pull distance)
and object information (e.g., visual feature, label). The distilled
knowledge is saved to the knowledge base B in a dictionary
format, with the key to be each task’s name. We also ask E

Figure 2: Motivation for Visual Retrieval. To retrieve the relevant task for
opening the bottom gray drawer, textual similarity of the task instructions
alone cannot filter the correct experience to reuse and similarity between visual
features of the object (drawer handles specifically) are important for retrieving
the correction past experience.

to update the objects’ states after each skill is successfully
performed. For ambiguous references, we remember the label
of the object and also treat this information as a task constraint.
Knowledge Retrieving with R. Given a new task, DROC
prompts the LLM to decide which past experiences are relevant.
In addition, our knowledge retriever leverages visual similarities
for measuring relevancy when language alone is not sufficient.
When queried by an instruction or a skill description, the
knowledge retriever R indexes into the knowledge base B and
retrieves relevant knowledge to help address the query. There
are two retrieval metrics: (a) task semantics; (b) visual feature
of the task-related object. Some knowledge is shared across
different tasks (e.g., robot constraints, user preferences) and can
always be retrieved, while other types of knowledge are specific
to individual task category or object. The intuition here is that
only knowledge that is both semantically and visually similar
to the query can be retrieved. To implement this intuition, we
first prompt R in a zero-shot manner to pick all the tasks that
are semantically similar to the query:
I'll give you a list of tasks a robot has previously performed and a new

task to address. Your goal is to determine the following:

1. Does the new task fall into the same category with any previous task?

(E.g. "open" and "put" are different categories of tasks)

2. If so, which specific previous tasks are they? Answer in list format.

Previous tasks: 1. Open the top drawer. 2. Pick up the scissors. 3. Put

the mug on the shelf. 4. Pick up the yellow marker.

New task: Pick up the spoon.

Response:

1: "Yes", 2: [2, 4]

Then, we can compare the queried object’s visual feature to
visual features of objects from the chosen tasks, and retrieve
the one with highest visual similarity to add to the prompt of
T or S as guidance. We motivate our design choice of using
visual features for retrieval with the example shown in Fig. 2.
In order to “open the bottom drawer” shown in the image,
the robot needs to retrieve a grasp pose that associates with a
horizontal drawer handle instead of a knob. It cannot retrieve the
correct information using only skill or task similarity. Another
advantage of visual retrieval is when the queried object’s name
contains visual information (e.g., "white drawer"), we can



Table I: Summary of skill-level and plan-level tasks.

Skill-level Tasks Object Variations Knowledge
Open drawer 2 drawers Grasp, Pull

Put scissors in drawer 2 scissors, 2 drawers Grasp, Pull, Place
Put tape in drawer 5 tapes, 2 drawers Grasp, Pull, Place

Hang cup on the rack Flipped cup, upright cup Grasp, Place
Pick up object 6 objects Grasp

Plan-level Tasks Test Tasks Knowledge
Put scissors in drawer Clean the table Pref.

"User wants stationery in white drawer"

Bring cup of coffee Make cup of coffee Pref. + Feasi.
"User doesn’t drink black coffee"

Heat milk in fridge Slice carrot Feasi.
"Robot only has one hand"

Sort blocks to drawer Sort blocks to drawer Feasi.
"Same color block goes to same drawer"

Put shoes on rack Sort clothes into shelf Comm.
"Same types of clothing go to same place"

Set dinner table I want to have lunch Comm. + Scene. + Feasi.
"Fork on left, hot dish on heat mat"

Place book on shelf Put DVD on shelf Scene.
"White shelf is full"

calculate the semantic-visual similarity between the name and
the visual features of the chosen tasks to choose the most
similar one. It is also important to note that different pre-trained
vision or vision-language models encode different features. For
manipulation tasks, we often care about the state and shape of
an object more than the texture similarity. We use Dino-V2 [42]
features out of this purpose for visual-visual retrieval, and use
CLIP features for visual-semantic retrieval.

IV. EXPERIMENTS

We evaluate our approach on a real-world tabletop environ-
ment with a Franka Emika Panda Robot. We use GPT-4 [43]
for all LLM modules. We design experiments to test DROC’s
core capabilities: 1) accurately responding to online corrections,
2) distilling generalizable knowledge, and 3) retrieving relevant
knowledge in novel tasks to improve performance.
Tasks. We will test DROC’s ability to respond to both skill-
level and plan-level corrections using separate set of tasks
summarized in Table I. For skill-level, we experiment with 5
table-top manipulation tasks, as shown in top row of Fig. 3.
We iterate each task 3 times. We start with an initial setting
and issue corrections until the first iteration is fulfilled. Then,
with the distilled knowledge from last iteration, we change the
setup (objects’ location, instance etc.) and repeat the task.

To evaluate DROC on plan-level corrections, we design
seven long-horizon tasks (see Fig. 4 for examples) to test four
types of generalization of knowledge: (a) User preferences,
which we aims to investigate whether DROC can distill user-
specific knowledge and apply it to future tasks; (b) Feasibility
of plans, which we want to see whether DROC can understand
the constraints of different tasks and the robot from corrections;
(c) Common-sense reasoning, which we aim to test if DROC
can ground LLMs’ powerful common-sense knowledge to
robotics tasks by explicitly distilling task-related common-sense
knowledge from corrections; (d) Scene information, which we
aims to see if DROC can understand the scene by distilling
scene information from corrections. Orange texts in Table I

show the knowledge distilled from train tasks (i.e., tasks on
the left) that can be retrieved for test tasks.
Baselines. For skill-level tasks, we compare with the following
baselines: (a) CaP: Code as Policies [1]; (b) Ours–H: DROC
with no initial history to show that knowledge distillation from
prior tasks are important; (c) Ours–E: DROC without relevant
context extractor (uses all interaction history for correction
handling), and (d) Ours–V: DROC that does not leverage visual
retrieval. The baselines share the same prompts with our task
planner T and skill composer S, and have access to exactly
the same function APIs. For plan-level tasks, we compare with
Ours–R, an ablation that does not distill knowledge and naively
retrieves saved plans.

Skill-Level Corrections. We report the amortized number of
corrections for each task over learning iterations in Fig. 3.
Overall, DROC outperforms all baselines by requiring less
number of corrections, which strongly supports that DROC
can synthesis generalizable knowledge from the corrections
and use them to quickly adapt to unseen task settings. We
further analyze the results for evaluating the core capabilities
of DROC and our specific design choices:
DROC enables more effective corrections. The comparison
between DROC (ours) and CaP suggests that DROC can
respond to corrections significantly more effectively as it
requires less than half corrections in the first round.
DROC distills generalizable knowledge within the same
task (same language, same object). The comparison between
the initial corrections needed for DROC (ours) and Ours–H
demonstrates that the distilled knowledge helps with learning
different variations of the same task.
Visual retrieval enables more accurate skill generalization.
For the "Hang cup on Rack" task, we provide the system
with 2 sets of knowledge with different visual features (cup’s
color, cup’s orientation). Because upright cups and flipped cups
require different policies (the robot needs to flip the upright
cup before hanging it), our system needs to retrieve the correct
knowledge through visually comparing cups’ orientation at the
presence of distraction from cups’ colors. Through ablating
with Ours–V, we show that visual retrieval is an important
element in DROC.
DROC distills generalizable skill parameters across objects.
We further tested cross-object transfer in “pick up object” and
“put tape in drawer” tasks and report results as Ours+Transfer.
Specifically, for pick up object, we reuse history from other
objects and for “put tape in drawer” , we reuse history from
“put scissors in top white drawer”. By reusing history from
different tasks, our method further reduces the number of online
corrections needed.
Plan-Level Corrections. We evaluate how DROC respond to
plan-level corrections and generalize to new tasks with a suite of
task scenarios we curated to cover a diverse range of potential
mistakes. The train tasks and test tasks can be found in Table I.
We repeat 3 trials for each task scenario that begins with the
train task and then move to the test task with the knowledge
distilled from the train task. We only report the average number



Figure 3: Skill-level results. For all tasks, the results are averaged over six rounds of experiments. The error bars reflect the standard errors across different
rounds. Each iteration corresponds to a different task setting. The number of corrections declines as the iteration increases, which shows that DROC can
generalize and adapt to unseen new settings. For the “Hang Cup on Rack” task, we are not showing decline of corrections over iterations but instead ablate the
correction and distillation module of our system.

Figure 4: Illustrative examples for plan-level test cases. (1) upon interruption, DROC responds to correction by identifying it is a plan-level error and
replanning, and distills the constraint for future tasks; (2) given a task with ambiguity, DROC retrieves past experiences base on semantic and visual similarities.

of corrections needed for the test tasks in Table II because
DROC and Ours–R share the same correction module and
perform exactly the same on train tasks. The comparison
between DROC and Ours–R again shows that DROC can distill
and retrieve knowledge that empower generalization, leading
to smaller number of corrections required on the test tasks.
We visually illustrate two cases in Fig. 4: one demonstrating
the effectiveness of knowledge distillation and retrieval of
high-level constraint and the other showcasing how semantic
retrieval and visual retrieval aid high-level task planning.

Table II: Number of corrections required for plan-level test tasks.
Task Types Ours Ours–R

Pref. 0.5 1
Feasi. 0.67 1.33

Comm. 0 1.5
Scene. 0.5 1.5

V. CONCLUSION

We propose DROC, an LLM-based system for enabling
robots to respond to arbitrary forms of online language
corrections, distill generalizable information, and retrieve
relevant feedback for novel tasks. We demonstrate that DROC
outperforms baselines for responding to both low-level and
high-level corrections, and can effectively generalize knowledge
within the same tasks and across similar tasks. An important
future direction of DROC is to design an efficient knowledge
base that scales to large number of interactions. DROC is an
exciting step towards enabling robots to reliably learn from
corrections, paving a path for richer modes of human-robot
interaction.
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