
Bio-xLSTM: Generative modeling, representation and
in-context learning of biological and chemical

sequences

Niklas Schmidinger1 Lisa Schneckenreiter1 Philipp Seidl1 Johannes Schimunek1

Pieter-Jan Hoedt1 Johannes Brandstetter1,2 Andreas Mayr1
Sohvi Luukkonen1 Sepp Hochreiter1,2 Günter Klambauer1,2

1 ELLIS Unit Linz and LIT AI Lab, Institute for Machine Learning,
Johannes Kepler University, Linz, Austria

2 NXAI GmbH, Linz, Austria

Abstract

Language models for biological and chemical sequences enable crucial applications
such as drug discovery, protein engineering, and precision medicine. Currently,
these language models are predominantly based on Transformer architectures.
While Transformers have yielded impressive results, their quadratic runtime depen-
dency on the sequence length complicates their use for long genomic sequences
and in-context learning on proteins and chemical sequences. Recently, the re-
current xLSTM architecture has been shown to perform favorably compared to
Transformers and modern state-space model (SSM) architectures in the natural
language domain. Similar to SSMs, xLSTMs have a linear runtime dependency
on the sequence length and allow for constant-memory decoding at inference time,
which makes them prime candidates for modeling long-range dependencies in
biological and chemical sequences. In this work, we tailor xLSTM towards these
domains and propose a suite of architectural variants called Bio-xLSTM. Extensive
experiments in three large domains, genomics, proteins, and chemistry, were per-
formed to assess xLSTM’s ability to model biological and chemical sequences. The
results show that models based on Bio-xLSTM a) can serve as proficient generative
models for DNA, protein, and chemical sequences, b) learn rich representations
for those modalities, and c) can perform in-context learning for proteins and small
molecules.

1 Introduction

Accurate computational models for biological sequences are essential for translating data into
actionable insights in modern biology. Biological sequences like DNA, RNA, and proteins are
central to molecular biology, genomics, and drug discovery. Major projects like the Human Genome
Project (Lander et al., 2001) and the 1000 Genomes Project (1000 Genomes Project Consortium,
2010) have driven large-scale data collection efforts. Modeling these sequences is key to advancing
life sciences (Benegas et al., 2023; Karollus et al., 2024), interacting with biological systems (Hopf
et al., 2017; Riesselman et al., 2018; Yang et al., 2019) or predicting phenotypes from genetic variants
(Ashley, 2016; Brandes et al., 2023; Acosta et al., 2022). Similar efforts exist for protein sequences
(The UniProt Consortium, 2023) and small molecules (Kim et al., 2023; Zdrazil et al., 2023), used
for tasks like protein engineering (Arnold, 2018; Yang et al., 2019), predicting 3D structures (Jumper
et al., 2021), and drug discovery (Zhavoronkov et al., 2019). Large language models (LLMs) (Brown

Foundation Models for Science Workshop,38th Conference on Neural Information Processing Systems (NeurIPS
2024).

xLSTM Bio-xLSTM: modeling approaches

Blocks

S

M

Causal language modeling

?

xLSTM

In-context learning

?

xLSTM

Modeling approach

Causal language modeling

xLSTM

?H e l l o

DataBlocks
Masked language modeling

???

xLSTM

Blocks

M

Data

Chem-xLSTM

DataBlocks

M

Prot-xLSTM

Blocks

S S

Data

Human Genome

GRCh38

OpenProteinSet

Reverse-complement equivariance

xLSTM

???

DNA-xLSTM

Figure 1: Overview of Bio-xLSTM. Top left: xLSTM for natural language processing tasks.
Top right: Considered modeling approaches for biological sequences: masked language modeling,
equivariance to reverse complementary sequence, and in-context learning. Bottom left: DNA-
xLSTM models are trained on genomic DNA sequences and then fine-tuned on downstream tasks.
Bottom center: Prot-xLSTM models are trained in a causal modeling setting with a fill-in-the-middle
objective and use homologous proteins for in-context learning. Bottom right: Chem-xLSTM models
are trained to generate small molecules. For an in-context learning setting, Chem-xLSTM models use
molecules with known properties.

et al., 2020; Bubeck et al., 2023) have emerged as prime candidates for modeling biological sequences
and serving as foundation models for molecular biology and chemistry (Ji et al., 2021; Schiff et al.,
2024; Nguyen et al., 2023; Rives et al., 2021; Lin et al., 2023).

Large language models for biological sequences must handle long sequences and incorporate
context. The rise of LLMs (Radford et al., 2018; Brown et al., 2020; Bubeck et al., 2023) has
revolutionized numerous fields, including life sciences. Most LLMs are based on the Transformer
architecture (Vaswani et al., 2017), which excels at predicting the next or missing token using self-
attention. However, the self-attention mechanism scales quadratically with sequence length, making
long-sequence modeling computationally expensive. As a result, most biological sequence models
use short contexts (Rives et al., 2021; Ji et al., 2021; Dalla-Torre et al., 2023). However, biological
sequences require long context windows for accurate modeling because of their important long-range
interactions due to 3D folding (Anfinsen, 1973), or gene regulation in DNA (Bouwman and de Laat,
2015). The human genome spans around three billion base-pairs (bps), far exceeding the context
limits of Transformer-based models. Furthermore, long contexts also benefit models that exploit
homologous proteins (Truong Jr and Bepler, 2023; Sgarbossa et al., 2024) and molecular context
for small molecules (Papadatos et al., 2010; Schimunek et al., 2023). The emergence of state-space
models (SSMs), like S4 (Gu et al., 2022), Hyena (Poli et al., 2023), and Mamba (Gu and Dao, 2023),
enables handling longer contexts in biological domains (Nguyen et al., 2023; Schiff et al., 2024;
Sgarbossa et al., 2024). However, the recently proposed xLSTM architecture (Beck et al., 2024), a
recurrent neural network, has outperformed SSM architectures in natural language processing (Beck
et al., 2024). For further related work, see Appendix Section A.

The recently proposed xLSTM is a powerful architecture for sequence modeling and a promis-
ing candidate for biological and chemical sequences. The xLSTM architecture (Beck et al., 2024)
introduces enhanced memory structures and exponential gates that boost its performance, particularly
in natural language modeling. Despite these enhancements over traditional LSTM, xLSTM retains
the efficiency of a recurrent neural network and can handle varying sequence lengths effectively (Beck
et al., 2024), while maintaining expressivity (Merrill et al., 2024) and scalability (Katharopoulos et al.,
2020; Choromanski et al., 2021). These features make xLSTM ideal for modeling: i) DNA sequences,
which are inherently long and for which long-range interactions between distant parts of the sequence
have been observed, ii) protein sequences, where modeling strongly benefits from contextual infor-
mation of evolutionary-related proteins (Rives et al., 2021), and iii) small molecules represented as

2

chemical sequences, such as Simplified Molecular Input Line Entry System (SMILES) (Weininger,
1988), for which in-context learning (ICL) abilities are an option to generate new molecules with
desired properties or from a particular molecular domain (Segler et al., 2018; Schimunek et al., 2023).
However, it remains unclear how to best tailor xLSTM for biological and chemical sequences and
how xLSTM compares to other domain-specific LLMs architectures.

We introduce: a) DNA-xLSTM, an architectural variant tailored for DNA sequences with reverse-
complement equivariant blocks, and evaluate its performance on long-context generative modeling,
representation learning, and downstream tasks. b) Prot-xLSTM, a variant for homology-aware protein
language modeling with in-context learning for both generative modeling and in-painting, which we
benchmark on generative modeling, conditioned protein design and protein variant fitness prediction
tasks. c) Chem-xLSTM, an architectural variant for SMILES representations of small molecules for
which we demonstrate ICL capabilities. An overview of Bio-xLSTM is shown in Fig. 1.

2 Background and Notation

xLSTM (Beck et al., 2024) consists of two types of layers: sLSTM (see Section B.1) and mLSTM
(see Section B.2) which are the main components within block structures (see Section 2.1) of its
multi-layer architectures. We consider a series of input vectors xt ∈ RD given at a certain time
step t ∈ {1, . . . , T}. X = X1:T = (x1,x2, . . . ,xT) ∈ RD×T denotes the matrix of stacked input
vectors from all time steps. Both sLSTM and mLSTM are recurrent neural networks, which either
map a state (ht−1, ct−1,nt−1) to a successor state (ht, ct,nt) given an input xt−1 (sLSTM) or
a state (ht−1,Ct−1,nt−1) to a successor state (ht,Ct,nt) given an input xt−1 (mLSTM). Here,
ht ∈ Rd denotes a hidden state, ct ∈ Rd and Ct ∈ Rd×d denote cell states responsible for long-term
memory and, nt ∈ Rd denotes a normalizer state. sLSTM and mLSTM utilize several adjustable
weight matrices and bias vectors (detailed equations below) and employ input-, output-, and forget-
gates, activated by exponential (exp) or the sigmoid functions (σ). For cell inputs in sLSTM, the
hyperbolic tangent function (tanh, abbreviated as φ) is used as an activation function.

2.1 Block Structures

The sLSTM and mLSTM layers are integrated into larger residual backbones (Srivastava et al., 2015;
He et al., 2016), which incorporate layer normalization (Ba et al., 2016), pre- or post-up projection
layers (Vaswani et al., 2017; Dao, 2024), with short causal convolutions and group normalization
(Wu and He, 2020). Figure A1 depicts sLSTM and mLSTM blocks, as well as, a bidirectional
mLSTM configuration with weight-tied blocks. For more details, refer to (Beck et al., 2024, Sec.2.4).
For Bio-xLSTM we retain these basic building blocks but adjust them to the respective domains.
The entire architecture, including all layers, normalization, blocks, and other components, defines
a mapping from an input sequence of length t to an output sequence. This mapping is denoted
as xLSTM : RD×t 7→ RD×t, where xLSTM transforms the stacked inputs up to time step t, i.e.,
X1:t := (x1,x2, . . . ,xt) ∈ RD×t, to the corresponding stacked outputs of sequence length t, i.e.,
Y1:t := (y1,y2, . . . ,yt) ∈ RD×t 1. The i-th sequence element is denoted with the subscript i, e.g.
the i-th element from X1:t would be (X1:t)i. Similarly to the mapping xLSTM, we also define
mappings for the sequence-wise input-/output behaviour of layers themselves for an sLSTM layer
(sLSTM : RD×t 7→ RD×t) or an mLSTM layer (mLSTM : RD×t 7→ RD×t). If the specific
parameters used for the mapping are unclear, we will denote this by including a second argument in
the function, separated by a semicolon. For details on the block structures, see Appendix Section B.3.

2.2 Modes of Operation: Parallel, Chunkwise, and Recurrent

The recurrent forms of sLSTM and mLSTM, introduced in Sections B.1 and B.2, provide efficient,
constant-memory decoding during inference. This eliminates the need for expensive key-value
caching, which represents a major challenge for Transformer models in long-range settings. Like
Transformers, mLSTM allows for parallelization across the sequence length which significantly
speeds up training. Additionally, similar to linear attention variants (Katharopoulos et al., 2020; Yang
et al., 2024), mLSTM supports chunkwise parallel processing, blending recurrent and parallel modes

1Here xi and yi represent the inputs to and outputs from a particular model from an instance of an xLSTM
architecture, rather than the inputs and outputs of a specific sLSTM or mLSTM layer

3

(Beck et al., 2025). This approach is especially advantageous for long-sequence training and prompt
encoding. For further details, refer to Appendix B.4.

3 Bio-xLSTM: Longe-Range Modeling of Biological and Chemical Sequences

Bio-xLSTM introduces three xLSTM-based architectural variants tailored specifically to DNA
(Section 3.4), proteins (Section 3.5) and small molecules (Section 3.6). For these application domains,
we extend xLSTM from causal language modeling (CLM) (Section 3.1) to new modeling approaches
such as fill-in the middle (FIM) , in-context learning (ICL) and masked language modeling (MLM)
(Section 3.2).

3.1 Causal Language Modeling and Next-Token Prediction

Causal language modeling (CLM) uses the

CLM loss: LCLM = EX∼pX
Et∼[[1,T−1]] CE (xt+1, xLSTM(X1:t)t) , (1)

where CE is the cross-entropy loss (with logits), pX is the data distribution, and [[1, T − 1]] is the
discrete uniform distribution from 1 to T − 1. The objective measures how well a particular sequence
token xt+1 can be predicted based on the previous tokens X1:t by the model xLSTM : RD×t 7→
RD×t. Therefore, this type of modeling is sometimes also called next token prediction (NTP),
uni-directional modeling or autoregressive (AR) modeling and the loss is also called NTP loss.

Fill-in the middle (FIM) (Bavarian et al., 2022) is a modeling paradigm that integrates aspects of
both CLM and MLM. In this approach, parts of the sequence are replaced with mask tokens, which
are then appended to the end of the sequence. This allows the model to utilize the entire context to
predict the masked tokens while maintaining an AR training framework. This strategy, allows the
model to perform both a) generative modeling and b) inpainting with CLM.

In-context learning (ICL) is a capability of language models to learn and perform tasks by leveraging
additional information provided as the contextual input without updating their parameters (Brown
et al., 2020; Min et al., 2022). This approach allows models to learn from analogy, drawing insights
from patterns in the context to adapt their behavior. When the contextual input sequence is denoted as
Z ∈ RD×S and the conventional input sequence is denoted as X ∈ RD×T , then with an ICL model,
we obtain Y ′ = xLSTM([Z,X])(S+1):(S+T), where [Z,X] indicates concatenation of contextual
and conventional inputs, and, the subscript (S + 1) : (S + T) indicates that the last output tokens
(those corresponding to the X tokens) are selected. For natural language processing tasks, the context
Z often contains the solution to a similar problem or exemplary solutions that guide the input and
inform the model. For biological and chemical sequences, the context Z could represent similar
genetic regions, homologous proteins, or molecules with desired properties, enabling the model to
make informed predictions or generate outputs based on these analogies.

3.2 Masked Language Modeling (MLM)

Bio-xLSTM extends xLSTM to masked modeling of biological sequences, for which the typical
de-masking or de-noising objective (Vincent et al., 2010; Devlin et al., 2019) is used, concretely the

MLM loss: LMLM = EX∼pX
Et∼[[1,T]] EM∼pM

CE (xt, xLSTM(X ⊙M)t) , (2)

where M ∈ {0, 1}D×T is a random matrix with binary entries which are usually drawn from a
Bernoulli distribution pM , and ⊙ is element-wise multiplication. The objective measures how
well the original sequence X can be reconstructed from a noisy version X ⊙ M by the model
xLSTM : RD×T 7→ RD×T . This modeling paradigm has also been called bidirectional modeling. It
has been highly successful in learning representations of proteins at evolutionary scale (Rives et al.,
2021), which has powered many subsequent applications such as protein engineering and machine-
learning guided directed evolution (Yang et al., 2019). For details on how xLSTM is extended to the
MLM setting, we refer to Appendix Section B.5.

4

3.3 Reverse complement (RC) equivariance

We develop an xLSTM block that is equivariant to the RC of an input sequence, a property particularly
relevant to DNA-based applications. In double-helix DNA structures, both strands are semantically
equivalent, with one strand being the RC of the other. The RC strand is oriented in the opposite
direction of the forward strand, with base pairs converted from A to T and C to G. Shrikumar et al.
(2017) show that a data-driven approach to learn the equivalence between RC sequences can fail.
Therefore, Schiff et al. (2024) propose to enforce RC-equivariance by design, making use of two
different inductive biases, post-hoc conjoining (PH) (Zhou et al., 2022) and parameter sharing (PS),
in the architecture. In PH architectures, the backbone is trained to handle both DNA sequences and
their RCs by applying RC augmentations during pre-training. For downstream tasks, PH architectures
are applied to both the original sequence and its RC, and their outputs are summed to reach overall
RC invariance. In contrast, PS architectures integrate RC-equivariant xLSTM blocks with equivariant
word embeddings and language model heads similar to Schiff et al. (2024). For additional details, see
Appendix Section C.4.

3.4 DNA-xLSTM

For the DNA domain, we propose the DNA-xLSTM architecture to enhance sequence modeling
capabilities, particularly for varying context lengths. We introduce three model configurations
based on DNA-xLSTM: two sLSTM-based configurations trained with a context window of 1,024
tokens (DNA-xLSTM-500k and DNA-xLSTM-2M), and an mLSTM-based configuration trained
with a context window of 32,768 tokens (DNA-xLSTM-4M). The short-context configuration, DNA-
xLSTM-500k, has an embedding dimension of 128, 5 sLSTM blocks, an up-projection ratio of
1.25:1 to match the baseline model parameter count, and a total parameter count of 500k, while
DNA-xLSTM-2M has an embedding dimension of 256, 6 sLSTM blocks, a 1:1 up-projection
ratio, and 2M parameters. The long-context configuration, DNA-xLSTM-4M, has an embedding
dimension of 256, 9 mLSTM blocks, a 2:1 up-projection ratio, and is augmented with Rotary Position
Encodings (RoPE) (Su et al., 2024a) to handle long-range dependencies effectively, with a total of
4M parameters. All three configurations are trained with both CLM and MLM. Furthermore, we
introduce RC-equivariant versions, xLSTM-PH and xLSTM-PS, which use the original sequence and
its reverse complement (RC). We trained models with these configurations on the human genome
and benchmarked them against state-of-the-art DNA models, such as Transformers, DNA-Mamba
(Caduceus) (Schiff et al., 2024), and HyenaDNA (Nguyen et al., 2023), showing competitive or better
performance on pre-training and downstream classification tasks (see Section 4.1).

3.5 Prot-xLSTM

For the protein domain, we propose the architectural variant Prot-xLSTM to address the complexities
of protein sequence data, particularly in capturing long-range dependencies to enable homology-
conditioned modeling. We introduce two configurations: Prot-xLSTM-26M and Prot-xLSTM-102M,
with 26M and 102M parameters, respectively. Both configurations consist of 16 mLSTM blocks,
with embedding dimensions of 512 for Prot-xLSTM-26M and 1,024 for Prot- xLSTM-102M and
maintaining a consistent 2:1 projection ratio across both configurations, and are trained with increasing
context sizes ranging from 2,048 to 262,144 tokens. To effectively manage the wide range of protein
sequence lengths and context sizes, RoPEs are implemented for Prot-xLSTM. The according Prot-
xLSTM models are trained with CLM using a FIM strategy on non-aligned homologous sequences,
enabling them to perform ICL at inference time in two modes: a) generative and b) inpainting. Both
approaches can be used for protein design, with the latter also suited for residue-based predictions,
such as mutant fitness estimation. Prot-xLSTM shows better performance than similarly configured
Mamba- and Transformer-based models and shows promising results for homology-conditioned
sequence generation (see Section 4.2).

3.6 Chem-xLSTM

For the chemical sequence domain, we introduce Chem-xLSTM to enhance generative modeling
of SMILES strings (Weininger, 1988), enabling domain-conditioned generation of small molecules
without fine-tuning. We introduce two models: an unconditional generative model trained with a
context length of 100 tokens (Chem-xLSTM-15M) and a domain-conditioned model trained with a

5

4,096-token context for in-context learning tasks (Chem-xLSTM-15M-icl). The latter can generate
molecules within a specific domain without fine-tuning only based on examples provided as context, a
highly sought-after capability in drug discovery. Both models are configured to have 15M parameters,
consist of 9 mLSTM blocks with an embedding dimension of 512 and a 1.3:1 projection ratio.
The models have been benchmarked against other generative models for SMILES and at their ICL
capabilities (see Section 4.3).

4 Experiments and Results

4.1 DNA Sequences

For the DNA-xLSTM experiments, we followed the experimental protocol outlined in Schiff et al.
(2024) and Nguyen et al. (2023) for both pre-training and downstream adaptation.

2 4 6 8 10
Billion Tokens

1.08

1.09

1.10

1.11

1.12

1.13

1.14

1.15

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba
Transformer++
Hyena

2 4 6 8 10
Billion Tokens

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba
Transformer++

Figure 2: Pre-training of 2M-parameter DNA models on the human reference genome (GRCh38).
Models are trained at single-nucleotide resolution with a context length of 1024 bases. Left: causal
language modeling. Learning curves display NTP loss (↓) on a test set, plotted against the number
of tokens processed. Right: masked language modeling. Learning curves showing MLM loss (↓)
on a test set across the number of tokens seen for various models. In both tasks, the xLSTM-based
models consistently achieve the lowest loss values across all update steps.

Pre-training. The training data for both the CLM and MLM tasks was sourced from the human
reference genome (Church et al., 2011), with context lengths set to 1,024 and 32k tokens. Our baseline
models included HyenaDNA (Nguyen et al., 2023) and Caduceus (Schiff et al., 2024), which is based
on the Mamba architecture . Additionally, we trained Transformer++ baselines, building on the Llama
architecture (Touvron et al., 2023). Similar to Caduceus, we experimented with both PH- and PS-
equivariant xLSTM configurations, benchmarking them against the corresponding Mamba baselines.
All models that did not use PS-equivariance were trained with RC augmentation. Hyperparameters
were selected using a separate validation set. Figure 2 presents the test losses for 2M parameter
CLM and MLM models trained with RC augmentation, i.e. non-PS models, and a context size of
1,024 tokens. In the CLM setting, DNA-xLSTM-2M achieved the best performance, surpassing
Transformer++, Mamba, and HyenaDNA. The performance gap became even more pronounced on
the MLM task, where DNA-xLSTM-2M outperformed both Transformer-based models and Mamba.
Additionally, we extended DNA-xLSTM-2M to the PS equivariant setting and trained smaller RC-
equivariant DNA-xLSTM-500k models. The resulting PH and PS models were subsequently used for
downstream fine-tuning. In Appendix Section C, we present additional pre-training results including
comparisons for large-context and PS equivariant models. We found that xLSTM-DNA matches or
outperforms strong baselines in all pre-training settings.

Downstream fine-tuning. To evaluate the learned representations, we fine-tuned the pre-trained DNA-
xLSTM-2M and DNA-xLSTM-500K (both PH and PS) on two genomic classification benchmarks:
the Genomic benchmark (Grešová et al., 2023) and the Nucleotide Transformers Tasks (Dalla-
Torre et al., 2023), which span 18 datasets from five studies. DNA-xLSTM-2M-PH and DNA-
xLSTM-2M-PS models pre-trained with context size 1,024 were compared against HyenaDNA and
Mamba-PS and Mamba-PH. DNA-xLSTM performed best (see Table 1), outperforming baseline
models in the under 2M parameter range on 12 out of 18 tasks, and was comparable to the much
larger Nucleotide Transformer (500M parameters), winning 8 tasks. The comparisons with larger

6

Transformer models and xLSTM-DNA-500k performance on the Genomics benchmark are presented
in Appendix Section C.

Table 1: Downstream adaption of DNA models. The performance of 2M parameter models fine-tuned
on Nucleotide Transformer classification tasks on the test set is shown. PS or PH indicate models
trained to be RC equivariant. Performance is averaged over 10 random seeds and error bars indicate
the difference between maximum and minimum values across the 10 runs. The best values are
highlighted in green. DNA-xLSTM outperforms both Mamba and Hyena on 12 out of 18 tasks.
Scores for Mamba- and Hyena-based models were obtained from Schiff et al. (2024).

Task Metric HyenaDNA Mamba-PSa Mamba-PHa xLSTM-PS xLSTM-PH

Histone Markers
H3 MCC ↑ 0.779±0.037 0.799±0.029 0.815±0.048 0.796±0.014 0.824±0.010

H3K14AC MCC ↑ 0.612±0.065 0.541±0.212 0.631±0.026 0.570±0.008 0.598±0.017

H3K36ME3 MCC ↑ 0.613±0.041 0.609±0.109 0.601±0.129 0.588±0.019 0.625±0.010

H3K4ME1 MCC ↑ 0.512±0.024 0.488±0.102 0.523±0.039 0.490±0.012 0.526±0.001

H3K4ME2 MCC ↑ 0.455±0.095 0.388±0.101 0.487±0.170 0.489±0.024 0.504±0.012

H3K4ME3 MCC ↑ 0.549±0.056 0.440±0.202 0.544±0.045 0.520±0.019 0.537±0.012

H3K79ME3 MCC ↑ 0.672±0.048 0.676±0.026 0.697±0.077 0.662±0.011 0.697±0.007

H3K9AC MCC ↑ 0.581±0.061 0.604±0.048 0.622±0.030 0.622±0.013 0.627±0.008

H4 MCC ↑ 0.763±0.044 0.789±0.020 0.811±0.022 0.793±0.011 0.813±0.008

H4AC MCC ↑ 0.564±0.038 0.525±0.240 0.621±0.054 0.558±0.018 0.583±0.014

Regulatory Annotation
Enhancer MCC ↑ 0.517±0.117 0.491±0.066 0.546±0.073 0.375±0.030 0.545±0.024

Enhancer Types MCC ↑ 0.386±0.185 0.416±0.095 0.439±0.054 0.444±0.046 0.466±0.011

Promoter: All F1 ↑ 0.960±0.005 0.967±0.004 0.970±0.004 0.962±0.002 0.967±0.001

NonTATA F1 ↑ 0.959±0.011 0.968±0.006 0.968±0.010 0.963±0.002 0.970±0.001

TATA F1 ↑ 0.944±0.040 0.957±0.015 0.953±0.016 0.948±0.006 0.952±0.005

Splice Site Annotation
All Accuracy ↑ 0.956±0.011 0.927±0.021 0.940±0.027 0.965±0.006 0.974±0.004

Acceptor F1 ↑ 0.958±0.010 0.936±0.077 0.937±0.033 0.970±0.005 0.953±0.008

Donor F1 ↑ 0.949±0.024 0.874±0.289 0.948±0.025 0.962±0.004 0.951±0.005

a this method is also called Caduceus (Schiff et al., 2024).

4.2 Protein Sequences

We followed the experimental protocols from Sgarbossa et al. (2024) for protein sequences.

Homology-aware training. Training data was sourced from the filtered OpenProteinSet (Ahdritz
et al., 2023), consisting of 270k UniClust30 clusters (508M sequences, 110B residues). Using
the ProtMamba pipeline, we constructed homology-aware, alignment-free inputs by concatenating
unaligned homologous sequences and mask patches for training with the FIM strategy. We trained
two xLSTM-based models: Prot-xLSTM-26M and Prot-xLSTM-102M. For comparison, we also
trained a smaller ProtMamba (ProtMamba-28M) and Transformer-based (Prot-Transformer++-26M)
(Touvron et al., 2023) model and used the ProtMamba Long Foundation (ProtMamba-107M) provided
by Sgarbossa et al. (2024). The initial training followed a context length scheduling strategy, with
models gradually increasing context from 211 to 217 tokens. Finally, Prot-xLSTM-102M was further
trained with T = 218.2 We evaluated the models using negative log-likelihood and perplexity,
calculated for different parts of the concatenated-FIM sequences. As shown in Fig. 3 and Tab. 2,
Prot-xLSTM outperformed the other architectures. Its advantage becomes even more pronounced
with longer contexts, which Prot-Transformer++ cannot handle, and where Prot-xLSTM significantly
outperforms ProtMamba. Furthermore, Prot-xLSTM-102M outperforms ProtMamba-107M, despite
being trained on only a quarter of the total training tokens used for ProtMamba-107M. Further details
are provided in Appendix Section D.1.

Homology-conditioned protein generation. We generated 2,500 protein sequences each for 19
clusters using different parameters and score them using multiple metrics. Hamming distance,

2The protein downstream tasks were evaluated using the model trained with T up to 217 tokens.

7

0 5 10 15 20 25 30
Billion Tokens

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

Va
lid

at
io

n
Lo

ss

211 217

Prot-xLSTM-26M
ProtMamba-28M
Prot-Transformer++-26M

0 20 40 60 80 100
Billion Tokens

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0 211 212 213 214 215 216 217 218

Prot-xLSTM-102M
ProtMamba-107M

Figure 3: Generative pre-training of protein language models. The learning curves show the validation
loss of homology-aware protein language models during training. Left: Small models trained
for 20B tokens with a context size of 211 and fine-tuned for 10B with a context of 217 tokens.
Transformer++ can only be run for a small context size. Right: Prot-xLSTM-102M model trained
with increasing context sizes from 211 to 218. Vertical gray dashed lines mark the points where
context size was increased. The arrow at 60B tokens indicates the model used for downstream tasks.
The orange dashed line corresponds to the validation loss of ProtMamba-107M trained up to a context
size of 217 for a total of 195B tokens. Prot-xLSTM consistently outperforms other models and sets a
new state-of-the-art at homology-aware generation.

Table 2: Performance comparison of protein language models at homology-conditioned generation.
Test set perplexity (↓) of different models with a context size of 217 is shown across different token
subsets. The average and 95% confidence interval values are computed across the test set clusters.
Prot-xLSTM outperforms ProtMamba, especially when using a long context.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102Ma ProtMamba-107Mb

All tokens 8.73±0.31 10.15±0.32 6.83±0.25 (6.65±0.25) 7.47±0.26

First seq tokens 15.40±0.26 15.28±0.26 13.36±0.35 (13.41±0.35) 13.04±0.36

Last seq tokens 9.19±0.30 11.08±0.27 7.32±0.29 (7.14±0.29) 8.37±0.29

FIM tokens 6.77±0.25 7.96±0.27 5.52±0.20 (5.50±0.20) 6.47±0.23

a Trained for 60B tokens with T up to 217. Trained for 115B tokens with T up to 218 in parentheses.
b Trained for 195B tokens with T up to 217.

HMMER score, and structural scores correlate well with sequence perplexity, with an average
absolute Pearson correlation of 0.57 across clusters for the large Prot-xLSTM model (Table A10).
Table 3 shows Kolmogorov-Smirnov test statistics, which quantifies how well the score distributions
of the generated proteins match those of the real proteins. For each cluster, we compared scores
between 100 random real proteins and the 100 generated proteins with the lowest perplexity. For
further details see Appendix Section D.2.

Table 3: Homology-conditioned protein generation. Average Kolmogorov-Smirnov statistic
(↓) between scores of natural and generated sequences with 95% confidence intervals across
19 homology clusters. For three of five metrics, score distributions of Prot-xLSTM-generated
sequences are closest to natural sequences.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102M ProtMamba-107M

Sequence Length 0.41±0.09 0.52±0.09 0.40±0.08 0.36±0.08

Min. Hamming 0.43±0.08 0.60±0.11 0.47±0.09 0.42±0.07

HMMER 0.57±0.10 0.54±0.11 0.44±0.09 0.49±0.10

pLDDT 0.40±0.09 0.68±0.12 0.27±0.05 0.30±0.07

pTM 0.38±0.08 0.72±0.10 0.26±0.05 0.28±0.05

Protein variant fitness prediction. We assessed Prot-xLSTM’s predictive power for mutational
effects by leveraging its inpainting capability from the FIM training objective and using homologous

8

sequences as context on the ProteinGym DMS zero-shot substitutions benchmark (Notin et al.,
2023). Table A11 presents the performance comparison of Prot-xLSTM, other well-known protein
models, and the current top performers on the ProteinGym leaderboard. In summary, Prot-xLSTM
outperforms larger unconditional protein language models like ESM-2 (Lin et al., 2023) and ProGen2
(Nijkamp et al., 2023), and matches or surpasses ProtMamba’s performance. However, it falls short
compared to models that directly use the MSA, such as TranceptEVE (Notin et al., 2022b), or use
structural information, like ProSST (Li et al., 2024). Further details and results are provided in
Appendix Section D.3.

4.3 Chemical Sequences

Unconditional molecule generation aims to produce valid small organic molecules without imposing
specific constraints, such as being from a particular molecular domain. Following the setup of Özçelik
et al. (2024), we trained models to generate SMILES strings using a CLM approach on a dataset
derived from ChEMBL with a context length of 100 tokens. We compared our Chem-xLSTM
architecture with several architectures, including LSTM, GPT, S4, and Mamba, where all models
contain approximately 15 million parameters. The evaluation focused on two primary metrics:
perplexity and Fréchet ChemNet Distance (FCD) (Preuer et al., 2018). Chem-xLSTM achieved the
lowest FCD of 0.13 and a competitive perplexity score of 1.68, indicating its strong ability to generate
realistic chemical structures (see Table 4). All models produced valid, unique, and novel molecules,
showcasing their effectiveness in this task. Further details and results are provided in Appendix
Section E.1.

Table 4: Unconditional generation of molecules with 15M parameter models. 102,400 SMILES
sequences have been generated and evaluated. Error bars represent standard deviations across
bootstrap resampling.Green cells highlight the best values per row. Chem-xLSTM yields the best
FCD and SMILES-GPT the best perplexity.

SMILES-LSTMa SMILES-GPTb SMILES-S4c Chem-Mambad Chem-xLSTM

FCD ↓ 0.46±<0.01 0.15±<0.01 0.28±<0.01 0.21±<0.01 0.13±<0.01

Perplexity ↓ 1.88±3.8 1.65±0.6 1.73±2.4 1.74±0.5 1.68±1.0

a Segler et al. (2018) b Adilov (2021) c Özçelik et al. (2024) d Adapted to SMILES in this work.

For conditional molecule generation, the objective is to generate molecules belonging to a specific
molecular domain or possessing desired properties. Here, we focused on generating molecules from
a particular domain using the in-context learning abilities of LLMs. To achieve this, we assembled a
dataset, referred to as the molecular domains dataset, which comprises a diverse range of molecular
domains: natural products, click-chemistry, proteolysis-targeting chimera (PROTACs), DNA-encoded
chemical libraries, approved and failed drugs, and bioactive compounds from various bioassays.
Molecules from the same domain, are concatenated as a long sequence, and augmented through
permutation during training. We split the dataset into training, validation, and test domains, following
an 8:1:1 ratio (Figure 4, left). The validation and test sets contained molecules from unseen domains,
enabling us to evaluate the models’ conditional generation capabilities through in-context learning.
We trained Chem-xLSTM, Mamba, Transformer++, and S4-based models with the CLM approach
on the molecular domains with an increased context length of 4,096 tokens. The context length for
S4 models was restricted to 2,048 due to memory constraints. We evaluated the models based on
NTP loss across unseen domains. The trained model Chem-xLSTM-15M-icl shows promising results
in this conditional setting, outperforming the other benchmarked model classes (Figure 4, right). This
demonstrates Chem-xLSTM’s capability to generate molecules from an unseen chemical domain
when provided with only a few exemplary molecules without fine-tuning. Further details and results
are provided in Appendix Section E.2.

5 Discussion

Conclusions. In this work, we demonstrated the potential of Bio-xLSTM variants as prime candidates
to model biological and chemical sequences. We have provided clarity in two key areas: a) how to
tailor xLSTM for biological and chemical sequences, and b) comparing xLSTM-based models to
other domain-specific LLMs, showcasing their robust performance in DNA, protein, and chemical

9

Tool-compounds Axon-medchem

FSMol-5133

PubChem-352438

FSMol-605

PubChem-352395

FSMol-4020PubChem-321701

ZINClick-bio

PubChem-321523

Tool-compounds

IOPAC

USPTO-50k-rc4

0 20 40 60 80 100 120 140
Epoch

0.5

0.6

0.8

1

1.2
1.4
1.6
1.8

Va
lid

at
io

n
Lo

ss

S4
Transformer++
Mamba
xLSTM

Figure 4: Conditional generation of molecules via ICL and 15M parameter models. Left: Visu-
alization of different molecular domains contained in the molecular domains dataset. A t-SNE
down-projection of molecules from different domains is shown. Clusters on the exterior represent
highly specific molecular domains. The validation and test sets contain molecules from highly
specific, unseen molecular domains. Right: Generative training of chemistry language models on the
molecular domains dataset. Learning curves showing mean CLM loss (↓) on a validation set across
the training epochs. Shaded areas represent the standard-deviation over runs. The Chem-xLSTM
achieved the lowest loss at conditional generation of molecules using ICL.

sequence modeling tasks. Despite certain limitations, DNA-xLSTM showed strong performance
in DNA sequence modeling, excelling in both masked and causal language tasks across different
context sizes. In protein modeling, Prot-xLSTM proved particularly effective at handling long-range
dependencies, positioning it as a promising tool for generating homologous proteins. In small
molecule modeling, Chem-xLSTM achieved the best FCD scores for unconditional generation and
demonstrated strong ICL capabilities. Our findings underscore the potential of xLSTM as a prime
candidate for foundational models in molecular biology. The models we have introduced, trained, and
made available can be used for example to generate rich learned representations for DNA sequences
and homology- and chemical domain-conditioned generation of proteins and molecules without the
need for fine-tuning.

Limitations. While Bio-xLSTM has shown strong performance across DNA, protein, and chemical
sequence modeling, it has several limitations. The manual hyperparameter selection process, which
was due to limited computational resources, may prevent optimal model configurations. We will
explore the hyperparameter space further in the future, which might yield even better models. For
DNA, the reliance on character-level tokenization might also restrict the performance and scaling
to larger context sizes. Also for proteins, amino acid level tokenization without explicit structural
information might limit it’s performance. The DNA-xLSTM, Prot-xLSTM, and Chem-xLSTM
models are currently constrained by the training dataset and their generalizability across organisms
and chemical domains needs further exploration. Across all three domains, the training datasets
contain biases – whether it is population biases in the genomic data, sequence distribution biases in
protein datasets, or chemical exploration biases in molecular datasets. These biases could influence the
model’s predictions and limit its generalizability in real-world applications. In line with many works,
we consider the perplexity metric, for example, next token perplexity, or the related cross-entropy
losses as a proxy for performance on downstream tasks. However, this metric might not capture the
capacities of biological and chemical language models appropriately. Future work could address
these limitations by expanding the training datasets and downstream evaluations of Bio-xLSTM.
Finally, assessing Bio-xLSTM’s performance in parameter regimes beyond the billion scale remains
an open question.

Reproducibility. To ensure reproducibility and facilitate future research, we provide three standalone
code repositories: DNA-xLSTM, Prot-xLSTM, and Chem-xLSTM. Each repository includes the
respective implementations, training scripts, evaluation procedures, and preprocessed datasets. For
details on the computational resources required for this work, refer to Section E.5.

Ethics Statement and Acknowledgements. Ethical considerations, as well as funding and computa-
tional resources that supported this research, are detailed in Section E.5.

10

https://github.com/ml-jku/DNA-xLSTM
https://github.com/ml-jku/Prot-xLSTM
https://github.com/ml-jku/Chem-xLSTM

References
1000 Genomes Project Consortium (2010). A map of human genome variation from population scale

sequencing. Nature, 467(7319):1061.

Acosta, J. N., Falcone, G. J., Rajpurkar, P., and Topol, E. J. (2022). Multimodal biomedical ai. Nature
Medicine, 28(9):1773–1784.

Adilov, S. (2021). Generative pre-training from molecules. ChemRxiv preprint chemrxiv-2021-5fwjd.

Ahdritz, G., Bouatta, N., Kadyan, S., Jarosch, L., Berenberg, D., Fisk, I., Watkins, A., Ra, S.,
Bonneau, R., and AlQuraishi, M. (2023). Openproteinset: Training data for structural biology
at scale. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages
4597–4609. Curran Associates, Inc.

Ahmad, W., Simon, E., Chithrananda, S., Grand, G., and Ramsundar, B. (2022). ChemBERTa-2:
Towards chemical foundation models. arXiv preprint arXiv:2209.01712.

Alkin, B., Beck, M., Pöppel, K., Hochreiter, S., and Brandstetter, J. (2024). Vision-LSTM: xLSTM
as generic vision backbone. arXiv preprint arXiv:2406.04303.

Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M., and Church, G. M. (2019). Unified
rational protein engineering with sequence-based deep representation learning. Nature methods,
16(12):1315–1322.

Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, 181(4096):223–
230.

Arnold, F. H. (2018). Directed evolution: bringing new chemistry to life. Angewandte Chemie,
57(16):4143.

Ashley, E. A. (2016). Towards precision medicine. Nature Reviews Genetics, 17(9):507–522.

Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization. arXiv preprint
arXiv:1607.06450.

Bagal, V., Aggarwal, R., Vinod, P., and Priyakumar, U. D. (2021). MolGPT: molecular generation
using a transformer-decoder model. Journal of Chemical Information and Modeling, 62(9):2064–
2076.

Bavarian, M., Jun, H., Tezak, N., Schulman, J., McLeavey, C., Tworek, J., and Chen, M. (2022).
Efficient training of language models to fill in the middle. arXiv preprint arXiv:2207.14255.

Beck, M., Pöppel, K., Spanring, M., Auer, A., Prudnikova, O., Kopp, M., Klambauer, G., Brandstetter,
J., and Hochreiter, S. (2024). xLSTM: Extended long short-term memory. Neural Infomation
Processing Systems (NeurIPS).

Beck, M., Pöppel, K., and Hochreiter, S. (2025). Unlocking the power of recurrence for efficient
xlstm kernels. Under preparation.

Benegas, G., Batra, S. S., and Song, Y. S. (2023). DNA language models are powerful pre-
dictors of genome-wide variant effects. Proceedings of the National Academy of Sciences,
120(44):e2311219120.

Bepler, T. and Berger, B. (2019). Learning protein sequence embeddings using information from
structure. International Conference on Learning Representations (ICLR), 7.

Bouwman, B. A. and de Laat, W. (2015). Getting the genome in shape: the formation of loops,
domains and compartments. Genome Biology, 16(1):154.

Bran, A. M. and Schwaller, P. (2023). Transformers and large language models for chemistry and
drug discovery. arXiv preprint arXiv:2310.06083.

Brandes, N., Goldman, G., Wang, C. H., Ye, C. J., and Ntranos, V. (2023). Genome-wide prediction
of disease variant effects with a deep protein language model. Nature Genetics, 55(9):1512–1522.

11

Brandes, N., Ofer, D., Peleg, Y., Rappoport, N., and Linial, M. (2022). ProteinBERT: a universal
deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–2110.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,
Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).
Language models are few-shot learners. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 1877–1901. Curran Associates, Inc.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li,
Y., Lundberg, S., et al. (2023). Sparks of artificial general intelligence: Early experiments with
GPT-4. arXiv preprint arXiv:2303.12712.

Chithrananda, S., Grand, G., and Ramsundar, B. (2020). ChemBERTa: large-scale self-supervised
pretraining for molecular property prediction. arXiv preprint arXiv:2010.09885.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J. Q., Mohiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J., and Weller, A. (2021).
Rethinking attention with performers. In International Conference on Learning Representations
(ICLR), volume 9.

Church, D. M., Schneider, V. A., Graves, T., Auger, K., Cunningham, F., Bouk, N., Chen, H.-C.,
Agarwala, R., McLaren, W. M., Ritchie, G. R., et al. (2011). Modernizing reference genome
assemblies. PLoS biology, 9(7):e1001091.

Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Carranza, N. L., Grzywaczewski, A. H., Oteri, F.,
Dallago, C., Trop, E., de Almeida, B. P., Sirelkhatim, H., et al. (2023). The nucleotide transformer:
Building and evaluating robust foundation models for human genomics. BioRxiv, pages 2023–01.

Dao, T. (2024). Flashattention-2: Faster attention with better parallelism and work partitioning. In
International Conference on Learning Representations (ICLR), volume 12.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Wang, Y., Jones, L., Gibbs, T., Feher, T.,
Angerer, C., Steinegger, M., et al. (2021). ProtTrans: Toward understanding the language of life
through self-supervised learning. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(10):7112–7127.

Ferruz, N., Schmidt, S., and Höcker, B. (2022). ProtGPT2 is a deep unsupervised language model for
protein design. Nature Communications, 13:4348.

Flam-Shepherd, D., Zhu, K., and Aspuru-Guzik, A. (2022). Language models can learn complex
molecular distributions. Nature Communications, 13(1):3293.

Frazer, J., Notin, P., Dias, M., Gomez, A., Min, J. K., Brock, K., Gal, Y., and Marks, D. S. (2021).
Disease variant prediction with deep generative models of evolutionary data. Nature, 599(7883):91–
95. Publisher: Nature Publishing Group.

Geng, Q., Yang, R., and Zhang, L. (2022). A deep learning framework for enhancer prediction using
word embedding and sequence generation. Biophysical Chemistry, 286:106822.

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: continual prediction with
LSTM. In 9th International Conference on Artificial Neural Networks ICANN ’99, pages 850–855.
IET.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling,
B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A.
(2018). Automatic chemical design using a data-driven continuous representation of molecules.
ACS Central Science, 4(2):268–276.

12

Grešová, K., Martinek, V., Čechák, D., Šimeček, P., and Alexiou, P. (2023). Genomic benchmarks: a
collection of datasets for genomic sequence classification. BMC Genomic Data, 24(1):25.

Gu, A. and Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752.

Gu, A., Goel, K., and Ré, C. (2022). Efficiently modeling long sequences with structured state spaces.
In International Conference on Learning Representations (ICLR), volume 10.

Gwak, H.-J. and Rho, M. (2022). ViBE: a hierarchical BERT model to identify eukaryotic viruses
using metagenome sequencing data. Briefings in Bioinformatics, 23(4):bbac204.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings CVPR, pages 770–778.

Hoarfrost, A., Aptekmann, A., Farfañuk, G., and Bromberg, Y. (2022). Deep learning of a bacterial
and archaeal universal language of life enables transfer learning and illuminates microbial dark
matter. Nature Communications, 13(1):2606.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–
1780.

Honda, S., Shi, S., and Ueda, H. R. (2019). SMILES transformer: Pre-trained molecular fingerprint
for low data drug discovery. arXiv preprint arXiv:1911.04738.

Hopf, T. A., Ingraham, J. B., Poelwijk, F. J., Schärfe, C. P., Springer, M., Sander, C., and Marks,
D. S. (2017). Mutation effects predicted from sequence co-variation. Nature Biotechnology,
35(2):128–135.

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T., Lerer, A., and Rives, A. (2022). Learning
inverse folding from millions of predicted structures. bioRxiv.

Hu, B., Xia, J., Zheng, J., Tan, C., Huang, Y., Xu, Y., and Li, S. Z. (2022). Protein language models
and structure prediction: Connection and progression. arXiv preprint arXiv:2211.16742.

Jastrzębski, S., Leśniak, D., and Czarnecki, W. M. (2016). Learning to SMILE(S). arXiv preprint
arXiv:1602.06289.

Ji, Y., Zhou, Z., Liu, H., and Davuluri, R. V. (2021). DNABERT: pre-trained bidirectional en-
coder representations from transformers model for DNA-language in genome. Bioinformatics,
37(15):2112–2120.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with
alphafold. Nature, 596(7873):583–589.

Karollus, A., Hingerl, J., Gankin, D., Grosshauser, M., Klemon, K., and Gagneur, J. (2024). Species-
aware DNA language models capture regulatory elements and their evolution. Genome Biology,
25(1):83.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers are RNNs: Fast autore-
gressive transformers with linear attention. In Proceedings of the 37th International Conference
on Machine Learning (ICML), volume 119, pages 5156–5165. PMLR.

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A.,
Yu, B., et al. (2023). Pubchem 2023 update. Nucleic Acids Research, 51(D1):D1373–D1380.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), volume 3.

Laine, E., Karami, Y., and Carbone, A. (2019). GEMME: A Simple and Fast Global Epistatic Model
Predicting Mutational Effects. Molecular Biology and Evolution, 36(11):2604–2619.

13

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar,
K., Doyle, M., Fitzhugh, W., et al. (2001). Initial sequencing and analysis of the human genome.
Nature, 409(6822):860–921.

Levré, D., Arcisto, C., Mercalli, V., and Massarotti, A. (2018). Zinclick v. 18: expanding chemical
space of 1, 2, 3-triazoles. Journal of Chemical Information and Modeling, 59(5):1697–1702.

Li, M., Tan, P., Ma, X., Zhong, B., Yu, H., Zhou, Z., Ouyang, W., Zhou, B., Hong, L., and Tan, Y.
(2024). Prosst: Protein language modeling with quantized structure and disentangled attention.
bioRxiv.

Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y.,
dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T., Candido, S., and Rives, A. (2023). Evolutionary-
scale prediction of atomic-level protein structure with a language model. Science, 379(6637):1123–
1130. Publisher: American Association for the Advancement of Science.

Lowe, D. M. (2012). Extraction of chemical structures and reactions from the literature. PhD thesis,
University of Cambridge.

Madani, A., Krause, B., Greene, E. R., and et al. (2023). Large language models generate functional
protein sequences across diverse families. Nature Biotechnology, 41:1099–1106.

Marquet, C., Schlensok, J., Abakarova, M., Rost, B., and Laine, E. (2024). Expert-guided protein
language models enable accurate and blazingly fast fitness prediction. bioRxiv.

Mayr, A., Klambauer, G., Unterthiner, T., Steijaert, M., Wegner, J. K., Ceulemans, H., Clevert, D.-A.,
and Hochreiter, S. (2018). Large-scale comparison of machine learning methods for drug target
prediction on ChEMBL. Chemical science, 9(24):5441–5451.

Mazuz, E., Shtar, G., Shapira, B., and Rokach, L. (2023). Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13(1):8799.

Merrill, W., Petty, J., and Sabharwal, A. (2024). The illusion of state in state-space models. In
Proceedings of the 41st International Conference on Machine Learning (ICML), volume 235,
pages 35492–35506. PMLR.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettlemoyer, L. (2022).
Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837.

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022).
ColabFold: making protein folding accessible to all. Nature Methods, 19(6):679–682. Publisher:
Nature Publishing Group.

Nainala, V. C., Rajan, K., Kanakam, S. R. S., Sharma, N., Weißenborn, V., Schaub, J., and Steinbeck,
C. (2024). Coconut 2.0: A comprehensive overhaul and curation of the collection of open natural
products database. ChemRxiv preprint chemrxiv-2024-fxq2s.

Nguyen, E., Poli, M., Faizi, M., Thomas, A., Wornow, M., Birch-Sykes, C., Massaroli, S., Patel, A.,
Rabideau, C., Bengio, Y., et al. (2023). HyenaDNA: Long-range genomic sequence modeling at
single nucleotide resolution. In Advances in Neural Information Processing Systems (NeurIPS),
volume 36, pages 43177–43201. Curran Associates, Inc.

Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N., and Madani, A. (2023). ProGen2: Exploring
the boundaries of protein language models. Cell Systems, 14(11):968–978.e3. Publisher: Elsevier.

Notin, P., Dias, M., Frazer, J., Marchena-Hurtado, J., Gomez, A., Marks, D. S., and Gal, Y. (2022a).
Tranception: protein fitness prediction with autoregressive transformers and inference-time re-
trieval.

Notin, P., Kollasch, A., Ritter, D., van Niekerk, L., Paul, S., Spinner, H., Rollins, N., Shaw, A.,
Orenbuch, R., Weitzman, R., Frazer, J., Dias, M., Franceschi, D., Gal, Y., and Marks, D. (2023).
ProteinGym: Large-scale benchmarks for protein fitness prediction and design. In Advances
in Neural Information Processing Systems (NeurIPS), volume 36, pages 64331–64379. Curran
Associates, Inc.

14

Notin, P., Niekerk, L. V., Kollasch, A. W., Ritter, D., Gal, Y., and Marks, D. S. (2022b). TranceptEVE:
Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness
Prediction.

Notin, P., Rollins, N., Gal, Y., Sander, C., and Marks, D. (2024). Machine learning for functional
protein design. Nature Biotechnology, 42(2):216–228. Publisher: Nature Publishing Group.

Oubounyt, M., Louadi, Z., Tayara, H., and Chong, K. T. (2019). Deepromoter: robust promoter
predictor using deep learning. Frontiers in Genetics, 10:286.

Özçelik, R., de Ruiter, S., Criscuolo, E., and Grisoni, F. (2024). Chemical language modeling with
structured state space sequence models. Nature Communications, 15(1):6176.

Papadatos, G., Alkarouri, M., Gillet, V. J., Willett, P., Kadirkamanathan, V., Luscombe, C. N., Bravi,
G., Richmond, N. J., Pickett, S. D., Hussain, J., et al. (2010). Lead optimization using matched
molecular pairs: inclusion of contextual information for enhanced prediction of herg inhibition,
solubility, and lipophilicity. Journal of Chemical Information and Modeling, 50(10):1872–1886.

Phaml, T. H., Tran, D. H., Ho, T. B., Satou, K., and Valiente, G. (2005). Qualitatively predicting
acetylation and methylation areas in DNA sequences. Genome Informatics, 16(2):3–11.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Baccus, S., Bengio, Y., Ermon, S., and Ré, C.
(2023). Hyena hierarchy: Towards larger convolutional language models. In Proceedings of the
40th International Conference on Machine Learning (ICML), volume 202, pages 28043–28078.
PMLR.

Press, O., Smith, N. A., and Lewis, M. (2021). Shortformer: Better language modeling using
shorter inputs. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing, volume 1, pages 5493–5505. Association for
Computational Linguistics.

Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S., and Klambauer, G. (2018). Fréchet chemnet
distance: a metric for generative models for molecules in drug discovery. Journal of Chemical
Information and Modeling, 58(9):1736–1741.

Quigley, I. K., Blevins, A., Halverson, B. J., and Wilkinson, N. (2024). Belka: The big encoded
library for chemical assessment. In NeurIPS 2024 Competition Track.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understand-
ing by generative pre-training. OpenAI Blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are
unsupervised multitask learners. OpenAI Blog.

Rao, R., Bhattacharya, N., Thomas, N., Duan, Y., Chen, P., Canny, J., Abbeel, P., and Song, Y. (2019).
Evaluating protein transfer learning with TAPE. Advances in Neural Information Processing
Systems (NeurIPS), 32:9689–9701.

Rao, R. M., Liu, J., Verkuil, R., Meier, J., Canny, J., Abbeel, P., Sercu, T., and Rives, A. (2021). MSA
transformer. In Proceedings of the 38th International Conference on Machine Learning (ICML),
volume 139, pages 8844–8856. PMLR.

Riesselman, A. J., Ingraham, J. B., and Marks, D. S. (2018). Deep generative models of genetic
variation capture the effects of mutations. Nature Methods, 15(10):816–822.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C. L., Ma, J., and
Fergus, R. (2021). Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences. Proceedings of the National Academy of Sciences, 118(15).

Ross, J., Belgodere, B., Chenthamarakshan, V., Padhi, I., Mroueh, Y., and Das, P. (2022). Large-scale
chemical language representations capture molecular structure and properties. Nature Machine
Intelligence, 4(12):1256–1264.

15

Scalzitti, N., Kress, A., Orhand, R., Weber, T., Moulinier, L., Jeannin-Girardon, A., Collet, P., Poch,
O., and Thompson, J. D. (2021). Spliceator: multi-species splice site prediction using convolutional
neural networks. BMC Bioinformatics, 22:1–26.

Schiff, Y., Kao, C. H., Gokaslan, A., Dao, T., Gu, A., and Kuleshov, V. (2024). Caduceus: Bi-
directional equivariant long-range DNA sequence modeling. In Proceedings of the 41st Interna-
tional Conference on Machine Learning (ICML), volume 235, pages 43632–43648. PMLR.

Schimunek, J., Seidl, P., Friedrich, L., Kuhn, D., Rippmann, F., Hochreiter, S., and Klambauer,
G. (2023). Context-enriched molecule representations improve few-shot drug discovery. In
International Conference on Learning Representations (ICLR), volume 11.

Schwaller, P., Laino, T., Gaudin, T., Bolgar, P., Hunter, C. A., Bekas, C., and Lee, A. A. (2019).
Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS
Central Science, 5(9):1572–1583.

Schwaller, P., Probst, D., Vaucher, A. C., Nair, V. H., Kreutter, D., Laino, T., and Reymond, J.-L.
(2021). Mapping the space of chemical reactions using attention-based neural networks. Nature
Machine Intelligence, 3(2):144–152.

Segler, M. H., Kogej, T., Tyrchan, C., and Waller, M. P. (2018). Generating focused molecule libraries
for drug discovery with recurrent neural networks. ACS Central Science, 4(1):120–131.

Seidl, P., Vall, A., Hochreiter, S., and Klambauer, G. (2023). Enhancing activity prediction models
in drug discovery with the ability to understand human language. In Proceedings of the 40th
International Conference on Machine Learning (ICML), volume 202, pages 30458–30490. PMLR.

Sgarbossa, D., Malbranke, C., and Bitbol, A.-F. (2024). ProtMamba: a homology-aware but
alignment-free protein state space model. bioRxiv, pages 2024–05.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Reverse-complement parameter sharing
improves deep learning models for genomics. BioRxiv, page 103663.

Skuta, C., Popr, M., Muller, T., Jindrich, J., Kahle, M., Sedlak, D., Svozil, D., and Bartunek, P. (2017).
Probes & drugs portal: an interactive, open data resource for chemical biology. Nature methods,
14(8):759–760.

Srivastava, R. K., Greff, K., and Schmidhuber, J. (2015). Training very deep networks. In Advances
in Neural Information Processing Systems (NeurIPS), volume 28, pages 2377–2385. Curran
Associates, Inc.

Stanley, M., Bronskill, J. F., Maziarz, K., Misztela, H., Lanini, J., Segler, M., Schneider, N., and
Brockschmidt, M. (2021). FS-Mol: A few-shot learning dataset of molecules. In Proceedings of
the Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. (2024a). Roformer: Enhanced transformer
with rotary position embedding. Neurocomputing, 568:127063.

Su, J., Han, C., Zhou, Y., Shan, J., Zhou, X., and Yuan, F. (2024b). SaProt: Protein language modeling
with structure-aware vocabulary. In International Conference on Learning Representations (ICLR),
volume 12.

The UniProt Consortium (2023). Uniprot: the universal protein knowledgebase in 2023. Nucleic
Acids Research, 51(D1):D523–D531.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample, G. (2023). LLaMA:
Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Truong Jr, T. and Bepler, T. (2023). PoET: A generative model of protein families as sequences-of-
sequences. In Advances in Neural Information Processing Systems (NeurIPS), volume 36, pages
77379–77415. Curran Associates, Inc.

16

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information Processing
Systems (NeurIPS), volume 30, pages 5998–6008. Curran Associates, Inc.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
Journal of Machine Learning Research, 11(110):3371–3408.

Wang, R., Wang, Z., Wang, J., and Li, S. (2019a). Splicefinder: ab initio prediction of splice sites
using convolutional neural network. BMC Bioinformatics, 20:1–13.

Wang, S., Guo, Y., Wang, Y., Sun, H., and Huang, J. (2019b). SMILES-BERT: large scale unsuper-
vised pre-training for molecular property prediction. In Proceedings of the 10th ACM International
Conference on Bioinformatics, Computational Biology and Health Informatics, pages 429–436.

Wang, Y., Zhao, H., Sciabola, S., and Wang, W. (2023). cMolGPT: A conditional generative
pre-trained transformer for target-specific de novo molecular generation. Molecules, 28(11):4430.

Weininger, D. (1988). SMILES, a chemical language and information system. 1. introduction to
methodology and encoding rules. Journal of Chemical Information and Modeling, 28(1):31–36.

Wu, Y. and He, K. (2020). Group normalization. International Journal of Computer Vision,
128(3):742–755.

Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K., and
Pande, V. (2018). Moleculenet: a benchmark for molecular machine learning. Chemical science,
9(2):513–530.

Yang, K. K., Wu, Z., and Arnold, F. H. (2019). Machine-learning-guided directed evolution for
protein engineering. Nature Methods, 16(8):687–694.

Yang, M., Huang, L., Huang, H., Tang, H., Zhang, N., Yang, H., Wu, J., and Mu, F. (2022). Integrating
convolution and self-attention improves language model of human genome for interpreting non-
coding regions at base-resolution. Nucleic Acids Research, 50(14):e81–e81.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. (2024). Gated linear attention transformers
with hardware-efficient training. In Proceedings of the 41st International Conference on Machine
Learning (ICML), volume 235, pages 56501–56523. PMLR.

Zdrazil, B., Felix, E., Hunter, F., Manners, E. J., Blackshaw, J., Corbett, S., de Veij, M., Ioannidis, H.,
Lopez, D. M., Mosquera, J., Magarinos, M., Bosc, N., Arcila, R., Kizilören, T., Gaulton, A., Bento,
A., Adasme, M., Monecke, P., Landrum, G., and Leach, A. (2023). The ChEMBL database in
2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic
Acids Research, 52(D1):D1180–D1192.

Zhang, Q., Ding, K., Lyv, T., Wang, X., Yin, Q., Zhang, Y., Yu, J., Wang, Y., Li, X., Xiang, Z., et al.
(2024). Scientific large language models: A survey on biological & chemical domains. arXiv
preprint arXiv:2401.14656.

Zhavoronkov, A., Ivanenkov, Y. A., Aliper, A., Veselov, M. S., Aladinskiy, V. A., Aladinskaya,
A. V., Terentiev, V. A., Polykovskiy, D. A., Kuznetsov, M. D., Asadulaev, A., et al. (2019). Deep
learning enables rapid identification of potent DDR1 kinase inhibitors. Nature Biotechnology,
37(9):1038–1040.

Zhou, H., Shrikumar, A., and Kundaje, A. (2022). Towards a better understanding of reverse-
complement equivariance for deep learning models in genomics. In Machine Learning in Compu-
tational Biology, pages 1–33. PMLR.

Zhou, Z., Ji, Y., Li, W., Dutta, P., Davuluri, R. V., and Liu, H. (2024). DNABERT-2: Efficient
foundation model and benchmark for multi-species genomes. In International Conference on
Learning Representations (ICLR), volume 12.

17

Contents
A Related Work 19

B xLSTM Architecture Details 21
B.1 sLSTM . 21
B.2 mLSTM . 21
B.3 xLSTM and Bio-xLSTM Blocks . 21
B.4 Modes of Operation: Parallel, Chunkwise or Recurrent 22
B.5 Efficient Bidirectional Modeling for Weight-Tied Layers of Bio-xLSTM 23

C DNA-xLSTM: Details and Additional Results 24
C.1 Pre-Training . 24
C.2 Downstream Tasks . 24
C.3 Architecture and Hyperparameters . 26
C.4 Reverse-Complement Invariance . 26
C.5 Implementation Details . 27

D Prot-xLSTM: Details and Additional Results 29
D.1 Homology-Aware Training . 29
D.2 ICL: Homology-Conditioned Protein Generation 30
D.3 Protein Variant Fitness Prediction . 31

E Chem-xLSTM: Details and Additional Results 34
E.1 Unconditional Molecule Generation . 34
E.2 Conditional Molecule Generation with In-Context Learning 34
E.3 Architecture and Hyperparameter Selection . 35
E.4 Implementation Details . 35
E.5 Additional Results . 35

18

A Related Work

In all three areas, genomics, proteomics, and chemistry, we observe a similar trend that until around
2018 the language models were based on LSTMs (Hochreiter and Schmidhuber, 1997), then a large
amount of models were based on Transformers (Vaswani et al., 2017), with different modeling
paradigms and styles, and from 2023 onwards SSMs appeared.

Language models for genomic sequence data. DNABERT (Ji et al., 2021) and its successor
DNABERT-2 (Zhou et al., 2024) are Transformer-based models that leverage bidirectional encoder
representations and masked language modeling to capture nucleotide context, achieving high per-
formance in tasks like promoter and splice site prediction. LOGO (Yang et al., 2022), another
Transformer-based model, applies self-supervised learning to the human genome for sequence la-
beling and variant prioritization, while VIBE (Gwak and Rho, 2022) employs a hierarchical BERT
model to enhance the detection of eukaryotic viruses in metagenomic data. Models like Looking-
Glass (Hoarfrost et al., 2022), based on recurrent neural network (RNN), and GPN (Benegas et al.,
2023), which uses convolutional neural networks (CNNs), are examples of non-Transformer-based
approaches, with LookingGlass focusing on microbial genomes and GPN on plant genomes. More
recent developments include the nucleotide transformer (NT) (Dalla-Torre et al., 2023), a Transformer
model trained on the human genome and data from the 1000 Genomes Project, and SpeciesLM
(Karollus et al., 2024), which trains Transformer-based models on 1500 fungal genomes. The latest
advances, represented by Caduceus (Schiff et al., 2024) based on Mamba (Gu and Dao, 2023) and
HyenaDNA (Nguyen et al., 2023), introduce SSMs that allow generative modeling and representation
learning for long DNA sequences.

Language models for protein sequence data. Until around 2019, the field was dominated by RNNs
and LSTM-based models trained with CLM. Notable examples include UniRep (Alley et al., 2019),
which employed multiplicative-LSTM to capture rich protein representations, and SSA (Bepler and
Berger, 2019), which used bidirectional RNNs for structural similarity prediction. Since then the field
has shifted towards Transformer-based models and MLM, driven by their success in natural language
processing. Early adopters of this shift included the TAPE benchmark for protein downstream tasks
(Rao et al., 2019), which evaluated both an LSTM and a Transformer architecture trained with
CLM and MLM, respectively. Elnaggar et al. (2021) further expanded the use of Transformers with
large-scale MLM, setting new benchmarks in protein sequence analysis with Prot-T5. ESM (Rives
et al., 2021) applied MLM to a Transformer on a massive scale, capturing evolutionary patterns across
diverse protein sequences. Other significant Transformer-based models include MSA-Transformer
(Rao et al., 2021), which applied MLM to multiple-sequence alignments (MSA), and ProGen
(Madani et al., 2023), which used CLM and Transformers for controlled protein sequence generation.
Additionally, models like ProtGPT2 (Ferruz et al., 2022) and ProteinBERT (Brandes et al., 2022)
utilized the power of Transformer architectures in generating novel protein sequences and functional
predictions. Furthermore, (Su et al., 2024b) introduced a "structure-aware vocabulary" which they use
as input for Transformer-based models. The recently proposed PoET (Truong Jr and Bepler, 2023)
is an autoregressive Transformer model trained on non-aligned homologous sequences, providing a
novel approach for conditional protein design and protein fitness prediction. Building on the concept
of non-aligned homologous sequences, ProtMamba (Sgarbossa et al., 2024) leverages emerging
SSMs to manage long-context conditioning on proteins, effectively utilizing autoregressive and FIM
strategies. For a more comprehensive review of these advancements, including their applications in
functional protein design, see Notin et al. (2024) and Hu et al. (2022).

Language models for chemical sequence data. The first language model for chemical sequences
was an LSTM-based, autoregressive method developed by Segler et al. (2018), which demonstrated
that the SMILES syntax (Weininger, 1988) and generation of realistic organic molecules can be
learned. Honda et al. (2019) introduced a Transformer model for this task, showing that this leads
to informative representations of molecules. The Molecular Transformer (Schwaller et al., 2019)
consists of a Transformer-based encoder and decoder, trained on chemical reaction data to translate
between reactants and products. More recently, SSMs have been used for generative modeling of
SMILES strings (Özçelik et al., 2024). Subsequent models such as MolGPT (Bagal et al., 2021)
and cMolGPT (Wang et al., 2023) utilized the GPT architecture to generate SMILES strings, with
MolGPT conditioning on chemical properties and scaffolds, and cMolGPT focusing on biomolecular
targets. Transformer-based approaches have also been employed to optimize the properties of small
molecules in a reinforcement-learning setting (Mazuz et al., 2023). Encoder-style language models

19

for chemistry, such as SmilesLSTM (Mayr et al., 2018), ChemNet (Preuer et al., 2018), and CNN-
based models (Jastrzębski et al., 2016), initially used activity and property prediction as pre-training
or training objectives. Later, these encoder-style language models were trained with the masking
language modeling objective, as seen in ChemBERTA (Chithrananda et al., 2020), Chemberta-2
(Ahmad et al., 2022), SMILES-BERT (Wang et al., 2019b), MolFormer (Ross et al., 2022) and
rxnfp-BERT (Schwaller et al., 2021). Some models have also adopted contrastive objectives (Seidl
et al., 2023). Large language models for molecules have also been shown to learn complex molecular
distributions (Flam-Shepherd et al., 2022). For a more thorough and comprehensive overview, we
refer to the surveys by Bran and Schwaller (2023) and Zhang et al. (2024)

20

B xLSTM Architecture Details

B.1 sLSTM

The forward pass of sLSTM in the vectorized version is defined as follows:

ct = ft ⊙ ct−1 + it ⊙ zt cell state (3)
nt = ft ⊙ nt−1 + it normalizer state (4)

ht = ot ⊙ h̃t , h̃t = ct ⊙ n−1
t hidden state (5)

zt = φ (z̃t) , z̃t = Wz xt + Rz ht−1 + bz cell input (6)

it = exp
(̃
it

)
, ĩt = Wi xt + Ri ht−1 + bi input gate (7)

ft = exp
(
f̃t

)
OR σ

(
f̃t

)
, f̃t = Wf xt + Rf ht−1 + bf forget gate (8)

ot = σ (õt) , õt = Wo xt + Ro ht−1 + bo output gate, (9)

where it,ot, ft ∈ Rd are the input, output and forget gate, respectively, Wz,Wi,Wf ,Wo ∈ Rd×D,
Rz,Ri,Rf ,Ro ∈ Rd×d, and bz, bi, bf , bo ∈ Rd are trainable weight matrices and biases.

B.2 mLSTM

The forward pass of the mLSTM is defined as follows:

Ct = ft Ct−1 + it vt k
⊤
t cell state (10)

nt = ft nt−1 + it kt normalizer state (11)

ht = ot ⊙ h̃t , h̃t = Ctqt / max
{∣∣n⊤

t qt
∣∣, 1} hidden state (12)

qt = Wq xt + bq query input (13)

kt =
1√
d
Wk xt + bk key input (14)

vt = Wv xt + bv value input (15)

it = exp
(̃
it
)
, ĩt = w⊤

i xt + bi input gate (16)

ft = σ
(
f̃t

)
OR exp

(
f̃t

)
, f̃t = w⊤

f xt + bf forget gate (17)

ot = σ (õt) , õt = Wo xt + bo output gate (18)

where it, ot, ft ∈ R are the input, output and forget gate, respectively, qt,kt,vt ∈ Rd are query, key
and value inputs with trainable weight matrices Wq,Wk,Wv ∈ Rd×D, wi,wf ∈ RD are input and
forget gate weights and the respective bi, bf ∈ R biases. All other quantities are identical to sLSTM.

B.3 xLSTM and Bio-xLSTM Blocks

Beck et al. (2024) suggested xLSTM blocks, which are residual (Srivastava et al., 2015; He et al.,
2016) block modules, into which the sLSTM and mLSTM layers can be integrated. The two basic
blocks can in principle be characterized by either applying post-sLSTM/mLSTM up- and down-
projections (similar to Vaswani et al. (2017)) or by applying pre-sLSTM/mLSTM up-projections
and post-sLSTM/mLSTM down-projections (similar to Dao (2024)). An sLSTM block integrates
the sLSTM layer into the up- and down-projection block, while the mLSTM block integrates the
mLSTM layer into the pre-up-projection and post-down-projection block. The two basic xLSTM
blocks also make use of neural network modules like layer normalization (Ba et al., 2016), short
causal convolutions, and, group normalization (Wu and He, 2020). For the exact architecture of the
blocks, we refer to Beck et al. (2024, Sec.2.4). An xLSTM architecture is constructed by residually
stacking the suggested xLSTM blocks. For that, the most commonly used pre-LayerNorm residual
backbone is used.

For Bio-xLSTM we keep the basic xLSTM building blocks and the basic xLSTM architecture
template, but adjust them to the respective domains. Figure A1 depicts sLSTM and mLSTM blocks,
as well as, a bidirectional mLSTM configuration with weight-tied layers.

21

S

Conv

Up + Gate

Down

Conv

Up + Gate

Down

sLSTM Block Bi-mLSTM BlockmLSTM Block

ML
S

ki
p

GN

LN LN

GN

Flip

Flip

LN

Conv

Up + Gate

Down

M L
S

ki
p

GN

LN

Conv

Up + Gate

Down

ML
S

ki
p

GN

LN

Figure A1: xLSTM and Bio-xLSTM blocks. Left: mLSTM block. LN (Layer Normalization) and
GN (Group Normalization) refer to normalization modules, while L Skip represents learnable skip
connections and Conv denotes causal 1D convolutions. The mLSTM block utilizes a gated pre-up-
projection structure, akin to modern State-Space Models, with gates activated by the Swish function.
Middle: sLSTM block. The sLSTM block features a GELU-gated post-up-projection structure,
similar to Transformer architectures. Right: Bidirectional mLSTM block. For bidirectional
processing, the xLSTM applies each block to the input sequence twice before combining the outputs:
once left-to-right and once right-to-left.

B.4 Modes of Operation: Parallel, Chunkwise or Recurrent

Similar to linear attention variants (Katharopoulos et al., 2020; Yang et al., 2024), the mLSTM has
three possible formulations: parallel, recurrent or chunkwise. The presentation in section B.2 (and
Beck et al., 2024) focuses on the recurrent form:

Ct = σ(f̃t)Ct−1 + exp(̃it)⊙ vtk
T
t

nt = σ(f̃t)nt−1 + exp(̃it)kt

ht = σ(õt)⊙
Ctqt

max
(
|ntqt|, 1

) .
This form is especially useful for inference when samples arrive one time-step at a time.

The omission of the recurrent connections in mLSTM allows for a parallel formulation (Beck et al.,
2024, Appendix):

F̃ =

0 0 0 . . . 0

lnσ(f̃2) 0 0 . . . 0

lnσ(f̃2) + lnσ(f̃3) lnσ(f̃3) 0 . . . 0
...

...
...

. . .
...∑T

t=2 lnσ(f̃t)
∑T

t=3 lnσ(f̃t)
∑T

t=4 lnσ(f̃t) . . . 0

D = exp

(
F̃ + 1⊗ ĩ

)
⊙M

H = σ(Õ)⊙ D ⊙QKT

max
(
|D ⊙QKT| · 1,1

)V ,

where Q,K,V , Õ ∈ RT×d, ĩ ∈ RT and M ∈ {0, 1}T×T is a causal (i.e. lower-triangular) masking
matrix. The ⊗ refers to an outer product, while ⊙ is a Hadamard (i.e. element-wise) product. The
fraction, max and other non-linear functions are also applied element-wise. This parallel form enables
an efficient training regime, similar to Transformers.

22

The chunkwise formulation is a hybrid of the recurrent and parallel forms:

F̃ =

0 0 0 . . . 0

lnσ(f̃t−C+2) 0 0 . . . 0

lnσ(f̃t−C+2) + lnσ(f̃t−C+3) lnσ(f̃t−C+3) 0 . . . 0
...

...
...

. . .
...∑C

τ=2 lnσ(f̃t−C+τ)
∑C

τ=3 lnσ(f̃t−C+τ)
∑C

τ=4 lnσ(f̃t−C+τ) . . . 0

D = exp

(
F̃ + 1⊗ ĩ

)
⊙M

f =

(
σ(f̃t−C+1), σ(f̃t−C+1)σ(f̃t−C+2), . . . ,

C∏
τ=1

σ(f̃t−C+τ)

)

H = σ(Õ)⊙
(D ⊙QKT)V + diag(f)QCT

t−C

max
(
|(D ⊙QKT) · 1+ diag(f)Qnt−C |,1

)
Ct =

(C∏
τ=1

σ(f̃t−C+τ)

)
Ct−C + V T diag(dC)K

nt =

(C∏
τ=1

σ(f̃t−C+τ)

)
nt−C +KTdC ,

with Q,K,V , Õ ∈ RC×d and ĩ ∈ RC the pre-activations from t − C + 1 to t. Furthermore,
M ∈ {0, 1}C×C , is a local causal (i.e. lower-triangular) masking matrix, dC denotes the last row
of D, diag transforms a vector into a diagonal matrix, and C is the chunk size. The chunk-wise
formulation allows for implementing hardware-aware efficient kernels (Beck et al., 2025). For C = 1,
we recover the recurrent form, whereas for C = T , we obtain the parallel form.

B.5 Efficient Bidirectional Modeling for Weight-Tied Layers of Bio-xLSTM

Bidirectional modeling is often required to learn representations of biological and chemical sequences,
for example with the MLM paradigm. The default approach for bidirectional modeling would be to
use an mLSTM layer on the usual sequence X1:T = (x1,x2, . . . ,xT) and then applying a weight-
tied layer on the reversed sequence XT :1 = (xT ,xT−1, . . . ,x1) and subsequently summing those
outputs:

H+ = mLSTM(X1:T ;w) (19)

H− = mLSTM(XT :1;w) (20)

H = H+ +H−
T :1, (21)

where H−
T :1 indicates that the sequence is reversed again, and w are the parameters of the LSTM-

layer mLSTM(X1:T ;w) which are assumed to be the same for both directions, i.e. weight-tied.
This approach is schematically depicted in Figure A1 (Right). However, this approach is inefficient
with respect to memory and operations because it has to calculate and store all internal quantities,
such as the cell states, twice for the backward pass. A variant of this approach is to perform the
forward direction in one block (Eq. 19) and the reverse direction in a consecutive block (Eq. 20) of
the architecture (Alkin et al., 2024).

We propose an efficient bidirectional modeling approach. Because of the parallelism of mLSTM
and its gates depending only on the current time step, the weighted cumulative sum required for the
cell state (Eq. 10), can be done backwards to obtain the representations for the reversed sequence

C+
t = ftC

+
t−1 + itvt k

⊤
t C−

t = ftC
−
t+1 + itvt k

⊤
t (22)

n+
t = ftn

+
t−1 + itkt n−

t = ftn
−
t+1 + itkt. (23)

The resulting ht = h+
t + h−

t is a bidirectional representation of the input sequence, whereby this
variant is more efficient with respect to memory usage because of shared quantities. Note that the
two variants, the default approach, and the efficient approach, are mathematically equivalent.

23

C DNA-xLSTM: Details and Additional Results

In this section, we provide further details regarding the architecture, training setup, and evaluation
metrics for the DNA-xLSTM models.

C.1 Pre-Training

Experimental setup. We followed the experimental protocol established in Schiff et al. (2024) and
Nguyen et al. (2023). The human reference genome (Church et al., 2011) was used as the training
dataset for two main tasks: a) causal language modeling (CLM) and b) masked language modeling
(MLM). We employed context lengths of 1,024 and 32,000 tokens for these tasks.

To ensure a fair comparison with previous methods, such as Schiff et al. (2024), we used character-
or base pair-level tokenization, training models with parameter sizes ranging from 500k to 4M. This
experimental setup enabled us to evaluate model performance for both a) generative modeling of
DNA sequences and b) learning rich DNA sequence representations—core tasks in this domain.

Methods and hyperparameters. In our pre-training experiments, we compared several architectures:
a Transformer variant based on the Llama architecture, referred to as Transformer++ (Touvron
et al., 2023), DNA-xLSTM, HyenaDNA (Nguyen et al., 2023), and DNA-Mamba (also known as
Caduceus) (Schiff et al., 2024). Each architecture was trained under both CLM and MLM settings.
Additionally, we assessed two types of reverse-complement (RC) equivariant models when applicable:
DNA-Mamba-PH and DNA-Mamba-PS, as well as DNA-xLSTM-PH and DNA-xLSTM-PS. For
non-equivariant models, reverse-complement augmentation was applied, following the approach
described in Schiff et al. (2024). Further details on RC-equivariant modeling can be found in Section
C.4. The hyperparameters for DNA-xLSTM and Transformer++ were optimized using a validation
set, with the final configurations reported in Appendix Tables A4 and A3.

Metrics. We report cross-entropy loss on a held-out test set for both CLM and MLM pre-training
experiments.

Results. Our experiments show that the sLSTM-based DNA-xLSTM-2M model, trained with a
context size of 1,024 and reverse-complement augmentation, outperforms DNA-Mamba (Schiff et al.,
2024), HyenaDNA (Nguyen et al., 2023), and Transformer++ across both CLM and MLM tasks.
Notably, the performance gap between DNA-xLSTM and the baseline models increases in the MLM
setting. See Figure 2.

We further enhanced DNA-xLSTM-500k and DNA-xLSTM-2M models by incorporating reverse-
complement equivariance via parameter sharing. For smaller models, we achieved MLM losses
comparable to DNA-Mamba-PS, with a significant improvement over DNA-Mamba-PS as model size
scaled to 2M parameters (Figure A3). Additionally, we pre-trained a long-range DNA-xLSTM model
based on mLSTM, with a context size of 32k, using both CLM and MLM objectives. This model
achieved the lowest cross-entropy loss in both tasks, outperforming Transformers and HyenaDNA,
while performing comparably to Mamba (Figure A2).

C.2 Downstream Tasks

Experimental setup. Two sets of downstream tasks were used for evaluating the learned repre-
sentations: the Genomic benchmark (Grešová et al., 2023) and the Nucleotide Transformers Tasks
(Dalla-Torre et al., 2023), which is a collection of 18 datasets derived from five peer-reviewed studies
(Phaml et al., 2005; Oubounyt et al., 2019; Wang et al., 2019a; Scalzitti et al., 2021; Geng et al., 2022).
These classification tasks were selected to determine how rich the learned representations of the
architectures are. To extract representations from the pre-trained xLSTM-DNA models, we perform
average pooling on the activations from the final xLSTM block. For each downstream dataset, these
representations served as inputs to a task-specific classification head that were jointly fine-tuned with
the pre-trained model parameters.

Methods and hyperparameters. For Nucleaotide Transformer tasks, we compared HyenaDNA,
DNA-Mamba, and xLSTM-based models pre-trained with 2M parameters. For Genomic benchmark
tasks, we compare the smaller xLSTM-500k against Mamba. In both settings, models were pre-trained
with a context size of 1,024.

24

2 4 6 8 10
Billion Tokens

1.04

1.06

1.08

1.10

1.12

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba
Transformer++
Hyena

2 4 6 8 10
Billion Tokens

0.94

0.96

0.98

1.00

1.02

1.04

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba
Transformer++

Figure A2: Pre-training of 4M-parameter DNA models on the human reference genome (GRCh38).
The models are trained on the human reference genome at single-nucleotide resolution with a context
length of 32k bases. Left: causal language modeling. Learning curves display CLM loss (↓) on a
held-out test set, plotted against the number of tokens processed. Right: masked language modeling.
Learning curves for bidirectional models trained with the MLM objective (↓). The DNA-xLSTM-4M
model outperforms both Transformer++ and Hyena-DNA models of similar size, and matches the
performance of Caduceus-4M.

Table A1: Downstream adaption of DNA models (extended version). The test set performance of
DNA models with 2M parameters and models with over 100M parameters, fine-tuned on Nucleotide
Transformer classification tasks, is shown. Models marked with PS or PH are trained to be RC
equivariant. The used metric is provided in the Metric column and best values are highlighted
in green Results are averaged over 10 random seeds, with error bars representing the difference
between the maximum and minimum values across the runs. The best scores are highlighted in
green. xLSTM-DNA-PH with 2M parameters outperforms similarly sized Hyena- and Mamba-based
models, while achieving comparable results to the much larger Nucleotide Transformer. Scores for
all models except xLSTM were obtained from Schiff et al. (2024).

Task Metric > 100M Param. Models 2M Param. Models
Enformer (252M) DNABERT-2 (117M) NT-v2 (500M) HyenaDNA Mamba-PS Mamba-PH xLSTM-PS xLSTM-PH

Histone Markers
H3 MCC ↑ 0.719±0.048 0.785±0.033 0.784±0.047 0.779±0.037 0.799±0.029 0.815±0.048 0.796±0.014 0.824±0.010

H3K14AC MCC ↑ 0.288±0.077 0.516±0.028 0.551±0.021 0.612±0.065 0.541±0.212 0.631±0.026 0.570±0.008 0.598±0.017

H3K36ME3 MCC ↑ 0.344±0.055 0.591±0.020 0.625±0.030 0.613±0.041 0.609±0.109 0.601±0.129 0.588±0.019 0.625±0.010

H3K4ME1 MCC ↑ 0.291±0.061 0.511±0.028 0.550±0.021 0.512±0.024 0.488±0.102 0.523±0.039 0.490±0.012 0.526±0.001

H3K4ME2 MCC ↑ 0.211±0.069 0.336±0.040 0.319±0.045 0.455±0.095 0.388±0.101 0.487±0.170 0.489±0.024 0.504±0.012

H3K4ME3 MCC ↑ 0.158±0.072 0.352±0.077 0.410±0.033 0.549±0.056 0.440±0.202 0.544±0.045 0.520±0.019 0.537±0.012

H3K79ME3 MCC ↑ 0.496±0.042 0.613±0.030 0.626±0.046 0.672±0.048 0.676±0.026 0.697±0.077 0.662±0.011 0.697±0.007

H3K9AC MCC ↑ 0.420±0.063 0.542±0.029 0.562±0.040 0.581±0.061 0.604±0.048 0.622±0.030 0.622±0.013 0.627±0.008

H4 MCC ↑ 0.732±0.076 0.796±0.027 0.799±0.025 0.763±0.044 0.789±0.020 0.811±0.022 0.793±0.011 0.813±0.008

H4AC MCC ↑ 0.273±0.063 0.463±0.041 0.495±0.032 0.564±0.038 0.525±0.240 0.621±0.054 0.558±0.018 0.583±0.014

Regulatory Annotation
Enhancer MCC ↑ 0.451±0.108 0.516±0.098 0.548±0.144 0.517±0.117 0.491±0.066 0.546±0.073 0.375±0.030 0.545±0.024

Enhancer Types MCC ↑ 0.309±0.134 0.423±0.051 0.424±0.132 0.386±0.185 0.416±0.095 0.439±0.054 0.444±0.046 0.466±0.011

Promoter: All F1 ↑ 0.954±0.006 0.971±0.006 0.976±0.006 0.960±0.005 0.967±0.004 0.970±0.004 0.962±0.002 0.967±0.001

NonTATA F1 ↑ 0.955±0.010 0.972±0.005 0.976±0.006 0.959±0.011 0.968±0.006 0.968±0.010 0.963±0.002 0.970±0.001

TATA F1 ↑ 0.960±0.023 0.955±0.021 0.966±0.013 0.944±0.040 0.957±0.015 0.953±0.016 0.948±0.006 0.952±0.005

Splice Site Annotation
All Accuracy ↑ 0.848±0.019 0.939±0.009 0.983±0.008 0.956±0.011 0.927±0.021 0.940±0.027 0.965±0.006 0.974±0.004

Acceptor F1 ↑ 0.914±0.028 0.975±0.006 0.981±0.011 0.958±0.010 0.936±0.077 0.937±0.033 0.970±0.005 0.953±0.008

Donor F1 ↑ 0.906±0.027 0.963±0.006 0.985±0.022 0.949±0.024 0.948±0.025 0.874±0.289 0.962±0.004 0.951±0.005

Metrics. For the Nucleotide Transformer downstream tasks different metrics are used depending on
the type of task: MCC was used for histone markers and enhancer annotation, F1-score was used for
promoter annotation and splice site acceptor/donor, and accuracy was used for the splice site. The
downstream performance on the Genomic benchmark was evaluated using the Top-1 accuracy.

Results. On the extensive set of downstream tasks, DNA-xLSTM is the best model with fewer than
2M parameters outperforming other small models on 12 of 18 tasks. In a comparison with much
larger models, DNA-xLSTM and is on par with the 500M parameter model Nucleotide Transformer
(NT-v2) winning 8 of 18 tasks (see Table A1). On the Genomic benchmark, DNA-xLSTM is overall
on par with Mamba-DNA and shows especially strong results with posthoc conjoining, winning 5 of
8 tasks compared to Mamba-DNA-PH. Results are reported in Table A2.

25

Table A2: Downstream adaption of DNA language models on the Genomics Benchmarks. The Top-1
accuracy (↑) for RC-equivariant PS and PH xLSTM and Mamba-based Caduceus models, both
with 500k parameters, are shown. Error bars represent the range of scores across five random seeds.
xLSTM achieves comparable overall performance to Mamba and demonstrates superior accuracy
when both models employ post-hoc conjoining. Scores for all models except xLSTM were obtained
from Schiff et al. (2024).

Mamba-PH-500k xLSTM-PH-500k Mamba-PS-500k xLSTM-PS-500k

Mouse Enhancers 0.754±0.074 0.780±0.018 0.793±0.058 0.778±0.007

Coding. vs. Intergenomic 0.915±0.003 0.931±0.001 0.910±0.003 0.934±0.002

Human vs. Worm 0.973±0.001 0.965±0.001 0.968±0.002 0.956±0.001

Human Enhancers Cohn 0.747±0.004 0.742±0.005 0.745±0.007 0.734±0.005

Human Enhancers Ensemble 0.893±0.008 0.920±0.001 0.900±0.006 0.902±0.004

Human Regulatory 0.872±0.011 0.872±0.002 0.873±0.007 0.869±0.005

Human OCR Ensembl 0.828±0.006 0.826±0.002 0.818±0.006 0.800±0.002

Human NonTATA Promoters 0.946±0.007 0.951±0.004 0.945±0.010 0.949±0.001

Table A3: Pre-training hyperparameters for DNA-Transformer++ models with 2M and 4M parameters.
Comma-separated values represent hyperparameter sweeps, with the chosen values indicated in bold.

Hyperparameters DNA-Transformer++-2M DNA-Transformer++-4M

Embedding Dimension 256 256
Number of Blocks 4 6
Number of Heads 8 8
Up-Projection Ratio 1.25:1 2:1
Norm Bias and Linear Bias false false
Context Length 1,024 32,768
Position Embeddings RoPE RoPE
Learning Rate 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2

C.3 Architecture and Hyperparameters

The hyperparameters and composition of the DNA-xLSTM and DNA-Transformer++ models for
pre-training with context size 1k and 32k are reported in Tables A4 and A3. The hyperparameters
were selected on a separate validation set using manual hyperparameter selection due to limited
computational resources.

C.4 Reverse-Complement Invariance

We develop an xLSTM version that is invariant to the RC of an input sequence which is relevant
for DNA applications following Schiff et al. (2024). In double-helix DNA structures, both strands
are semantically equivalent, as one strand is the RC of the other. Given a strand, □, its RC, □, is
oriented in the opposite direction with a base conversion from A to T and C to G (Schiff et al., 2024).
Shrikumar et al. (2017) show that a data-driven approach to learning the equivalence between reverse-
complement sequences can fail, which is why Schiff et al. (2024) propose to enforce RC-equivariance
by design, making use of two different inductive biases in the model architecture: PH (Zhou et al.,
2022) and PS. For PH models, sequence-to-sequence models — in our case realized by the xLSTM —
learn to handle both DNA sequences and their RC during pre-training by applying RC augmentation
to the inputs. RC augmentation refers to the process of randomly replacing input sequences by their
RCs. For downstream tasks PH models are applied once to the original sequence and once to the RC
and eventually outputs are summed:

Y = xLSTM(X) + xLSTM(X). (24)

For PS models — we assume models are realized by xLSTM architectures and therefore a block
refers to a single mLSTM or sLSTM block — both the DNA sequence and its RC are provided
simultaneously to each block in the architecture (for both pre-training and downstream task fine-
tuning). Precisely, a joint representation, originating from combining a sequence representation and
its RC representation, is split into X ∈ RD×t and X ∈ RD×t and fed into the mLSTM or sLSTM

26

2 4 6 8 10
Billion Tokens

0.98

0.99

1.00

1.01

1.02

1.03

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba

2 4 6 8 10
Billion Tokens

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Va
lid

at
io

n
Lo

ss

DNA-xLSTM
Mamba

Figure A3: Pre-training of RC-equivariant xLSTM-DNA-PS and Caduceus-PS models with 500k and
2M parameters trained on the human reference genome. Models were trained on 1k context windows
using the MLM objective. Left: MLM losses (↓) for models with 500k parameters. Right: MLM
losses (↓) for models in the 2M parameter range. DNA-xLSTM-PS outperforms Caduceus-PS in both
settings, with the performance gap widening at larger scales.

block: [
H,H

]
=

[
block(X),RC(block(RC(X)))

]
. (25)

Notably, for each block the reverse-complement input is built by the RC-function which flips both
dimensions of X and [·, ·] indicates concatenation along the first dimension. Eventually, logits for
the input sequence and its reverse complement are combined. For more details, we refer to Schiff
et al. (2024).

C.5 Implementation Details

For both CLM and MLM pre-training we perform 10,000 update steps holding the number of tokens
per step constant at 220. CLM models are trained using autoregressive next-token prediction. For
MLM pre-training, we follow the methodology presented by Devlin et al. (2019), where 15% of the
input tokens are masked and the model is tasked to predict the corrupted tokens. Concretely, 80%
of the masked tokens are replaced by a special [MASK] token, 10% are replaced by random tokens
sampled from the vocabulary and 10% remain unchanged. For MLM settings, we use weight-tied
bidirectionality as a default (see Section B.5). For long-context bidirectional modeling, we use
unidirectional xLSTM cells and alternate the modeling direction at each block.

To fine-tune pre-trained models on downstream tasks, we follow the framework from Schiff et al.
(2024). Pre-trained models are augmented with a task-specific classification head, which is trained
on average-pooled activations from a model’s final block. During fine-tuning, all model parameters
are unfrozen. For the Genomic benchmark, we perform five randomly seeded train-validation splits,
fine-tune models for 10 epochs, and use early-stopping on validation performance. Final test results
are reported as the mean performance ± max/min over the 5 seeds on a held-out test set. For the
Nucleotide Transformer tasks, we use 20 epochs and 10 seeds. For both the Genomic benchmarks
and the Nucleotide Transformer tasks, we performed a hyperparameter search for both PH and PS
models over batch sizes {64, 128, 256, 512}, and learning rates {4e-4, 6e-4, 8e-4, 1e-3, 2e-3}. The
best results for each Nucleotide Transformer task can be found in Table A5.

27

Table A4: Pre-training hyperparameters of DNA-xLSTM Models from 500k to 4M parameters.
Comma-separated values represent hyperparameter sweeps, with the chosen values indicated in bold.

Hyperparameters DNA-xLSTM-500k DNA-xLSTM-2M DNA-xLSTM-4M

Embedding Dimension 128 256 256
Number of Blocks 5 6 9
Conv 1D Kernel Size 4 4 4
Number of Heads 4 4 4
Up-Projection Ratio 1.25:1 1:1 2:1
Bidirectionality alternating, blockwise alternating, blockwise alternating, native, blockwise
Norm Bias and Linear Bias true, false true, false true
QKV Projection Blocksize - - 4
m/sLSTM ratio [0:1], [1:0] [0:1], [1:0] [0:1], [1:0]
Context Length 1,024 1,024 32,768
Position Embeddings None None RoPE
Optimizer AdamW β = (0.9, 0.95) AdamW β = (0.9, 0.95) AdamW β = (0.9, 0.95)
Learning Rate 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2 6e-3, 8e-3, 1e-2
Learning Rate Schedule Cosine Decay Cosine Decay Cosine Decay
Learning Rate Warmup Steps 1,000 1,000 1,000
Weight Decay 0.1 0.1 0.1
Dropout 0 0 0
Batch Size 1,024 1,024 32
Update Steps 10,000 10,000 10,000

Table A5: Hyperparameter selection for DNA-xLSTM-PS and DNA-xLSTM-Ph on Nucleotide
Transformer tasks. Fine-tuning hyperparameters were chosen based on best scores averaged over ten
train-validation splits.

DNA-xLSTM-Ph DNA-xLSTM-PS
Learning Rate Batch Size Learning Rate Batch Size

Histone Markers
H3 8e-4 128 4e-4 64
H3K14AC 6e-4 128 4e-4 64
H3K36ME3 6e-4 64 4e-4 64
H3K4ME1 8e-4 128 1e-3 128
H3K4ME2 6e-4 64 2e-3 512
H3K4ME3 8e-4 128 1e-3 512
H3K79ME3 1e-3 128 4e-4 64
H3K9AC 4e-4 64 1e-3 128
H4 8e-4 64 6e-4 64
H4AC 4e-4 64 1e-3 128

Regulatory Annotation
Enhancers 2e-3 512 2e-3 512
Enhancers Types 2e-3 512 2e-3 512
Promoter All 4e-4 64 1e-3 128
Promoter No TATA 1e-3 128 1e-3 128
Promoter TATA 3e-3 128 1e-3 128

Splice Site Annotation
Splice Sites All 8e-4 64 2e-3 128
Splice Sites Acceptor 2e-3 128 2e-3 128
Splice Sites Donors 3e-3 128 2e-3 128

28

D Prot-xLSTM: Details and Additional Results

This section provides further details regarding the architecture, training setup, and evaluation metrics
for the Prot-xLSTM models. Additionally, we present supplementary results that complement the
main findings discussed in Section 4.2. We adopted the experimental protocols outlined in Sgarbossa
et al. (2024) to train and evaluate our Prot-xLSTM models. We conducted three key experiments
to assess the models’ capabilities: a) protein language modeling (Section D.1), b) homology-
conditioned protein design (Section D.2), and c) protein variant fitness prediction (Section
D.3).

D.1 Homology-Aware Training

Data. The protein language model training data was derived from the filtered OpenProteinSet (Ahdritz
et al., 2023), comprising 270k UniClust30 MSA clusters that included a total of 508M sequences and
110B residues. We used the ProtMamba pipeline to construct the training data, which is illustrated
in Figure 1 of Sgarbossa et al. (2024) and involved two key steps: (i) creating homology-aware but
alignment-free training inputs by concatenating unaligned homologous sequences, and (ii) masking
patches of tokens in each sequence and concatenating the unmasked patches at the end of each
sequence to train the model autoregressively with the FIM strategy. We also use the train, validation
(192 clusters), and test (500 clusters) split provided by ProtMamba.

Methods and hyperparameters. We trained two versions of the model: Prot-xLSTM-26M and
Prot-xLSTM-102M. The larger model was designed to match the architecture and scale of the
original ProtMamba model (ProtMamba-107M) in terms of layer count and embedding size. We
optimized the Prot-xLSTM architecture, including block types and positional encodings, on the
smaller Prot-xLSTM-26M model, and then applied these optimized architectural choices to the
larger Prot-xLSTM-102M model. For comparison, we also trained a smaller ProtMamba model
(ProtMamba-28M with an embedding dimension of 512) and implemented a LLaMA-based model
(Prot-Transformer++-26M) (Touvron et al., 2023). Both models incorporate Absolute Positional
Encodings (AbsPE) as implemented in ProtMamba for xLSTM blocks, with RoPE applied specifically
to the mLSTM blocks. As the sLSTM blocks (or Mamba) lack a QK-formulation, RoPE cannot
be directly applied to them. The results of the hyperparameter search are provided in The results of
the hyperparameter search are reported in Table A7, and the composition of the Prot-xLSTM and
Prot-Transformer++ models are reported in Table A6.

Table A6: Hyperparameter space considered for the Prot-xLSTM and Prot-Transformer++ at different
sizes. The selected values are marked in bold.

Hyperparameter Prot-xLSTM-26M Prot-xLSTM-102M Prot-Transformer++-26M

Embedding dimension 512 1024 512
Context length 211,217a 211-17a 211

Number of blocks 16 16 6
m/sLSTM ratio [0:1], [1:0], [1:7]b [1:0] -
Conv 1D kernel size 4 4 -
QKV projection blocksize 4 4 -
Number of heads 4 4 8
Up projection dimension 1024 2048 2176
Norm bias and linear bias False False False
Position embeddings -, AbPE, RoPE RoPE RoPE
a Context length was increased during training.
b sLSTM blocks at position 1 and 15.

Training details. We trained our models using the ProtMamba pipeline with CLM with the FIM
strategy. The pipeline efficiently handles long, concatenated sequences by extending the context
length up to T = 218, supported by a context-length scheduling strategy. For the Prot-xLSTM-102M
model, we adhered to the ProtMamba protocol, gradually increasing the context length from 211

to T = 218, doubling T at each stage when the loss plateaued. In contrast, for the smaller models
(Prot-xLSTM-26M and ProtMamba-28M), as recommended in previous work (Devlin et al., 2019;

29

Table A7: Prot-xLSTM hyperparameter search: Training loss comparison across different protein
language model architectures after 4B training tokens.

Model type #p (M) Positional Encodings Train loss

Mamba 27.7 AbPE 2.623

Transformer++ 26.4 RoPE 2.568

sLSTM 25.8 - 2.694
26.3 AbPE 2.688

mLSTM

25.9 - 2.569
26.4 AbPE 2.545
25.9 RoPE 2.524
102 RoPE 2.482

xLSTM 25.9 - 2.554
26.4 AbPE 2.551

Press et al., 2021), we initially trained with T = 211 for 20B tokens, then switched to T = 217 for an
additional 10B tokens. Due to the quadratic scaling of Transformer architectures, Prot-Transformer++-
26M was only trained with T = 211, as it could not handle the computational demands of T = 217.
Given the substantial computational resources required, we did not fine-tune the training parameters.
Instead, we used the default settings established by ProtMamba, which are reported in Table A8.

Table A8: Hyperparameters for training protein sequence models.

Effective batch sizea,b 64-1
Optimizer AdamW β = (0.9, 0.95)
Learning rateb,c 6e-4
Learning rate scheduler constant
Learning rate warmup steps 500
Weight decay 0.1
Dropout 0
a Decreased with context size to maintain a fixed total number of tokens per batch.
For the larger model, the rule was relaxed for T >= 216 to enable multi-GPU
training, with the batch size set to the number of GPUs.
b Prot-Transformer++ was trained on 6 GPUs with an effective batch size of 96
and a learning rate of 9e-4.
c Due to unstable training of the larger model at T = 217 and 218 the learning rate
was reduced to 1e-4.

Metrics. During training, we evaluated the next-token prediction capabilities of the models using
negative log-likelihood and token perplexity. The perplexity was calculated for four subset of tokens
of the concatenated-FIM sequence: the first protein sequence, the last protein sequence the FIM token
and the entire concatenated sequence. Once the models were trained we evaluated their performance
on the independent test set.

D.2 ICL: Homology-Conditioned Protein Generation

Experimental setup. To evaluate the capacity of Prot-xLSTM to autoregressively generate novel
protein sequences given a context of known homologs, we follow the protocol outlined in Section
3.4 of Sgarbossa et al. (2024). For a subset of 19 homology clusters from the test set, we generate
sequences with contexts consisting of 10, 100, 500, 1000, and N (total number of sequences in the
cluster) sequences. For each context length, we generate 100 sequences each with the following
parameter combinations of generation temperature (τ), top-k, which restricts the output selection
to the k most probable tokens, and top-p, which limits the output to tokens reaching a cumulative
probability p: (τ, top-k, top-p) ∈ {(0.8, 10, 0.9), (0.9, 10, 0.95), (1, 10, 0.95), (1, 10, 1), (1, 15, 1)}
(Ferruz et al., 2022). This results in a total of 2,500 sequences per cluster.

30

Methods compared. We compare both Prot-xLSTM models to ProtMamba models with a similar
number of parameters.

Metrics. We evaluate the novelty of generated sequences by calculating the Hamming distance to the
closest natural sequence in the cluster using pairwise Smith-Waterman alignment. Additionally, we
measure sequence similarity to homologs with the HMMER score from a Hidden Markov Model
(HMM) trained on the cluster’s MSA. The generated sequences are also folded using ESMFold (Lin
et al., 2023) and assessed by pTM and average pLDDT confidence scores. To compare these scores
with natural sequences, we compute Kolmogorov-Smirnov test statistics between the scores of 100
natural sequences and the 100 generated sequences with the lowest perplexity.

Results. Figure A4 displays the distribution of scores for 100 randomly sampled natural sequences
from each cluster as well as the 100 sequences with the lowest perplexity generated by Prot-xLSTM
and ProtMamba models for 10 randomly selected clusters. The averages across all 19 evaluated test
clusters are shown in Table A9. Sequences generated by Prot-xLSTM-102M were on average longer,
more similar to other proteins in the cluster (measured by Hamming distance), and got a higher
HMMER score and higher folding confidence scores compared to ProtMamba-generated sequences.
Notably, these observations mostly also hold when compared to natural sequences.

Table A9: Score comparison of natural and generated proteins. Average scores (sequence length,
Hamming distance to the closest natural neighbor, HMMER score, pLDDT, and pTM) across
19 test clusters for sequences generated with Prot-xLSTM and ProtMamba models. Error bars
indicate 95% confidence intervals across clusters.

Natural Seqences Prot-xLSTM ProtMamba Prot-xLSTM ProtMamba
-26M -28M -102M -107M

Sequence length 211±28 290±36 326±43 286±38 276±40

Min. Hamming ↓ 0.51±0.04 0.55±0.05 0.64±0.04 0.44±0.07 0.56±0.03

HMMER ↑ 96±25 182±56 122±50 165±45 163±45

pLDDT ↑ 0.81±0.03 0.79±0.04 0.67±0.07 0.80±0.03 0.80±0.03

pTM ↑ 0.77±0.06 0.74±0.06 0.54±0.10 0.75±0.06 0.74±0.06

Table A10 demonstrates that Hamming distance, HMMER score, pTM, and pLDDT correlate well
with sequence perplexity for both, Prot-xLSTM and ProtMamba, with an average Pearson correlation
coefficient of 0.57 and 0.58, respectively, for the large models.

Table A10: Score distribution comparison of natural and generated proteins. Average Pearson
correlation between model perplexity and sequence scores (sequence length, Hamming distance
to the closest natural neighbor, HMMER score, pLDDT, and pTM) for sequences generated with
Prot-xLSTM and ProtMamba models. Error bars indicate 95% confidence intervals across 19 test
clusters.

Prot-xLSTM-26M ProtMamba-28M Prot-xLSTM-102M ProtMamba-107M

Min. Hamming 0.53±0.10 0.41±0.10 0.59±0.08 0.57±0.11

HMMER Score 0.59±0.06 0.54±0.07 0.54±0.07 0.57±0.09

pLDDT 0.66±0.05 0.53±0.07 0.60±0.08 0.62±0.08

pTM 0.59±0.06 0.44±0.08 0.55±0.07 0.57±0.07

D.3 Protein Variant Fitness Prediction

Experimental setup. We evaluate Prot-xLSTM’s ability to predict mutational effects by leveraging
its inpainting capabilities from the FIM training objective. This assessment follows the protocol
described in Section 3.2 of Sgarbossa et al. (2024) for the ProteinGym DMS substitution benchmark
(Notin et al., 2023), which consists of 217 datasets of single and multiple substitutions in protein
sequences, allowing comparison with state-of-the-art methods for protein variant fitness prediction.
Briefly, for each wild-type sequence, three sets of 200 homologs were obtained by subsampling
MSAs following the ColabFold protocol (Mirdita et al., 2022) to be used as context. The context
sequences are ordered from the least similar to the most similar one. The wild-type sequence is
then concatenated with the context, the mutated residue is masked, and this residue is predicted

31

using the FIM method. Fitness is evaluated as the difference in likelihood between the concatenated
sequence with the wild-type and the mutated amino acid and averaged over the triplicate. For multiple
mutations, fitness is approximated as the sum of the likelihoods of single mutations.

Results. ProteinGym’s main metric is the average Spearman correlation between the fitness predic-
tions and the experimental DMS results. Table A11 summarizes reports ProteinGym’s main metric,
the average Spearman correlation between the fitness predictions and the experimental DMS results,
for Prot-xLSTM and several other well-known protein models and the current top of the

Table A11: ProteinGym zero-shot DMS substitution benchmark. The average Spearman correlation
(↑) between predicted fitness scores and experimental measures over 217 DMS assays is shown. While
even small Prot-xLSTM models already yield high scores, models which use additional structure
tokens, such as SaProt and ProSST, perform best.

Model Type Model Reference #Params Spearman ρ

Alignment-based Site-Independant Hopf et al. (2017) - 0.359
EVE Frazer et al. (2021) -a 0.432
GEMME Laine et al. (2019) - 0.455

Protein language model Tranception L (w/o R) Notin et al. (2022a) 700M 0.374
(PLM) VespaG Marquet et al. (2024) 3B 0.458

ProGen2 XL Nijkamp et al. (2023) 6B 0.391
ESM-2 Lin et al. (2023) 15B 0.401

Alignment + PLM MSA-Transformer Rao et al. (2021) 100M 0.432
Tranception L (w/ R) Notin et al. (2022a) 700M 0.434
TranceptEVE L Notin et al. (2022b) >700Ma 0.456

Homology-aware PLM Prot-xLSTM Ours 26M 0.411b

ProtMamba Sgarbossa et al. (2024) 28M 0.360b

Prot-xLSTM Ours 102M 0.416b

ProtMamba Sgarbossa et al. (2024) 107M 0.415b

PoET Truong Jr and Bepler (2023) 201M 0.470

Inverse folding ESM-IF1 Hsu et al. (2022) 142M 0.422

Structure + PLM SaProt Su et al. (2024b) 35M 0.407
ProSST Li et al. (2024) 110M 0.507
SaProt Su et al. (2024b) 650M 0.457

a EVE parameters depend on the size of a given MSA.
b This work. All other values are retrieved from ProteinGym on 03/11/2024.

32

https://github.com/OATML-Markslab/ProteinGym/blob/main/benchmarks/DMS_zero_shot/substitutions/Spearman/Summary_performance_DMS_substitutions_Spearman.csv

0

250

500

750

A0
A1

94
V4

24

Sequence Length

0.0

0.5

Min. Hamming

0

250

500

750
HMMER score

0.25

0.50

0.75

1.00
pTM

0.25

0.50

0.75

1.00
pLDDT

0

250

500

750

A0
A2

41
VG

M
5

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A2

X4
BA

Y2

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A1

C5
UJ

41

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

D8
SD

16

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

S7
UZ

45

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

G4
ZH

78

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

F2
CV

06

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A1

C6
Q5

J2

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0

250

500

750

A0
A0

91
TD

H7

0.0

0.5

0

250

500

750

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Models
Natural Sequences Prot-xLSTM-102M ProtMamba-107M

Figure A4: Scores of natural and generated proteins. Boxplots of score distributions (sequence
length, Hamming distance to the closest natural neighbor, HMMER score, pLDDT, and pTM) for 10
randomly selected clusters evaluated for 100 randomly chosen natural sequences and 100 generated
sequences with lowest perplexity values for large Prot-xLSTM and ProtMamba models.

33

E Chem-xLSTM: Details and Additional Results

For chemical sequences, we perform two sets of experiments: a) unconditional molecule generation
where we follow the experimental protocol of Özçelik et al. (2024). Additionally, we propose a
new and more challenging task: b) conditional generation with ICL, in which we generate new
compounds conditional based on provided in-context compounds.

E.1 Unconditional Molecule Generation

Unconditional molecule generation is the task of generating valid small molecules without imposing
constraints on their characteristics or properties. Generative models aim to learn a general distribution
by processing many examples of desirable results. To this end, models are trained on large training
sets of arbitrary small molecules without particular conditions or constraints (Segler et al., 2018;
Gómez-Bombarelli et al., 2018; Özçelik et al., 2024). Following this approach, we compared the
ability of xLSTM and several other models to generate valid and diverse molecules.

Experimental setup. For comparability, we aligned our experiments with the setting and dataset
of Özçelik et al. (2024). This means that all models are trained to generate molecules as SMILES
strings (Weininger, 1988) using a CLM paradigm. The dataset used in (Özçelik et al., 2024) is derived
from ChEMBL with a random split in 1.9M training, 100k validation, and 23k test molecules, which
have been encoded as SMILES. Before training, all SMILES strings were tokenized using a regular
expression, containing all elements. This results in atoms being represented as one token as well as
additional SMILES symbols.

Methods and hyperparameters. We compared xLSTM with several other model classes. The
first baseline is the default LSTM (Hochreiter and Schmidhuber, 1997) in PyTorch, which includes
a forget gate (Gers et al., 1999). This can be considered the direct predecessor of the xLSTM
architecture. We also included a variant GPT-2 (Radford et al., 2019) model based on the Transformer
architecture (Vaswani et al., 2017) with causal masking. Finally, we included two SSMs in our
comparison. On one side, we considered an S4 model with the implementation from Gu et al. (2022),
following (Özçelik et al., 2024). On the other side, we incorporated a Mamba model, using the
official repository provided with (Gu and Dao, 2023). For our Chem-xLSTM, we used an xLSTM
using only mLSTM blocks (Beck et al., 2024). The 15M-parameter model consists of 9 layers with a
hidden dimension of 512 and 8 heads. We trained the model for up to 100 epochs with a batch size
of 1,024, a context length of 100, a dropout rate of 0.25, and a learning rate of 0.005. All models
were trained using the Adam optimizer (Kingma and Ba, 2015) using β = (0.9, 0.999), ϵ = 1e−8,
and a learning-rate schedule with warm-up and cosine decay. We selected the best model based on
the minimum validation loss observed at the end of each epoch. The hyperparameters were manually
tuned to match the model parameter count for a fair comparison. Detailed training information and
learning curves can be found in Appendix Section E.4.

Metrics. We evaluated each model with the next token perplexity next token, and the FCD (Preuer
et al., 2018). The FCD has been introduced as an alternative to the FID, which is used to evaluate
image generation, for molecule generation. Auxiliary metrics that measure the syntactic correctness,
novelty, diversity, or synthetic accessibility are reported in Appendix Section E.

Results. Our proposed Chem-xLSTM model achieved the best results, with the lowest FCD (0.13)
and a perplexity (1.68) that is competitive with that of GPT-based models. This indicates that
Chem-XLSTM is able to generate realistic chemical structures that match the target distribution well.

All models in our comparison were able to produce valid, unique, and novel molecules. Even though
these models have not been optimized for these properties. This is evidenced by the auxiliary metrics
surpassing practical thresholds (see Table A13).

E.2 Conditional Molecule Generation with In-Context Learning

Conditional molecule generation with in-context learning (ICL) leverages contextual information to
guide the design of novel molecules tailored for specific domains. By incorporating a sequence of
molecules as the input, models can conditionally generate new compounds of the same distribution,
without the need for fine-tuning.

34

Experimental setup. Similar to the unconditional setup, the input consists of SMILES strings. In
the conditional setup, we additionally model sets of molecules from the same molecular domain as a
sequence. Molecules from one molecular domain are serialized and concatenated, separated with
the "." token. During training, the order of the molecules is permuted to improve generalization and
robustness. We construct a novel dataset derived from a variety of molecular domains:

• We consider natural-products as domain and utilize the Coconut (Nainala et al., 2024)
as source dataset.

• Kinase inhibitors, withdrawn, malaria, tool compounds, pathogen, NIH
mechanistic, lopac, natural product-based probes and drugs, zinc tool,
axon medchem, adooq bioactive, novartis chemogenetic, drug matrix,
PROTACs, covalentIn db, DrugBank compounds, reframe, cayman bioactive all
from the Probes & Drugs portal (Skuta et al., 2017),

• product molecules from the reaction dataset USPTO-50k (Lowe, 2012) split into 10
reaction classes.

• The domains bio, diversity, green, yellow, orange, and red, from ZINClick (Levré
et al., 2018).

• Active molecules from the domains BACE, BBBP, Clintox, HIV, SIDER, Tox21, Tox21-10k,
and Toxcast from MoleculeNet (Wu et al., 2018).

• Active molecules from 95 bioassays from FS-MOL (Stanley et al., 2021) considered each as
separate domain.

• Active molecules from 109 bioassays from PubChem (Kim et al., 2023) considered each as
separate domain.

• A subset of active molecules from the BELKA challenge (Quigley et al., 2024) is modeled
as a domain.

For the domains that are defined by the active molecules from a particular bioassay, we selected
assays with at least 300 active molecules and only use the active compounds. For the dataset each of
the total 249 domains is limited to 100,000 compounds, where compounds are selected at random.
The final dataset is split at 8:1:1 into train-, validation- and test-domains, sorted by their character
length in descending order.

Methods and hyperparameters. We benchmark and orient our choices for the model classes as well
as hyperparameters based on the unconditional molecule generation results, We consider a context
length of 4,096 and adjust batch sizes as well as accumulation steps to accommodate GPU memory
constraints. For the S4 model, we were only able to fit a context length of 2,048.

Metrics. To evaluate conditional molecule generation we evaluate NTP loss. This metric quantifies
how well the model predicts the next token in a sequence, thus assessing whether a model is able to
generate molecules from an unseen, and potentially very special, molecular domain given only a few
molecules from that domain.

E.3 Architecture and Hyperparameter Selection

Considered and selected hyperparameters for Chem-xLSTM are given in A12.

E.4 Implementation Details

Unlike Özçelik et al. (2024), we do not backpropagate the loss for [PAD] tokens, nor do we interpret
them for decoding. We observed that not ignoring [EOS] and [PAD] token leads to more diversity
but is not the standard way of decoding in e.g. NLP. Padding tokens are not typically generated
during decoding. They are primarily a pre-processing step to handle batches of data efficiently. In
our implementation, we end decoding the SMILES string with the [EOS] token. Further, we do not
use SMILES augmentation, which could further improve the performance of all architectures.

E.5 Additional Results

Practical thresholds are defined based on several key metrics. First, a high percentage of generated
SMILES strings must correspond to chemically valid molecules, with a threshold typically set above

35

Table A12: Hyperparameter space considered for the Chem-xLSTM at different
sizes. The selected values are marked in bold.

Hyperparameter Chem-xLSTM-15Mn Chem-xLSTM-15M-icl

Number of layers 9 9
Number of heads 8 8
Embedding dimension 512 512
Hidden dimension 512 512
Batch size 16, 32, 64, 128 16, 32
Proj. factor 1.3 1.3
Learning rate 1e-4, 2e-4, 3e-4, 5e-4 16, 1e-4, 2e-4, 3e-4, 5e-4
Optimizer Adam, AdamW Adam

Table A13: Diversity and correctness metrics for the 15M parameter models for small molecules
(SMILES). The table reports the percentage of valid, unique, and novel molecules, the synthetic
accessibility (SA), and the diversity metric by the percentage of unique Murcko scaffolds divided by
the total number of generated molecules.

Model valid % unique % novel % SA ↓ diverse %

SMILES-LSTM (Segler et al., 2018) 90.11±10.7 56.72±3.4 56.66±3.6 2.85±0.0 44.71±1.1

SMILES-GPT (Adilov, 2021) 99.05±0.5 62.09±12.1 61.81±12.0 2.90±0.0 48.82±9.7

SMILES-S4 (Özçelik et al., 2024) 97.48±0.0 61.47±0.0 61.34±0.0 2.86±0.0 48.49±0.0

Chem-Mambaa 91.41±8.9 57.75±3.2 57.63±3.8 2.84±0.0 45.65±7.2

Chem-xLSTM (ours) 97.08±0.7 61.09±8.9 60.84±9.6 2.83±0.0 45.97±5.5

a adapted to SMILES in this work

90% to ensure reliability. Additionally, a practical threshold for uniqueness might require that over
80% of the generated molecules are unique, ensuring diversity in the explored chemical space. For
novelty, at least 50-70% of the generated molecules should be novel compared to known chemical
databases, indicating the model’s ability to explore new regions of chemical space. Finally, all models
exhibit favorable synthetic accessibility (SA) scores, typically ranging between 2.5 and 5, ensuring
that the generated molecules are feasible for synthesis. Further metrics and details are provided in the
appendix.

36

Compute demand and resources

The experiments were conducted on multiple GPU servers with A100 GPUs. Model training was
performed in both single-node and multi-node setups, utilizing 1–8 A100 GPUs per node. Prot-
xLSTM-102M training with a context length of 217 was completed on a node with 8 H200 GPUs.
The largest models were trained across up to four nodes using distributed data parallelism. Some
experiments leveraged compute resources provided by EuroHPC Joint Undertaking clusters, including
Karolina at IT4Innovations, Leonardo at CINECA, and MeluXina at LuxProvide. The total amount
of GPU hours required for the experiments in this paper is approximately 50k.

Ethics Statement

The development of our large language model for biological sequences, including DNA, proteins,
and small molecules, has the potential to significantly advance biomedical research and therapeutics.
In creating this model, we have taken care to train exclusively on publicly available data, such as the
human reference genome, OpenProteinSet, and publicly available small molecule databases. Note
that no human subjects are involved in the studies, since the human reference genome does not
represent a particular individual but a type of average human genome. As common with machine
learning methods, potential danger lies in the possibility that users rely too much on our new approach
and use it without reflecting on the outcomes. However, the full pipeline, in which our method
would be used, includes wet lab tests after its application, to verify and investigate the results, which
decreases the danger of misuse or overly relying on the predictions. To further mitigate the risk of
misuse, we provide model limitations and mention potential biases. Users are encouraged to approach
the model’s predictions critically and consider them as one component of a broader decision-making
process.

Acknowledgements

The ELLIS Unit Linz, the LIT AI Lab, the Institute for Machine Learning, are supported by the
Federal State Upper Austria. We thank the projects INCONTROL-RL (FFG-881064), PRIMAL
(FFG-873979), S3AI (FFG-872172), DL for GranularFlow (FFG-871302), EPILEPSIA (FFG-
892171), FWF AIRI FG 9-N (10.55776/FG9), AI4GreenHeatingGrids (FFG-899943), INTEGRATE
(FFG-892418), ELISE (H2020-ICT-2019-3 ID: 951847), Stars4Waters (HORIZON-CL6-2021-
CLIMATE-01-01). We thank NXAI GmbH, Audi.JKU Deep Learning Center, TGW LOGISTICS
GROUP GMBH, Silicon Austria Labs (SAL), FILL Gesellschaft mbH, Anyline GmbH, Google, ZF
Friedrichshafen AG, Robert Bosch GmbH, UCB Biopharma SRL, Merck Healthcare KGaA, Verbund
AG, GLS (Univ. Waterloo), Software Competence Center Hagenberg GmbH, Borealis AG, TÜV
Austria, Frauscher Sensonic, TRUMPF and the NVIDIA Corporation.

We acknowledge EuroHPC Joint Undertaking for awarding us access to Karolina at IT4Innovations,
MeluXina at LuxProvide, Leonardo at CINECA.

37

	Introduction
	Background and Notation
	Block Structures
	Modes of Operation: Parallel, Chunkwise, and Recurrent

	Bio-xLSTM: Longe-Range Modeling of Biological and Chemical Sequences
	Causal Language Modeling and Next-Token Prediction
	Masked Language Modeling (MLM)
	reverse complement (RC) equivariance
	DNA-xLSTM
	Prot-xLSTM
	Chem-xLSTM

	Experiments and Results
	DNA Sequences
	Protein Sequences
	Chemical Sequences

	Discussion
	Related Work
	xLSTM Architecture Details
	sLSTM
	mLSTM
	xLSTM and Bio-xLSTM Blocks
	Modes of Operation: Parallel, Chunkwise or Recurrent
	Efficient Bidirectional Modeling for Weight-Tied Layers of Bio-xLSTM

	DNA-xLSTM: Details and Additional Results
	Pre-Training
	Downstream Tasks
	Architecture and Hyperparameters
	Reverse-Complement Invariance
	Implementation Details

	Prot-xLSTM: Details and Additional Results
	Homology-Aware Training
	ICL: Homology-Conditioned Protein Generation
	Protein Variant Fitness Prediction

	Chem-xLSTM: Details and Additional Results
	Unconditional Molecule Generation
	Conditional Molecule Generation with In-Context Learning
	Architecture and Hyperparameter Selection
	Implementation Details
	Additional Results

