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Abstract. In Industry 4.0, Artificial Intelligence (AI) is revolutionizing manu-
facturing with innovations such as automated fault detection in robotics. How-
ever, many current AI models are opaque, obscuring decision-making processes
and reducing worker trust. Additionally, these models rely on correlative learn-
ing, making them susceptible to adopting spurious correlations that affect their
reliability and generalizability. This paper presents the use of Information Flow-
BasedFuzzyCognitiveMaps (IF-FCMs) for fault detection and diagnosis in indus-
trial robotics, aiming to overcome these challenges. IF-FCMs, building on FCMs
known for their intuitive causal structure and interpretability, integrate Liang-
Kleeman Information Flow analysis for rigorous data-driven causality analysis.
This approach effectively distinguishes authentic causal links from spurious corre-
lations, enhancing the predictive and explanatory power of FCMs.Moving beyond
previous studies that used synthetic data, which often lack real-world complexity
and variability, this study employs actual industrial robot data. Numerical simu-
lations demonstrate that IF-FCMs outperform traditional FCMs in terms of both
diagnostic accuracy and interpretability, underscoring their potential for tackling
manufacturing challenges.

Keywords: Fuzzy Cognitive Maps · eXplainable AI · Information Flow ·
Industrial Robotics · Fault detection

1 Introduction

Industry 4.0 has revolutionized manufacturing by integrating Artificial Intelligence (AI)
and the Industrial Internet of Things (IIoT), which enhances both operational efficiency
and safety [1]. For example, AI can be crucial inmonitoring industrial robots to promptly
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detect any faults, ensuring their continuous and efficient operation. These technologi-
cal advancements allow industries to quickly identify and resolve issues, significantly
reducing production downtime, financial losses, and safety risks [2]. However, the suc-
cess of AI in such applications relies not only on the ability to accurately detect faults
but also on workers’ understanding of their root causes. Without a deep understanding
of these causes, persistent inefficiencies and errors may occur.

To bridge this gap, explainable AI (XAI) systems are increasingly used to demystify
AI decisions and provide transparent explanations of detected faults, helping workers
take informed corrective actions [3]. XAI approaches include post-hoc methods that
explain “black-box”models and intrinsically interpretablemodels, which are transparent
by design [4]. However, post-hocmethodsmay inaccurately approximate the behavior of
the underlying black-boxmodel, rationalize biasedmodels, or incorrectly assume feature
independence, leading to potentially misleading explanations in case of interrelated
features [5, 6]. This has prompted a shift towards intrinsically interpretable models and
causal XAI, which learns the causal mechanisms of the analyzed system, thus providing
unbiased explanations that align with human reasoning and reveal the actual root causes
of the model’s behavior rather than merely correlations [7].

In this context, Fuzzy Cognitive Maps (FCMs) have emerged as a promising solu-
tion for modeling and simulating complex dynamic systems and performing predictive
tasks, such as pattern classification and time series forecasting [8, 9]. Described as inter-
pretable recurrent neural networks, FCMs are directed graphs where nodes, referred to as
concepts, represent system components, andweighted edges describe the causal relation-
ships between these concepts [9]. FCMs are recognized for their intuitive causal structure
and transparent, interpretable feature-based explanations, making them ideal for indus-
trial applications such as predictive maintenance and fault detection [10]. Developed
through expert knowledge and/or learning algorithms, FCMs offer unmatched flexibil-
ity, adapting to new knowledge or compensating for the lack of historical data using
expert assessments [11].

While FCMs are valuable for their interpretability and causal reasoning capabilities,
their effectiveness can be compromised by subjective expert opinions or the limita-
tions of data-driven correlative learning algorithms that do not differentiate between
causal and spurious correlations [12, 13]. To overcome these challenges, Information
Flow-Based Fuzzy Cognitive Maps (IF-FCMs) have been introduced, which incorpo-
rate Liang-Kleeman Information Flow (L-K IF) analysis to identify authentic causal
relationships within observational data, significantly enhancing model predictive and
explanatory power by eliminating spurious correlations [14]. The effectiveness of IF-
FCMs was first shown in an XAI model used for detecting and diagnosing faults in
industrial systems, employing a synthetic dataset. However, because synthetic data may
not fully represent the complexity and variability of real-world scenarios, it is crucial
to further validate IF-FCMs with real-world data to confirm their practical utility and
robustness.

This study investigates the application of IF-FCMs in detecting and diagnosing faults
in industrial robots using data from an actual industrial robot manipulator. Preliminary
results reveal the high diagnostic accuracy and interpretability of IF-FCMs, highlighting
their potential in practical scenarios. This research enriches the study of FCMs and
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contributes to developing understandable, reliable AI technologies, advancing safer and
more efficient manufacturing practices in Industry 4.0.

The remainder of this paper is structured as follows: Sect. 2 delves into the connection
between current research and human-centric systems. Section 3 provides an overview
of our theoretical framework. Section 4 describes the experimental setup and IF-FCMs
application in our case study. Section 5 discusses the experimental results and offers
quantitative and qualitative insights into the prediction accuracy and interpretability.
Finally, Sect. 6 concludes the study with the main contributions and future research
directions.

2 Relationship to Human-Centric Systems

Industry 4.0 enhances efficiency and inspires innovative business models, services, and
products. However, this digital transformation tends to prioritize manufacturing process
optimization, often neglecting the humandimension [15]. Thus, there is a critical need for
a human-centric production approach, whereAI and automation foster an industrial envi-
ronment that prioritizes worker well-being, safety, trust, and human-machine collabora-
tion. Applying IF-FCMs for fault detection and diagnosis in industrial robots represents
a significant step towards this goal, embodying the principles of transparency, inter-
pretability, and user-friendliness, which are critical for realizing human-centric systems
[16].

IF-FCMs significantly improve the accessibility and understanding of AI technolo-
gies for industrial workers by offering clear explanations for AI decisions, fostering
trust, and facilitating intuitive human-automation interaction through causality. This
approach not only advances FCMs and XAI but also promotes sustainable, resilient
industrial environments centered on human needs. This research underscores the value
of interpretableAI in linking technological advancements to their practical, user-oriented
applications, aiming for a future in which technology supports human needs and ensures
a collaborative, safe, and efficient workplace.

3 Theoretical Background

This section outlines the theoretical foundations of our research, including FCMs,
Information Flow for rigorous causality analysis in multivariate time-series data, and
IF-FCMs.

3.1 Fuzzy Cognitive Maps

Fuzzy CognitiveMaps (FCMs), introduced byKosko, are a soft computingmethodology
represented as directed graphs. These graphs consist of n interconnected conceptsCi, i ∈
1,2, . . . , n, linked by signed weights wij ∈ [−1,1]. Positive weights indicate that two
concepts change in the same direction, while a negative weight means they change in
opposite directions.
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Each conceptCi in an FCMhas an activation value, A(t)
i ∈ [0,1] or [−1,1], indicating

the activation level of that concept in the t th iteration of the FCM’s recurrent reasoning
process, computed using the following generalized reasoning rule.

A(t+1)
i = φf
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where t denotes the iteration step, f (·) is the activation function that normalizes concept’s
activation values to the allowed interval, parameter ϕ ∈ [0,1] controls the nonlinearity of
the reasoning rule, and A(0)

i is the initial activation value of the i th concept provided by
domain experts or extracted from the available data. Because commonly used activation
functions, such as bivalent, trivalent, hyperbolic tangent, and sigmoid, can impact the
reliability of FCMs’ reasoning process, Nápoles et al. [17] mitigated these issues by
introducing a re-scaled activation function.
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is the raw state vector given by A

(t) = A(t)W, with

W ∈ R
n×n being the weight matrix, and ‖ · ‖2 denotes the Euclidean norm.

The FCM iterative reasoning process starts with an initial state vector A(0) ∈ R
n,

provided by domain experts or derived from datasets. The chosen reasoning rule is
then applied recurrently to update the concepts’ activation values in each iteration. This
continues until the FCM converges to a fixed-point attractor or reaches a predefined
maximum number of iterations, T , where the FCM exhibits cyclic or chaotic behavior
[18].

3.2 Information Flow

To address the challenges and further capabilities of data-driven FCMs, causality infer-
ence from historical data has become crucial, particularly with recent advancements
in AI. Notably, Liang argued that causality, in the Newtonian sense, is a real physical
notion called Information Flow (IF), which can be established from physics’ first princi-
ples [19]. This insight led to the Liang-Kleeman Information Flow (L-K IF) analysis, a
rigorous framework for causality analysis in time-series data, marking a significant shift
from traditional qualitative or empirically-based formalisms, such as transfer entropy
[20]. The L-K IF framework introduces a method to quantify the causality between state
variables in a d-dimensional continuous-time stochastic system, with the IF rate, Tj→i,
, which measures how the entropy of one variable (Xj) contributes to another’s (Xi)
marginal entropy per unit time. A nonzero Tj→i signifies causality and its magnitude
reflects causality’s strength [21]. The analytical expression for Tj→i is given in detail
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in [19]. In detail, for d time series X1,X2, . . . ,Xd , , under the assumption of a linear
model with additive, independent noises, the maximum likelihood estimator (MLE) for
IF from X2 to X1 is [22]:

T̂2→1 = 1

detC
·

n∑
j=1

�2jCj,d1 · C12

C11
(3)

where Cij denotes the sample covariance between Xi and Xj, �ij are the cofactors of the

covariance matrix C = (
Cij

)
, and Ci,dj is the covariance between Xi and

dXj
dt calculated

using the Euler forward scheme. Given that this formula is an MLE of the analytical
expression, evaluating its statistical significance using the Fisher information matrix is
crucial for validating the causality.

3.3 Information Flow-Based Fuzzy Cognitive Maps

Building on FCMs and IF’s mathematical rigor, physical interpretability, and computa-
tional efficiency, IF-FCMs have recently emerged as a crucial advancement, integrating
L-K IF analysis with FCMs to rule out spurious correlations and thereby enhance both
predictive and explanatory power. This subsection details the development, structure,
and interpretability of IF-FCMs.

The construction of an IF-FCM starts by mapping problem variables to distinct con-
cepts, establishing a single-output model architecture. Subsequently, the model under-
goes a two-phase learning process. In Training Phase 1, the L-K IF analysis identifies
statistically significant IF rates from the data, uncovering causal relationships among
variables. These IF rates are essential for guiding the next phase. Training Phase 2
focuses on learning the IF-FCM by optimizing weights and parameters associated with
the activation function and reasoning rule to fit the model to the observed data. Unlike
traditional methods, the causal relationships identified are used as constraints in the
learning algorithm. This algorithm adjusts only the weights with significant IF rates
and sets others to zero a priori, ensuring the FCM accurately represents actual system
interactions.

In Training Phase 2 of IF-FCM learning, population-basedmetaheuristic algorithms,
such as Particle Swarm Optimization (PSO), are commonly used [23]. The founda-
tional research on IF-FCM initially employed PSO, but due to its limitations with high-
dimensional problems and multiple local optima, this study uses Social Learning PSO
(SL-PSO) [25]. SL-PSO enhances PSO by incorporating a social learning mechanism
that allows particles (solutions) to learn from top-performing peers, called demonstra-
tors. This method encourages particles to update their position based on multiple peers,
thus enhancing solution space exploration and aiding in escaping local optima. Addi-
tionally, SL-PSO uses a dimension-dependent parameter control strategy, which adjusts
demonstrators’ influence based on problem dimensionality, allowing particles to main-
tain diversity in higher dimensions and balance exploration with exploitation. Compar-
ative experiments have also shown SL-PSO’s lower time complexity compared to other
PSO variants across various dimensional problems. In the IF-FCM context, SL-PSO
optimizes solutions encoded as x = [

ϕ,w(1),w(2), ...,w(SIFs)
]
, where SIFs represents
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the number of statistically significant IF rates, aiming tominimize the following objective
function
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1
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where G(·) reflects the mean absolute prediction error across all instances and H (·)
measures the aggregate dissimilarity between successive state vectors, indicating the
model’s convergence. K is the sample size, n the number of FCM concepts, Yk the
expected output for each instance, and ωt = t

T weights the importance of iterations,
with later iterations weighted more to ensure convergence and allowing initial flexibility
in the model’s dynamics. The coefficient α1 ∈ [0,1] balances accuracy against stability
in the model’s performance.

Once developed, an IF-FCM can be used for specific predictive tasks, such as binary
classification to detect faults in industrial robots. In classification tasks, each kth data
instance starts as an initial state vector A(0)

k =
[
A(0)
1k ,A(0)

2k , . . . ,A(0)
nk = 0

]
in the IF-FCM.

This vector is then recurrently updated through the reasoning rule until the reasoning
process concludes. The predicted class label is determined by the final activation value,
A(l)
nk , , of the output concept. The predefined activation interval ([0,1] or [−1,1]) is divided

intom partitions corresponding to the possible class labels. The final activation valueA(l)
nk

then assigns a class label based on which partition it falls into. In binary classification,
the model uses a single threshold to distinguish between classes, optimizing the balance
between true-positive and true-negative rates.

Along with the generated predictions, the IF-FCMmodel can provide global or local
explanations through its inherent interpretability. On the one hand, global interpretability
reveals the significant concepts across all data, providing a holistic view of the model’s
logic. In contrast, local interpretability, which is the focus of our study, explores the
rationale behind predictions for specific data instances. This characteristic is particu-
larly valuable in fault detection, as it identifies which input features (i.e., concepts) are
responsible for the model’s predictions, aiding in diagnosing faults. To locally explain
a given data instance, IF-FCM used the final activation values of concepts after the rea-
soning process. Concepts with higher absolute final activation values are interpreted as
more influential in the decision-making process for that specific instance.

4 IF-FCMs in Robotic Fault Detection and Diagnosis

In this section, we outline the experimental framework and dataset employed for the
numerical simulations, followed by a detailed discussion of the application of IF-FCMs
in our case study. This setup was designed to rigorously test the efficacy of the IF-FCM
model in a real-world environment, providing insights into its predictive accuracy and
interpretability.
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4.1 Industrial Robot Manipulator Test Bench Setup

In our study, we investigated the performance of IF-FCMs in detecting and diagnosing
operational issues in collaborative robots (cobots), which are increasingly utilized in
manufacturing because of their ability to work safely alongside human operators. Cobots
provide advantages, including lightweight and flexible design, ease of programming,
improved productivity, and reduced injury risks, all in compliance with the ISO TS
15066 standards. However, cobots can encounter errors such as grip loss or unintended
protective stops, often triggered by their force sensors during unexpected contact or
owing to limitations in power and force leading to object slippage.

In this context, we utilized a UR3 cobot, which features six degrees of freedom, a
500mm reach radius, and a repeatability of ± 0.1 mm, and includes safety mechanisms
like immediate stopping upon unexpected contact and limitations on power and force
for safety. Our experimental setup involved a cobot performing a pick-and-place task
between two points (A and B) under varying conditions of three static process hyper-
parameters: workload (1, 2, and 3 kg), movement speed (60%, 80%, and 100% of the
maximum speed of 210 rad/s), and gripping force (80, 100, and 120N, based on the
OnRobot RG6 gripper’s capacity). Each test scenario was replicated 25 times to examine
the impact of these parameters on the occurrence of ‘Grip Loss’ and ‘Protective Stop’
failures. The experimental setup, including predefined waypoints for consistent gripper
movement and controlled arm speed, is depicted in Fig. 1, focusing on these two primary
failure modes for an in-depth analysis.

Fig. 1. The cobot test bench setup with a workpiece, highlighting Points A (pickup) and B
(placement).

4.2 Dataset Description

In this study, we developed the “UR3 CobotOps” dataset, a comprehensive, multidimen-
sional time-series dataset compiled from real-time operational data of the UR3 cobot
using both MODBUS and RTDE protocols [25]. The RTDE interface is critical in this
setup, providing seamless synchronization between external applications and the cobot’s
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controller via TCP/IP without affecting real-time performance. Operating at 125 Hz on
port 30004, the RTDE supports configurable synchronization of the robot and joint sta-
tus, tool, safety status, analog, and digital I/Os. This dataset captures several operational
parameters of the UR3 cobot: electrical currents at its joints (Current J0 − J5), joint
temperatures (Temperature J0 − J5), joint speeds (Speed J0 − J5), gripper current (Tool
Current), number of operation cycles (Cycle), and recorded faults (Protective Stop and
Grip Lost), with faults labeled as “False” (no fault) or “True” (fault present) at each time
step. These parameters are listed in Table 1.

Table 1. UR3 CobotOps dataset variables.

Variable Name Description Units Type Range of values
(Mix-Max)

Current J0 − J5 Joint current A Float [–6.24, 6.80]

Temperature J0 − J5 Joint temperature °C Float [27.81, 45.37]

Speed J0 − J5 Joint speed °/s Float [–1.62, 2.67]

Tool Current Gripper current A Float [0.02, 0.60]

Cycle Operation cycles count - Integer {1, 2, 3,…, 264}

Protective Stop Emergency halt status - Boolean {“False”, “True”}

Grip Lost Actual grip loss status - Boolean {“False”, “True”}

4.3 IF-FCM Deployment in Case Study

In this subsection, we discuss the application of the IF-FCM model in our case study,
focusing on data preprocessing andmodel development. Initially, we refined the raw data
by removing non-informative predictors such as “Timestamp” and “Cycle,” eliminating
missing values, and converting Boolean variables to binary integers. Subsequently, we
labeled the dataset to indicate system health, creating a binary target variable “System
Failure”, where “0” indicates healthy and “1” indicates faulty conditions for samples
exhibiting one of the two examined faults. This process produced a binary classification
dataset to train the IF-FCM for fault detection. Most importantly, owing to its inher-
ent interpretability, IF-FCM also provides local feature-based explanations of the most
influential input features for its decisions, enabling fault diagnosis.

In fault detection and diagnosis applications, data are often unbalanced, with fewer
samples for fault classes than for normal ones. To address this, we employed the SMOTE-
ENN technique [26] and Stratified K-Fold Cross-Validation [27] with ten splits, enhanc-
ing model robustness and reducing overfitting risks. However, caution is required when
applying these techniques to time-series data. SMOTE-ENNmight create synthetic sam-
ples that overlook dependencies, and K-fold cross-validation could disrupt the temporal
sequence. Nonetheless, these methods proved effective in our study, which focused on
classifying sensor data patterns rather than their temporal sequences.
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In the model development (Sect. 3.3), the L-K IF analysis revealed 210 causal rela-
tionships among the dataset variables, which were subsequently used as constraints in
the SL-PSO algorithm. Regarding the implementation of the SL-PSO, we used theMAT-
LAB version from GitHub1, enhancing it with MATLAB’s “parfor” for parallel particle
evaluation. Furthermore, we adopted the default parameter values for SL-PSO, which
have been shown to perform robustly across various problem scales [24]. Finally, based
on previous studies, we set the α1 parameter of the objective function to 0.8 [28].

5 Results and Discussion

This section evaluates the efficacy of the proposed IF-FCM model for fault detection
and diagnosis in the UR3 cobot, leveraging its inherent interpretability. We compare
the proposed model’s performance against a traditional FCM, which differs from the
IF-FCM in that it assumes all weights are present during training—a common practice
in existing research for constructing FCMs automatically in the absence of detailed
knowledge about the true causal model structure. Consequently, this model is prone
to assimilate spurious correlations from the data. This comparative analysis aims to
demonstrate the benefits of leveraging L-K IF analysis to enhance the accuracy and
interpretability of FCMs.

We assessed the predictive capabilities of both models using various metrics, includ-
ing accuracy, area under the curve (AUC), kappa statistic, precision, recall, and F1-Score
(Table 2). Our analysis shows that the IF-FCMmodel marginally outperforms the tradi-
tional FCM in this case study. Notably, the IF-FCM achieves a slightly higher accuracy,
enhancing its ability to correctly identify faults in industrial robots. It also achieves a
superiorAUC, indicatingmore effective discrimination between fault and no-fault condi-
tions.Moreover, the IF-FCMexhibits increased precision, resulting in fewer false alarms,
which is essential for avoiding unnecessary, costly interventions in manufacturing pro-
cesses. Finally, although both models show similar kappa statistics and recall rates, the
overall metrics suggest that the IF-FCM is a more robust option for this application.

Table 2. Prediction Performance Metrics of IF-FCM vs. FCM Across Ten Folds

Model Accuracy AUC Kappa Precision Recall F1-Score

IF-FCM 88.84% 94.61% 0.7767 88.95% 88.93% 88.84%

FCM 88.43% 92.26% 0.7686 86.63% 91.04% 88.74%

To assess the interpretability of the two models, we thoroughly evaluated the consis-
tency between ground truth facts and the local feature-based explanations each model
provided for their true-positive predictions of ‘Protective Stop’ and ‘Grip Lost’ faults.
The process began by identifying the data instances in which the models accurately pre-
dicted each fault type. Subsequently, we computed each feature’s average local impor-
tance score across these instances and cross-validation folds. As shown in Table 3, for
the “Protective Stop” fault, the IF-FCM model identified Speed J4, Current.

1 https://github.com/ranchengcn/SL-PSO_Matlab.

https://github.com/ranchengcn/SL-PSO_Matlab
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J2, and Current J1 as key predictors, while the traditional FCM model emphasized
Current J4, Temperature J2, and Speed J2. For “Grip Lost” faults, the IF-FCMprioritized
Current J2, Current J1, and Speed J4, contrasting with the traditional FCM, highlighting
Speed J2, Speed J5, and Speed J0.

To validate the relevance of these features, we employed Analysis of Variance
(ANOVA), a model-independent statistical technique, to initially assess the impact of
experimental hyperparameters (speed, workload, and gripping force) on the faults [29].
Specifically, ANOVA indicated that ‘workload’ was the most significant factor for ‘Pro-
tective Stop’ faults (F-value= 7.78, p-value= 0.0032), supporting the IF-FCMfindings
and field experience, which suggests that a high workload causes out-of-scale values of
joint current or wrist force and sudden speed changes, potentially triggering protective
stops (Fig. 2a). However, the traditional FCM’s focus on Temperature J2 did not find
support in the ANOVA results or field observations, as temperature is not typically a
contributing factor to such faults.

Regarding ‘Grip Lost’, ANOVA highlighted ‘gripping force’ as the critical hyper-
parameter (F-value = 5.38, p-value = 0.0135), which aligns with field observations
that attribute grip loss to insufficient gripping force, excessive weight, or poor contact
(Fig. 2b). These findings also support IF-FCM’s focus on Current J2, Current J1 and
Speed J4, explaining that high weight may lead to exceeded current in the joints, while
sudden rotational movements by the wrist might destabilize the gripped object (i.e.,
change the center of gravity of the piece concerning the tool center point of the gripper),
thus causing detachment when the gripping force is insufficient.

Further statistical analyses were conducted using ANOVA to determine the features
significantly associated with each fault type. In this regard, the dataset was divided into
subsets tailored to each fault scenario. For “Protective Stop” faults, we analyzed data
under normal conditions and those exhibiting protective stops, while for “Grip Lost”
faults, we isolated corresponding instances. These focused subsets helped us compute
the average statistical significance of each feature across the cross-validation folds.

Fig. 2. Cognitive Maps of possible causes for the two examined types of faults.

The results detailed in Table 3 from this ANOVA analysis confirm the relevance
of Current J2 and Current J1 in triggering protective stops, both identified by IF-FCM
as among the three most critical features. In contrast, the traditional FCM model only
recognized the Current J4 from the top five features. For ‘Grip Lost’ faults, ANOVA
identified Current J2, Speed J5, and Speed J4 as essential factors. The IF-FCM model
corroborates many of these findings by identifying two of the three critical features



108 M. Tyrovolas et al.

Table 3. Comparison of Feature-Based Explanations from ANOVA, IF-FCM, and FCM

Fault Type ANOVA (Ground Truth Features) IF-FCM FCM

Protective Stop – Current J2 (0.361)
– Current J3 (0.311)
– Current J1 (0.244)
– Tool Current (0.069)
– Current J4 (0.064)

– Speed J4
– Current J2
– Current J1
– Speed J5
– Speed J2

– Speed J2
– Current J4
– Temperature J2
– Current J0
– Speed J1

Grip Lost – Current J2 (0.995)
– Speed J5 (0.646)
– Speed J4 (0.569)
– Current J1 (0.543)
– Speed J3 (0.470)

– Current J2
– Current J1
– Speed J4
– Speed J5
– Speed J3

– Speed J2
– Speed J5
– Speed J0
– Current J2
– Current J0

#Common Features 2/5 1/2

specified by the ANOVA: Current J2 and Speed J4. However, the traditional FCMmodel
only recognized Speed J5. Moreover, the IF-FCM identified all the top five features
marked by ANOVA as significant, whereas the traditional FCM identified only two
features. Overall, this analysis highlights the enhanced explanatory power of the IF-
FCM and its potential to facilitate manufacturing system enhancements by offering
actionable insights, such as the adjustment of Speed J4 to mitigate grip loss.

6 Conclusions

This paper presents a novel method for detecting and diagnosing faults in industrial
robots using IF-FCMs, a recent advancement in causal XAI. Our tests on the UR3 col-
laborative robot show that IF-FCMs have superior predictive capabilities compared with
traditional FCMs, resulting in more accurate fault identification. The method also offers
enhanced interpretability, particularly when identifying critical features affecting robot
faults. Our study reveals that IF-FCMs offer more consistent and reliable explanations
for specific faults like ‘Protective Stop’ and ‘Grip Lost,’ closely aligning with field data
and ANOVA analyses. This accuracy is attributed to the IF-FCMs’ capacity to discern
authentic causal relationships within the system. Future work will focus on develop-
ing IF-FCMs to not only analyze faults, but also recommend specific corrective actions.
Additionally, we intend to expand the application of IF-FCMs to other industrial sectors,
including energy management, predictive maintenance, and quality assurance. Overall,
this study highlights the potential of IF-FCMs to enhance fault detection and diagnosis
in industrial robotics, laying the groundwork for further research and applications in
diverse manufacturing environments.
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