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Abstract
Fine-grained hashing has become a powerful so-
lution for rapid and efficient image retrieval, par-
ticularly in scenarios requiring high discrimina-
tion between visually similar categories. To en-
able each hash bit to correspond to specific visual
attributes, we propoe a novel method that har-
nesses learnable queries for attribute-aware hash
codes learning. This method deploys a tailored
set of queries to capture and represent nuanced
attribute-level information within the hashing pro-
cess, thereby enhancing both the interpretability
and relevance of each hash bit. Building on this
query-based optimization framework, we incor-
porate an auxiliary branch to help alleviate the
challenges of complex landscape optimization of-
ten encountered with low-bit hash codes. This
auxiliary branch models high-order attribute in-
teractions, reinforcing the robustness and speci-
ficity of the generated hash codes. Experimental
results on benchmark datasets demonstrate that
our method generates attribute-aware hash codes
and consistently outperforms state-of-the-art tech-
niques in retrieval accuracy and robustness, es-
pecially for low-bit hash codes, underscoring its
potential in fine-grained image hashing tasks. Our
code is available at https://github.com/
SEU-VIPGroup/QueryOpt
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1. Introduction
Large-scale fine-grained image retrieval aims to retrieve
images from various subcategories within a meta-category,
such as different species of animals, plant varieties, car
models, or types of retail products (Wah et al., 2011; Horn
et al., 2017; Wei et al., 2019). With the explosive growth of
fine-grained data in real applications, fine-grained hashing
has emerged as a promising solution for large-scale retrieval
tasks (Wang et al., 2018; Cakir et al., 2018; Lin et al., 2015;
Hu et al., 2024; Li et al., 2025), as hashing method signif-
icantly reduces storage costs and increases retrieval speed
by using compact binary hash code representations. Unlike
fine-grained classification, retrieval task face an open-world
problem with unlimited categories. This task is complicated
by subtle inter-class variations among similar subcategories
and intra-class variations caused by different object pos-
tures (Wei et al., 2021b; Zhao et al., 2017; Wei et al., 2017).
To address these challenges, it is essential to explore the
nuances in object characteristics and leverage high-level
fine-grained features.

Recently, a variety of learning-to-hash methods have been
developed to enhance retrieval performance. In the litera-
ture, DSaH (Jin et al., 2020), ExchNet (Cui et al., 2020),
SEMICON (Shen et al., 2022) and AGMH (Lu et al., 2023)
concentrated on the design of feature extraction modules. As
for the process of generating hash codes, the final hash codes
are derived by projecting intricately coupled image features
through a simple linear layer. Although the generated hash
codes can perform retrieval tasks, a single bit will do not
imply significant semantics and it is difficult to preserve all
the intricately coupled global features of an image. Addi-
tionally, A2-NET (Wei et al., 2021a) and A2-NET++ (Wei
et al., 2023a) employs a reconstruction task to constrain the
process of generating hash codes, allowing each bit of hash
codes to indicate attribute-level information. This nuanced
attribute-level information enables us to effectively identify
different categories. Consequently, hash codes can perform
retrieval tasks effectively while ensuring that each bit is
interpretable. Following the idea of utilizing attribute-level
information as hash codes, we propose a novel method to
generate attribute-aware hash codes for fine-grained image
retrieval.
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In this paper, we model the hash problem as a set prediction
problem, where each element in the set represents a bit of the
hash codes that is able to indicate a specific visual attribute.
By structuring hash problem in this manner, an image can be
directly decomposed into a set of attribute-specific features
through learnable queries. Then each well-decomposed
attribute-specific features is compressed into a final bit of
hash codes for retrieval. Building upon this core idea, our
proposed query optimization method integrates query learn-
ing to generate attribute-aware hash codes. Additionally,
we incorporate an auxiliary branch for better optimization,
further improving retrieval performance.

For query learning, a set of randomly initialized learnable
queries is used for querying diverse attributes. Through a de-
coder based on cross-attention mechanism, these learnable
queries interact with the extracted global features to directly
decouple different attribute-specific features and then pro-
duce bits containing visual attributes level information. This
direct querying method also demonstrates effectiveness and
accuracy in other vision-related tasks (Carion et al., 2020;
Kirillov et al., 2023; Jaegle et al., 2021). However, with the
aforementioned process, we observe that the directly query
learning strategy suffers from severely poor retrieval per-
formance in low-bit hash codes scenarios. We analyze this
phenomenon from the perspective of cosine similarity and
discover the intrinsic reason lies in the inherent limitation of
large class Numbers with low feature dimensions, resulting
a challenges of complex landscape during the optimization
process. This limitation makes it difficult for the model to
learn distinguishable features. Based on the analysis, we em-
ploy an auxiliary branch only for training to help alleviate
this challenges without introducing additional parameters.
With this strategy, the model’s performance is significantly
enhanced, especially in low-bit scenarios. To evaluate our
models, we conduct extensive experiments that provide both
quantitative and qualitative results, and we also offer further
experimental analysis of our method. The contributions of
this work can be concluded as:

• We tailor the prevalent query learning mechanism to
generate attribute-aware hash codes for fine-grained
image retrieval tasks.

• We explain from the perspective of cosine similarity
why retrieval performance is poor in low-bit hash codes
scenarios. Based on our analysis, we seamlessly incor-
porate an auxiliary branch with query learning mecha-
nism, which significantly improved the model’s perfor-
mance.

• Experiments conducted on five commonly used bench-
mark datasets for fine-grained image retrieval illustrate
the effectiveness of our proposed method.

2. Related Work
Fine-Grained Deep Hashing Hashing-based retrieval is
a representative method for Approximate Nearest Neigh-
bor Search (Wang et al., 2018; Liu et al., 2011; Li et al.,
2013; Ye et al., 2022). Specifically, FPH (Yang et al., 2019)
and DSaH (Jin et al., 2020) were among the earliest meth-
ods to incorporate hashing into fine-grained image retrieval.
FPH introduced a novel two-pyramid hashing architecture
to learn both semantic information and subtle appearance
details. DSaH for the first time introduced the attention
mechanism to the learning of fine-grained hashing codes.
During the same period, ExchNet (Cui et al., 2020) investi-
gated the large-scale fine-grained hashing task, proposing
a unified end-to-end trainable network that captures both
local and global features, representing parts and wholes of
fine-grained objects. A2-NET (Wei et al., 2021a) employed
a similar localization module and attempted to learn high-
level attribute vectors for hash code generation; its enhanced
version, A2-NET++ (Wei et al., 2023a), further boosts the
model’s self-consistency. SEMICON (Shen et al., 2022)
proposed a suppression-enhancing mask to explore the re-
lationships between discovered regions. It generates the
final hash codes in a stage-by-stage manner based on fea-
tures from different levels, rather than aggregating features
from different levels to generate unified hash codes. Most
recently, AGMH (Lu et al., 2023) introduced an attention
dispersion loss and a step-wise interactive external atten-
tion module to group and embed category-specific visual
attributes in multiple descriptors for comprehensive feature
representation. In this paper, we primarily follow the setup
proposed by DPSH (Li et al., 2016b). Other notable works,
such as FISH (Chen et al., 2022), CNET (Zeng & Zheng,
2023), DAHNET (Jiang et al., 2024) and CMBH (Chen
et al., 2024) utilized classification tasks to enhance feature
representation, which differ from the pairwise supervision
setup and are not the primary focus of this paper.

Set Prediction and Parallel Decoding The basic set pre-
diction task is multilabel classification (Rezatofighi et al.,
2017; Pineda et al., 2019; Li et al., 2016a). Furthermore,
DETR (Carion et al., 2020) presented a new method that
viewed object detection as a direct set prediction problem. It
introduced an encoder-decoder transformer architecture that
significantly simplified the object detection pipeline. Given
a fixed, small set of learned object queries, DETR reasoned
about the relationships among objects and the global image
context to directly output the final set of predictions. Since
the introduction of DETR, various modifications and im-
provements have been made (Zhu et al., 2021; Lin et al.,
2022; Shehzadi et al., 2023; Chen et al., 2025), while the
core concept of set prediction and the overall structure of
the pipeline have remained intact. In our work, we treat the
hashing problem as a set prediction task for distinguishable
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Figure 1. Overall framework of our method for generating attribute-aware hash codes for fine-grained image retrieval. The top part of the
figure shows the workflow of the method: given a group of learnable parameters, an image is decoupled into a set of visual attributes, and
each attribute is compressed into a single bit, serving as the hash code for retrieval. The bottom left part details the implementation of the
Subtle Feature Extractor, where MHSA stands for multi-head self-attention and FFN stands for feed-forward network. The bottom right
part illustrates our motivation for using distinctive attributes as hash codes for retrieval.

visual attributes which are more fine-grained than objects.

Parallel decoders are widely used in the field of deep learn-
ing, particularly in scenarios that require fast and efficient
decoding, such as machine translation, text generation, and
speech recognition (Vaswani et al., 2017; Chan et al., 2020).
DETR (Carion et al., 2020) also combined with parallel
decoding, achieving a suitable balance between the compu-
tational cost and the ability of performing global computa-
tions. The main advantage of parallel decoders was their
ability to process multiple data points simultaneously, rather
than sequentially, which greatly enhanced the speed and ef-
ficiency of decoding. For hash problems, parallel decoders
handle the generation of variable-length hash codes, adding
flexibility to the decoding process.

3. Methodology
Figure 1 illustrates the procedure for generating attribute-
aware hash codes for an image, which is comprised of two
key components: (1) a Subtle Feature Extractor (S, cf. Sec-
tion 3.1) that obtains global image features for subsequent
hash codes generation, and (2) a decoder with Query Learn-
ing mechanism (Q, cf. Section 3.2) to decouple the extracted
global features into distinguishable attributes for the subse-
quent generation of attribute-aware hash codes. Addition-
ally, we introduce an Auxiliary Branch (A, cf. Section 3.3)
which reuses the aforementioned decoder for more effective
attribute decoupling and performance enhancement. The

details are presented in the following sections.

3.1. Subtle Feature Extractor

In fine-grained tasks, images often contain extremely rich
and subtle features (Gao et al., 2021; Haoran et al., 2023;
Wei et al., 2023b). To obtain richer representations, and en-
sure that the decoding process is not hindered by this stage,
we adopted two efficient strategies for subtle feature encod-
ing, as shown in the bottom left part of Figure 1: (1) We
constructed a top-down architecture to capture multi-scale
features, thereby enabling the model to effectively capture
the local characteristics of an image. (2) We incorporated
self-attention mechanisms to eliminate irrelevant informa-
tion, allowing the model to focus on identifying the most
crucial regions.

Specifically, a raw pixel input image is represented as
Ii ∈ {I1, . . . , In}, where n is the total number of train-
ing instances. We extract the deep feature of an input image
Ii via a CNN backbone ΦCNN(·) by:

{Xj
i |j ∈ {1, . . . , L}} = ΦCNN(Ii) , (1)

where the feature map Xj
i ∈ Rcj×wj×hj is the output of

the jth stage (from top to bottom) of the backbone. Then,
we fuse the features by:

X̂j
i =

{
Xj

i if j = 1,

ϕConv(X
j
i ) + ϕup(X

j−1
i ) if 1 < j ≤ L,

(2)
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where a 1× 1 convolution layer ϕConv adjusts the number
of channels to cj and ϕup denotes upsampling operation.

To further refine the multi-scale features, a 1×1 convolution
operation is first applied to reduce the channel dimension of
the feature maps to d. The feature maps are then flattened
and concatenated. Finally, {X̂j

i |j ∈ {1, . . . , L}} is trans-
formed into xin ∈d×E , where E =

∑L
j=1 wj × hj . This

sequence can then be processed by a standard transformer
block. To improve computational efficiency, we only use
a single layer of multi-head self-attention (MHSA) and a
feed-forward network (FFN) to allow the model to focus on
identifying significant regions.

Conclusively, the hybrid convolution and attention structure
is utilized to enforce the model to focus on crucial fine-
grained regions in the input image (Guo et al., 2022; Yang
et al., 2021; Yu et al., 2024). The output xout ∈ RE×d will
be further processed.

3.2. Query Optimization

Query Learning Unlike other works that directly obtain
hash codes through fully connected layers, our method lever-
ages a decoder and a group of learnable queries to automat-
ically decouple different attribute features from the global
features xout. This decoupling process is illustrated at the
middle top part of Figure 1. The automation in this pro-
cess refers to the fact that it relies solely on the supervi-
sion signal indicating whether image pairs are similar or
not, rather than explicit local attributes labeling informa-
tion. Our query learning process decouples attribute-level
features from intricately coupled global features. Then,
each resulting attribute-specific features are compressed
into one dimension and considered as a bit of hash codes.
The decoder is implemented through cross-attention mech-
anism. To effectively decode diverse attribute-specific fea-
tures, we randomly initialize k different learnable attribute
queries{qi ∈ Rd|i ∈ {1, . . . , k}} to interact with xout

through the decoder. This random initialization ensures the
diversity of the queries, allowing queries to naturally focus
on different features at the beginning of the learning process.
This decoding process can be formulated as:

am
i =softmax

(
(q⊤

i Wq)
m(x̂outWk)

m⊤

√
d′

)
(xoutWv)

m,

ai =Cat(a1
i , . . . ,a

m)Wo,
(3)

where q⊤
i ∈ R1×d represents one learnable query, d′ is the

dimension of each head, m = 1, . . . ,M indices the output
from the m-th attention head, and Wq,Wk,Wv ∈ Rd×d

represent the learnable projection matrices. Additionally,
x̂out denotes the position-augmented xout. We concatenate
the outputs of each heads and using projection Wo to get the

distinguishable attribute-specific features ai ∈ R1×d which
can be compressed into hi =

ai

∥ai∥W , where W ∈ Rd×1.
Note that we use Q = [q1, q2, ..., qk]

⊤ ∈ Rk×d to represent
k learnable queries and abstract the aforementioned process
as a function h = H(Ii,Q,Θ) ∈ Rk, where the vector h
is associated with parameters Q and Θ.

Optimization Objective The optimization objective is
defined based on the vector h that have been obtained. As-
suming that we have p test data points denoted as {pi}pi=1

and d gallery set points denoted as {dj}dj=1. For each at-
tribute vector pi and dj , the corresponding hash codes can
be generated by:

vi = sign(pi) , zj = sign(dj) . (4)

In order to learn hash codes whose Hamming distances
are minimized on similar image pairs and simultaneously
maximized on dissimilar image pairs, we can minimize
the ℓ2 loss between the pairwise supervised information
and the inner product of query-database binary code pairs.
Following (Jiang & Li, 2018), the formulation of hash code
learning can be expressed through inner products as:

min
Θ,Q

L(I) =
∑
i∈Ω

∑
j∈Γ

[
v⊤
i zj
k

− Sij

]2
, (5)

where vi = sign(h) and Γ presents the indices of all the
gallery set points while Ω ⊆ Γ presents the indices of the
train points for we can only gain access to a subset of gallery
set points. Sij ∈ {0, 1} represents the pairwise supervised
information, where Sij = 1 if images i and j belong to the
same category, and 0 otherwise (Leng et al., 2014).

However, the gradient can not be back-propagated owing to
the sign function. Hence, we substitute sign(·) for tanh(·)
to relax the whole optimization process. Typically, con-
verting continuous codes v to binary codes b will lead to
information loss, which is also known as quantization error.
Therefore, we introduce a quantization loss to mitigate the
impact of the relaxation. The loss of query optimization can
be reformulated as:

L(I) = β
∑
i∈Ω

∑
j∈Γ

[
v⊤
i zj
k

− Sij

]2
+ γ

∑
i∈Ω

[zi − vi]
2
,

(6)
where vi = tanh(h) .

3.3. Auxiliary Branch

Observations of Poor Performance in Low-Bit Scenarios
We conducted experiments according to the above process.
As shown in Figure 2, the comparison with the baseline
demonstrates the effectiveness of our method. However, our
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method performs significantly worse in low-bit scenarios
compared to the two previous state-of-the-art methods. Typ-
ically, it is assumed that low-bit hash codes perform poorly
due to their limited bit length, which restricts the amount of
information they can represent. Nevertheless, we indicate
that this poor performance is primarily due to optimization
difficulties associated with low-bit hash codes. In the fol-
lowing, we provide both a detailed analysis of this issue and
the corresponding visualization results.

Conjecture on the Limitation of Large Class Numbers
with Low Feature Dimensions Geometrically, for b ∈
{−1,+1}k, the dot product can be represented by cosine
similarity as:

b⊤i bj = ∥bi∥∥bj∥ cosαij = k cosαij , (7)

where both ∥bi∥ and ∥bj∥ are constant (i.e., ∥b∥ =
√
k).

This means that we can analyze the loss function from the
perspective of cosine similarity in continuous Euclidean
space (Hoe et al., 2021). In designing our optimization ob-
jective, we actually facilitate distinguishable feature learn-
ing by minimizing the squared cosine similarity between the
relaxed hash codes of pairs of samples from different image
categories. Theoretically, in an n-dimensional space, there
can be up to n mutually orthogonal vectors. However, in
practical optimization processes, the number of categories
C exceeds the spatial dimensions n, employing Stochastic
Gradient Descent to minimize the sum of squared cosine
similarities between all pairs becomes particularly challeng-
ing. Under such circumstances, we generally achieve a local

(a) # of dimensions = 12 (b) # of dimensions = 48

Figure 4. The loss landscape under C = 200.

minimum that is greater than zero, rather than the ideal zero.

What kind of minimum can we optimize to achieve? We can
randomly select one image from each category of training
samples to compute its corresponding relaxed hash codes
with tanh(·). Specifically, we assemble the selected codes
into a matrix V ∈ Rn×C , where V = [v1,v2, ...,vC ]. We
can define:

µ = max
1≤i,j≤N,i̸=j

|v⊤
i · vj |

∥vi∥∥vj∥
= max

1≤i,j≤N,i̸=j
cosαij . (8)

When C exceeds n, µ has a definite lower bound (Welch,
1974) can be formulated as:

µ ≥

√
C − n

n(C − 1)
, (9)

where µ reflects the minimum state of the loss value dur-
ing the optimization process. Since the loss function can
be interpreted from the perspective of cosine similarity as
discussed earlier, if µ is too large (i.e., cosαij could po-
tentially tend to approach 1), the model may incorrectly
perceive samples from different classes as being similar.
This makes it difficult for the model to learn distinguishable
features. As shown in Figure 3, when n increases from 12
to 48, the minimum value of µ decreases rapidly. Due to
the rapid decrease of µ in higher-dimensional spaces, the
cosine similarity between samples of different categories
can be kept at a lower level, enabling the model to learn
more distinguishable features. In addition, we present the
visualization results of the loss landscape using the method
from (Li et al., 2018) in Figure 4, which clearly show that
in higher dimensions, achieving lower loss values is much
easier.

Based on the above analysis, we conduct query transforma-
tion and add an auxiliary branch as a solution.

Query Transformation and Auxiliary Branch for Bet-
ter Optimization During the training process, our objec-
tive is to obtain well-optimized parameter {qi ∈ Rd|i ∈
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{1, . . . , k}} for effectively decoupling fine-grained at-
tributes. With this objective and the motivation to conduct
the learning process in a higher dimension to mitigate the an-
alyzed limitations above, we conduct query transformation
for each learnable query. We evenly slice the query vector
and then perform a circular shift operation on the sliced
sub-vectors. The shifted q̂i, which shares the same group of
parameters with qi, is processed with an auxiliary branch.
We concatenate the output of both the original branch and
the auxiliary branch for optimization. As illustrated in Fig-
ure 5, with one auxiliary branch, the numbers of dimensions
is doubled. This query transformation and the incorpora-
tion of auxiliary branch offers two significant benefits: (1)
the learnable queries interact more thoroughly with the en-
riched image features, and (2) the number of dimensions
is increased without introducing any additional learnable
parameters during training, which helps alleviate the chal-
lenges of complex landscape optimization encountered in
low dimensions.

Mathematically speaking, given a learnable query qi ∈
Rd, we evenly split it into N equal-length sub-vectors
[q1

i ; q
2
i ; q

3
i ; . . . ; q

N
i ], then we perform a circular shift op-

eration on the sliced sub-vectors to augment the new query:

q̂j
i = [qN−j+1

i ; . . . ; qN
i ; q1

i ; . . . ; q
N−j
i ] ∈ Rd, (10)

wherej = 1, . . . , N − 1.

As illustrated in Figure 5, in the auxiliary branch, the vanilla
decoder is reused to generate auxiliary outputs. During in-
ference stage, we only retain the original qi during inference
to generate k bits hash codes.

3.4. Out-of-Sample Extension

After the training phase, we obtain the well-learned queries
and other modules. Discarding the auxiliary branch, our

method can be employed to generate hash codes for an input
image Ii as follows:

ui = sign(H(Ii,Q,Θ)) . (11)

4. Experiment
Datasets We conducted a series of ablation studies and
comparisons with the latest methods on five fine-grained
datasets, i.e., CUB200 (Wah et al., 2011), Aircraft (Maji
et al., 2013), Food101 (Bossard et al., 2014), VegFru (Hou
et al., 2017) and NABirds (Van Horn et al., 2015). During the
evaluation, we used the official training and testing sets as
the retrieval and query sets. Specifically, CUB200 contains
11,788 bird images from 200 bird species and is officially
split into 5,994 images for training and 5,794 images for
testing. Aircraft includes 10,000 images of 100 aircraft vari-
ants, with 6,667 images designated for training and 3,333
for testing. For large-scale datasets, Food101 features 101
kinds of foods with 101,000 images, each class has 250 test
images that are manually checked for correctness, while the
750 training images may still contain a certain amount of
noise. NABirds comprises 48,562 images of north ameri-
can birds across 555 sub-categories, with 23,929 images for
training and 24,633 for testing. VegFru is another large-scale
fine-grained dataset covering 200 kinds of vegetables and
92 kinds of fruits, with 29,200 images for training, 14,600
for validation, and 116,931 for testing.

Implementation Details For fair comparisons of fine-
grained hashing, we follow the efficient training setting out-
lined in ExchNet (Cui et al., 2020). Concretely, for CUB200,
Aircraft and Food101, we sample 2,000 images per epoch,
while 4,000 samples are randomly selected for NABirds and
VegFru. Following the method of ExchNet, ResNet-50 (He
et al., 2016) is employed in experiments. The number of
total training epoch is the same as SEMICON (Shen et al.,
2022) and AGMH (Lu et al., 2023).

For all datasets, we preprocess all images to 224 × 224.
Initial learning rate is 0.0003. SGD with a mini-batch size
of 16 is used for training. We set the weight decay to 0.0001
and momentum to 0.90. We set L = 2 to leverage multi-
scale features. d is set to 384, and N is set to 96

k . All
experiments are conducted with one GeForce RTX 3090
GPU.

Comparison Methods To prove the superiority of our
method, we compare it with existing hashing-based methods.
Among them, DPSH (Li et al., 2016b), HashNet (Cao et al.,
2017) and ADSH (Jiang & Li, 2018) are coarse-grained
methods. ExchNet (Cui et al., 2020), A2-NET (Wei et al.,
2021a), SEMICON (Shen et al., 2022), A2-NET++ (Wei
et al., 2023a) and AGMH (Lu et al., 2023) are advanced
hashing methods aiming at large-scale fine-grained retrieval.

6



Learning Attribute-Aware Hash Codes for Fine-Grained Image Retrieval via Query Optimization

Table 1. Comparisons of retrieval accuracy (% mAP) on five fine-grained benchmark datasets.

Datasets # bits DPSH HashNet ADSH ExchNet A2-NET SEMICON A2-NET++ AGMH Ours

CUB200

12 8.68 12.03 20.03 25.14 33.83 37.76 37.83 56.42 72.19
24 12.51 17.77 50.33 58.98 61.01 65.41 71.73 77.44 81.38
32 12.74 19.93 61.68 67.74 71.61 72.61 78.39 81.95 82.22
48 15.58 22.13 65.43 71.05 77.33 79.67 82.71 83.69 83.96

Aircraft

12 8.74 14.91 15.54 33.27 42.72 49.87 57.53 71.64 78.47
24 10.87 17.75 23.09 45.83 63.66 75.08 73.45 83.45 83.88
32 13.54 19.42 30.37 51.83 72.51 80.45 81.59 83.60 84.06
48 13.94 20.32 50.65 59.05 81.37 84.23 86.65 84.91 85.60

Food101

12 11.82 24.42 35.64 45.63 46.44 50.00 54.51 62.59 70.69
24 13.05 34.48 40.93 55.48 66.87 76.57 81.46 80.94 81.76
32 16.41 35.90 42.89 56.39 74.27 80.19 82.92 82.31 82.74
48 20.06 39.65 48.81 64.19 82.13 82.44 83.66 83.21 83.81

NABirds

12 2.17 2.34 2.53 5.22 8.20 8.12 8.80 – 28.13
24 4.08 3.29 8.23 15.69 19.15 19.44 22.65 – 37.75
32 3.61 4.52 14.71 21.94 24.41 28.26 29.79 – 41.33
48 3.20 4.97 25.34 34.81 35.64 41.15 42.94 – 43.71

VegFru

12 6.33 3.70 8.24 23.55 25.52 30.32 30.54 43.99 69.76
24 9.05 6.24 24.90 35.93 44.73 58.45 60.56 68.05 83.30
32 10.28 7.83 36.53 48.27 52.75 69.92 73.38 76.73 83.81
48 9.11 10.29 55.15 69.30 69.77 79.77 82.80 84.49 85.38

(a) CUB200 (b) Aircraft (c) Food101 (d) NABirds (e) VegFru

Figure 6. Quality demonstrations of the learned attribute hash
codes. Each column in each sub-figure can strongly correspond to
a certain kind of properties of the fine-grained objects, e.g., “red
birds”, “double-wing aircrafts”, “fried eggs”,“long beak” “layered
petal-like structure”, etc. (Best viewed in color and zoomed in.)

We provide a comparison with classification-based methods,
such as FISH (Chen et al., 2022), CNET (Zeng & Zheng,
2023), DAHNET (Jiang et al., 2024) and CMBH (Chen et al.,
2024), in appendix.

4.1. Quantitative Results

Table 1 presents the mean average precision (mAP) results
for fine-grained retrieval across five benchmark datasets.
For each dataset, we evaluate performance using four dif-
ferent hash codes lengths: 12, 24, 32 and 48. As shown
in Table 1, our method consistently outperforms the pre-
vious methods across all datasets. It’s important to high-
light the factor that contribute to our method’s superior
performance. By alleviating optimization challenges in

(a) CUB200 (b) Aircraft (c) Food101 (d) NABirds (e) VegFru

Figure 7. Visualization of different queries. Each row corresponds
to a distinct learnable attribute query (qi ∈ Rd). (Best viewed in
color and zoomed in.)

low-bit hash codes scenarios, we significantly improve re-
trieval performance. Thereby narrowing the performance
gap across various lengths of hash codes. Notably, in the
12-bits setting, our method shows substantial enhancements
on the CUB200 and VegFru datasets, achieving 15.77%
and 25.77% improvements over AGMH (Lu et al., 2023),
respectively. This enhancement is especially valuable for
practical applications, where fast retrieval and reduced stor-
age requirements are essential. In contrast to other previous
methods, A2-NET (Wei et al., 2021a) and A2-NET++ (Wei
et al., 2023a) enhance learned bits by incorporating strong
visual features through reconstruction operations. Our query
optimization, as demonstrated in Section 4.2 and Figure 6,
not only ensures the learned hash codes maintain the ad-
vantage of attribute awareness but also achieves superior
retrieval performance.
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Table 2. Retrieval accuracy (% mAP) with incremental compo-
nents.

Configurations CUB200

S Q A 12bits 24bits 32bits 48bits

% % % 20.03 50.33 61.68 65.43
" % % 27.43 59.19 67.69 77.07
" " % 33.33 64.94 74.79 80.52
" " " 72.19 81.38 82.22 83.96
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(a) (b) (c) (d)

Figure 8. Visualization results of learned queries with the 12-bits
setting. (a) is the similarity matrix of 12 queries. (b), (c) and (d)
are the t-SNE (van der Maaten & Hinton, 2008) results of the input
images from three different categories, respectively. Different
colors represent different attribute-specific features.

4.2. Qualitative Results

We hereby discuss the quality of the attribute-aware hash
codes generated by our method. Similar to the method
of A2-NET (Wei et al., 2021a) and A2-NET++ (Wei et al.,
2023a), we visualize the retrieved images using a single
bit randomly selected from the hash codes to highlight the
strong link between visual attributes. All five datasets from
our experiments serve as examples to demonstrate the qual-
ity. As depicted in Figure 6, images in each column exhibit
similar fine-grained object properties, i.e., visual attributes.
The learned hash codes clearly exhibits a strong attribute-
awareness, which indicates that this direct attributes query
method is interpretable. As can be seen from Figure 7, the
activated regions of different queries (highlighted in warm
colors) are also semantically meaningful. These visualiza-
tions qualitatively illustrate that our proposed query learning
achieves strong interpretability.

4.3. Further Analysis

Ablation Studies of Different Modules We conduct ab-
lation studies on CUB200 to verify the effectiveness of
each module, including a Subtle Feature Extractor (S, cf.
Section 3.1), the Query Learning mechanism (Q, cf. Sec-
tion 3.2), and the Auxiliary Branch (A, cf. Section 3.3).
These modules are incrementally applied to a base net-
work (i.e., ResNet-50). As illustrated in Table 2, by adding
these modules one by one, the retrieval results are steadily
improved, which justifies the effectiveness of our method.
Based on the enriched features, the query learning mech-
anism can generating attribute-aware hash codes, thereby

Table 3. Comparison results of hyper parameter N . Results are
based on CUB200 and Aircraft datasets under the 12-bits setting.

N 1 2 4 6 8 12
CUB200 33.33 52.44 69.46 71.57 72.19 72.36
Aircraft 39.43 65.70 74.51 75.20 78.47 78.38

Table 4. Parameters and computational costs (Flops) for training
and inference. Methods with source codes publicly released are
included. Results are based on 12-bits setting.

Method Params
Flops

training inference
ExchNet 40.43M 7.67G 7.67G

SEMICON 42.42M 7.09G 7.09G
AGMH 35.56M 8.61G 8.61G

Ours 31.71M 5.27G 5.23G

improving performance. Additionally, the incorporation of
auxiliary branch mitigate the inherent limitations caused by
the low dimensions, significantly improving performance.

Attribute Diversity of Query Learning In our method,
the learnable queries are randomly initialized, which in-
herently introduces diversity without requiring additional
constraints. At the beginning of the training process, this di-
versity naturally directs focus toward different attributes of
the input images, and we illustrate the well-learned queries
in Figure 8a with the 12-bit setting. The results indicate that
the 12 well-learned queries are distinct, showing that this
diversity is preserved throughout training.

Apart from the learnable queries themselves, a key ques-
tion is whether our query mechanism can efficiently decou-
ple visual attributes that exhibit diversity. We visualized
these decoupled attribute-specific features in Figures 8b,
8c and 8d. The images from three different categories are
represented by 12 different attributes, respectively. This
demonstrates that our method efficiently decouples diverse
attributes, ensuring that the same image is represented by
12 bits containing diverse semantic information.

Number of Auxiliary Branches We increased the num-
ber of dimensions during training to N × k by applying
query transformation and adding N − 1 auxiliary branches.
The retrieval results with different values of N under the
12-bits setting are presented in Table 3. As shown, when
N increases from 1 to 6, retrieval performance improves
rapidly, closely aligning with the sharp decline of µ shown
in Figure 3. Once N exceeds 6, the changes in µ become
more gradual, and also the performance stabilizes. Finally,
we set N = 96

k , where 96 is the least common multiple of
12, 24, 32 and 48.
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Model Complexity and Computational Costs A poten-
tial concern is whether our method sacrifices efficiency, es-
pecially when optimizing in high-dimensional spaces. How-
ever, as shown in Table 4, our method is more lightweight
and computational efficient compared to some previous
methods. Our strategy, which conducts query transforma-
tion and incorporates an auxiliary branch for better optimiza-
tion, only introduces a negligible computational overhead.

5. Conclusion
In this paper, we proposed a novel method that can gener-
ate attribute-aware hash codes for large-scale fine-grained
image retrieval task. Specifically, to obtain subtle features,
we first extracted multi-scale information from a CNN back-
bone and then refined these features. Then, by utilizing a
decoder based on cross-attention mechanisms and a group of
learnable parameters which are treated as attribute queries,
we directly decouple attribute-specific features and com-
press them into hash codes for retrieval. The generated
attribute-aware hash codes were able to provide interpretabil-
ity. Additionally, we explored the limitations between large
class numbers and low optimization dimensions during the
optimization process. We proposed a query transformation
strategy and trained the model with an auxiliary branch,
which significantly enhanced the model’s performance with-
out introducing any additional parameters. Furthermore, the
decoder has the potential to be extended to interact with text
embeddings, which encourages us to explore cross-modal
hashing in future research.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Appendix Overview
In this appendix, we present additional information about
our proposed method, including: (1) an explanation of en-
hanced interaction in the auxiliary branch; (2) further exper-
imental results that compare our method with classification-
based methods, examples of retrieved results, and additional
visualization results; and (3) a proof for the lower bound of
µ.

B. Explanation of Enhanced Interaction in
Auxiliary Branch

One of the advantages of query transformation and the incor-
poration of an auxiliary branch is that the learnable queries
interact more thoroughly with the enriched image features.
As illustrated in Figure 9, both q and q̂ share the same pa-
rameters, however, their interactions with the features differ.
By including the auxiliary branch, we effectively expand the
receptive field of the learnable queries, enhancing the flex-
ibility and comprehensiveness of their interactions, which
enables the queries to capture complex patterns within the
input images more effectively.

C. Additional Experimental Result
Comparison with Classification-Based Methods Apart
from the methods mentioned in the main body, FISH (Chen
et al., 2022), CNET (Zeng & Zheng, 2023), DAHNET (Jiang
et al., 2024) and CMBH (Chen et al., 2024) are other fine-
grained hashing methods that have achieved good retrieval
accuracy. For fair comparisons, we control empirical set-
tings to be the same as these methods and incorporate addi-
tional classification tasks into our method during the train-
ing phase. The comparison results are presented in Table 5,
demonstrating that our method is comparable to these meth-
ods.

Examples of Retrieved Results We present retrieval
results on CUB200-2011 (Wah et al., 2011) and
Food101 (Bossard et al., 2014). As shown in Figure 10
and Figure 11, our proposed method performs well in re-
trieving among multiple subordinate categories. However,
there are several failure cases where minimal differences,
such as those caused by different views or the presence of
distracting objects, require careful observation between the
query image and the returned images.

Visualization of Loss Landscape We provide an ex-
tended analysis with additional visualization cases across
multiple C values (C = 200, 555) in Figure 12. The com-
prehensive results consistently reveal that:

• The loss landscape exhibits a strong correlation with,

Table 5. Comparison of Retrieval Accuracy (% mAP) with
Classification-Based Methods.

Dataset CUB200-2011
Methods 12 bits 24 bits 32 bits 48 bits

FISH 76.77 79.93 80.09 80.88
CNET 77.10 82.11 83.09 83.92

DAHNET 61.69 79.00 81.69 83.98
CMBH∗ 80.30 82.16 82.68 82.80

Ours† 80.79 82.02 83.34 84.27

* denotes CMBH without multi-region feature embedding to
ensure similar training costs, and † denotes our method is trained
with classification.

𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

𝒒𝒒𝒊𝒊 �𝒒𝒒𝑖𝑖

𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜

interaction

Figure 9. The interaction of learnable query with enriched image
features.

aligning well with the trends shown in Figure 3.

• Larger class numbers coupled with lower feature di-
mensions indeed lead to inaccessible lower local min-
ima and a less smooth loss landscape.

This phenomenon aligns with our conjecture on the limita-
tion of large class numbers with low feature dimensions.

Visualization of Extracted Features In Section 3.3, we
conjecture that a large number of classes with low feature
dimensions can make it difficult for the model to learn distin-
guishable features. To mitigate this limitation, we propose
a strategy of adding an auxiliary branch. To validate our
conjecture, we employ t-SNE to visualize the features xout.
The visualization results in figure 13 demonstrate that in-
corporating the auxiliary branch during training produces
feature distributions exhibiting two key characteristics: (1)
larger inter-class distances, manifested through more dis-
tinct cluster separations between categories; and (2) smaller
intra-class variations, evidenced by tighter aggregation of
samples within each category. In contrast, the model with-
out the auxiliary branch produces features with substantially
overlapping distributions across different categories. This
quantitative evidence strongly supports our claim that the
auxiliary branch enhances feature discriminability.
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Top-10 retrieved images
Query 
image

Figure 10. Examples of top-10 retrieved images on CUB200-2011 of 48-bit hash codes by our method.

Query 
image Top-10 retrieved images

Figure 11. Examples of top-10 retrieved images on Food101 of 48-bit hash codes by our method.

(a) C = 200, D = 12 (b) C = 200, D = 24 (c) C = 200, D = 32 (d) C = 200, D = 48

(e) C = 555, D = 12 (f) C = 555, D = 24 (g) C = 555, D = 32 (h) C = 555, D = 48

Figure 12. Loss landscape across different parameter configurations: (a-d) show results with C = 200, and (e-h) demonstrate cases with
C = 555. Each column corresponds to specific dimension settings, where C represents the number of classes and D denotes the number
of dimensions.
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(a) CUB200 with A (b) Aircraft with A (c) Food101 with A (d) NABirds with A (e) VegFru with A

(f) CUB200 without A (g) Aircraft without A (h) Food101 without A (i) NABirds without A (j) VegFru without A

Figure 13. t-SNE Visualization of Xout for 10 randomly selected classes

D. A Proof for the Lower Bound
In our conjecture on the limitation of large class numbers
with low feature dimensions, we introduce a lower bound
for analyzing the observations of poor performance in low-
bit scenarios. This lower bound is also called the Welch
bound. Referring to (Welch, 1974), we provide a proof.

We use the relaxed hash codes vi = tanh(H(Ii,Q,Θ)) .
to construct a matrix V = [v1,v2, ...,vC ] ∈ Rn×C with
C > n. we first normalized the columns and let xi =

vi

∥vi∥
get the correspond gram matirx:

G =

⟨x1,x1⟩ · · · ⟨x1,xC⟩
...

. . .
...

⟨xC ,x1⟩ · · · ⟨xC ,xC⟩

 , (12)

where ⟨·, ·⟩ is the usual inner product on Rn.

The trace of G is equal to the sum of its eigenvalues. Be-
cause the rank of G is at most n, and is a positive semidef-
inite matrix, G has at most n positive eigenvalues with
its remaining eigenvalues all equal to zero. Writing the
non-zero eigenvalues of G as λ1, . . . , λr, with r ≤ n and
applying the Cauchy-Schwarz inequality we can get:

(TrG)2 =

(
r∑

i=1

λi

)2

≤ r

r∑
i=1

λ2
i ≤ n

n∑
i=1

λ2
i . (13)

The square of the Frobenius norm of G satisfies:

∥G∥2F =

C∑
i=1

C∑
j=1

(⟨xi,xj⟩)2 =

C∑
i=1

λ2
i . (14)

Taking Equation (13) and Equation (14) together with the

preceding inequality gives:

C∑
i=1

C∑
j=1

(⟨xi,xj⟩)2 ≥ (TrG)
2

n
. (15)

As xi are unit vector, so the diagonal of G are all 1, hence
TrG = C and

C∑
i=1

C∑
j=1

(⟨xi,xj⟩)2 = C +
∑
i̸=j

(⟨xi,xj⟩)2 . (16)

Therefore, ∑
i ̸=j

(⟨xi,xj⟩)2 ≥ C(C − n)

n
. (17)

The mean of a set of non-negative numbers is smaller than
their maximum:

max(⟨xi,xj⟩)2 ≥ 1

C(C − 1)

∑
i ̸=j

(⟨xi,xj⟩)2 . (18)

So,

µ ≥

√
C − n

n(C − 1)
. (19)
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