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Abstract

Joint entity and relation extraction tasks aim to
recognize named entities and extract relations
simultaneously. Suffering from a variety of
data biases, such as data selection bias, and dis-
tribution bias (out of distribution, long-tail dis-
tribution), serious concerns can be witnessed to
threaten the model’s transferability, robustness,
and generalization. In this work, we address
the above problems from a causality perspec-
tive. We propose a novel causal framework
called covariance and variance optimization
framework (OVO) to optimize feature repre-
sentations and conduct general debiasing. In
particular, the proposed covariance optimizing
(COP) minimizes characterizing features’ co-
variance for alleviating the selection and distri-
bution bias and enhances feature representation
in the feature space. Furthermore, based on
the causal backdoor adjustment, we propose
variance optimizing (VOP) separates samples
in terms of label information and minimizes
the variance of each dimension in the feature
vectors of the same class label for mitigating
the distribution bias further. By applying it
to three strong baselines in two widely used
datasets, the results demonstrate the effective-
ness and generalization of OVO for joint en-
tity and relation extraction tasks. Furthermore,
a fine-grained analysis reveals that OVO pos-
sesses the capability to mitigate the impact of
long-tail distribution. The code is available at
https://github.com/HomuraT/OVO.

1 Introduction

Named Entity Recognition (NER, (Ratinov and
Roth, 2009)) and Relation Extraction (RE,
(Bunescu and Mooney, 2005)) are both the key fun-
damental tasks of Information Extraction and both
significant predecessor tasks for building knowl-
edge graphs that are used widely in daily life (Chen
et al., 2021; Ji et al., 2022; Du et al., 2022a). There
are two major methods to extract the final result.
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Furthermore, we show how the 
recently developed efficient 

subwindow search(ESS) procedure 
can be integrated into the last stage of 

our method.
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Figure 1: An example of RE on SciERC (the label bias
increases the risk of predicting some label possessing
majority samples). The confidence at the upper right is
predicted by PL-Marker (Ye et al., 2022). The ground-
truth relation of the example is PART-OF, but due to
the bias in the train set, the NO-RELATION is inferred.
After using our OVO, PART-OF is predicted correctly.

One is to build a separate model (pipeline) to get
the result in one step (Shang et al., 2022), and the
other is to use multiple models (joint) to extract en-
tities and relations in turn (Zhong and Chen, 2021;
Ye et al., 2022).

Suffering from various biases in data, such as
data selection bias, out-of-distribution, and long-
tail distribution (Lin et al., 2022; Wang et al., 2022),
models may learn spurious correlations and make
erroneous predictions. Although we would like
to be able to obtain a uniform (or unbiased) data
set, such a dataset is almost nonexistent in real
applications. Various biases are always mixed up
in real scenarios, for example, selected data in a
way that differs from the target population (data se-
lection bias), training and testing data distribution
shift (out-of-distribution), the labels with numer-
ous samples may have more chances to inference
(long-tail distribution lead to predicting majority
bias), and some of the data biases are even un-
known. Because statistical correlation is the basis
of supervised learning algorithms, the learning al-
gorithms may learn many spurious correlations due
to these biases. Finally, this leads to a greatly re-
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duced predictive ability of the models. As shown
in Fig. 1 (left), there are different degrees of the
data bias of long-tail distribution in SciERC (Luan
et al., 2018), which is common for other datasets
as well, making models focus more on the labels
with numerous samples and performing poorly on
the others (fewer chances to the labels with few
samples).

In recent years, debiasing has become a signifi-
cant research focus. There are different ways to ad-
dress the data bias by reweighting samples (Dixon
et al., 2018; Rayhan et al., 2017; Wang et al., 2022).
These methods focus on the reweights in the sam-
ple space and ignore spurious correlations due to
data selection bias. Recently, stable learning (Shen
et al., 2018, 2020; Zhang et al., 2021) proposed
serial ways to de-bias the spurious correlation to
find the causal effect of each input feature on the
basis of the correlation. Specifically, these meth-
ods require extensive calculation resources to iden-
tify causality and focus solely on causal effects
between features. Additionally, they fail to con-
sider the causal effects for each feature dimension
within the same class label.

In this work, we introduce a method called the
covariance and variance optimization framework
(OVO), to optimize the feature vectors from two
aspects, decorrelating between features and each
feature dimension of the same class label. Our
contributions can be summarized as follows:

• From decorrelating between features, inspired
by stable learning, we use covariance as the
confounder degree of features and try to mini-
mize it in each batch of every epoch to learn
the causality between features and targets.
We minimize the covariance to reduce the
collinearity of each feature, get the causal
effects, alleviate the data selection and dis-
tribution biases, and enhance feature repre-
sentation. We call this method covariance
optimizing (COP).

• From feature dimensions of the same class
label, according to the variance of each di-
mension, using the intervention of causal in-
ference (Pearl et al., 2016), it can eliminate
the confounding bias from the backdoor path
by blocking F ← L→ P as the causal graph
shown in Fig.2, so that model can learn the
causality from the causal path F → P . We
explore the causal correlation between the fea-
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Figure 2: The causal graph of the joint entity and rela-
tion extraction task in the classification phase. Bias is
something that we can not avoid, such as agnostic data
selection bias, data labeling error, and unobservable fea-
tures.

ture dimensions of the same label and the out-
come targets and mitigate the long-tail dis-
tribution bias further. We call this method
variance optimizing (VOP).

• We combine COP and VOP as OVO. To access
the effectiveness of OVO, we conduct experi-
ments on the joint entity and relation extrac-
tion task. By applying OVO to 3 strong base-
lines, we observe significant improvements in
the performance of this task, which demon-
strates the effectiveness and generalization of
our proposed method. These results suggest
that optimizing feature representation directly
is actually an effective way to get improve-
ment and reduce the bias from datasets with-
out model redesigning, and OVO is a feasible
framework in this way.

2 Related Work

Stable Learning aims to research how to reduce
the agnostic data selection bias and model mis-
specification problem and make the feature more
causal by reweighting samples. CRLR (Shen et al.,
2018) proposes an equation to evaluate the degree
of confounders called Causal Regularized Logis-
tic Regression and gains the optimal weight by
minimizing the confounder. SRDO (Shen et al.,
2020) considers the smallest feature of the covari-
ance matrix as the degree of confounder. StableNet
(Zhang et al., 2021) adopts stable learning tech-
nology into image classification tasks using deep
learning models and the results show the strong
domain adaptation of the proposed models.

Span-level NER and RE Models are the ap-
proaches using the boundaries of spans as a total
feature to recognize the entities and the relation
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Figure 3: The overview of OVO. In the training phase of the model, we insert COP and VOP as extra optimization
for feature vectors. For COP, there is an inner loop to learn the optimal W using gradient descent, and LossW is
the loss function of W calculated according to eq. 4. For VOP, Backdoor Adjustment is used to reduce the bias
from datasets. Note that LossW only computes the gradient of W, and only the final optimal weights Ŵ created in
COP will be applied to the model training process. The LossV OP will be used in model training directly. Lossorig
means the loss employed on the original method; O means zero matrix.

between two entities. DyGIE++ (Wadden et al.,
2019) and SpERT.PL (Sai et al., 2021) extract
features of spans and share them between NER
and RE tasks. PURE (Zhong and Chen, 2021)
uses two separate span models to recognize en-
tities and relations without interaction with each
other and proposed levitated markers to reinforce
the boundaries information of spans. PL-Marker
(Ye et al., 2022) proposes neighborhood-oriented
packing and subject-oriented packing methods to
leverage the levitated markers.

Variance and Covariance are two important
metrics in deep learning. In confidence learning
(Mukherjee and Awadallah, 2020), they are neg-
atively correlated with the confidence of models
and samples. Moreover, in active learning (Cohn
et al., 1996), they are correlated with generaliza-
tion error and bias which can be indirectly reduced
by minimizing variance or covariance. Recently,
IDEAL (Guo et al., 2022) uses variance as one of
the measures for the inconsistency of unlabeled
samples. In this work, we use them to estimate
the feature representation and correlation between
features respectively.

3 Method

In this section, we first briefly introduce the general
inference process of the joint entity and relation

extraction methods. Then, we will describe covari-
ance optimizing (COP) and variance optimizing
(VOP).

3.1 Background: Inference Process of Joint
Entity and Relation Extraction Methods

In the joint entity and relation extraction task, the
goal is to extract both entities and the relations
between them from a given text. The general pro-
cess of this task involves several steps. Firstly, an
encoder module is used to transfer pure text to a
numerical representation that captures the seman-
tic information. This can be done using techniques
like word embeddings or pre-trained language mod-
els (PLMs).

S = w1, w2, . . . , wl

H = encoder(S)
(1)

Where wi indicates the i-th word of the given text; l
means the length of the text; H ∈ Rl×n represents
the representation of the text and n is the dimension
size.

For NER, the encoded representations are passed
through an entity extraction module to identify and
classify entities in the text. The formulations of
span-level methods are as follows:

f span
(i,j) = extractor(H, i, j)

labelspan(i,j) = classifier(f span
(i,j) )

(2)



Where 0 ≤ i ≤ j ≤ l indicates the boundary of a
span; l means the length of the given text; fspan

(i,j)
is the feature of a span; extractor(·) is a function
to gain the feature of given spans; classifier(·) is a
function to predict the label of spans according to
its representation.

For RE, H and the spans of identified entities are
used to determine the relations between the entities.

f rel
(i,j) = extractor(H, spani, spanj)

labelrel(i,j) = classifier(f rel
(i,j))

(3)

Where spani is the entity identified by NER;
extractor(·) is a function to acquire the feature of
given relations; classifier(·) is a function to predict
the label of relations. In this work, OVO is used to
optimize the fspan

(i,j) and f rel
(i,j) during training.

3.2 Covariance Optimizing

When the features exhibit linear correlations with
each other, it can lead to instability in parameter
estimation. Consequently, the optimal model be-
comes uncertain, and the presence of selection and
distribution biases is amplified during inference.
This phenomenon is called collinearity (Dormann
et al., 2013). For example, y = x1 + x2 and
y = 100x1 − 98x2 have identical performance
if assumption x1 = x2 holds in train datasets, but
if x1 = 1.01x2 holds in test datasets, the gaps of
them will be huge. Besides collinearity, the corre-
lation between features also poses the same impact
in deep learning. One straightforward way to re-
duce the effect of collinearity and correlation is
to analyze them among features and then remove
some relevant features. However, due to the in-
explicability and excessive number of features in
PLMs, this method is difficult to afford.

The methods of stable learning (Zhang et al.,
2021) show that feature representations will be
more causal when giving suitable weights for sam-
ples in loss calculating during training. Inspired by
this, we propose covariance optimizing (COP) to
alleviate the collinearity and correlation between
features with low resource consumption, as well as
improve the causality of features.

In COP, covariance is used to measure the cor-
relation between features, and the target is to ac-
quire suitable weights by minimizing the covari-
ance among all features using gradient descent:

Ŵ = argmin
W

∑
i,j,i̸=j

(cov(WFi,WFj))2 (4)

Where F and W mean the feature vectors and
weights; W ∈ Rn is a vector representing all sam-
ple weights and n is the number of samples, hold-
ing

∑n
i wi = 1 by softmax function. Fi means the

i-th dimension feature of all samples. cov(·, ·) is
the covariance function.

Next, Ŵ is used to weigh the loss of the corre-
sponding sample.

LossCOP =
n∑

i=0

ŵi Lossorig(pi, ti) (5)

Where ŵi ∈ Ŵ is the final weight for the i-th
sample; pi and ti mean the prediction distribution
and real label respectively; Lossorig means the loss
employed on the original method.

However, there are two difficulties in perform-
ing the above process directly. Firstly, the major-
ity of PLMs have an extensive number of param-
eters, ranging from hundreds of millions (Devlin
et al., 2019) to billions (Du et al., 2022b) and even
more, thus the computation of weights for the en-
tire dataset requires significant computational re-
sources, making it expensive and potentially unaf-
fordable during training. Secondly, incorporating
features from previous batches or epochs may lead
to feature inconsistency due to the continuous evo-
lution of features during training.

To overcome the aforementioned difficulties, in-
spired by MoCo (He et al., 2020), we only com-
pute optimal weights for samples in the current
batch, utilizing previous features and weights as ad-
ditional fixed information. Furthermore, to ensure
feature consistency, we discard the earliest features
and weights:

Fi = [Fi−1[⌊LFi/(n+ 1)⌋ :],Fcur]

Wi = [Wi−1[⌊LWi/(n+ 1)⌋ :],Wcur]
(6)

Where F and W mean the feature vectors and
weights; i means the index of the current batch;
L∗ is the length of ∗; ∗cur means feature vectors or
weights in the current batch; n is the batch number
of feature vectors and weights needed to be saved;
⌊·⌋ is the floor function; [l :] means to delete first l
data.

To further mitigate the feature inconsistency, we
fuse and emphasize the current information with
previous features and weights. Firstly, we ran-
domly sample from Fcur and the corresponding
Wcur until the number of samples is the same as
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Figure 4: The original causal graph of the joint entity
and relation extraction task in the classification phase
(left) with its alternate after intervention (right).

Fi.

F′
cur = [Fcur[R1], . . . ,Fcur[RL]]

W′
cur = [Wcur[R1], . . . ,Wcur[RL]]

(7)

Where F′
cur and W′

cur are the sets after random
sampling; L is the length of Fi, Ri is a random
integer from 0 to L, and [i] means getting the i-th
element. And then, we fuse current information
with the previous.

F′
i = αFi + (1− α)F′

cur

W′
i = αWi + (1− α)W′

cur

(8)

Where α is a hyperparameter between [0, 1] re-
garding how much previous information needs to
be saved. Finally, F′

i and W′
i will be applied to

eq. 4 as W and F. Note that F′
i is used to gain

the optimal W′
i, but only the part of Wcur will be

updated and used to weight sample loss.
To enhance the applicability of COP, we use

a hyperparameter called COP rate to adjust the
degree of influence of COP during training. After
acquiring the optimal weights, the loss function is
as follows:

ŵi
′ = (1− rCOP ) + rCOP ∗ ŵi

LossCOP =
n∑

i=0

ŵi
′ Lossorig(pi, ti)

(9)

Where ŵi ∈ Ŵ is the final weight of the i-th sam-
ple; rCOP ∈ (0, 1] indicates COP rate.

3.3 Variance Optimizing
Inspired by causal intervention (Pearl et al., 2016),
we construct a causal graph (Fig. 2) regarding the
causality from feature vectors to the final targets.
To clarify our objective, in our causal analysis, we
focus on the mitigation of bias arising from the
long-tail distribution. This bias tends to make la-
bels with a substantial number of samples more
readily predictable during the inference process.

Moreover, the effectiveness of mitigating this bias
can be easily quantified.

As shown in Fig. 2, F ← L→ P is a backdoor
path, a path that connects F and P but does not
start with F , from F to P in which F , L, and P
are feature vectors, real labels, and model predic-
tions respectively. Thus, the label distribution from
the datasets is the confounder between the feature
vectors and the final predictions, creating a spuri-
ous correlation that disturbs model inference and
causes lower performance. For a better understand-
ing of the causal graph, we introduce it as follows:
The labels in datasets are the optimizing target of
model training (L→ P ) which also takes effect on
the feature vector learning (L→ F ). Appendix. A
shows more detail of the causal graph.

In order to remove the confounder caused by
backdoor path F ← L→ P and make the model
learn direct causality between feature vectors and
predictions, we introduce do-operator (Pearl et al.,
2016) on feature vectors F to gain the causality of
F on P called p(P |do(F )). As shown in Fig. 4
right, through do-operator, the edge causing con-
founder, F ← L → P , is blocked, so that the
spurious correlation has been removed.

Backdoor adjustment (Pearl, 1995) is a method
to reduce confounders in causal inference, and
it can perform do-operator on the observational
datasets. Formally, the backdoor adjustment re-
duces the bias as:

p(P |do(F )) =
∑
L

p(P |F,L)p(L) (10)

Where the detail for the equation is in Appendix B.
Inspired by the eq. 10, it can reduce the spurious

correlation if we process the feature vectors of the
same label separately. So we propose a method to
optimize the feature vectors in the same label by
using the property of variance.

When the fluctuation among samples is serious,
the variance will be large, and vice versa. In other
words, we can minimize the variance between the
samples of the same label to bring them closer to-
gether and at the same time achieve intervention.
Along this way, we introduce a new loss function
using the variance to optimize the feature represen-
tation as follows:

LossV OP =
L∑
l=0

N∑
n=0

var(F(l,n)) (11)

Where L is the label amount in one batch of data,
N is the dimension amount of feature vectors, and



F(l,n) means the n-th dimensional feature of all
samples of label l. var(·) is the operation of com-
puting sample variance. Note that missing several
labels is possible in one batch of data.

This method is called variance optimizing
(VOP). Additionally, benefiting from the random
mechanism of mini-batch gradient descent, one
sample can combine with different samples into the
same batch in each training epoch, which brings
two main advantages as follows: Firstly, the diver-
sity of sample combination is ensured automati-
cally. Secondly, the impact of abnormal samples is
mitigated due to the overall optimization.

3.4 Overall Optimization Framework
We combine COP and VOP into a unified frame-
work called covariance and variance optimization
framework (OVO), as shown in Fig. 3, and the al-
gorithm. 1 (Appendix. C) illustrates the detailed
training procedure of OVO. The final loss is as
follows:

Lossfinal = LossCOP + λLossV OP (12)

Where λ is a hyperparameter for the weight of
LossV OP .

4 Experiment

4.1 Dataset
We conduct experiments to evaluate our approach
on two popular joint entity and relation extraction
datasets: ACE051 and SciERC2(Luan et al., 2018).
For ACE2005, we use the same split following
(Luan et al., 2019) in the train, development, and
test sets. ACE2005 dataset includes various domain
data, such as newswire and broadcast news, while
the SciERC dataset includes abstracts collected
from AI conferences/workshops.

Additionally, to evaluate the effectiveness of
OVO in out-of-distribution settings, we conduct
experiments on CrossRE 3 (Bassignana and Plank,
2022) which is a dataset for the relation extraction
task across 6 different domains, namely news, poli-
tics, natural science, music, literature, and artificial
intelligence.

4.2 Evalution metrics
We follow the evaluation metrics in previous close
works to evaluate the experiment results’ perfor-
mance using the micro F1 measure. For the NER

1https://catalog.ldc.upenn.edu/LDC2006T06
2http://nlp.cs.washington.edu/sciIE/
3https://github.com/mainlp/CrossRE

task, we use the span-level benchmark to evaluate,
which one entity is considered recognized correctly
if and only if both its boundary and type are pre-
cisely predicted. For the RE, we adopt two evalua-
tion metrics as follows: (1) boundaries evaluation
(Rel): a relation is considered recognized correctly
if and only if the boundaries of head and tail enti-
ties are correct, and their relation label is correct;
(2) strict evaluation (Rel+): in addition to the re-
quirement of Rel, the types of two entities are also
needed to be correctly predicted.

4.3 Implementation Details

We apply OVO to 3 of out of top-5 strong base-
lines4, specifically PURE (Zhong and Chen, 2021),
SpERT.PL (Sai et al., 2021), and PL-Marker (Ye
et al., 2022). For ACE2005, the BERT encoders
are bert-base-uncased (Devlin et al., 2019) and
albert-xxlarge-v1(Lan et al., 2020) which are in
the common domain. For SciERC, the BERT en-
coder is scibert-scivocab-uncased (Beltagy et al.,
2019) which is in the scientific domain. We use
our proposed method, OVO, to optimize the fea-
ture vectors as the extra plugin beyond the common
model training with all hyperparameters the same
as the base models. To ensure robustness, we con-
duct experiments with 3 different seeds and report
the average scores.

4.4 Baselines

For comparison, we choose serials of state-of-the-
art models as follows: (1) PURE (Zhong and Chen,
2021) uses two independent models for NER and
RE respectively in a frustratingly easy way, and is
the first to propose levitated markers for RE task
called PURE(Approx) to accelerate the inference
speed, but with a slight drop in performance; (2)
SpERT.PL (Sai et al., 2021) uses part-of-speech
and logits of entities to enhance the features of enti-
ties and relations which shows strong performance
in the SciERC dataset. (3) PL-Marker (Ye et al.,
2022) is the first to leverage levitated markers to
both NER and RE tasks using a packed method
with great improvement.

Additionally, for comparison with other causal
debiasing methods, we choose two related methods
as follows: (1) CFIE (Nan et al., 2021) uses causal
inference to tackle the long-tailed IE issues; (2)
CoRE (Wang et al., 2022) designs a counterfactual

4https://paperswithcode.com/sota/
joint-entity-and-relation-extraction-on

https://catalog.ldc.upenn.edu/LDC2006T06
http://nlp.cs.washington.edu/sciIE/
https://github.com/mainlp/CrossRE
https://paperswithcode.com/sota/joint-entity-and-relation-extraction-on
https://paperswithcode.com/sota/joint-entity-and-relation-extraction-on


analysis to debias RE by reducing the side-effects
of entity mentions.

4.5 Results

Table 1 shows the results of comparative experi-
ments between our proposed method and baselines.
As is shown, with the scibert-scivocab-uncased en-
coder, our proposed method, OVO, outperforms
PURE-F, SpERT.PL, and PL-Marker by +3.3%,
+2.1%, and +2.9% with Rel+ on SciERC respec-
tively. Furthermore, on ACE2005, with both bert-
base-uncased encoder and albert-xxlarge-v1 en-
coder, our method also outperforms the baselines
on Rel+. Such improvements over baselines indi-
cate the effectiveness and generalization of OVO.

Additionally, due to CoRE (Wang et al., 2022)
being only for RE, we compare OVO with CFIE
(Nan et al., 2021) and CoRE only in RE using the
result of OVO in NER. For the base model, we
chose PURE because of SpERT.PL is a joint model
that cannot handle NER and RE tasks separately
and PL-Marker uses a packed method that cannot
handle only one pair of entities in RE. As shown in
Table 1, CFIE and CoRE can improve performance
somewhat but are still lower than OVO. The results
can show the effectiveness of OVO compared with
other methods. Specifically, on SciERC, the REL+
of OVO was 1.6% higher than CFIE; on Ace2005,
the REL+ of OVO was 0.2% higher than CoRE.

To evaluate the effectiveness of OVO on out-of-
distribution, we conduct experiments on an out-
domain setting as follows: using the train set of
one domain during training, and using the test sets
of the other five domains during testing. We choose
PL-Marker as the base model and then apply OVO
on each domain. As shown in Table. 2, using OVO
gains improvements in all cases with an average
improvement of 1.5% and a best improvement of
2.4% in the ai domain.

4.6 Ablation Study

In this section, we conduct ablation studies to elu-
cidate the effectiveness of different components of
our proposed method on the baseline PL-Marker
(Ye et al., 2022). We use the evaluation metrics
the same as in Table 1 on both ACE2005 and Sci-
ERC datasets using bert-base-uncased and scibert-
scivocab-uncased as bert encoders respectively.

w/o. COP: To evaluate the effectiveness of co-
variance optimizing, we remove COP and only
use VOP in the model training process and set

all weights of feature vectors as 1 for computing
LossCOP . As shown in Table 3, the performance
of Rel and Rel+ drop 0.8%-2.2% without COP,
which can represent the importance to reduce the
spurious correlation among features.

w/o. VOP: To verify the effectiveness of variance
optimization, we make VOP disabled and let only
COP work in the training procedure. As shown
in Table 3, when removing VOP, the performance
of Rel and Rel+ drop 2.0%-3.4% and 1.6%-2.2%
respectively, which can indicate the effect of the
causal intervention and the VOP play an important
role in OVO.

w. SNet: StableNet (Zhang et al., 2021) is sim-
ilar work with COP which use Random Fourier
Features to enhance the non-linearity of enhanced
features. To compare the effectiveness between
COP and StableNet, we replace COP with Sta-
bleNet keeping other settings the same, and then
negotiate the final performance between them. The
performance shows that using COP gains +0.7%
and +0.4% improvement in Rel+ on ACE2005 and
SciERC respectively. Moreover, from the results in
Table 5, the consumption of COP is much smaller
than that of StableNet.

5 Analysis

5.1 Fine-grained analysis

To analyze the debias ability of OVO, we conduct
experiments to evaluate the performance of each
label on PL-Marker. The detailed results for each
relation label on SciERC are shown in Table 4.
From the table, the number of USERD-FOR ac-
counts for more than half, 54.7% of the total, but
that of COMPARE is only 3.9% of the total.

From the results, the two worst-performing la-
bels both have a small number of samples which
are only 6.9% and 6.4% of the total, respectively.
For the comparison between with or without OVO,
we find that the performances in all labels gain
improvement, except for USED-FOR, which is
one that has the most samples in the dataset and
keeps comparable performance. Additionally, the
improvement increases as the number of samples
decreases. The most improvement is on PART-OF,
which outperforms +9.1% in F1 than without VOP.
Moreover, the overall results of average F1 gain
+4.0% improvement.



Encoder ACE2005 SciERC
Ent Rel Rel+ Ent Rel Rel+

SPtree (Miwa and Bansal, 2016) LSTM 83.4 - 55.6 - - -
DyGIE (Luan et al., 2019) ELMo 88.4 63.2 - 65.2 41.6 -
OneIE† (Lin et al., 2020) BL 88.8 67.5 - - - -
DyGIE++† (Wadden et al., 2019)

BB/SciB
88.6 63.4 - 67.0∗ 47.5∗ -

SPERT (Eberts and Ulges, 2020) 86.8∗ 63.8∗ - 70.3 50.8 -
UniRE† (Wang et al., 2021) 88.8 65.7∗ 64.3 68.4 40.2∗ 36.9
SpERT.PL (Sai et al., 2021)

BB/SciB

87.4∗ 65.3∗ 62.1∗ 70.5 51.3 39.4
+OVO 87.9 67.9 65.3 71.7 52.6 41.5

PL-Marker† (Ye et al., 2022) 89.8 69.0 66.5 69.9 53.2 41.6
+OVO† 89.6 70.6 67.7 70.7 56.1 44.5

PURE-F† (Zhong and Chen, 2021) 90.1 67.7 64.8 68.9 50.1 36.8
+CFIE†(Nanet al., 2021) - 67.7 64.5 - 50.9 38.5
+CoRE †(Wanget al., 2022) - 67.6 64.9 - 50.7 38.0
+OVO† 90.5 68.0 65.1 70.0 51.6 40.1

UniRE† (Wang et al., 2021)
ALBXX

90.2 - 66.0 - - -
PURE-F† (Zhong and Chen, 2021) 90.9 69.4 67.0 - - -
PL-Marker† (Ye et al., 2022) 91.1 73.0 71.1 - - -

+OVO† 91.2 74.6 72.3 - - -

Table 1: Overall test results of F1 in joint entity and relation task on the dataset of ACE2005 and SciERC. †:
the model or method leverages cross-sentence information as extra features. The encoders used in different
models: BB = bert-base-uncased, BL = bert-large-uncased, SciB = scibert-scivocab-uncased, ALBXX =
albert-xxlarge-v1. Model name abbreviation: PURE-F = PURE(Full). Evaluation metric abbreviation: Rel denotes
the boundaries evaluation and Rel+ denotes the strict evaluation. ∗: the result is not given in the original works, and
we run the corresponding experiment, reporting the results in the table.

Rel(%) news science politics literature ai music avg
PL-Marker 9.7 13.0 14.4 14.8 11.6 14.1 12.9

+OVO 10.3 14.3 15.4 16.4 14.0 16.4 14.5

Table 2: Results in the out-domain setting on the CrossRE dataset.

ACE2005 SciERC
Ent Rel Rel+ Ent Rel Rel+

OVO 89.6 70.6 67.7 70.7 56.1 44.5
w/o. COP 89.7 69.7 66.9 70.0 54.1 43.3
w/o. VOP 89.5 68.6 65.5 70.7 52.7 42.9
w. SNet 89.4 70.1 67.0 70.5 55.0 44.1

Table 3: Ablation on ACE2005 and SciERC test set with
different component setups. w. SNet means replacing
COP with StableNet in model training.

5.2 Effect of Covariance Optimizing

As the results are shown in Table 5, by using Sta-
bleNet, it gains +0.6% improvement on Ent, and
COP improves on it +0.2%. Table 3 shows more
results between COP and StableNet. So, we can
conclude that stable learning technology can ac-
tually achieve improvement for our task. But the
consumption of computing resources is relatively
high and it costs approximately 5 and 1.7 times
for training time and GPU memory respectively
than the original. In comparison, COP uses fewer
resources but gets better performance. Addition-
ally, more detailed results of hyperparameters are

reported in Appendix. D.

5.3 Effect of Variance Optimizing

To enhance adaptation to diverse methods, we intro-
duce a weight for LossV OP to mitigate its impact
on the normal training of the model and avoid per-
formance degradation. The optimal weight varies
depending on the specific dataset and method em-
ployed, as different weights yield the best perfor-
mance. The detailed results are reported in Ap-
pendix. E.

6 Conclusion

In this work, we propose the OVO, a novel model
training framework for optimizing feature vectors
using causal technology. There are two main parts
of OVO which are called COP and VOP. From the
perspective of the correlation among features, COP
reduces the spurious relation by minimizing the
covariance computed from all features. From the
viewpoint of each feature, VOP makes the feature
more causal by minimizing the variance calculated
from each feature of the same label. After optimiz-
ing the features toward causal, our method achieves



Metric (Rel) UF CON EF HO PO FO COM avg.
Proportion (%) - 54.7 12.6 9.3 6.9 6.4 6.0 3.9 -

w/o. OVO (%)
Recall 55.2 62.6 46.2 64.2 28.6 23.7 52.6 47.6
Precision 53.6 55.0 51.2 58.1 48.7 25.9 50.0 48.9
F1 54.3 58.6 48.6 60.1 36.0 24.8 51.3 47.7

w. OVO (%)
Recall 53.1 65.7 49.5 70.2 36.5 25.4 55.3 50.8
Precision 55.4 53.3 54.2 59.5 59.0 35.7 60.0 53.9
F1 54.2 58.9 51.7 64.4 45.1 29.7 57.5 51.7
∆ -0.1 +0.3 +3.1 +4.3 +9.1 +4.9 +6.2 +4.0

Table 4: The fine-grained results on the SciERC dataset. Relation label abbreviation: UF=USED-
FOR, CON=CONJUNCTION, EF=EVALUATE-FOR, HO=HYPONYM-OF, PO=PART-OF, FO=FEATURE-OF,
COM=COMPARE. Proportion means the percentage of the number of one relation label in total data.

Name Ent GPU (GB) Time (h)

PL-Marker 69.9 19 2

w. COP 70.7 24 4

w. SNet 70.5 32 10

Table 5: The experiment results on the SciERC. The
base model is PL-Marker. COP means covariance op-
timizing; Time (h) is the time consumption of model
training. The text with bold and italics indicates the
best performance, and that with underlining indicates
the second best.

improvements on 3 strong baselines and reduces
the influence of data unbalanced bias. In the future,
we will pay more attention to (1) how to further
reduce resource consumption on COP and (2) how
can let the weight of VOP adjusts itself automati-
cally to adapt to the different datasets.

Limitations

OVO is a novel training framework for optimiz-
ing feature representations directly using causal
technology. The limitations of OVO are as follows:

• COP is an additional training process in each
batch that will improve resource consumption.
Larger models and more previous informa-
tion used in COP will cost more additional
resources.

• To adapt OVO to more models, there are
some hyperparameters to control the degree
of effect of COP and VOP during training.
These hyperparameters are sensitive to differ-
ent models and datasets, so it takes time to
experiment to find the optimal values of them.
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A Causal Graph

From Fig. 2, L → F denotes that real labels
in datasets have an effect on the feature vectors
learned by model training, and L→ P denotes that
real labels have an effect on model predictions be-
cause the loss in training is calculated by labels and
predictions. So the backdoor path F ← L → P
makes models give relatively high scores to the
labels with numerous samples.
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B Derivation Process of Backdoor
Adjustment

In this section, we will give an explanation for each
step of backdoor adjustment. To make it easier to
understand, we draw a new equation as follows:

p(P |do(F ))
(1)
=

∑
L

p(P |do(F ), L)p(L|do(F ))

(2)
=

∑
L

p(P |do(F ), L)P (L|F )

(3)
=

∑
L

p(P |F ,L)p(L|F )

(4)
=

∑
L

p(P |F,L)p(L)

(13)
Where the meaning of P , F , and L are the same
as Fig. 2; do(·) means do-operator. The underline
means the main differences from the previous step.

(1) using the total probability theorem where
do(F ) can be seen as a normal random vari-
ables event like P and L.

(2) from the causal graph in Fig. 2, the path
L → F is a direct causal path without back-
door paths, so p(L|do(F )) and p(L|F ) are
equivalent.

(3) because of conditioning on L, the association
in the path F ← L → P is blocked. So in
this case, the association in the path F → P
is causality which can remove the do-operator
without any influence.

(4) due to the direction of the causal path between
L and F being F ← L, there is no association
from F to L which causes the L to be inde-
pendent with F meaning p(L|F ) = p(L).

C Overall Algorithm of OVO

The algorithm of OVO is shown in the algorithm. 1.

D Analysis of COP

D.1 Saving Batch Number
When the dataset is large enough, it is hard to put all
feature vectors into COP and optimize them at once.
So, by using eq. 6, we can use part of the vectors
to relieve the pressure on computing resources. To
research the effect of COP when just using partial
vectors, we conduct comparative experiments with

Algorithm 1 The training procedure of the OVO

Input: Initial pre-trained BERT encoder BE(0) and classi-
fier C(0), training dataset D, training epochs for model
training Tmt, training epochs for COP Tcop

Output: Trained model (BE(Tmt),C(Tmt))
1: for tmt = 0 to Tmt do
2: Fpre ← Clear the previous feature vectors;
3: Wpre ← Clear the previous weights;
4: for (Sents, Spans) in D do
5: H = BE(tmt)(Sents)
6: Fcur = GetSpanFeatures(H)

7: P = C(tmt)(Fcur)
8: Wcur ← Initial
9: F = concat(Fpre,Fcur)

10: W = concat(Wpre,Wcur)
11: for tcop = 0 to Tcop do
12: LW =

∑
i ̸=j cov(WFi,WFj)

13: Wcur ← Optim(LW)
14: end for
15: (Fpre,Wpre)← update and fuse
16: Lorig = CrossEntropy(P, Spans)
17: LCOP = WcurLorig

18: LV OP =
∑L

l=0

∑N
n=0 var(F(l,n))

19: L = LCOP + LV OP

20: (BEtmt+1,Ctmt+1)← Optim(L)
21: end for
22: end for
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Figure 5: The impact of different Saving Batch Num-
bers on the performance of COP is evaluated using the
SciERC test set. The inf notation denotes the scenario
where all feature vectors are used for COP without any
deletions. Relation F1 means evaluating with gold en-
tities in Rel+; for eq. 8, α is equal to 0.9 in the experi-
ments.

different saving batch numbers on PL-Marker (Ye
et al., 2022). As shown in Fig. 5, as the saving batch
number rises, the overall trend of F1 also rises and
reaches the best performance at inf (around 210

in our training setting). It can be concluded that
using more vectors for COP can reduce spurious
correlation better and gain more improvement, but
require more computing resources.
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Figure 6: Effect of different α of COP.

D.2 Effect of alpha

To explore the effect of fusing current information,
we conduct experiments for fusing hyperparame-
ter α of eq. 8. We fix the saving batch number
to infinite and change the α in the same training
configuration. Fig. 6 shows the detailed result of
the experiments.

D.3 COP rate

We use rCOP = 1 in PURE (Zhong and Chen,
2021) and PL-Marker (Ye et al., 2022). For
SpERT.PL, we set the COP rate equal to 0.1 and
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Figure 7: Effect of the different weights of VOP. F1 is
Rel on datasets.

0.4 on ACE2005 and SciERC respectively. The de-
tailed results for the COP rate are shown in Fig. 7
which only uses COP in experiments.

E Analysis of VOP

E.1 Tradeoff on Variance Optimizing
For better adaptation to different tasks, it is impor-
tant to give LossV OP a weight, preventing it to
influence the model training and hurt the perfor-
mance. We compute the final loss with weighed
LossV OP as follows:

Lossfinal = LossCOP + λLossV OP (14)

Where λ is a hyperparameter regarding the weight
of LossV OP . From the results in Fig. 8, differ-
ent datasets get the best performance in different
weights of VOP which λ = 0.2 is the optimal
value for ACE2005 and λ = 0.1 is that for SciERC,
and the performance is particularly sensitive to the
weight which changes drastically using different λ.
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Figure 8: Effect of the different weights of VOP. F1 is
Rel on datasets.


