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Abstract

Program induction for answering complex001
questions over knowledge bases (KBs) aims002
to decompose a question into a multi-step pro-003
gram, whose execution against the KB pro-004
duces the final answer. Learning to induce005
programs relies on a large number of paral-006
lel question-program pairs for the given KB.007
However, for most KBs, the gold program an-008
notations are usually lacking, making learn-009
ing difficult. In this paper, we propose the010
approach of program transfer, which aims011
to leverage the valuable program annotations012
on the rich-resourced KBs as external supervi-013
sion signals to aid program induction for the014
low-resourced KBs that lack program anno-015
tations. For program transfer, we design a016
novel two-stage parsing framework with an ef-017
ficient ontology-guided pruning strategy. First,018
a sketch parser translates the question into a019
high-level program sketch, which is the com-020
position of functions. Second, given the ques-021
tion and sketch, an argument parser searches022
the detailed arguments from the KB for func-023
tions. During the searching, we incorporate024
the KB ontology to prune the search space.025
The experiments on ComplexWebQuestions026
and WebQuestionSP show that our method out-027
performs SOTA methods significantly, demon-028
strating the effectiveness of program transfer029
and our framework.030

1 Introduction031

Answering complex questions over knowledge032

bases (Complex KBQA) is a challenging task re-033

quiring logical, quantitative, and comparative rea-034

soning over KBs (Hu et al., 2018; Lan et al., 2021).035

Recently, the program induction (PI) paradigm,036

which gains increasing study in various areas (Lake037

et al., 2015; Neelakantan et al., 2017; Wong et al.,038

2021), emerges as a promising technique for Com-039

plex KBQA (Liang et al., 2017; Saha et al., 2019a;040

Ansari et al., 2019). Given a KB, PI for Com-041

plex KBQA aims to decompose a complex ques-042
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Figure 1: An example question, the corresponding pro-
gram, and the answer. The left side is the sketch, and
the right side is the complete program, with dotted
boxes denoting arguments for functions.

tion into a multi-step program, whose execution 043

on the KB produces the answer. Fig. 1 presents a 044

complex question and its corresponding program 045

whose functions take KB elements (i.e., entities, 046

relations and concepts) as arguments. E.g., the re- 047

lation tourist attractions is the argument of 048

function Relate. 049

For most KBs, the parallel question-program 050

pairs are lacking because such annotation is both 051

expensive and labor-intensive. Thus, the PI mod- 052

els have to learn only from question-answer pairs. 053

Typically, they take the answers as weak supervi- 054

sion and search for gold programs with reinforce- 055

ment learning (RL) (Saha et al., 2019b; Liang et al., 056

2017; Ansari et al., 2019). The combinatorial ex- 057

plosion in program space, along with extremely 058

sparse rewards, makes the learning challenging. 059

Abundant attempts have been made to improve the 060

stability of RL algorithms with pseudo-gold pro- 061

grams (Liang et al., 2017), noise-stabilizing wrap- 062

per (Ansari et al., 2019), or auxiliary rewards (Saha 063

et al., 2019b). Despite promising results, they re- 064

quire significant human efforts to develop carefully- 065

designed heuristics or are constrained to relatively 066

simple questions. 067

Recently, for several KBs, there emerge question- 068
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program annotation resources (Johnson et al., 2017;069

Shi et al., 2020). Thanks to the supervision signals070

(i.e., program annotation for each question), the PI071

models on these rich-resourced KBs achieve im-072

pressive performance for even extremely complex073

questions, and are free from expert engineering.074

Intuitively, leveraging these supervision signals075

to aid program induction for low-resourced KBs076

with only weak-supervision signals (i.e., question-077

answer pairs) is a promising direction. In this paper,078

we formalize it as Program Transfer.079

In practice, program transfer is challenging due080

to the following reasons: (a) Domain Heterogene-081

ity. The questions and KBs across domains are082

both heterogeneous due to language and knowledge083

diversity (Lan et al., 2021). It is hard to decide what084

to transfer for program induction. (b) Unseen KB085

Elements. The coverage of source KB is limited,086

e.g., KQA Pro in (Shi et al., 2020) covers only 3.9%087

relations and 0.24% concepts of Wikidata. Thus,088

most elements in the massive scale target KB are089

not covered in the source. (c) Huge Search Space.090

The search space of function arguments depends091

on the scale of target KB. For realistic KBs con-092

taining millions of entities, concepts and relations,093

the huge search space is unmanageable.094

To address the above problems, we propose a095

novel two-stage parsing framework with an effi-096

cient ontology-guided pruning strategy. First, we097

design a sketch parser to parse the question into098

a program sketch (the left side in Fig. 1), which is099

composed of functions without arguments. As Ba-100

roni (2019) points out, the composition of func-101

tions well captures the language compositionality.102

Translation from questions to sketches is thus rel-103

evant to language compositional structure and in-104

dependent of KB structure. Therefore, our sketch105

parser can transfer across KBs. Second, we design106

an argument parser to fill in the detailed argu-107

ments (typically KB elements) for functions in the108

sketch. It retrieves relevant KB elements from the109

target KB and ranks them according to the ques-110

tion. Specifically, it identifies KB elements with111

their label descriptions and relies on language un-112

derstanding to resolve unseen ones. We further pro-113

pose an ontology-guided pruning strategy, which114

introduces high-level KB ontology to prune the115

candidate space for the argument parser, thus alle-116

viating the problem of huge search space.117

Specifically, the sketch parser is implemented118

with a Seq2Seq model with the attention mech-119

anism. The argument parser identifies elements 120

through semantic matching and utilizes pre-trained 121

language models (Devlin et al., 2019) for language 122

understanding. The high-level ontology includes 123

the domain and range of relations and entity types. 124

In evaluation, we take the Wikidata-based KQA 125

Pro as the source, Freebase-based ComplexWe- 126

bQuestions and WebQuestionSP as the target do- 127

main datasets. Experimental results show that our 128

method improves the F1 score by 14.7% and 2.5% 129

respectively, compared with SOTA methods that 130

learn from question-answer pairs. 131

Our contributions include: (a) proposing the 132

approach of program transfer for Complex KBQA 133

for the first time; (b) proposing a novel two- 134

stage parsing framework with an efficient ontology- 135

guided pruning strategy for program transfer; (c) 136

demonstrating the effectiveness of program transfer 137

through extensive experiments and careful ablation 138

studies on two benchmark datasets. 139

2 Related Work 140

KBQA. KBQA aims to find answers for ques- 141

tions expressed in natural language from a KB, 142

such as Freebase (Bollacker et al., 2008), DBpe- 143

dia (Lehmann et al., 2015) and Wikidata (Vran- 144

decic and Krötzsch, 2014). Current methods for 145

KBQA can be categorized into two groups: 1) se- 146

mantic parsing based methods (Berant et al., 2013; 147

Yih et al., 2015; Liang et al., 2017; Ansari et al., 148

2019), which learn a semantic parser that con- 149

verts questions into intermediate logic forms which 150

can be executed against a KB; 2) information re- 151

trieval based methods (Bordes et al., 2014; Xu et al., 152

2016; Miller et al., 2016; Zhang et al., 2018; Sun 153

et al., 2018, 2019), which retrieve candidate an- 154

swers from the topic-entity-centric subgraph and 155

then rank them according to the questions. Re- 156

cently, semantic parsing for KBQA has gained 157

increasing research attention because the meth- 158

ods are effective and more interpretable. Multiple 159

kinds of logical forms have been proposed and re- 160

searched, such as SPARQL (hommeaux, 2011), λ- 161

DCS (Liang, 2013), λ-calculus (Artzi et al., 2013), 162

query graph (Yih et al., 2015), program (Liang 163

et al., 2017). PI aims to convert questions into 164

programs, and is in line with semantic parsing. 165

Cross-domain Semantic Parsing. Cross-domain 166

semantic parsing trains a semantic parser on some 167

source domains and adapts it to the target domain. 168

Some works (Herzig and Berant, 2017; Su and Yan, 169
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2017; Fan et al., 2017) pool together examples from170

multiple datasets in different domains and train a171

single sequence-to-sequence model over all exam-172

ples, sharing parameters across domains. How-173

ever, these methods rely on annotated logic forms174

in the target domain. To facilitate low-resource175

target domains, (Chen et al., 2020) adapts to tar-176

get domains with a very limited amount of anno-177

tated data. Other works consider a zero-shot se-178

mantic parsing task (Givoli and Reichart, 2019),179

decoupling structures from lexicons for transfer.180

However, they only learn from the source domain181

without further learning from the target domain us-182

ing the transferred prior knowledge. In addition,183

existing works mainly focus on the domains in184

OVERNIGHT (Wang et al., 2015), which are much185

smaller than large scale KBs such as Wikidata and186

Freebase. Considering the complex schema of187

large scale KBs, transfer in ours setting is more188

challenging.189

3 Problem Formulation190

In this section, we first give some necessary defini-191

tions and then formulate our task.192

Knowledge Bases. Knowledge base describes con-193

cepts, entities, and the relations between them. It194

can be formalized as KB = {C, E ,R, T }. C, E ,R195

and T denote the sets of concepts, entities, rela-196

tions and triples respectively. Relation set R can197

be formalized as R = {re, rc} ∪ Rl, where re198

is instanceOf, rc is subClassOf, and Rl is the199

general relation set. T can be divided into three200

disjoint subsets: (1) instanceOf triple set Te =201

{(e, re, c)|e ∈ E , c ∈ C}; (2) subClassOf triple202

set Tc = {(ci, rc, cj)|ci, cj ∈ C}; (3) relational203

triple set Tl = {(ei, r, ej)|ei, ej ∈ E , r ∈ Rl}.204

Program. Program is composed of symbolic func-205

tions with arguments, and produces an answer206

when executed against a KB. Each function defines207

a basic operation on KB and takes a specific type of208

argument. For example, the function Relate aims209

to find entities that have a specific relation with210

the given entity. Formally, a program y is denoted211

as
〈
o1[arg1], · · · , ot[argt], · · · , o|y|[arg|y|]

〉
, ot ∈212

O, argt ∈ E ∪ C ∪ R. Here, O is a pre-defined213

function set, which covers basic reasoning opera-214

tions over KBs (Shi et al., 2020). According to the215

argument type, O can be devided into four disjoint216

subsets: O = OE ∪ OC ∪ OR ∪ O∅, representing217

the functions whose argument type is entity, con-218

cept, relation and empty respectively. Table 1 gives219

Function Argument
Type Argument Description

Find entity FC Barcelona
Find the specific

KB entity

Relate relation arena stadium
Find the entities that

hold a specific relation
with the given entity

FilterConcept concept sports facility
Find the entities that
belong to a specific

concept

And - - Return the intersection
of two entity sets

Table 1: Function examples. - means empty.

some examples of program functions. 220

Program Induction. Given a KB, and a complex 221

natural language question x =
〈
w1, w2, · · · , w|x|

〉
, 222

it aims to produce a program y that generates the 223

right answer z when executed against KB. 224

Program Transfer. In this task, we have ac- 225

cess to the source domain data S =
〈
KBS ,DS

〉
, 226

where DS contains pairs of question and pro- 227

gram {(xSi , ySi )}n
S

i=1; and target domain data T = 228〈
KBT ,DT

〉
, where DT contains pairs of question 229

and answer {(xTi , zTi )}n
T

i=1. We aim at learning a PI 230

model to translate a question x for KBT into pro- 231

gram y, which produces the correct answer when 232

executed on KBT . 233

4 Framework 234

As mentioned in the introduction, to perform pro- 235

gram transfer for Complex KBQA, we need to ad- 236

dress three crucial problems: (1) What to transfer 237

when both questions and KBs are heterogeneous? 238

(2) How to deal with the KB elements unseen in 239

the external annotations? (3) How to prune the 240

search space of input arguments to alleviate the 241

huge search space problem? In this section, we 242

introduce our two-stage parsing framework with an 243

ontology-guided pruning strategy, which is shown 244

in Fig. 2. 245

(1) Sketch Parser: At the first stage, we design 246

a sketch parser fs to parse x into a program sketch 247

ys =
〈
o1, · · · , ot, · · · o|y|

〉
, which is a sequence of 248

functions without arguments. The sketch parsing 249

process can be formulated as 250

ys = fs(x). (1) 251

Translation from question to sketch is relevant to 252

language compositionality, and irrelevant to KB 253

structure. Therefore, the sketch parser can general- 254

ize across KBs. 255
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Figure 2: We design a high-level sketch parser to generate the sketch, and a low-level argument parser to predict
arguments for the sketch. The arguments are retrieved from candidate pools which are illustrated by the color
blocks. The arguments for functions are mutually constrained by the ontology structure. For example, when the
second function Relate finds the argument teams owned, the candidate pool for the third function Fil.Con. (short
for FilterConcept) is reduced to the range of relation teams owned.

(2) Argument Parser: At the second stage, we256

design an argument parser fa to retrieve the ar-257

gument argt from a candidate pool P for each258

function ot, which can be formulated as259

argt = fa(x, ot,P). (2)260

Here, the candidate pool P contains the relevant261

elements in KBT , including concepts, entities, and262

relations. In a real KB, the candidate pool is usu-263

ally huge, which makes searching and learning264

from answers very hard. Therefore, we propose an265

ontology-guided pruning strategy, which dynami-266

cally updates the candidate pool and progressively267

reduces its search space.268

In the following we will introduce the implemen-269

tation details of our sketch parser (Section 4.1),270

argument parser (Section 4.2) and training strate-271

gies (Section 4.3).272

4.1 Sketch Parser273

The sketch parser is based on encoder-decoder274

model (Sutskever et al., 2014) with attention mecha-275

nism (Dong and Lapata, 2016). We aim to estimate276

p(ys|x), the conditional probability of sketch ys277

given input x. It can be decomposed as:278

p(ys|x) =
|ys|∏
t=1

p(ot|o<t, x), (3)279

where o<t = o1, ..., ot−1. 280

Specifically, our sketch parser comprises a ques- 281

tion encoder that encodes the question into vectors 282

and a sketch decoder that autoregressively outputs 283

the sketch step-by-step. The details are as follows: 284

Question Encoder. We utilize BERT (Devlin et al., 285

2019) as the encoder. Formally, 286

x̄, (x1, · · · ,xi, · · · ,x|x|) = BERT(x), (4) 287

where x̄ ∈ Rd̂ is the question embedding, and 288

xi ∈ Rd̂ is the hidden vector of word xi. d̂ is the 289

hidden dimension. 290

Sketch Decoder. We use Gated Recurrent Unit 291

(GRU) (Cho et al., 2014), a well-known variant 292

of RNNs, as our decoder of program sketch. The 293

decoding is conducted step by step. After we have 294

predicted ot−1, the hidden state of step t is com- 295

puted as: 296

ht = GRU(ht−1,ot−1), (5) 297

where ht−1 is the hidden state from last time 298

step, ot−1 = [W]ot−1 denotes the embedding 299

corresponding to ot−1 in the embedding matrix 300

W ∈ R|O|×d. We use ht as the attention key to 301

compute scores for each word in the question based 302

on the hidden vector xi, and compute the attention 303
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vector ct as:304

αi =
exp(xT

i ht)∑|x|
j=1 exp(x

T
j ht)

,

ct =

|x|∑
i=1

αixi.

(6)305

The information of ht and ct are fused to predict306

the final probability of the next sketch token:307

gt = ht + ct,

p(ot|o<t, x) = [Softmax(MLP(gt))]ot ,
(7)308

where MLP (short for multi-layer perceptron)309

projects d̂-dimensional feature to |O|-dimension,310

which consists of two linear layers with ReLU acti-311

vation.312

4.2 Argument Parser313

In the above section, the sketch is obtained with314

a sketch parser. In this section, we will introduce315

our argument parser, which aims to retrieve the316

argument argt from the target KB for each func-317

tion ot in the sketch. To reduce the search space,318

it retrieves arguments from a restricted candidate319

pool P , which is constructed with our ontology-320

guided pruning strategy. In the following, we will321

introduce the argument retrieval process and the322

candidate pool construction process.323

Argument Retrieval. Specifically, we take gt in324

Equation 7 as the context representation of ot, learn325

vector representation Pi ∈ Rd̂ for each candidate326

Pi, and calculate the probability for Pi based on gt327

and Pi. Candidate Pi is encoded with the BERT328

encoder in Equation 4, which can be formulated as:329

330

Pi = BERT(Pi). (8)331

Pi is the ith row of P. The probability of candidate332

argt is calculated as:333

p(argt|x, ot,P) = [Softmax(Pgt)]argt . (9)334

Candidate Pool Construction. In the following,335

we will introduce the KB ontology first. Then, we336

will describe the rationale of our ontology-guided337

pruning strategy and its implementation details.338

In KB, The domain and range of rela-339

tions, and the type of entities form the KB340

ontology. Specifically, a relation r comes341

with a domain dom(r) ⊆ C and a range342

ran(r) ⊆ C. An entity e comes with a343

type type(e) = {c|(e, instanceOf, c) ∈ 344

T }. For example, as shown in Fig. 2, 345

sports team owner ∈ dom(teams owned), 346

sports team ∈ ran(teams owned), and 347

sports team ∈ type(Baltimore Ravens). 348

The rationale of our pruning is that the argu- 349

ments for program functions are mutually con- 350

strained according to the KB ontology. There- 351

fore, when the argument argt for ot is determined, 352

the possible candidates for {oi}|ys|i=t+1 will be ad- 353

justed. For example, in Fig. 2, when Relate takes 354

teams owned as the argument, the candidate pool 355

for the next FilterConcept is constrained to the 356

range of relation teams owned, thus other concepts 357

(e.g., time zone) will be excluded from the candi- 358

date pool. 359

In practice, we propose a set of ontology- 360

oriented operators to adjust the candidate pool 361

P step-by-step. Specifically, we define three 362

ontology-oriented operators C(e), R(r), D−(c), 363

which aim to find the type of entity e, the range of 364

relation r, and the relations whose domain contains 365

c. Furthermore, we use the operators to maintain an 366

entity pool PE , a relation pool PR and a concept 367

pool PC . When argt of ot is determined, we will 368

update PE , PR, and PC using C(e), R(r), D−(c). 369

We take one of the three pools as P according to 370

the argument type of ot. The detailed algorithm is 371

shown in Appendix. 372

4.3 Training 373

We train our model using the popular pretrain- 374

finetune paradigm. Specifically, we pretrain 375

the parsers on the source domain data DS = 376{(
xSi , y

S
i

)}nS

i=1
in a supervised way. After that, 377

we conduct finetuning on the target domain data 378

DT =
{(
xTi , z

T
i

)}nT

i=1
in a weakly supervised way. 379

Pretraining in Source Domain. Since the source 380

domain data provides complete annotations, we can 381

directly maximize the log-likelihood of the golden 382

sketch and golden arguments: 383

Lpretrain = −
∑

(xS ,yS)∈DS

(
log p(ySs |xS)

+

|ys|∑
t=1

log p(argSt |xS , oSt ,P)
)
.

(10) 384

Finetuning in Target Domain. At this training 385

phase, questions are labeled with answers while 386

programs remain unknown. The basic idea is to 387
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search for potentially correct programs and opti-388

mize their corresponding probabilities. Specifically,389

we propose two training strategies:390

• Hard-EM Approach. At each training step, hard-391

EM generates a set of possible programs with392

beam search based on current model parameters,393

and then executes them to find the one whose an-394

swers have the highest F1 score compared with395

the gold. Let ŷT denote the best program, we396

directly maximize p(ŷT |xT ) like Equation 10.397

• Reinforcement learning (RL). It formulates the398

program generation as a decision making pro-399

cedure and computes the rewards for sampled400

programs based on their execution results. We401

take the F1 score between the executed answers402

and golden answers as the reward value, and403

use REINFORCE (Williams, 1992) algorithm404

to optimize the parsers.405

5 Experimental Settings406

5.1 Datasets407

Source Domain. KQA Pro (Shi et al., 2020) pro-408

vides 117,970 question-program pairs based on a409

Wikidata (Vrandecic and Krötzsch, 2014) subset.410

Target Domain. We use WebQuestionSP (We-411

bQSP) (Yih et al., 2016) and ComplexWebQues-412

tions (CWQ) (Talmor and Berant, 2018) as the413

target domain datasets for two reasons: (1) They414

are two widely used benchmark datasets in Com-415

plex KBQA; (2) They are based on a large-scale416

KB Freebase (Bollacker et al., 2008), which makes417

program transfer challenging. Specifically, We-418

bQSP contains 4,737 questions and is divided into419

2,998 train, 100 dev and 1,639 test cases. CWQ420

is an extended version of WebQSP which is more421

challenging, with four types of questions: compo-422

sition (44.7%), conjunction (43.6%), comparative423

(6.2%), and superlative (5.4%). CWQ is divided424

into 27,639 train, 3,519 dev and 3,531 test cases.425

We use the Freebase dump on 2015-08-091, from426

which we extract the type of entities, domain and427

range of relations to construct the ontology. The av-428

erage domain, range, type size is 1.43 per relation,429

1.17 per relation, 8.89 per entity respectively.430

Table 2 shows the statistics of the source and431

target domain KB. The target domain KB contains432

much more KB elements, and most of them are433

uncovered by the source domain.434

1http://commondatastorage.googleapis.com/freebase-
public/rdf/freebase-rdf-latest.gz

Domain # Entities # Relations # Concepts

Source 16,960 363 794
Target 30,943,204 15,015 2,519

Table 2: The statistics for source and target domain KB.

5.2 Baselines 435

In our experiments, we select representative models 436

that learn from question-answer pairs as our base- 437

lines. They can be categorized into three groups: 438

program induction methods, query graph genera- 439

tion methods and information retrieval methods. 440

Existing program induction methods search for 441

gold programs with RL. They usually require hu- 442

man efforts or are constrained to simple questions. 443

NSM (Liang et al., 2017) uses the provided entity, 444

relation and type annotations to ease the search, and 445

can solve relatively simple questions. NPI (Ansari 446

et al., 2019) designs heuristic rules such as dis- 447

allowing repeating or useless actions for efficient 448

search. 449

Existing query graph generation methods gener- 450

ate query graphs whose execution on KBs produces 451

the answer. They use entity-level triples as search 452

guidance, ignoring the useful ontology. TEX- 453

TRAY (Bhutani et al., 2019) uses a decompose- 454

execute-join approach. QGG (Lan and Jiang, 455

2020) incorporates constraints into query graphs 456

in the early stage. TeacherNet (He et al., 2021) 457

utilizes bidirectional searching. 458

Existing information retrieval methods directly 459

construct a question-specific sub-KB and then rank 460

the entities in the sub-KB to get the answer. Graft- 461

Net (Sun et al., 2018) uses heuristics to create the 462

subgraph and uses a variant of graph convolutional 463

networks to rank the entities. PullNet (Sun et al., 464

2019) improves GraftNet by iteratively construct- 465

ing the subgraph instead of using heuristics. 466

Besides, we compare our full model Ours with 467

Ours-f, Ours-p, Ours-pa, Ours-o, which denotes 468

our model without finetuning, without pretraining, 469

without pretraining of argument parser, and without 470

our ontology-guided pruning strategy respectively. 471

5.3 Evaluation Metrics 472

Following prior works (Berant et al., 2013; Sun 473

et al., 2018; He et al., 2021), we use F1 score and 474

Hit@1 as the evaluation metrics. Since questions 475

in the datasets have multiple answers, F1 score 476

reflects the coverage of predicted answers better. 477
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5.4 Implementations478

We used the bert-base-cased model of Hugging-479

Face2 as our BERT encoder with the hidden dimen-480

sion d̂ 768. The hidden dimension of the sketch481

decoder d was 1024. We used AdamW (Loshchilov482

and Hutter, 2019) as our optimizer. We searched483

the learning rate for BERT paramters in {1e-4, 3e-484

5, 1e-5}, the learning rate for other parameters in485

{1e-3, 1e-4, 1e-5}, and the weight decay in {1e-4,486

1e-5, 1e-6}. According to the performance on dev487

set, we finally used learning rate 3e-5 for BERT488

parameters, 1e-3 for other parameters, and weight489

decay 1e-5.490

6 Experimental Results491

Models WebQSP CWQ

F1 Hit@1 F1 Hit@1

NSM - 69.0 - -
NPI - 72.6 - -

TEXTRAY 60.3 72.2 33.9 40.8
QGG 74.0 - 40.4 44.1

TeacherNet 67.4 74.3 44.0 48.8
GraftNet 62.3 68.7 - 32.8*
PullNet - 68.1 - 47.2*

Ours-f 53.8 53.0 45.9 45.2
Ours-p 3.2 3.1 2.3 2.1
Ours-pa 70.8 68.9 54.5 54.3
Ours-o 72.0 71.3 55.8 54.7
Ours 76.5 74.6 58.7 58.1

Table 3: Performance comparison of different methods
(F1 score and Hits@1 in percent). We highlight the
best results in bold and second with an underline. *:
reported by PullNet on the dev set.

6.1 Overall Results492

As shown in Table 3, our model achieves the best493

performance on both WebQSP and CWQ. Espe-494

cially on CWQ, we have an absolute gain of 14.7%495

in F1 and 9.3% in Hit@1, beating previous meth-496

ods by a large margin. Note that CWQ is much497

more challenging than WebQSP because it includes498

more compositional and conjunctional questions.499

Previous works mainly suffer from the huge search500

space and sparse training signals. We alleviate501

these issues by transferring the prior knowledge502

from external annotations and incorporating the on-503

tology guidance. Both of them reduce the search504

space substantially. On WebQSP, we achieve an505

absolute gain of 2.5% and 0.3% in F1 and Hit@1,506

respectively, demonstrating that our model can also507

2https://github.com/huggingface/transformers

handle simple questions well, and can adapt to dif- 508

ferent complexities of questions. 509

Note that our F1 scores are higher than the corre- 510

sponding Hit@1. This is because we just randomly 511

sampled one answer from the returned answer set 512

as the top 1 without ranking them. 513

Models WebQSP CWQ

Top-1 76.5 58.7
Top-2 81.1 61.2
Top-5 85.4 63.3
Top-10 86.9 65.0

Table 4: The highest F1 score in the top-k programs.

We utilize beam search to generate multiple pos- 514

sible programs and evaluate their performance. Ta- 515

ble 4 shows the highest F1 score in the top-k gen- 516

erated programs, where top-1 is the same as Ta- 517

ble 3. We can see that the best F1 in the top-10 518

programs is much higher than the F1 of the top-1 519

(e.g., with an absolute gain 10.4% for WebQSP 520

and 6.3% for CWQ). This indicates that a good 521

re-ranking method can further improve the overall 522

performance of our model. We leave this as our 523

future work. 524

6.2 Ablation study 525

Pretraining: As shown in Table 3, when compar- 526

ing Ours-pa with Ours, the F1 and Hit@1 on CWQ 527

drop by 4.2% and 3.8% respectively, which indi- 528

cates that the pretraining for the argument parser 529

is necessary. Ours-p denotes the model without 530

pretraining for neither sketch parser nor argument 531

parser. We can see that its results are very poor, 532

achieving just about 3% and 2% on WebQSP and 533

CWQ, indicating that the pretraining is essential, 534

especially for the sketch parser. 535

Finetuning: Without finetuning on the target data, 536

i.e., in Ours-f, performance drops a lot compared 537

with the complete model. For example, F1 and 538

Hit@1 on CWQ drop by 12.8% and 12.9% respec- 539

tively. It indicates that finetuning is necessary for 540

the model’s performance. As shown in Table 2, 541

most of the relations and concepts in the target do- 542

main are uncovered by the source domain. Due to 543

the semantic gap between source and target data, 544

the prior knowledge must be properly transferred 545

to the target domain to bring into full play. 546

Ontology: We implemented Ours-o by removing 547

ontology from KB and removing FilterConcept 548

from the program. Comparing Ours-o with Ours, 549

the F1 and Hit@1 on CWQ drops by 2.9% and 550
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3.4% respectively, which demonstrates the impor-551

tance of ontology-guided pruning strategy. We552

calculated the search space size for each compo-553

sitional and conjunctive question in the dev set of554

CWQ, and report the average size in Table 5. The555

statistics shows that, the average search space size556

of Ours is only 0.26% and 3.2% of that in Ours-o557

for the two kinds of questions. By incorporating558

the ontology guidance, Ours substantially reduces559

the search space.560

Model Composition Conjunction

Ours-o 4,248,824.5 33,152.1
Ours 11,200.7 1,066.5

Table 5: The average search space size for composition
and conjunction questions in CWQ set for Ours and
Ours-o.

Hard-EM v.s. RL: For both WebQSP and CWQ,561

training with Hard-EM achieves better perfor-562

mance. For RL, we simply employed the REIN-563

FORCE algorithm and did not implement any aux-564

iliary reward strategy since this is not the focus565

of our work. The sparse, delayed reward causes566

high variance, instability, and local minima issues,567

making the training hard (Saha et al., 2019b). We568

leave exploring more complex training strategies569

as our future work.570

Models WebQSP CWQ

F1 Hit@1 F1 Hit@1

Hard-EM 76.5 74.6 58.7 58.1
RL 71.4 72.0 46.1 45.4

Table 6: Results of different training strategies.

6.3 Case Study571

Fig. 3 gives a case, where our model parses an572

question into multiple programs along with their573

probablility scores and F1 scores of executed an-574

swers. Given the question “The person whose edu-575

cation institution is Robert G. Cole Junior-Senior576

High School played for what basketball teams?”,577

we show the programs with the largest, 2-nd largest578

and 10-th largest possibility score. Both of the579

top-2 programs get the correct answer set and are580

semantically equivelant with the question, while581

the 10-th best program is wrong.582

Error Analysis We randomly sampled 100 error583

cases whose F1 score is lower than 0.1 for manual584

inspection. The errors can be summarized into the585

Find
R.G.C. 
High 

School

Relate
[inv] 

education
institution

Fil.Con.

person

Relate

team

Fil.Con.

basketball 
team

What

R.G.C. 
High 

School
student person

R.G.C. 
High 

School
athlete pro 

athlete

WhatAnd

Program prob F1

0.87

0.65

0.01

1.00

1.00

0.00

Question: The person whose education institution is Robert G. Cole Junior-
Senior High School played for what basketball teams?

Answer set: LSU Tigers men’s basketball, Boston Celtics, Miami Heat,
Orlando Magic, Cleveland Cavaliers, Los Angeles Lakers, Phoenix Suns

Find Relate Fil.Con.

person

Relate

team

Fil.Con. What
R.G.C. 
High 

School
student basketball 

team

Find Relate Fil.Con.

Find Relate Fil.Con.

Figure 3: An example from CWQ dev set. Our model
translates the question into multiple programs with the
corresponding probability and F1 score. We show the
best, 2-nd best and 10-th best programs. Both the best
and 2-nd best programs are correct.

following categories: (1) Wrong relation (53%): 586

wrongly predicted relation makes the program 587

wrong, e.g., for question “ What language do peo- 588

ple in the Central Western Time Zone speak?”, our 589

model predicts the relation main country, while 590

the ground truth is countries spoken in; (2) 591

Wrong concept (38%): wrongly predicted concept 592

makes the program wrong, e.g., for the question 593

“What continent does the leader Ovadia Yosel live 594

in?”, our model predicted the concept location, 595

whereas the ground truth is continent. (3) Model 596

limitation (9%): Handling attribute constraint was 597

not considered in our model, e.g., for the question 598

“Who held his governmental position from before 599

April 4, 1861 and influenced Whitman’s poetry?”, 600

the time constraint April 4, 1861 cannot be handled. 601

7 Conclusion 602

In this parper, we propose program transfer for 603

Complex KBQA for the first time. We propose 604

a novel two-stage parsing framework with an ef- 605

ficient ontology-guided pruning strategy. First, a 606

sketch parser translates a question into the program, 607

and then an argument parser fills in the detailed 608

arguments for functions, whose search space is re- 609

stricted by an ontology-guided pruning strategy. 610

The experimental results demonstrate that our pro- 611

gram transfer approach outperforms the previous 612

methods significantly. The ablation studies show 613

that our two-stage parsing paradigm and ontology- 614

guided pruning are both effective. 615
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A Ontology-guided Pruning773

Algorithm 1 Ontology-guided Pruning
Input: natural language question x, program
sketch ys, knowledge base KB = {C, E ,R, T }
Output: {argt}|ys|t=1

PE ← E ,PR ← R,PC ← C,P ← ∅
for all ot in ys do

if ot ∈ OE then
P ← PE
argt = fa(x, ot,P)
PC ← C(argt)
PR ←

⋃
c∈PC

D−(c)

else if ot ∈ OR then
P ← PR
argt = fa(x, ot,P)
PC ← R(argt)

else if ot ∈ OC then
P ← PC
argt = fa(x, ot,P)
PR ← D−(argt)

end if
end for

B Freebase Details774

We extracted a subset of Freebase which con-775

tains all facts that are within 4-hops of entities776

mentioned in the questions of CWQ and We-777

bQSP. We extracted the domain constraint for778

relations according to “ /type/property/schema”,779

range constraint for relations according to780

“/type/property/expected_type”, type constraint for781

entities according to “/type/type/instance”. CVT782

nodes in the Freebase were dealed with concatena-783

tion of neiborhood relations.784

C Program785

We list the functions of KQA Pro in Table 7. The786

arguments in our paper are the textual inputs. To787

reduce the burden of the argument parser, for the788

functions that take multiple textual inputs, we con-789

catenate them to a single input.790
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Function Functional Inputs× Textual Inputs
→ Outputs

Description Example (only show textual inputs)

FindAll ()× ()→ (Entities) Return all entities in KB -
Find ()× (Name)→ (Entities) Return all entities with the given name Find(Kobe Bryant)
FilterConcept (Entities)× (Name)→ (Entities) Find those belonging to the given

concept
FilterConcept(athlete)

FilterStr (Entities)× (Key, Value)→ (Entities,
Facts)

Filter entities with an attribute
condition of string type, return entities

and corresponding facts

FilterStr(gender, male)

FilterNum (Entities)× (Key, Value, Op)→
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is number

FilterNum(height, 200 centimetres, >)

FilterYear (Entities)× (Key, Value, Op)→
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is year

FilterYear(birthday, 1980, =)

FilterDate (Entities)× (Key, Value, Op)→
(Entities, Facts)

Similar to FilterStr, except that the
attribute type is date

FilterDate(birthday, 1980-06-01, <)

QFilterStr (Entities, Facts)× (QKey, QValue)→
(Entities, Facts)

Filter entities and corresponding facts
with a qualifier condition of string type

QFilterStr(language, English)

QFilterNum (Entities, Facts)× (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is number

QFilterNum(bonus, 20000 dollars, >)

QFilterYear (Entities, Facts)× (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is year

QFilterYear(start time, 1980, =)

QFilterDate (Entities, Facts)× (QKey, QValue, Op)
→ (Entities, Facts)

Similar to QFilterStr, except that the
qualifier type is date

QFilterDate(start time, 1980-06-01,
<)

Relate (Entity)× (Pred, Dir)→ (Entities,
Facts)

Find entities that have a specific
relation with the given entity

Relate(capital, forward)

And (Entities, Entities)× ()→ (Entities) Return the intersection of two entity
sets

-

Or (Entities, Entities)× ()→ (Entities) Return the union of two entity sets -
QueryName (Entity)× ()→ (string) Return the entity name -
Count (Entities)× ()→ (number) Return the number of entities -
QueryAttr (Entity)× (Key)→ (Value) Return the attribute value of the entity QueryAttr(height)
QueryAttrUnderCondition (Entity)× (Key, QKey, QValue)→

(Value)
Return the attribute value, whose

corresponding fact should satisfy the
qualifier condition

QueryAttrUnderCondition(population,
point in time, 2016)

QueryRelation (Entity, Entity)× ()→ (Pred) Return the predicate between two
entities

QueryRelation(Kobe Bryant, America)

SelectBetween (Entity, Entity)× (Key, Op)→ (string) From the two entities, find the one
whose attribute value is greater or less

and return its name

SelectBetween(height, greater)

SelectAmong (Entities)× (Key, Op)→ (string) From the entity set, find the one whose
attribute value is the largest or smallest

SelectAmong(height, largest)

VerifyStr (Value)× (Value)→ (boolean) Return whether the output of QueryAttr
or QueryAttrUnderCondition and the

given value are equal as string

VerifyStr(male)

VerifyNum (Value)× (Value, Op)→ (boolean) Return whether the two numbers
satisfy the condition

VerifyNum(20000 dollars, >)

VerifyYear (Value)× (Value, Op)→ (boolean) Return whether the two years satisfy
the condition

VerifyYear(1980, >)

VerifyDate (Value)× (Value, Op)→ (boolean) Return whether the two dates satisfy
the condition

VerifyDate(1980-06-01, >)

QueryAttrQualifier (Entity)× (Key, Value, QKey)→
(QValue)

Return the qualifier value of the fact
(Entity, Key, Value)

QueryAttrQualifier(population,
23,390,000, point in time)

QueryRelationQualifier (Entity, Entity)× (Pred, QKey)→
(QValue)

Return the qualifier value of the fact
(Entity, Pred, Entity)

QueryRelationQualifier(spouse, start
time)

Table 7: Details of 27 functions in KQA Pro. Each function has 2 kinds of inputs: the functional inputs come from
the output of previous functions, while the textual inputs come from the question.

12


