
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VISDIFF: SDF-GUIDED POLYGON GENERATION FOR
VISIBILITY RECONSTRUCTION, CHARACTERIZATION
AND RECOGNITION

Anonymous authors
Paper under double-blind review

ABSTRACT

The capability to learn latent representations plays a key role in the effectiveness
of recent machine learning methods. An active frontier in representation learn-
ing is understanding representations for combinatorial structures which may not
admit well-behaved local neighborhoods or distance functions. For example, for
polygons, slightly perturbing vertex locations might lead to significant changes in
their combinatorial structure (expressed as their triangulation or visibility graph)
and may even lead to invalid polygons. In this paper, we investigate representa-
tions to capture the underlying combinatorial structures of polygons. Specifically,
we study the open problem of Visibility Reconstruction: Given a visibility graph
G, construct a polygon P whose visibility graph is G. Visibility Reconstruction
belongs to the Existential Theory of Reals (∃R) complexity class (which lies be-
tween NP and P-SPACE). Currently, reconstruction algorithms are available only
for specific polygon classes. Establishing the hardness of the general problem is
open.
We introduce VisDiff, a novel diffusion-based approach to reconstruct a polygon
from its given visibility graph G. Our method first estimates the signed distance
function (SDF) of P from G. Afterwards, it extracts ordered vertex locations
that have the pairwise visibility relationship given by the edges of G. Our main
insight is that going through the SDF significantly improves learning for recon-
struction. In order to train VisDiff, we make two main contributions: (1) We
design novel loss components for computing the visibility in a differentiable man-
ner and (2) create a carefully curated dataset. We use this dataset to benchmark
our method and achieve 21% improvement in F1-Score over standard methods.
We also demonstrate effective generalization to out-of-distribution polygon types
and show that learning a generative model allows us to sample the set of poly-
gons with a given visibility graph. Finally, we extend our method to the related
combinatorial problem of reconstruction from a triangulation. We achieve 95%
classification accuracy of triangulation edges and a 4% improvement in Chamfer
distance compared to current architectures. Lastly, we provide preliminary results
on the harder visibility graph recognition problem in which the input G is not
guaranteed to be a visibility graph.

1 INTRODUCTION

Many types of objects ranging from molecules to organs to maps can be represented geometrically.
Polygons are one of the most commonly used geometric representations. They are planar objects
specified as a cyclically ordered set of points. The line segments connecting these pairs of points in
the given order represent the boundary of an object such as the hand shown in Figure 1-left. As one
considers the hands of various people, they realize that shape parameters such as the relative length
and thickness of fingers or palm sizes vary across samples. At the same time, intuitively, most hands
seem to share a common structure. This intuition can be formalized by studying the underlying
combinatorial structures of the corresponding polygons representing the hands. For example, one
can triangulate each polygon and construct its dual. The dual, with the appropriate embedding,
closely resembles a skeleton (Figure 1-middle). Graphical structures such as the triangulation dual

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

or the visibility graphs of polygons provide insights about the underlying combinatorial structures of
shapes. In this paper, we study representations that link polygons to their combinatorial structures.
We study polygons which are simple (the boundary does not self intersect) and simply-connected
(no holes).

Figure 1: Left: An object (a hand) represented as a polygon P . The polygon is given by an ordered
list of vertex locations X . Also shown is a triangulation of P and its dual graph G. Middle: The
dual of the triangulation of P . It is represented as a graph G which has a vertex for each triangle
and an edge between two adjacent triangles. This drawing contains information about G as well as
X because locations from the left figure were used for embedding the graph on the plane. Right: G
represented as an adjacency matrix generated using edges of the dual by fixing the ordering of the
triangles. We seek to answer the question: How much information about X can be recovered from
G alone? Also shown in the figure is a standard embedding of G (with Isomap). Clearly, standard
graph embedding algorithms are not sufficient to recover X from G.

The main question we study is the following: Suppose we are given a graph G representing the com-
binatorial structure of a polygon. G could be the visibility graph or a triangulation of the polygon.
Note that G does not contain any coordinate information X . What can we say about the polygon, or
the set of polygons, that have this structure G? It might be tempting to use standard metric embed-
ding methods such as Isomap (Tenenbaum et al., 2000) to reconstruct X but since G does not admit
a natural distance metric such methods are doomed to fail as shown by the example in the right
figure. Formally, let X(P) be the vertex locations of a polygon P and G(P) be a graphical property
of P . In this paper, we consider visibility graphs and triangulations. We consider the following
problems in increasing difficulty:

Problem 1 (Reconstruction) Given a valid G, generate a polygon P such that G(P) = G.

Problem 2 (Characterization) Given a valid G, generate all polygons P such that G(P) = G.

Note that in these two problems, the input G is assumed to be valid – i.e., there exists a polygon P
whose visibility graph or triangulation dual is G. While we primarily focus on reconstruction and
characterization problems in this paper, we also provide insights into the more general recognition
problem in which G is arbitrary:

Problem 3 (Recognition) Given an arbitrary graph G, determine whether there exists a polygon
P such that G(P) = G.

The primary combinatorial structure we study in this paper is the visibility graph. The visibility
graph of P , denoted V is(P) is a graph which has a vertex for each vertex of P . There is an edge
between two vertices u and v if and only if u and v are visible to each other in P . In other words,
the line segment connecting them is completely inside P . The visibility graph is an important
combinatorial structure because it is unique for a given polygon, and contains many other important
structures such as triangulations and shortest path trees (Guibas et al., 1986).

Our contributions: We present VisDiff: a generative model which takes a visibility graph G as
input and a seed for diffusion, and first generates a polygon P represented as a signed distance
function (SDF). Next, vertex locations on the zero level set are selected so that V is(P) = G. Our
main insight is that going through the SDF as an intermediate representation yields superior results
over using established methods to predict the vertex locations directly. In order to train VisDiff we
design novel loss functions for evaluating the validity of the output polygon and comparing its visi-
bility graph to the input in a differentiable manner. We also design a carefully curated dataset which

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

captures a wide range of combinatorial properties of polygons. Current random polygon generation
methods struggle to faithfully represent the visibility graph space. They are biased towards high
concavity as the number of points increases. We address this problem by systematically rebalancing
the dataset by the link diameter – which quantifies concavity.

We show that VisDiff can also be used for characterization since we can sample the set of polygons
which have a given visibility graph. To show the generality of VisDiff, we apply it for the problem
of reconstructing a polygon from its triangulation graph. Finally, we present preliminary results on
how VisDiff can be used for recognition by turning it into a classification problem based on the
difference between the input graph (which may not be a visibility graph) and the visibility graph of
the output polygon. This last result suggests that VisDiff is learning a meaningful representation over
the space of all polygons. Overall, our results provide evidence that recent architectures can learn
representations of non-trivial combinatorial structures such as polygons. We start with overview of
related work.

2 RELATED WORK

We summarize the related work in three main directions: Visibility graph reconstruction and recog-
nition, representation learning for shapes and graph neural networks.

Visibility graph reconstruction and recognition: The problem of reconstructing and recognizing
visibility graphs is studied extensively in the computational geometry literature. Yet, it is still an
open problem (Ghosh & Goswami, 2013). In the current literature, there are reconstruction and
recognition for polygons of certain categories: Ameer et al. (2022) solved the recognition and re-
construction problems for pseudo polygons. Silva (2020) showed that visibility graphs of convex
fans are equivalent to visibility graphs of terrain polygons with an addition of a universal vertex. Ev-
erett & Corneil (1990) proposed an algorithm to solve the recognition problem in spiral polygons.
Boomari & Zarei (2016) proposed reconstruction and recognition algorithm for anchor polygons.
Colley et al. (1997) proposed a linear time algorithm to recognize visibility graphs for tower poly-
gon. Dehghani & Morady (2009) solved the reconstruction problem for embedded planar graphs.
On the hardness side, the complexity of the visibility graph recognition and reconstruction problem
is known to belong to PSPACE (Everett, 1990) specifically in the Existential Theory of the Reals
class (Boomari et al., 2018). The exact hardness of the problem is still open. In this work we ex-
plore it from the representation learning perspective to understand if generative models can learn the
underlying manifold of the space of polygons and their visibility graphs in a generalizable fashion.

Representation Learning: 3D shape completion (Chou et al., 2023) (Chen et al., 2024) (Cheng
et al., 2023) (Shim et al., 2023) is a closely related application. In 3D shape completion, the input
contains partial geometric information for example as a point cloud. In our case, the input is only
a combinatorial description such as the visibility graph. There might be many shapes consistent
with the input graph and extracting them without any geometric information as part of the input
is challenging. Another body of work related to our problem is mesh generation (Gupta et al.,
2023) (Wang et al., 2020). Two recent results in this domain are MeshGPT (Siddiqui et al., 2024)
and PolyDiff (Alliegro et al., 2023). Both of these approaches generate high-quality 3D triangular
meshes by learning to output a set of triangles from a fixed set of triangles. PolyDiff discretizes the
3D space into bins and MeshGPT works over a predefined set of triangles. In our work, we seek to
learn the space of all polygons and their visibility graphs.

Graph Neural Networks (GNNs): GNNs are one of the standard representations for graphs. The
current literature on GNNs primarily focuses on graphs with features associated with a well-defined
metric space. In the literature, the closest to our work is generating graph embeddings for a given dis-
tance matrix. Li et al. (2024) showed that a GNN given all-pairwise Euclidean distance information
which is known as Vanilla DisGNN, fails to differentiate between symmetric graph structures. To ad-
dress the limitation of Vanilla DisGNN, they propose k-DisGNN. k-DisGNN captures information
not just from immediate neighbors but from a k-hop neighborhood around each node. The ability
to utilize the k-hop neighbourhood results in building richer geometric representations for differen-
tiating between symmetric structures efficiently. Cui & Wei (2023) proposed MetricGNN, which is
capable of generating graph embedding from a given embedding distance matrix. Shi et al. (2021)
proposed ConfGF which uses GNN for determining molecular conformation given the inter-atomic
distances and bond characteristics. Yu et al. (2024) proposed a GNN architecture, PolygonGNN,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

which efficiently represented multipolygon data for graph classification tasks by leveraging visi-
bility relationships between polygons. Specifically, PolygonGNN showed that augmenting vertex
embeddings of individual polygons with the information of both spatial locations and visibility rela-
tionships to other polygon vertices is much more effective in capturing the geometric structure. All
the above work assumes the presence of an underlying metric space or spatial position information
which is absent in visibility graph reconstruction. We develop VisDiff to learn embeddings in this
challenging combinatorial domain.

3 VISDIFF ARCHITECTURE

VisDiff consists of three main modules: Graph Encoding, SDF Representation Learning, and Vertex
Prediction. The following sections focus on the details of each module.

Figure 2: VisDiff architecture: There are three main blocks, namely U-Net SDF Diffusion, Vertex
Prediction, and graph encoding. G represents a polygon structural graph. E represents the graph
encoding module. Z represents the encoding of the graph. The noise added SDF after the forward
diffusion process is represented by XT . U-Net Diffusion Block: XT goes through T timesteps of
reverse diffusion process to output the clean SDF represented by X0. Vertex Prediction Block: X0

is an input to the vertex prediction network, which generates the ordered vertex locations represent-
ing the polygon. The SDF and polygon generation are both conditioned on visibility through the
cross-attention module. K,Q, and V are the key, query, and value terms of cross-attention. In our
approach, Q is represented by the visibility embedding Z while K and V are represented by learned
spatial CNN features. During Training: the model is supervised using both the ground truth SDF
and polygon. During Testing: only the visibility graph G is provided as input.

Graph Encoding: The visibility graph is represented as a binary adjacency matrix. To condition
other components of VisDiff on this input, we train a U-Net (Ronneberger et al., 2015) autoencoder
with Binary Cross Entropy (BCE) Loss to reduce the dimensionality of the 25×25 (polygon with 25
vertex locations) input matrix to 512. We pretrain the autoencoder separately and freeze the encoder
layer during encoding visibility graph G in other modules.

SDF Diffusion: Diffusion models have shown the ability to efficiently learn the space of all im-
ages (Ramesh et al., 2022). Motivated by this success, we represent polygons with their signed
distance functions which in turn can be represented as images (each pixel stores the distance to the
nearest point on the polygon boundary). We can now learn the space of polygons as a diffusion
process using a Denoising Diffusion Implicit Model (DDIM) (Song et al., 2020). DDIM primarily
involves two steps: forward diffusion and the reverse diffusion processes.

Forward Diffusion process involves adding noise to the SDF representation in a scheduled manner.
Let the SDF sample from the valid polygon distribution be denoted by x0 ∈ R40×40. Given the
standard deviation of the noise level denoted by σt > 0 at timestep t of the diffusion step, the noise
addition process is defined by xt = x0 + σtϵ where ϵ ∼ N (0, I) is a sample from the Gaussian
distribution. In this way, noise is continuously injected into the SDF, eventually transforming it into
a pure Gaussian sample at the end of the forward noising process. VisDiff uses a linear log sched-
uler (Permenter & Yuan, 2023) to control the noise level throughout the forward noising process.

Reverse Diffusion involves recovering the original SDF from the final Gaussian sample generated
during the forward diffusion process. In this step, we start with Gaussian noise and predict the noise
added to the sample given the σt. The reverse diffusion is parameterized through a neural network
that learns to predict the added noise given the input noise sample and σt.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Specifically, we train a U-Net (Ronneberger et al., 2015) encoder-decoder architecture to predict
the noise added to the original SDF sample. Additionally, we condition the U-Net CNN blocks
on encoded visibility using multiple Spatial Transformer Cross Attention (Ngo et al., 2023) blocks.
The cross-attention blocks directly incorporate visibility information into the U-Net spatial features
during the learning process. The key and value components of the cross-attention block are the
spatial CNN features, while the query is the encoded visibility embedding. Figure 2 shows the
architecture of the SDF Diffusion block. The model is trained using LMSE mean-squared error loss
(MSE) between the predicted noise and the actual noise added to the sample. Given the visibility
graph G, the trained model is then used to sample polygon SDF.

Sampling of the SDF is performed using a DDIM sampler. The sampling process draws a sample
from a Gaussian distribution N (0, I) denoted by xt along with a schedule of decreasing noise lev-
els proportional to the number of steps in the sampling process. Each diffusion step is given by
Equation 1.

xt−1 = xt + (σt−1 − σt)ϵθ(xt, σt, G) (1)
where ϵθ(xt, σt, G) represents the noise predicted by the U-Net encoder-decoder architecture given
the visibility graph G, the noise sample from the previous step xt and the standard deviation of the
noise level σt. This process reconstructs the SDF of the polygon, ensuring it adheres to the visibility
constraints defined by G.

Vertex Prediction: The generated SDF of the polygon is then used to determine the final vertex
locations whose visibility relationship corresponds to the visibility graph G. The process of picking
vertex locations over the zero level-set is challenging as the corners of the polygons are not well-
defined in the SDF image. Furthermore, as the number of vertex locations increases, a small change
in the placement of points on the SDF will significantly alter the visibility of the entire polygon.

We formulate the polygon vertex extraction as a separate estimation problem of determining ver-
tex locations given the SDF and the visibility graph G. Specifically, we train a CNN encoder to
encode the SDF into an embedding space. The embedding process is also conditioned on the visibil-
ity graph G encoding using Spatial Transformer Cross Attention (Ronneberger et al., 2015) layers,
which helps relate vertex generation to the visibility constraints. The keys and values for the spatial
transformer are the spatial CNN features similar to the diffusion block, while the query is the en-
coded visibility embedding. The generated SDF embedding is then passed through multiple MLP
layers to predict the ordered vertex locations of the polygon. See Figure 2.

We experimented with predicting vertex locations simultaneously with the SDF. Comparisons pre-
sented in Appendix (Section C, Table 11) show that training the vertex prediction model indepen-
dently from the SDF generation model is significantly more accurate than joint training and predic-
tion. Hence, we train the vertex prediction model separately with the ground truth SDF.

4 LOSS FUNCTIONS

The model is trained using the following loss function

Loss = λ1LMSE + λ2Lvalidity + λ3Lvisibility + λ4LSDF (2)

where λi is a scaling factor and λ1 = λ4 = 1.0 while λ2 = λ3 = 0.1. λ2 and λ3 were chosen as 0.1
because the scale of LV alidity and LV isibility is 10 times bigger than the other components. Each
loss component has a unique role in learning the visibility property efficiently as described below.

LMSE: The MSE loss penalizes deviation from ground truth vertex locations.

LMSE = ∥X̂ −X∗∥22 (3)

where X̂ denotes the locations of the predicted vertices and X∗ denotes the ground truth vertex
locations. LMSE loss is especially helpful for initial learning of the polygon structure.

Lvisibility: The loss component Lvisibility measures how close the visibility graph Ĝ of the output
polygon is to the input G which can be computed using binary cross entropy.

Lvisibility = LBCE(Ĝ,G) (4)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) B, D Non-visible (b) A, D Non-visible (c) D, F Visible

Figure 3: Visibility losses: To check whether two vertices u and v are visible to each other, we
consider the intersection of the lines-segment |uv| with the edges of the polygon and handle a de-
generate case separately: In Figure 3a, the segment BD does not intersect any polygon edge but
it lies completely outside the polygon. The loss component Lout addresses this case. For the re-
maining cases, the loss Lint calculates Int(X,Y) = 1/(1 + d(X,Y)) where X and Y are two line
segments and d is the distance of the intersection point to the closest point on X . In Figure 3b, when
X = AD and Y = BC, the value of d(AD,BC) = 0 because the intersection point is on AD.
However in Figure 3c, the value of d(FD,BC) > 0 as FD and BC are non-intersecting. Lint

calculates the Int function with all polygon edges separately during the visibility calculation.

where Ĝ represents the predicted visibility graph and LBCE refers to binary cross entropy.

However, since VisDiff outputs only vertex locations, the main challenge in computing this loss is
computing the visibility graph in a differentiable manner. We present a differentiable method to
estimate Ĝ. An edge is considered non-visible if it intersects any other polygon edge or is fully
outside the polygon. We estimate Ĝ using two terms Lout and Lint to account for both conditions
of non-visibility. See Figure 3. Lout determines non-visibility due to being fully outside the polygon
while Lint determines non-visibility due to intersection. Specifically, Lout samples dense points on
the line and extracts the SDF values of points outside the polygon. Lint calculates the distance to the
intersection point between the visibility edge and each polygon edge. Equation 5 shows the resultant
Ĝ for determining visibility for single edge i given the Lint and Lout.

Ĝi = 1−max(Lintmax, Loutmax) (5)

where Lintmax shows max(Lint) and Loutmax shows max(Lout). We subtract one as non-visible
edges are represented as 0 in the visibility matrix. Max is a non-differentiable operation. We design
a soft maximum to have a differentiable estimation of the maximum operation. Equation 6 shows
a differentiable estimation of the maximum operation given two random numbers A and B where
softmax(A,B) = eA/(eA + eB).

softmaximum(A,B) = softmax(A,B) · (A+B) (6)

The differentiable estimation of the maximum operation is used to determine each edge in Ĝ.

Lvalidity: We introduce Lvalidity to penalize polygon edge crossings. Lvalidity uses the Int func-
tion from Lvisibility to identify invalid configurations. Equation 7 shows the validity loss.

Lvalidity =
1

(m+ 1)2

m∑
i=0

m∑
j=0
j ̸=i

Int(Pi, Pj) (7)

where m denotes number of polygon P edges and i ̸= j restricts the sum to edges that are neither
adjacent nor the same. The function Int() is illustrated in Figure 3.

LSDF : The final loss components ensures that the vertices lie on the polygon boundary i.e. the zero
level set.

LSDF =

n∑
i=0

|S(Vi)| (8)

where Vi represents the i-th vertex location of polygon P , S represents its SDF value and n represents
the number of vertices of polygon P .

Ablation studies in Appendix (Section C, Table 11) show that adding these additional losses helps
the model improve on upholding the visibility graph G compared to training with only the LMSE .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 DATASET GENERATION

The problems of Visibility Characterization and Visibility Reconstruction require the dataset distri-
bution to have a key characteristic of multiple polygons P corresponding to the same visibility graph
G. Additionally, the dataset should also represent a high diversity of visibility graphs. We address
these characteristics by uniformly sampling polygons based on graph properties described below
and also generate multiple augmentations of the same polygon.

The dataset generation process involves sampling 60,000 polygons with 25 vertex locations arranged
in fixed anticlockwise ordering. The vertex locations are drawn from a uniform distribution within
[−1, 1]2. We use the 2-opt move (Auer & Held, 1996) algorithm to generate polygons from the
drawn locations.We observed that the dataset generated from the 2-opt move algorithm exhibited
non-uniformity with respect to the link diameter of the visibility graph. Link diameter quantifies the
maximum number of edges on the shortest path between any two graph nodes. A higher diameter
indicates greater concavity in the polygon. Hence, to have a balanced distribution, we resample the
large dataset based on the link diameter of the visibility graph. The resampling process results in a
subset of 18,500 polygons. In the appendix (Section D, Figure 8b) we present additional statistics
showing that that our dataset is uniformly distributed in terms of link diameter.

We further augment each polygon to generate 20 samples by applying shear transformation and ver-
tex perturbation while preserving the visibility graph G. The augmentations introduce the property
of multiple polygons with the same visibility graph G . The augmentation and resampling are criti-
cal for learning the representative space of Visibility Characterization and Visibility Reconstruction
problems. The final dataset consists of 370,000 polygons and their respective visibility graphs. The
total dataset size including all polygons consists of 400,000, which will be made publicly available.

5.1 TEST SET GENERATION

We generate two datasets for evaluation: in-distribution and out-of-distribution. In-distribution sam-
ples are generated by setting aside 100 unique polygons per link diameter from the large dataset.
These are not included in the training data.

(a) Star (b) Terrain (c) Fan (d) Anchor (e) Spiral

Figure 4: Polygon types: a) Star: Single kernel point (red) from which all vertex locations are
visible, b) Terrain: X-monotone polygons where orthogonal lines from the X axis intersect the
polygon boundary at most twice, c) Convex Fan: Single convex vertex (red) which appears in every
triangle of the polygon triangulation, d) Anchor: Polygons with two reflex links and a convex link
connecting both of them, e) Spiral: Polygons with long link diameter.

The out-of-distribution samples are generated based on specific polygon types - star, spiral, anchor,
convex fan, and terrain. Figure 4 details the properties of the polygon types. Spiral and anchor share
similar characteristics to our dataset while terrain, convex fan and star differ significantly in terms
of its density i.e., the total percentage of edges in the graph. In the appendix (Section D, Figure
9a) shows the difference in density of visibility graph distribution of terrain, convex fan, and star
compared to the training set.

6 RESULTS

We evaluate VisDiff with baselines on the problem of Visibility Reconstruction. We also show
the ability of VisDiff to give evidence for Visibility Characterization problem. We then provide
preliminary results on Visibility Recognition. Lastly, we showcase the generalization of VisDiff to
other graph structural properties like Triangulation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.1 EVALUATION METRICS

To evaluate our algorithm, we compute the visibility graphs of the output polygons and formulate
the evaluation of the visibility graph as a classification problem. We report the accuracy, precision,
recall, and F1-Score between the generated and the ground-truth visibility graphs. Specifically, each
edge of the visibility graph is classified as either a visible or non-visible edge. Each visibility graph
is evaluated individually, and the average over the dataset is reported as a collective quantitative
metric. Since the ratio of visible and non-visible edges can be vastly different across polygons, we
use the F-1 score to evaluate model performance.

6.2 QUALITATIVE AND QUANTITATIVE EVALUATION

We compare VisDiff against baselines, which generate vertex representation of a polygon from
the visibility graph. In particular, we compare against various state-of-the-art encoders such as
Transformer-Decoder [Seq] (Vaswani, 2017), Graph Neural Network [Gnn] (Veličković et al., 2017),
DDIM [VD] (Song et al., 2020), Encoder - Decoder [E.D], VAE [VA] (Kingma & Welling, 2022)
and a direct optimization approach based on Nelder-Mead [NM] (Gao & Han, 2012) optimization.
Nelder-Mead optimizes the configuration of vertex locations by using the difference between the
predicted and actual visibility graph as a loss which is backpropagated to the vertex locations. The
code will be made publicly available for details on the implementation of all baselines.

6.2.1 Visibility Reconstruction

Table 1 shows the quantitative evaluation on the in-distribution dataset. VisDiff performs signifi-
cantly better than architectures utilizing vertex representation on all metrics except for precision.
Nelder-Mead optimization based on predicted and actual visibility graphs performs much better on
precision, but it needs to be noted that it has the lowest recall as well. Specifically, Nelder-Mead
optimization missed an average of 60% visible edges on all samples in the test dataset. Figure 5
also shows that Nelder-Mead optimization and others fail to generate valid polygons, ensuring both
validity and visibility while VisDiff learns to generate polygons close to the ground truth visibility.
We also provide additional quantitative results in Appendix (Section B).

Acc ↑ Prec ↑ Rec ↑ F1 ↑ DAcc ↑ DRec ↑ DF1 ↑ CDist ↓
(a) E.D 0.75 0.76 0.54 0.62 0.95 0.69 0.81 0.95
(b) Seq 0.68 0.58 0.65 0.61 0.96 0.75 0.85 0.96
(c) Gnn 0.73 0.90 0.43 0.57 0.95 0.70 0.82 1.03
(d) VD 0.77 0.80 0.58 0.66 0.93 0.55 0.71 0.96
(e) NM 0.70 0.93 0.34 0.49 0.98 0.88 0.94 1.10
(f) Ours 0.85 0.83 0.77 0.80 0.99 0.95 0.97 0.91
(g) VA 0.66 0.54 0.70 0.60 0.95 0.75 0.85 0.96

Table 1: Baseline comparison:(a) Encoder-Decoder, (b) Sequence Prediction, (c) GNN, (d) Vertex
Diffusion, (e) Nelder-Mead Optimization, (f) VisDiff, (g) Variational Autoencoder, Acc: Accuracy,
Prec: Precision, Rec: Recall, DAcc: triangulation accuracy, DRec: triangulation recall, DF1: trian-
gulation F-1 Score, CDist: Chamfer distance between point sets in triangulation

We further evaluate VisDiff on its generalization to different polygon types. Table 2 shows its
quantitative results on the out-of-distribution dataset. VisDiff generalizes well to polygons different
from the training distribution. Specifically to the terrain, star, and convex-fan which have density of
the visibility graph different from our distribution.

6.2.2 Visibility Characterization

We showcase the ability of VisDiff to present evidence for the Visibility Characterization problem.
We generate multiple polygons given the same visibility graph G by drawing different samples from
Gaussian distribution for diffusion initialization. Figure 6 shows how VisDiff generates different
polygons with perturbation and shear transformation but having similar visibility to the ground truth
visibility graph G. The ability of sampling multiple polygons with the same visibility was also

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) GT (b) 0.81 (c) 0.60 (d) 0.58 (e) 0.57 (f) 0.57 (g) 0.48

Figure 5: Visibility reconstruction qualitative results: The top row shows the polygons generated
by different methods. The first vertex is represented by deep purple and the last vertex by yellow
(anticlockwise ordering). The second row shows corresponding visibility graphs of the polygons
where green represents the visible edge and red represents the non-visible edge. The captions
indicate the F1 Score of the visibility graph compared to the GT. The polygon results correspond
to the following methods - a) Ground Truth, b) VisDiff c) Sequence Prediction d) GNN, e) Vertex
diffusion, f) Encoder-Decoder, g) Optimization.

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.875 0.842 0.808 0.823
Terrain 0.866 0.815 0.645 0.712
Convex Fan 0.769 0.775 0.772 0.771
Anchor 0.89 0.935 0.935 0.935
Star 0.772 0.751 0.797 0.77

Table 2: Specific polygon types: VisDiff shows generalization to star, terrain and anchor polygon
types which are out of distribution samples to our dataset.

utilized in the above Visibility Reconstruction experiments. In particular, we sample 50 polygons
given a single visibility graph G and get the polygon best following the visibility graph G.

(a) GT (b) 0.81 (c) 0.76 (d) 0.75 (e) 0.76

Figure 6: Visibility Characterization: The top row shows multiple polygons generated by VisDiff
for the same visibility graph G. The first vertex is represented by deep purple and the last vertex
by yellow (anticlockwise ordering). The second row shows the visibility graph corresponding to
the polygons where green represents visible edge and red represents non-visible edge. The caption
shows the F1-Score compared to the ground truth (GT) visibility graph.

(a) (b)

(c) (d) (e) Accuracy (%) vs F-1 Threshold

Figure 7: Visibility Recognition: a) Non-Valid Sample 1: Red represents hole, b) VisDiff Prediction
Sample 1: VisDiff learns to put points in such a way to best maintain the visibility and the visibility
graph is detected as a valid visibility graph, c) Non-Valid Sample 2: Red represents hole, d) VisDiff
Prediction Sample 2: VisDiff failed to generate a valid polygon and therefore classified as a non-
valid visibility graph, e) Visibility Recognition Quantitative Results: VisDiff classifies 80% of the
samples correctly when the F-1 threshold is selected as 0.73.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6.2.3 Visibility Recognition

We present preliminary results on the Visibility Recognition problem. We generate a set of 50 valid
and non-valid visibility graphs for the Visibility Recognition problem. We use polygons with holes as
samples of non-valid visibility graphs. A polygon with a hole is a polygon with an outer boundary,
but also has an inner boundary which makes it non simple. We determine the visibility graph in the
same way as that of simple polygon. An edge through the hole is a non visible edge since the hole
is considered outside the polygon.

We utilize the model’s ability to sample multiple polygons and sample a set of polygons S for
each visibility graph. If any of the polygons from S are valid and has a F1-Score over a certain
threshold X, it is classified as a valid visibility graph. Figure 7e shows the performance of our
model on Visibility Recognition problem using different thresholds on F-1 Score. Figure 15a to 15d
shows qualitative results on the polygon generation for two non-valid visibility graphs. VisDiff is
able to correctly classify 80% of the samples from the set of valid and non-valid visibility graphs
when the F-1 threshold is selected to be close to mean performance on the Visibility Reconstruction
problem. Classification performance of 80% shows that VisDiff is able to represent the underlying
valid visibility graph space efficiently. Appendix E.4 shows more qualitative results on Visibility
Recognition.

6.2.4 TRIANGULATION

In this section, we change the input from the complete visibility graph to the triangulation to show
case the versatility of VisDiff. Note that a polygon may have many different triangulations. Each
triangulation contains n − 2 triangles where n is the number of vertices (De Berg, 2000). We use
the Constrained Delauney Triangulation (Rognant et al., 1999) to triangulate the polygons in our
dataset, ensuring a unique triangulation for a polygon (Dinas & Banon, 2014).

We evaluate the model on the classification metrics of the triangulation and the Chamfer dis-
tance (Borgefors, 1988). The classification metrics are calculated by comparing the existence of
triangulation edges in the visibility graph of the generated polygon. In the case the model predicts
a convex polygon given a triangulation of a non-convex polygon. It would have 100% triangulation
accuracy which is misleading. Hence, the Chamfer distance between the points is also evaluated as
the triangulation is unique to the spatial locations of the points. The Chamfer distance is calculated
with polygons rotated to have the first edge aligned with the x-axis to account for rotation variations.
Table 1 shows the quantitative results of VisDiff with baselines. VisDiff performs much better than
all the models in maintaining the triangulation while also has the minimum Chamfer distance. We
present additional qualitative results in Appendix (Section E.3, Figure 14)

7 CONCLUSION

In this paper, we studied the problems of Visibility Reconstruction, Characterization and Recog-
nition for simple polygons. We presented VisDiff a diffusion-based approach which first predicts
the Signed Distance Function (SDF) associated with a polygonal boundary conditioned on the input
visibility graph G. The SDF is then used to generate vertex locations of a polygon P whose visi-
bility graph is G. Our method showed an improvement of 21% on F1-Score compared to baseline
approaches on the Visibility Reconstruction problem. We then showed the capability of VisDiff to
sample multiple polygons for a single visibility graph G as a realization of Visibility Characteriza-
tion problem. We also presented preliminary results of 80% accuracy on the Visibility Recognition
problem. VisDiff has been shown to generalize to accept triangulations as input where it maintains
95% triangulation edges and achieves 4% improvement on Chamfer distance compared to baselines.
We also proposed loss components for computing the visibility graph in a differentiable manner and
demonstrated its effectiveness compared to guidance solely on L2 loss between vertex locations.

At a high-level, our results show that modern neural representations are capable of encoding the
space of all polygons in such a way that the distances on the learned manifold are faithful to the
combinatorial properties of polygons. In terms of future work, the presented VisDiff architecture
represents the SDF as a grid, which creates a bottleneck in terms of computation time and space.
In our future work, we will investigate encoding the SDF using more efficient representations such
as (Park et al., 2019; Mitchell et al., 2020).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. PolyDiff: Generating
3D polygonal meshes with diffusion models. arXiv preprint arXiv:2312.11417, 2023.

Safwa Ameer, Matt Gibson-Lopez, Erik Krohn, and Qing Wang. On the visibility graphs of pseudo-
polygons: recognition and reconstruction. In 18th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

Thomas Auer and Martin Held. Heuristics for the generation of random polygons. In CCCG, pp.
38–43, 1996.

Hossein Boomari and Alireza Zarei. Visibility graphs of anchor polygons. In Topics in Theoretical
Computer Science: The First IFIP WG 1.8 International Conference, TTCS 2015, Tehran, Iran,
August 26-28, 2015, Revised Selected Papers 1, pp. 72–89. Springer, 2016.

Hossein Boomari, Mojtaba Ostovari, and Alireza Zarei. Recognizing visibility graphs of polygons
with holes and internal-external visibility graphs of polygons. arXiv preprint arXiv:1804.05105,
2018.

Gunilla Borgefors. Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE
Transactions on pattern analysis and machine intelligence, 10(6):849–865, 1988.

Jiacheng Chen, Ruizhi Deng, and Yasutaka Furukawa. PolyDiffuse: Polygonal shape reconstruction
via guided set diffusion models. Advances in Neural Information Processing Systems, 36, 2024.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui. SD-
Fusion: Multimodal 3D shape completion, reconstruction, and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4456–4465, 2023.

Gene Chou, Yuval Bahat, and Felix Heide. Diffusion-SDF: Conditional generative modeling of
signed distance functions. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 2262–2272, 2023.

Paul Colley, Anna Lubiw, and Jeremy Spinrad. Visibility graphs of towers. Computational Geome-
try, 7(3):161–172, 1997.

Guanyu Cui and Zhewei Wei. MGNN: Graph neural networks inspired by distance geometry prob-
lem. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 335–347, 2023.

Mark De Berg. Computational geometry: algorithms and applications. Springer Science & Business
Media, 2000.

Gholamreza Dehghani and Hossein Morady. An algorithm for visibility graph recognition on planar
graphs. In 2009 International Conference on Future Computer and Communication, pp. 518–521.
IEEE, 2009.

Simena Dinas and José Marı́a Banon. A review on Delaunay triangulation with application on
computer vision. Int. J. Comput. Sci. Eng, 3:9–18, 2014.

Hazel Everett. Visibility graph recognition. University of Toronto, 1990.

Hazel Everett and Derek G. Corneil. Recognizing visibility graphs of spiral polygons. Journal of
Algorithms, 11(1):1–26, 1990.

Fuchang Gao and Lixing Han. Implementing the Nelder-Mead simplex algorithm with adaptive
parameters. Computational Optimization and Applications, 51(1):259–277, 2012.

Subir K Ghosh and Partha P Goswami. Unsolved problems in visibility graphs of points, segments,
and polygons. ACM Computing Surveys (CSUR), 46(2):1–29, 2013.

Leonidas Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Tarjan. Linear time
algorithms for visibility and shortest path problems inside simple polygons. In Proceedings of the
second annual symposium on computational geometry, pp. 1–13, 1986.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anchit Gupta, Wenhan Xiong, Yixin Nie, Ian Jones, and Barlas Oğuz. 3DGen: Triplane latent
diffusion for textured mesh generation. arXiv preprint arXiv:2303.05371, 2023.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes, 2022. URL
https://arxiv.org/abs/1312.6114.

Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for geometric
deep learning? Advances in Neural Information Processing Systems, 36, 2024.

Eric Mitchell, Selim Engin, Volkan Isler, and Daniel D Lee. Higher-Order Function Networks
for Learning Composable 3D Object Representations. In International Conference on Learning
Representations, 2020.

Khoa Anh Ngo, Kyuhong Shim, and Byonghyo Shim. Spatial Cross-Attention for Transformer-
Based Image Captioning. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
DeepSDF: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 165–174, 2019.

Frank Permenter and Chenyang Yuan. Interpreting and Improving Diffusion Models from an Opti-
mization Perspective. arXiv preprint arXiv:2306.04848, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hi-
erarchical Text-Conditional Image Generation with CLIP Latents, 2022. URL
https://arxiv.org/abs/2204.06125.

L Rognant, Jean-Marc Chassery, S Goze, and JG Planes. The Delaunay constrained triangulation:
the Delaunay stable algorithms. In 1999 IEEE International Conference on Information Visual-
ization (Cat. No. PR00210), pp. 147–152. IEEE, 1999.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Chence Shi, Shitong Luo, Minkai Xu, and Jian Tang. Learning gradient fields for molecular con-
formation generation. In International conference on machine learning, pp. 9558–9568. PMLR,
2021.

Jaehyeok Shim, Changwoo Kang, and Kyungdon Joo. Diffusion-based signed distance fields for 3D
shape generation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 20887–20897, 2023.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. MeshGPT: Generating triangle meshes with decoder-
only transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 19615–19625, 2024.

André C Silva. On Visibility Graphs of Convex Fans and Terrains. arXiv preprint arXiv:2001.06436,
2020.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. arXiv
preprint arXiv:2010.02502, 2020.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Hang Yu, Wei Liu, Xiangyang Xue, and
Yu-Gang Jiang. Pixel2Mesh: 3D mesh model generation via image guided deformation. IEEE
transactions on pattern analysis and machine intelligence, 43(10):3600–3613, 2020.

Dazhou Yu, Yuntong Hu, Yun Li, and Liang Zhao. PolygonGNN: Representation Learning for
Polygonal Geometries with Heterogeneous Visibility Graph. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4012–4022, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A DEFINITIONS

In this section, we provide the definitions of the terms simple polygon and visibility graph.

Terms Definitions
Simple Polygon Let V = (v1, . . . , vn) be an ordered set of

n points on the plane. The location of point
vi is specified by its coordinates (xi, yi). Let
ei = (vi, vi+1) be the set of line segments ob-
tained by connecting consecutive points in V
in a cyclic manner. These line segments define
a closed planar curve - the boundary of a poly-
gon P . The points vi are the vertices of P and
the segments ei are its sides.
Two consecutive edges of a polygon share an
end-point at a vertex. In a simple polygon,
these are the only intersections between the
edges. The edges do not intersect each other.

Visibility Graph A simple polygon P has a well-defined interior
and an exterior separated by its boundary δP .
This separation allows us to define visibility:
We will use the notation x ∈ P to denote that
x lies either on the boundary or the interior of
P . We say that two points x, y ∈ P see each
other if and only if ∀z ∈ [x, y], z ∈ P . In other
words, the line segment [xy] lies completely
inside or on the boundary of P .
The visibility graph of P , denoted G(P) is a
graph that is a vertex to vertex relation of P .
There is an edge between two vertices u and v
if and only if u and v are visible to each other
in P .

Table 3: Definitions

B QUANTITATIVE RESULTS

In this section, we present additional results on the evaluation of the SDF Diffusion model, a com-
parison of computational costs with the baseline, and the performance of the baseline models on the
out-of-distribution test set.

B.1 OUT-OF-DISTRIBUTION BASELINE PERFORMANCE

In this section, we provide the baseline performance on the out-of-distribution dataset for Visibility
Reconstruction problem. Table 2 shows results of VisDiff while Table 4 - 8 shows the results of
baselines on out-of-distribution dataset. A comparison of F-1 scores indicates that Visdiff performs
significantly better than all the baselines on the out-of-distribution dataset.

B.2 SDF DIFFUSION EVALUATION

We evaluate the SDF Diffusion model by measuring the L2 error between the ground truth and
the predicted SDF on both in-distribution and out-distribution test datasets for the Visibility Recon-
struction problem. Table 9 shows the performance of the SDF diffusion model. Our diffusion model
predicts high-quality SDFs with low L2 error, indicating its effectiveness in capturing the underlying
relationship between the polygon and visibility graphs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.712 0.602 0.602 0.6
Terrain 0.726 0.487 0.646 0.552
Convex Fan 0.569 0.584 0.573 0.574
Anchor 0.788 0.89 0.854 0.868
Star 0.575 0.558 0.588 0.568

Table 4: Specific polygon types: Sequence Prediction Performance

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.758 0.797 0.457 0.573
Terrain 0.8 0.653 0.578 0.602
Convex Fan 0.615 0.721 0.434 0.527
Anchor 0.698 0.929 0.694 0.791
Star 0.631 0.681 0.47 0.545

Table 5: Specific polygon types: Encoder-Decoder Performance

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.779 0.904 0.438 0.587
Terrain 0.85 0.841 0.541 0.654
Convex Fan 0.612 0.888 0.283 0.427
Anchor 0.452 0.865 0.419 0.553
Star 0.64 0.892 0.296 0.442

Table 6: Specific polygon types: GNN Performance

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.773 0.795 0.507 0.613
Terrain 0.843 0.79 0.553 0.646
Convex Fan 0.676 0.755 0.573 0.634
Anchor 0.756 0.887 0.817 0.849
Star 0.675 0.775 0.494 0.585

Table 7: Specific polygon types: Vertex Diffusion Performance

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.757 0.918 0.36 0.516
Terrain 0.851 0.909 0.478 0.625
Convex Fan 0.612 0.94 0.263 0.41
Anchor 0.298 0.98 0.176 0.299
Star 0.641 0.945 0.275 0.425

Table 8: Specific polygon types: Nelder-Mead Optimization Performance

Test Dataset L2 Error ↓
In-Distribution 0.071
Out-Distribution: Spiral 0.091
Out-Distribution: Terrain 0.091
Out-Distribution: Convex Fan 0.083
Out-Distribution: Anchor 0.158
Out-Distribution: Star 0.069

Table 9: SDF Evaluation: The table shows the L2 error between the predicted SDF from the diffusion
model and the ground truth SDF

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.3 COMPUTATIONAL COST COMPARISON

We compare the computational cost of our model with the baselines by evaluating the inference time
per sample. The inference time of VisDiff is higher compared to baseline models. The increased
inference time is because VisDiff performs the inference in two steps through the SDF while other
baselines achieve it in a single step. Furthermore, GNN, Sequence Prediction, and Encoder-Decoder
generate only one sample per visibility graph while VisDiff and vertex diffusion generate 50 samples
per visibility graph.

Baselines Computational Time (seconds) ↓
Encoder-Decoder 0.001
Sequence Prediction 0.075
GNN 0.005
Optimization 74.210
Vertex Diffusion 0.094
VisDiff 1.02
Variational Autoencoder 0.003

Table 10: Computational Cost Comparison: Each inference time corresponds to the time in seconds
taken for each model to generate vertex locations for a single visibility graph

C ABLATION STUDIES

The two main directions of ablation studies performed for VisDiff are in loss functions and architec-
ture choices. Table 11 shows the results achieved for different architecture choices. It shows that the
best results are achieved by estimating the SDF and vertex locations separately. We also evaluate
the change in performance with an addition of each component of loss. Table 12 shows that with
the addition of all the loss components helps gain 10% F1-Score than using just the vertex locations
error.

Accuracy ↑ Precision ↑ Recall ↑ F1 ↑
b) Joint 0.78 0.80 0.60 0.68
d) Separate 0.85 0.83 0.77 0.80

Table 11: Ablation Studies: (a) Joint estimation of SDF with vertex locations, (b) Separate estima-
tion SDF with vertex locations (VisDiff). The results are on Visibility Reconstruction problem

Accuracy ↑ Precision ↑ Recall ↑ F1 ↑
a) LMSE 0.83 0.74 0.72 0.73
b) LMSE +
LV is

0.84 0.83 0.70 0.76

c) LMSE + LV is

+ LV al

0.85 0.83 0.73 0.78

d) LMSE +
LV is + LV al +
LSDF

0.85 0.83 0.77 0.80

Table 12: Ablation Studies Loss Components: (a) MSE Loss, (b) Adding Visibility Loss component,
(c) Adding Visibility and Validity Loss component, (d) Adding Visibility, Validity and SDF Loss
component. The results are on Visibility Reconstruction problem

D DATASET STATISTICS

In this section, we present statistics about our dataset. Figure 8 shows the distribution of the train
and in-distribution test set statistics. It shows that our dataset is uniform in diameter of the visibility

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

graph. Figure 9 compares the training dataset with the out-of-distribution testing dataset. It shows
that star, convex-fan, and terrain classes have densities different from our train distribution, where
density refers to the percentage of edges in the visibility graph.

(a) Density Comparison Train vs Test (b) Diameter Comparison Train vs Test

Figure 8: Train vs in-distribution test set analysis: 8a) The density is inversely proportional to the
diameter. Uniform sampling of diameter results in bimodal density. 8b) Training and testing sets are
uniform in terms of the link diameter of the visibility graph.

(a) Density Comparison Train vs Test (b) Diameter Comparison Train vs Test

Figure 9: Out-of-distribution test set analysis: Figure 9a shows the density of the anchor and spiral
are close to the mean of the bimodal training distribution, making it similar to our training set. The
density of the star, convex fan, and terrain differ significantly from the training distribution.

E QUALITATIVE RESULTS

In this section, we provide additional qualitative results on Visibility Reconstruction, Visibility Char-
acterization, Visibility Recognition, and the Triangulation problem (Section 6.2.4).

E.1 Visibility Reconstruction

We provide additional qualitative results for the Visibility Reconstruction problem. Figures 10 and
11 show the comparison between polygons generated by VisDiff to baselines. The F1-Score shows
that VisDiff generates polygons much closer to the visibility graph of the ground truth polygon.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) GT (b) 0.73 (c) 0.65 (d) 0.55 (e) 0.54 (f) 0.54 (g) 0.49

Figure 10: Visibility reconstruction qualitative results: The top row shows the polygons generated
by different methods. The first vertex is represented by deep purple and the last vertex by yellow
(anticlockwise ordering). The second row shows corresponding visibility graphs of the polygons
where green represents the visible edge and red represents the non-visible edge. The polygon
results correspond to the following methods - a) Ground Truth, b) VisDiff c) Sequence Prediction
d) GNN, e) Vertex diffusion, f) Encoder-Decoder, g) Optimization. The captions indicate F1-Score

(a) GT (b) 0.80 (c) 0.71 (d) 0.62 (e) 0.54 (f) 0.56 (g) 0.50

Figure 11: Visibility reconstruction qualitative results: The top row shows the polygons generated
by different methods. The first vertex is represented by deep purple and the last vertex by yellow
(anticlockwise ordering). The second row shows corresponding visibility graphs of the polygons
where green represents the visible edge and red represents the non-visible edge. The polygon
results correspond to the following methods - a) Ground Truth, b) VisDiff c) Sequence Prediction
d) GNN, e) Vertex diffusion, f) Encoder-Decoder, g) Optimization. The captions indicate F1-Score

E.2 Visibility Characterization

We provide further qualitative results on the problem of Visibility Characterization where we seek
to generate the set of all polygons associated with the same visibility graph. Figures 12 and Figure
13 show the ability of VisDiff to sample multiple polygons given same visibility graph.

(a) GT (b) 0.77 (c) 0.76 (d) 0.76

Figure 12: Visibility Characterization: The top row shows multiple polygons generated by VisDiff
for the same visibility graph G. The first vertex starts at deep purple and the last vertex ends at
yellow (anticlockwise ordering). The second row shows the visibility graph corresponding to the
polygons where green represents visible edge and red represents non-visible edge. Subfigure cap-
tions indicate the F1-Score

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) GT (b) 0.76 (c) 0.75 (d) 0.80

Figure 13: Visibility Characterization: The top row shows multiple polygons generated by VisDiff
for the same visibility graph G. The first vertex is represented by deep purple and the last vertex
by yellow (anticlockwise ordering). The second row shows the visibility graph corresponding to
the polygons where green represents visible edge and red represents non-visible edge. Subfigure
captions indicate the F1-Score

E.3 TRIANGULATION

We provide qualitative results for the problem of generating polygons from the triangulation. Figure
14 shows the performance of VisDiff compared to other baselines. VisDiff maintains 98% of the
triangulation edges.

(a) GT (b) 0.98 (c) 0.76 (d) 0.92 (e) 0.91 (f) 0.81 (g) 0.69

Figure 14: Triangulation Qualitative Results: Top row shows the polygons generated by different
methods. The first vertex is represented by deep purple and the last vertex by yellow (anticlockwise
ordering). The second row shows corresponding triangulation graphs of the polygons where green
represents the triangulation edge and red represents the absence of the triangulation edge. The
captions indicate the F1 Score of the triangulation graph compared to the GT. The polygon results
correspond to the following methods - a) Ground Truth, b) VisDiff c) Sequence Prediction d) GNN,
e) Vertex diffusion, f) Encoder-Decoder, g) Optimization

E.4 Visibility Recognition

We provide additional qualitative results to showcase failure and successful instances of VisDiff on
Visibility Recognition problem. Figure 15 shows the output of VisDiff when the input is not a valid
polygon (We generate visibility graphs of polygons with holes as invalid input samples). It shows
that VisDiff can be used to identify non-valid visibility graphs in most of the scenarios by turning it
into a classifier based on the validity of the output.

F VARIATIONAL AUTOENCODER

In this section, we present the results for the variational autoencoder baseline. Specifically, we in-
clude out-of-distribution dataset results for visibility reconstruction, along with qualitative results for
both the visibility reconstruction and triangulation problems. Table 13 reports the out-of-distribution
test set performance of the variational autoencoder. Figure 16 shows the qualitative comparison of
the variational autoencoder and VisDiff on the Visibility Reconstruction task. Figure 17 illustrates a
qualitative comparison for the Triangulation problem.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 15: Visibility Recognition: The top row signifies the ground truth non-valid polygon with the
hole (red) while the bottom row is the polygons drawn by VisDiff. The first vertex is represented by
deep purple and the last vertex by yellow (anticlockwise ordering). a) Non-Valid Sample 1: VisDiff
predicts it as a non-valid polygon as it is not able to generate any valid polygon, b) Non-Valid
Sample 2: VisDiff generates valid polygon where it learns to put points in a V shape to account for
a hole. It misclassified a non-valid visibility graph as a valid visibility graph. c) Non-Valid Sample
3: VisDiff predicts it as a non-valid polygon as it is not able to generate any valid polygon, d) Non-
Valid Sample 4: VisDiff predicts it as a non-valid polygon as it is not able to generate any valid
polygon

Metrics Accuracy ↑ Precision ↑ Recall ↑ F1-Score ↑
Spiral 0.702 0.602 0.592 0.6
Terrain 0.706 0.467 0.626 0.534
Convex Fan 0.549 0.564 0.543 0.553
Anchor 0.768 0.87 0.834 0.851
Star 0.535 0.538 0.568 0.552

Table 13: Specific polygon types: Variational Autoencoder Performance

(a) GT (b) 0.81 (c) 0.64

Figure 16: Visibility reconstruction qualitative results: The top row shows the polygons generated
by different methods. The first vertex is represented by deep purple and the last vertex by yellow
(anticlockwise ordering). The second row shows corresponding visibility graphs of the polygons
where green represents the visible edge and red represents the non-visible edge. The captions
indicate the F1 Score of the visibility graph compared to the GT. The polygon results correspond to
the following methods - a) Ground Truth, b) VisDiff c) Variational Autoencoder

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) GT (b) 0.98 (c) 0.75

Figure 17: Triangulation Qualitative Results: Top row shows the polygons generated by different
methods. The first vertex is represented by deep purple and the last vertex by yellow (anticlockwise
ordering). The second row shows corresponding triangulation graphs of the polygons where green
represents the triangulation edge and red represents the absence of the triangulation edge. The
captions indicate the F1 Score of the triangulation graph compared to the GT. The polygon results
correspond to the following methods - a) Ground Truth, b) VisDiff c) Variational Autoencoder

21

