
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHARTMIMIC: EVALUATING LMM’S CROSS-MODAL
REASONING CAPABILITY VIA CHART-TO-CODE GEN-
ERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new benchmark, ChartMimic, aimed at assessing the visually-
grounded code generation capabilities of large multimodal models (LMMs). Chart-
Mimic utilizes information-intensive visual charts and textual instructions as inputs,
requiring LMMs to generate the corresponding code for chart rendering. Chart-
Mimic includes 4, 800 human-curated (figure, instruction, code) triplets, which
represent the authentic chart use cases found in scientific papers across various
domains (e.g., Physics, Computer Science, Economics, etc). These charts span
18 regular types and 4 advanced types, diversifying into 201 subcategories. Fur-
thermore, we propose multi-level evaluation metrics to provide an automatic and
thorough assessment of the output code and the rendered charts. Unlike existing
code generation benchmarks, ChartMimic places emphasis on evaluating LMMs’
capacity to harmonize a blend of cognitive capabilities, encompassing visual un-
derstanding, code generation, and cross-modal reasoning. The evaluation of 3
proprietary models and 14 open-weight models highlights the substantial chal-
lenges posed by ChartMimic. Even the advanced GPT-4o, InternVL2-Llama3-76B
only achieve an average score across Direct Mimic and Customized Mimic tasks
of 82.2 and 61.6, respectively, indicating significant room for improvement. We
anticipate that ChartMimic will inspire the development of LMMs, advancing the
pursuit of artificial general intelligence.

1 INTRODUCTION

Code generation (Sun et al., 2024) is a rather demanding task that requires advanced abstract thinking
and logical reasoning, reflecting the unique intelligence of human beings. Recently, advances in arti-
ficial general intelligence (AGI) have demonstrated the potential of large foundation models (Google,
2023; OpenAI, 2024; Anthropic, 2024; AI@Meta, 2024) to solve the tasks that are once the exclusive
domain of human abilities (Achiam et al., 2023; Zhu et al., 2024). However, existing code generation
benchmarks (Chen et al., 2021; Austin et al., 2021; Hendrycks et al., 2021; Lai et al., 2023) solely
use text as input, while humans receive information from multiple modalities when coding (Liang
et al., 2023; Fan et al., 2024). Such real-life scenarios have yet to be fully explored.

Taking a common scene in Fig. 1, researchers often need to write code for data visualization and may
already have preferred chart templates at hand. However, they usually lack either the source code or
the expertise to reproduce these chart templates. As a result, they turn to large multimodal models
(LMMs) as assistants to aid in code generation. In this scenario, coding for scientific charts entails
code generation grounded on visual understanding (i.e., chart-to-code generation), which necessitates
LMMs to integrate a variety of advanced cognitive capabilities, including visual understanding, code
generation, and cross-modal reasoning. Therefore, evaluating the performance of LMMs on this
real-world task also enables researchers to pinpoint potential areas for improving models’ capabilities.

To this end, we present ChartMimic (Fig. 2), a multimodal code generation benchmark. ChartMimic
is characterized by its (1) information-intensive visual inputs, (2) diverse chart types, and (3) multi-
level evaluation metrics. Specifically, compared to natural images, scientific charts convey nuanced
semantic meanings through intricate visual logic, thereby exhibiting higher information density.
Based on this, we define two tasks, Direct Mimic and Customized Mimic (Sec. 2.1), which utilize
charts and textual instructions as inputs. These tasks challenge LMMs to generate the corresponding

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The real-world example. LMMs assist scientists and researchers in understanding, inter-
preting and creating charts during the reading and writing of academic papers. These models serve as
assistants that enhance the comprehension and presentation of data in scholarly communications.

code for a given chart or to incorporate new data specified in the instructions, respectively. Through
the collection of academic documents and scientific papers, we identify 22 commonly used chart
types and 201 subcategories. Subsequently, we manually annotate a total of 4, 800 (figure, instruction,
code) triplets for these types (Sec. 2.2). Furthermore, we establish automatic evaluation metrics from
both high-level and low-level perspectives to thoroughly assess the performance of LMMs (Sec. 2.4).

We conduct examination of 17 LMMs on ChartMimic (Sec. 3.2), including 3 proprietary models and
14 open-weight models across parameter sizes from 2.2B to 76.0B. We observe that while several
open-weight models can match the performance of proprietary models such as GPT-4o on public
leaderboards (OpenCompass, 2023), a significant performance gap still persists on ChartMimic.
Specifically, the best open-weight model, InternVL2-Llama3-76B, lags behind GPT-4o, with an
average score gap of 20.6 on two tasks, indicating substantial room for improvement in open-source
community. Our analysis of prompting methods (Sec. 4.2) reveals that GPT-4o can improve itself
through self-reflection, which is a key manifestation of System 2 reasoning (Sloman, 1996; Kumar
et al., 2024). This discovery highlights the vital role that System 2 reasoning process plays in
LMMs when tackling the complex challenges presented by ChartMimic. Meanwhile, Correlation
analysis (Sec. 4.3) demonstrates a high correlation between our automatic metrics and human
evaluation, validating the effectiveness of these metrics. Further error analysis (Sec. 4.4) reveals that
hallucinations notably hinder the performance of LLMs on ChartMimic, as they lead to the insertion
of non-existent text into ground-truth figures and confusion between similar types of charts.

We envision ChartMimic as a comprehensive suite of benchmarks designed to guide researchers
in understanding their LMMs’ capabilities. By providing a comprehensive evaluation framework,
ChartMimic aims to facilitate the growth of foundation models for the community, offering insights
into various aspects such as visual understanding, code generation, and cross-modal reasoning.

2 THE CHARTMIMIC BENCHMARK

In this section, we first introduce the definition of two tasks involved in ChartMimic (Sec. 2.1), and
then delineate the data curation process (Sec. 2.2). Subsequently, we conduct a quantitative analysis
to assess the quality and diversity of ChartMimic (Sec. 2.3), establish evaluation metrics (Sec. 2.4),
and compare it with existing related benchmarks (Sec. 2.5).

2.1 TASK DEFINITION

LMMs’ ability to generate chart-rendering code demonstrates their visual understanding, coding, and
cross-modal reasoning skills. Specifically, given the chart X and the instruction I , the LMM f is
expected to output the code C that satisfies the requirements outlined in the instruction:

C = f(X, I). (1)

As shown in Fig. 2, based on the information provided in the instructions, we propose two tasks:

Direct Mimic. The LMMs are tasked to directly generate code that can reproduce the provided chart,
thereby assessing their visual comprehension and reasoning capabilities.

Customized Mimic. The LMMs are requested to generate code for a new chart that incorporates
customized data provided in the instruction while preserving the original chart’s aesthetic and design,
assessing their ability to integrate visual and textual information.

After obtaining the code generated by LMMs, we execute it to render the corresponding chart and
subsequently compare its similarity with the ground-truth chart. Illustrative examples of the two tasks

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: The pipeline of ChartMimic. We provide 4, 800 human-curated (figure, instruction,
code) triplets. We use ChartMimic to evaluate LMMs’ proficiency in the multimodal chart-to-code
generation, resulting in both high-level and low-level evaluation results.

are shown in Fig. 2. To accommodate the defined tasks above, we propose ChartMimic, a benchmark
designed to evaluate the comprehension of charts and their conversion into executable code.

2.2 DATA CURATION PROCESS

ChartMimic distinguishes itself through 4 fundamental considerations: (1) diversity of chart types,
(2) balance of chart complexity, (3) reduction of data leakage, (4) integration of authentic user
requirements. We keep on these four principles to complete the data curation for ChartMimic through
a five-step pipeline. Here, we provide an overview here and more details in Appendix A.

General Filtering. We scrape figures from source files of publications on arXiv1 that hold a CC BY
4.0 license with a publication date after February 2024 with PDF format. This yields approximately
174, 100 figures across various domains (e.g., Physics, Computer Science, Economics, etc). We
then filter the figures based on the criteria of how designers select inspiring visualization examples,
including clarity and visual appeal, color schemes (Bako et al., 2022; Quispel et al., 2018), and
uniqueness of the chart within its category, resulting in a refined collection of about 15, 800 figures.

Diversity and Information Density Filtering. The filtering process involves two stages. In the
first stage, we establish a data pool and categorize chart types. Charts with significant differences in
complexity or information density are added to ensure diversity and effective communication (Bako
et al., 2022). In the second stage, five experts from various fields independently evaluate the data,
creating separate selection pools. We preserve the intersection of their selections and finalize the set
through a voting process. This meticulous approach refines our collection to 279 charts.

Manual Selection and Filling. In addition to sourcing from arXiv, we also collect charts from
various platforms, including the Matplotlib gallery, Stack Overflow, and plotting-related forums on
Twitter and Reddit. These charts are selected for their unique styles not represented in our arXiv
curated 279 charts. To mitigate the risk of data leakage, we rigorously process the data and color
styling of these charts, replacing existing color schemes with those unseen in our data pool while
maintaining their aesthetic appeal. Consequently, we obtain 600 prototype charts for ChartMimic.

Code and Instruction Writing. We propose to manually write codes and instructions for ChartMimic
based on the collected 600 prototype charts. Initially, annotators are tasked with meticulously
reproducing the 600 prototype charts using Python code, resulting in a set of 600 (figure, code,
instruction) triplets for the Direct Mimic task. Although other coding languages such as JavaScript
and R can be used to create charts, current LMMs perform poorly when doing chart-to-code using
these other languages (Sun et al., 2024). Therefore, we focus on Python code generation in the current

1https://arxiv.org/

3

https://arxiv.org/

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Statistics of ChartMimic. We measure code length in terms of tokens, utilizing the Llama3
tokenizer. In the level count, “A/B/C” denotes the number of “easy/medium/hard” level, respectively.

Type Bar Line ErrorBar Heatmap Box Scatters Hist Radar 3D Pie ErrorPoint Violin

Count 320 280 120 120 100 100 80 80 80 80 80 80
Subcategories 16 8 12 4 6 4 3 6 5 8 5 3

Code Length (AVG.) 689.6 794.0 681.2 685.8 689.0 655.0 529.6 779.8 655.4 418.4 624.3 975.6
Code Length (STD.) 237.8 244.4 144.7 258.7 228.2 253.0 147.1 144.3 241.4 99.5 197.7 252.3

Level Count 176 / 120 / 24 256 / 24 / 0 68 / 52 / 0 0 / 76 / 44 60 / 40 / 0 80 / 20 / 0 52 / 28 / 0 52 / 28 / 0 8 / 48 / 24 52 / 28 / 0 44 / 28 / 8 32 / 44 / 4

Type Area Contour Density Graph Quiver Treemap Combination HR Muiltidiff PIP Total

Count 80 80 80 80 80 80 120 100 100 80 2400
Subcategories 2 3 4 4 4 4 30 25 25 20 201(101 + 100)

Code Length (AVG.) 774.4 489.4 540.0 564.5 893.4 342.2 697.4 718.9 798.2 1083.9 696.0
Code Length (STD.) 161.8 87.8 104.7 117.5 631.0 36.3 163.6 265.5 271.2 290.1 278.4

Level Count 52 / 28 / 0 0 / 28 / 52 44 / 32 / 4 56 / 24 / 0 0 / 52 / 28 52 / 28 / 0 12 / 76 / 32 4 / 16 / 80 0 / 48 / 52 0 / 0 / 80 1100 / 868 / 432

version of ChartMimic. Subsequently, to simulate the scenario of Customized Mimic, annotators are
instructed to modify the chart data in the Direct Mimic task by integrating new data from various
domains. They are then required to modify the corresponding code and instructions, leading to the
600 (figure, code, instruction) triplets for the Customized Mimic task. Consequently, we establish the
ChartMimic benchmark, comprising 1, 200 high-quality seed data.

Data Augmentation. Following the development of seed triplets, we initiate a process of manual data
augmentation. Annotators are tasked with altering various elements of each seed triplet, including
data, color schemes, mark styles, etc., to produce augmented triplets. For each seed triplet, we create
3 additional augmented triplets. This process enhances our dataset, yielding a total of 4, 800 triplets
that reflect a wide range of realistic and practical chart use cases.

2.3 DATA STATISTICS AND DIVISION

The (figure,code,instruction) triplets for both Direct and Customized Mimic tasks share the same
figure. Therefore, we detail the data statistics for the 2, 400 triplets in the Direct Mimic task. As
depicted on the left side of Fig. 2, ChartMimic encompasses a total of 22 categories, with 18 types
of regular charts and 4 types of advanced charts. For the 18 regular chart types, we identify 101
subcategories, with the definitions and examples of each subcategory provided in Appendix C. The
advanced chart types such as Plot-in-Plot (PIP), Multidiff, and Combination are distinct forms of
amalgamating multiple chart sets into a singular chart. Given the variety of their internal combination
elements, each of these can be treated as a unique subcategory. Meanwhile, the Hard-to-Recognize
(HR) category encapsulates unclassifiable charts, with each chart in the seed data being considered
a category unto itself. When we factor in the additional 100 subcategories represented by these
advanced chart types, ChartMimic encompasses a total of 201 subcategories. This extensive diversity
underscores the comprehensive nature of our benchmark. We employ Llama3 (AI@Meta, 2024)
tokenizer to measure the code length. As shown in Tab. 1, ChartMimic has average code token length
of 696.0 with a standard deviation of 278.4. Addtionally, we manually categorize charts into three
complexity levels: easy (1,100), medium (868), and hard (432). The detailed categorization criteria
and assessment methodology are thoroughly documented in Appendix A.

We further divide the 4, 800 examples of ChartMimic into two subsets: test and testmini set. The test
set comprises 3, 600 examples, while the testmini set is composed of 1, 200 examples. The testmini
set is designed for rapid model development validation. Our partitioning strategy ensures each chart
type is proportionally represented, preserving a distribution in the testmini set that closely aligns with
the test set. Detailed comparative experimental results, discussed in Appendix B, demonstrate the
consistency across two subsets. Unless otherwise stated, we report results on the testmini set.

2.4 EVALUATION METRICS

For tasks within ChartMimic, an appropriate evaluation necessitates comparing the visual similarity
between the generated and ground-truth figures. To achieve this, we propose multi-level metrics (i.e.,
high-level and low-level) to assess the similarity at different granularities. Specifically, the high-level
metric encompasses GPT-4o Score and the low-level metric encompasses Text, Layout, Type and
Color Score. We compute the average score between the high-level and low-level scores, ranging
from 0 to 100, as the overall score. The illustration of the multi-level metrics is depicted in Fig. 2.

GPT-4o Score. Following the successful use of large foundation models for evaluation in both
natural language processing (Zheng et al., 2024; Li et al., 2023; Dubois et al., 2024) and computer
vision (Zhang et al., 2023; Yang et al., 2024; Wu et al., 2024b), we adopt GPT-4o score as our high-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: A comparison of our proposed ChartMimic to other benchmarks. “I” and “NL” indicate
“Image” and “Natural Language” respectively.

Benchmarks Source # of Chart Types # of Test Instances Input Format Output Format Evaluation Metric

Chart Understanding Benchmarks

ChartQA (Masry et al., 2022) Human Curated 3 10K I+NL NL Accuracy
Chart-to-Text (Kantharaj et al., 2022) Crawl 6 44K I+NL NL Match-based
ChartSumm (Rahman et al., 2023) Human Curated 3 84K I+NL NL Match-based
CharArXiv (Wang et al., 2024b) Human Curated 18 93K I+NL NL GPT-4 Score

Code Generation Benchmarks

HumanEval (Chen et al., 2021) Human Curated - 164 Code Code Pass Rate
MBPP (Austin et al., 2021) Human Curated - 500 NL+Code Code Pass Rate
MMCode (Li et al., 2024b) Crawl - 263 I+NL Code Pass Rate
MatPlotBench (Yang et al., 2024) Human Curated 13 100 NL Code GPT-4 Score
Plot2Code (Wu et al., 2024a) Crawl 15 132 I+NL Code Multi-Level
Design2Code (Si et al., 2024) Crawl HTML 484 I+NL Code Multi-Level

ChartMimic (Ours) Human Curated 22 4,800 I+NL Code Multi-Level

level metric. Specifically, we input both the ground-truth figure and the generated figure into GPT-4o,
and instruct it to output a high-level similarity score ranging 0 to 100. Although CLIP Score (Radford
et al., 2021) is widely used for assessing image similarity, in our preliminary experiments, it has
struggled to distinguish variations in types and other critical elements in charts, resulting in a low
correlation with human evaluation results. Therefore, we use only GPT-4o Score as our high-level
evaluation metric. The detailed description of GPT-4o Score can be found in Appendix D.

In addition to high-level similarity, evaluating the similarity among low-level elements between
generated and ground-truth figures can provide a more fine-grained analysis of LMMs. Therefore, we
propose to evaluate four key low-level elements in charts (Savva et al., 2011; Poco & Heer, 2017):
text, layout, type and color. Extracting them from figures is a challenging task, as existing extraction
models often fall short in terms of accuracy (Meng et al., 2024). Considering that figures are rendered
based on the code, we design a code tracer to monitor the execution processes of the ground-truth
code and generated code. The code tracer records the text, layout, type and color information. We
calculate the F1 score of these elements as their corresponding score. And we average text, layout,
type and color scores to get the low-level score. The methodology for obtaining these elements is
briefly introduced as follows, with detailed descriptions provided in Appendix D.

Text Score. During the code execution process, for the function responsible for adding text elements
to the rendered figures, the code tracer monitors it and records each text element parameter.

Layout Score. Layout refers to the arrangement of subplots in the figure. At the end of the code
execution, the code tracer traverses all subplots in the figure and obtains their layout information.

Type Score. For each plot function, which serves the purpose of adding a specific chart type instance
to the figure, the code tracer monitors its invocation status and records every invoked plot function.

Color Score. For each plot function, it will return the chart type instance at the end of the function
invocation. The code tracer accesses the color attributes of these chart type instances.

It is important to note that code execution success rate is a standard metric for code generation
tasks (Sun et al., 2024). We have implicitly incorporated this aspect into our high-level and low-level
scores. Specifically, if the code fails to execute successfully, both the low-level and high-level scores
are assigned a value of 0. Therefore, we do not separately weight it into the overall score.

2.5 COMPARISONS WITH EXISTING BENCHMARKS

To further distinguish the difference between ChartMimic and other existing ones, we elaborate the
benchmark details in Tab. 2. From the chart understanding perspective, the prior benchmarks (Masry
et al., 2022; Kantharaj et al., 2022; Rahman et al., 2023; Wang et al., 2024b) are only focused on
questions about the data in the charts without necessitating the advanced cognitive capabilities of
LMMs, which include visual understanding, code generation, and cross-modal reasoning. In the
code generation aspect, HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021) and MatPlot-
Bench (Yang et al., 2024) only consider tasks with text inputs, which may not meet requirements
in the era of LMMs. Recently, MMCode (Li et al., 2024b) attempted to create a benchmark for
multimodal code generation, but the vision inputs for their task are still overly simple and only have a
single pass rate evaluation metric. Design2Code (Si et al., 2024) and Plot2Code (Wu et al., 2024a)
are the most similar one to ours. Although they use multi-level evaluation metrics like ours, their

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 3: The ChartMimic leaderboard with Direct Mimic task. The best scores are in bold. We also
include the code execution success rate (Exec. Rate) and model size (Params).

Model Params Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision - 68.2 52.6 64.2 51.3 47.1 53.8 53.3 53.6
Claude-3-opus - 83.3 66.8 83.1 49.9 42.1 60.5 60.1 60.3
GPT-4o - 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2

Open-Weight

IDEFICS2-8B 7.6B 49.0 6.2 33.1 9.2 9.0 14.4 17.6 16.0
DeepSeek-VL-7B 7.3B 41.3 15.3 26.6 19.7 14.5 19.0 20.4 19.7
LLaVA-Next-Yi-34B 34.8B 50.2 15.9 29.6 17.6 15.2 19.6 20.6 20.1
LLaVA-Next-Mistral-7B 7.6B 59.7 14.0 31.1 19.8 17.8 20.7 21.3 21.0
Qwen2-VL-2B 2.6B 47.0 20.1 29.5 21.3 17.9 22.2 23.4 22.8
Cogvlm2-llama3-chat-19B 19.2B 50.5 21.3 31.8 18.4 17.0 22.1 24.5 23.3
InternVL2-2B 2.2B 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
Qwen2-VL-7B 8.2B 67.0 26.4 51.0 31.0 23.3 32.9 35.0 34.0
InternVL2-4B 4.2B 66.2 34.7 51.7 25.2 23.6 33.8 38.4 36.1
InternVL2-8B 8.1B 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
MiniCPM-Llama3-V-2.5 8.4B 80.3 30.7 49.6 38.6 27.6 36.6 42.1 39.4
Phi-3-Vision-128K 4.2B 66.7 37.5 49.6 37.4 29.8 38.6 41.0 39.8
InternVL2-26B 26.0B 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
InternVL2-Llama3-76B 76.0B 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5

test are crawled directly from the internet or existing dataset, which may pose a risk of data leakage.
Our ChartMimic benchmark gives complex scientific charts as inputs, demanding capabilities on
grounding visual understanding into code generation, and provides multi-level evaluation metrics.

3 EXPERIMENT

3.1 BASELINE SETUP

We benchmark 17 widely utilized proprietary and open-source models currently available in the
field. For proprietary models, we consider 3 representative models: GPT-4o (OpenAI, 2024), Claude-
3-opus (Anthropic, 2024) and GeminiProVision (Google, 2023). For the open-weight models, we
choose 14 competitive models with total parameter size from 2.2B to 76.0B: InternVL2(2B, 4B,
8B, 26B, 76B) (Chen et al., 2023), Qwen2-VL(2B, 7B) (Wang et al., 2024a), Phi-3-Vision (phi,
2024), DeepSeek-VL-7B (Lu et al., 2024), LLaVA-Next(7B, 34B) (Li et al., 2024a), IDEFICS2-
8B (Laurençon et al., 2024), MiniCPM-Llama3-V2.5 (Xu et al., 2024) and Cogvlm2-llama3-chat-
19B (Wang et al., 2023a). We start with the direct prompting, which provides the reference chart with
direct instructions. The specific instructions and model configurations can be found in Appendix E.

3.2 MAIN RESULTS

We present the main results of 17 LMMs on ChartMimic. Tab. 3 and Tab. 4 show the results on the
Direct Mimic and Customized Mimic task, respectively. The key findings are as follows:

GPT-4o performs best among proprietary models, while InternVL2-Llama3-76B excels among
open-weight models. In proprietary models, GPT-4o achieves an overall score of 81.2 in Direct
Mimic and 83.2 in Customized Mimic. Within open-weight models, InternVL2-Llama3-76B, reaches
the overall score of 58.5 in Direct Mimic and 64.7 in Customized Mimic, which have compareble per-
fromance with proprietary model like Claude-3-opus (60.3 in Direct Mimic and 65.4 in Customized
Mimic). Meanwhile, Phi-3-Vision-128K despite its 4.2B parameters, reaches the overall score of 39.8
in Direct Mimic and 42.1 in Customized Mimic, which outperforms LLaVA-Next-Yi-34B (20.1 in
Direct Mimic and 35.3 in Customized Mimic). This indicates that even models with fewer parameters
can achieve decent performance through a refined training process.

A performance gap persists between open-weight LMMs and proprietary ones. Although
several open-weight LMMs can exhibit performance comparable to GPT-4o across various bench-
marks (OpenCompass, 2023), even the best-performing InternVL2-Llama3-76B falls short of achiev-
ing the performance of GPT-4o both Direct Mimic and Customized Mimic. This apparent performance

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 4: The ChartMimic leaderboard with Customized Mimic task. The best scores are in bold.
We also include the code execution success rate (Exec. Rate) and model size (Params).

Model Params Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GeminiProVision - 76.2 52.2 70.9 56.0 49.4 57.1 59.6 58.4
Claude-3-opus - 88.2 75.2 86.8 54.1 44.3 65.1 65.7 65.4
GPT-4o - 96.5 88.5 92.9 79.2 67.6 82.1 84.3 83.2

Open-Weight

Qwen2-VL-2B 2.6B 35.8 17.4 23.9 19.7 16.5 19.4 21.4 20.4
Cogvlm2-llama3-chat-19B 19.2B 38.7 19.0 27.9 16.5 15.7 19.8 21.6 20.7
LLaVA-Next-Mistral-7B 7.6B 49.0 20.0 32.0 22.6 19.9 23.6 24.7 24.2
IDEFICS2-8B 7.6B 49.2 21.6 32.2 18.1 12.2 21.0 27.3 24.2
InternVL2-2B 2.2B 49.3 22.2 35.4 20.0 18.1 23.9 27.8 25.9
LLaVA-Next-Yi-34B 34.8B 64.2 28.7 44.8 32.9 27.7 33.5 37.1 35.3
DeepSeek-VL-7B 7.3B 59.3 27.5 47.5 36.8 31.5 35.8 39.3 37.6
Phi-3-Vision-128K 4.2B 67.8 29.7 52.5 42.3 36.5 40.3 44.0 42.1
InternVL2-4B 4.2B 74.0 41.3 55.6 39.6 33.1 42.4 47.8 45.1
Qwen2-VL-7B 8.2B 73.3 41.0 56.3 43.5 34.2 43.8 47.8 45.8
InternVL2-8B 8.1B 73.0 43.1 54.4 39.9 35.4 43.2 48.9 46.1
MiniCPM-Llama3-V-2.5 8.4B 78.7 40.8 58.0 44.8 33.2 44.2 51.5 47.9
InternVL2-26B 26.0B 73.7 43.9 62.3 43.5 34.3 46.0 51.1 48.6
InternVL2-Llama3-76B 76.0B 89.8 57.8 79.0 63.5 50.5 62.7 66.7 64.7

disparity demonstrates the challenging nature of our ChartMimic benchmark for current open-weight
LMMs. Moreover, open-weight LMMs even exhibit notable deficiencies in generating executable
code, with a majority of them showing an execution rate below 75%. These findings highlight that
there is still a considerable scope for the open-source community to enhance LMMs’ capabilities in
terms of complex visual understanding, code generation and cross-modal reasoning.

When given additional user-customized data, LMMs exhibit performance improvements. In the
Customized Mimic task, most LMMs get performance improvement compared to the Direct Mimic
task, particularly in terms of Text Score. This enhancement can be attributed to the provision of
user-customized data, which alleviates the burden on LMMs to recognize textual and data information
within the charts. Notably, Cogvlm2-llama3-chat-19B and Qwen2-VL-2B experience a decrease in
there overall score and execution rate. This decline may arise from the reason that user-customized
data increases the burden on the models to process different modalities of information. Overall, except
for GPT-4o, the performance of the remaining LMMs is still below 65.0 in the Customized Mimic
task. This indicates that, in addition to the capability to recognize data in the chart, understanding the
layout of the chart and code generation are also key factors for LMMs to better accomplish the task.

4 DISCUSSION

4.1 DIFFERENT COMPLEXITY LEVELS

Easy Medium Hard
(a) Direct Mimic

20

40

60

80

100

O
ve

ra
ll

Sc
or

e

Easy Medium Hard
(b) Customized Mimic

GPT-4o
Claude-3-opus

GeminiProVision
InternVL2-Llama3-76B

InternVL2-26B
MiniCPM-Llama3-V2.5

Figure 3: Overall scores of top-6 performed
models at different complexity levels.

We report the performance of the top-6 models across
different complexity levels for ChartMimic in Fig. 3.
There is a consistent decline in performance across all
tasks as the difficulty increased. For example, in Di-
rect Mimic task, the performance of GPT-4o at easy,
medium, and hard levels are 86.5, 77.7, and 74.8,
respectively. These results demonstrate that Chart-
Mimic benchmark are inherently challenging and
confirms the efficacy of the established difficulty lev-
els. Additionally, for weak LMM such as MiniCPM-
Llama3-V-2.5, providing customized data at the Easy
Level can help it perform tasks better (from 46.8 to
59.7). However, at the Hard Level, even when given
customized data, their performance do not show im-
provement (from 31.9 to 31.5). This indicates that
for Easy Level, complex reasoning abilities are not

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 5: Results for different prompting methods for GPT-4o and different size of InternVL2 LMMs
on Direct Mimic task. The best scores for each model are in bold.

Model Params Method Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

GPT-4o -

Direct 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2
HintEnhanced 92.0 80.9 89.7 78.2 67.9 79.2 83.0 81.1
SelfReflection 95.2 86.6 93.7 81.1 68.2 82.4 87.1 84.8
Scaffold 91.0 81.3 90.6 75.1 63.9 77.7 80.3 79.0

InternVL2-Llama3-76B 76.0B

Direct 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5
HintEnhanced 78.0 54.3 71.7 50.2 41.6 54.5 60.3 57.4
SelfReflection 82.5 57.0 76.2 56.4 45.0 58.7 63.6 61.1
Scaffold 76.7 52.1 71.4 49.1 40.5 53.3 60.1 56.7

InternVL2-26B 26.0B

Direct 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
HintEnhanced 66.8 40.4 54.8 36.6 33.0 41.2 47.0 44.1
Self 69.0 39.5 57.5 35.6 30.5 40.8 47.1 43.9
Scaffold 64.3 36.0 53.5 35.4 30.3 38.8 44.0 41.4

InternVL2-8B 8.1B

Direct 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
HintEnhanced 58.7 30.1 38.3 30.1 27.5 31.5 35.9 33.7
SelfReflection 56.8 27.4 39.8 25.1 22.9 28.8 33.4 31.1
Scaffold 61.8 22.8 43.5 24.8 20.2 27.8 32.0 29.9

InternVL2-2B 2.1B

Direct 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
HintEnhanced 41.5 17.3 19.4 14.3 12.9 16.0 18.5 17.2
SelfReflection 35.5 16.3 22.2 12.8 14.8 16.5 17.3 16.9
Scaffold 38.0 6.5 17.8 3.2 2.2 7.4 15.6 11.5

required, and providing data is sufficient to complete the task well. However, for Hard Level charts,
LMMs need complex code generation capabilities grounded on visual understanding. In this case,
even when given data, if the LMMs cannot perform the corresponding code reasoning, they still
cannot complete the task. Moreover, when given addtional data, if the data is too long and complex,
the LLM may still become confused, leading to a certain decrease in performance.

4.2 DIFFERENT PROMPTING METHODS

We further examine the impact of different prompting methods on performance of ChartMimic
benchmark. Specifically, we choose the GPT-4o and InternVL2 series LMMs (2B, 8B, 26B, 76B)
to study their performance on the Direct Mimic task. We select three representative prompting
methods: HintEnhanced, SelfReflection, and Scaffold Prompting. HintEnhanced uses prompt with
chain-of-thought (Wei et al., 2022), explicitly prompting the LMMs to pay attention to important
details (e.g., layout, type, text, etc). SelfReflection (Shinn et al., 2024) involves inputting the LMMs’
own output and the corresponding rendered chart as additional information, instructing the LMM’
to self-reflect their output. Scaffold Prompting (Lei et al., 2024) overlays a dot matrix within the
figure as visual information anchors and leverages multi-dimensional coordinates as textual positional
references. We detail the experimental setups in Appendix E.

As shown in Tab. 5, SelfReflection enables GPT-4o and InternVL2-Llama3-76B to reflect on and
correct their outputs, demonstrating notable improvements over Direct Prompting. This underscore
self-reflection as a key manifestation of System 2 reasoning (Sloman, 1996; Kumar et al., 2024).
For GPT-4o, SelfReflection enhances Text, Layout, and Type Scores, though Color Score remains
unchanged due to persistent challenges in fine color discrimination. However, LMMs with less
developed reasoning capabilities (InternVL2-26B, 8B, and 2B) show no improvement or even decline
with SelfReflection. This indicates that only LMMs with substantial reasoning capabilities can
effectively engage in self-reflection and result optimization, underscoring the critical role of System
2 reasoning in addressing ChartMimic’s challenges. Regarding HintEnhanced and Scaffold methods,
they do not enhance the performance of models and reduce performance to varying degrees. Upon
examining the cases, we find that the HintEnhanced method, which involves generating captions
first, can introduce hallucinations that lead to errors in the subsequently generated code. As for
the Scaffold method, introduction of an additional dot matrix can interfere with existing coordinate
axis information in charts with high information density, thereby negatively impacting performance.
These negative effects intensify as LMMs’ reasoning capabilities decrease, further highlighting the
importance of advanced reasoning capabilities in handling complex prompting strategies. We provide
case studies of three prompting methods in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

12.2%
7.3%

80.5%

Dimension Parameter
Access

(a) Code

(3)

(5)

(33)

42.1%

38.9%

19.0%

Detail Missing
Extraneous

(b) Text

(59)

(131)

(121)

13.5%

45.3%

41.3%

Confusion Missing
Extraneous

(c) Type

(30)

(101)

(92)

33.1%

66.9%

Similar Different

(d) Color

(267)

(132)

Figure 4: Error analysis of GPT-4o across four error types on the Direct Mimic task. The number in
brackets indicates the count of error case. Error examples can be found in Appendix Appendix H.

4.3 CORRELATION WITH HUMAN EVALUATION

Table 6: Pearson correlation coefficient
between multi-level evaluation metric
and human evaluation.

Metric Coefficient p-value

High-Level 0.7041 < 0.0001
Low-Level 0.7681 < 0.0001

To evaluate the reliability of the proposed multi-level met-
rics, we calculate their correlation with human evaluations.
Specifically, we collect 1, 200 charts collected from GPT-
4o using four different prompting methods (Sec. 4.2) on
Direct Mimic. Each charts is evaluated by three individ-
ual evaluators, who assign scores ranging from 0 to 100
based on the similarity with the ground-truth chart. Details
about the human evaluation process are provided in Ap-
pendix F. As shown in Tab. 6, the Pearson correlation coefficient (r) indicates that both the high-level
(r = 0.7041) and low-level metric (r = 0.7681) have a high correlation with human judgment,
demonstrating the reliability of our multi-level metrics. Moreover, the low-level metric demonstrates
a higher correlation with human judgments compared to the high-level metric. This is attributed to its
dependence on code execution logic, enabling it to capture detailed elements.

4.4 ERROR ANALYSIS

We conduct a detailed error analysis of the state-of-the-art GPT-4o model to elucidate the current
limitations of LMMs on ChartMimic, thereby identifying potential areas for further improvement.
Our analysis identifies and category four main types of errors, detailed below.

Code-related Errors. (1) Dimension: Errors associated with data dimension, e.g., data dimension
does not satisfy required conditions for operations; (2) Access: Errors occurring when accessing
iterable elements out of bounds or accessing undeclared variables; (3) Parameter: Errors related to
passing incorrect parameters when invoking functions. As observed in Fig. 4 (a), the majority of
errors stem from Dimension, suggesting analysis and operation on data poses a challenge for GPT-4o.

Text-related Errors. (1) Detail: The text in the generated chart is largely consistent with the ground-
truth chart text but contains minor discrepancies, such as mixing up “-” and “_”; (2) Missing: The
generated chart omits text present in the ground-truth chart; (3) Extraneous: The generated chart
contains text not found in the ground-truth chart, e.g., adding text for titles, reflecting the model’s
own interpretation of the chart; As depicted in Fig. 4 (b), the majority of errors are Missing and
Extraneous, which indicates that for GPT-4o, due to intensive information in charts, it is challenging
for it to comprehend the whole scope of the charts, even the basic text recognition task.

Type-related Errors. (1) Confusion: GPT-4o misinterprets the chart type as one that appears or
functions similarly, such as mistaking violin plots for box plots, and so on; (2) Missing: The generated
chart omits chart types present in the ground-truth chart; (3) Extraneous: The generated chart includes
chart types not present in the ground-truth chart. As demonstrated in Fig. 4 (c), although GPT-4o
exhibits remarkable capability in object recognition for natural images, it still struggles with scientific
charts, which contain more nuanced semantic meanings through visual logic.

Color-related Errors. (1) Similar: The colors are not the same as the ground-truth colors but appear
analogous. (2) Different: The colors are entirely dissimilar to the ground-truth colors. As shown in
Fig. 4 (d), though GPT-4o can not exactly recognize the accurate colors, it can identify similar ones.

To sum up, GPT-4o still faces challenges in code generation and exhibits notable visual understanding
deficiencies on ChartMimic. It has difficulty accurately recognizing visual elements in figures or may
hallucinate incorrect elements and struggle with complex data analysis. Combining these insights,
there is a need for further improvement in both visual understanding and code generation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Large Multimodal Models. The proprietary LMMs such as GPT-4o (OpenAI, 2024), Gem-
ini (Google, 2023), and Claude-3 (Anthropic, 2024) have enabled complex multimodal interac-
tions. Similarly, emerging open-weight LMMs such as LLaVA (Xu et al., 2024; Li et al., 2024a),
InternVL (Chen et al., 2023), Qwen-VL (Bai et al., 2023), DeepSeek-VL (Lu et al., 2024) have
contributed to the community. Despite these advancements, the effective evaluation of LMMs remains
a major challenge. However, effectively evaluating LMMs remains a challenge, with open-source
models performing well in benchmarks (Xu et al., 2023; Liu et al., 2023; Masry et al., 2022; Chen
et al., 2024; Yue et al., 2023; Lu et al., 2023) yet falling short in practical applications (Xie et al.,
2024; Koh et al., 2024; Si et al., 2024). This gap emphasizes the need for real-world-based evaluations
that reflect authentic use cases. ChartMimic addresses this by requiring LMMs to translate complex
visual information into code, testing their visual and coding capabilities.

Code Generation. Tasks such as HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021),
APPS (Hendrycks et al., 2021), and DS-1000 (Lai et al., 2023) are important benchmarks in natural
language processing, but the inputs for these tasks are single-modal, consisting only of text, limiting
their scope. With the emergence of LMMs, the evaluation of multimodal code generation has become
increasingly critical for assessing real-world capabilities. On top of this, MMCode (Li et al., 2024b)
attempts to address this issue, but their visual inputs may be simplistic and face the problem of a
single evaluation method. Design2Code (Si et al., 2024) evaluate LMMs’ code generation abilities
through HTML web page generation. However, their test data comes from the C4 (Raffel et al., 2020)
dataset, which may pose a risk of data leakage. Meanwhile, they just imitate the HTML and do not
take the customized instructions; we take this into consideration. Recently, Plot2Code (Wu et al.,
2024a) undertakes work similar to ours, aiming to measure models’ code generation abilities through
chart-to-code generation. Similarly, their approach of directly scraping data from the matplotlib
gallery poses a risk of data leakage. Our ChartMimic provides a new set of manually curated 4, 800
data pairs, ensuring chart diversity and offering more fine-grained evaluation methods.

Chart Understanding. ChartMimic evaluates the capabilities of LMMs in grounding chart under-
standing into code generation, bridging visual and programmatic domains. Previous works focus
on chart question answering (Masry et al., 2022; Methani et al., 2020; Xu et al., 2023; Wang et al.,
2024b; Li et al., 2024c) and chart captioning (Rahman et al., 2023; Kantharaj et al., 2022). They
assess the LMMs’ ability to understand specific data characteristics or summarize key information
into text. ChartMimic advances the field by introducing a chart-to-code task, transforming the
LMMs’ understanding of charts into code, which is neglected before but a realistic scenario for
practical, real-world usage. This approach enables a comprehensive evaluation of the LMMs’ overall
comprehension of charts and their ability to express this understanding in code form. Leveraging the
linguistic properties of code, our benchmark introduces fine-grained metrics to assess LMMs’ chart
understanding capabilities across multiple dimensions, including text, chart type, layout and color.

6 CONCLUSIONS

In this study, we develop the ChartMimic benchmark to evaluate LMMs’ proficiency capability
via chart-to-code generation. ChartMimic focuses on real-world applications for data visualization,
aiming to assess LMMs’ ability to harmonize a blend of cognitive capabilities, including visual
understanding, code generation, and cross-modal reasoning. We propose two distinct levels of
evaluation metrics (low and high level) to provide a comprehensive assessment. ChartMimic directly
contributes to the understanding of progress towards artificial general intelligence, reflecting the
expertise and reasoning abilities expected of skilled adults in various professional fields. Despite
its comprehensive nature, ChartMimic, like any benchmark, has limitations. The manual curation
process, although thorough, may introduce biases. Additionally, using scientific charts as information-
intensive visual inputs to measure LMMs’ multimodal code generation capabilities, while effective,
still encounters domain-specific challenges. Our evaluation metric, despite considering most elements’
similarity, does not uniformly score details of sub-icons, such as markers. We anticipate that
ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general
intelligence. Future research could explore various aspects, such as multimodal reasoning prompt
strategies, to further reduce the gap between open-weight LMMs and proprietary ones.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

New models added to the phi-3 family, available on microsoft azure,
May 2024. URL https://azure.microsoft.com/en-us/blog/
new-models-added-to-the-phi-3-family-available-on-microsoft-azure/.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Anthropic. Introducing the next generation of claude. 2024. URL https://www.anthropic.
com/news/claude-3-family.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Hannah K Bako, Xinyi Liu, Leilani Battle, and Zhicheng Liu. Understanding how designers find and
use data visualization examples. IEEE Transactions on Visualization and Computer Graphics, 29
(1):1048–1058, 2022.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint
arXiv:2312.14238, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Stephanie DH Evergreen. Effective data visualization: The right chart for the right data. SAGE
publications, 2019.

Li Fan, Lee Ching-Hung, Han Su, Feng Shanshan, Jiang Zhuoxuan, and Sun Zhu. A new era in
human factors engineering: A survey of the applications and prospects of large multimodal models.
arXiv preprint arXiv:2405.13426, 2024.

Google. Gemini: A family of highly capable multimodal models. ArXiv, abs/2312.11805, 2023. URL
https://api.semanticscholar.org/CorpusID:266361876.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang
Zhang. Chartllama: A multimodal llm for chart understanding and generation. arXiv preprint
arXiv:2311.16483, 2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

11

https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://azure.microsoft.com/en-us/blog/new-models-added-to-the-phi-3-family-available-on-microsoft-azure/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://api.semanticscholar.org/CorpusID:266361876

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shankar Kantharaj, Rixie Tiffany Ko Leong, Xiang Lin, et al. Chart-to-text: A large-scale benchmark
for chart summarization. arXiv preprint arXiv:2203.06486, 2022.

Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham
Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating
multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649, 2024.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science
code generation. In International Conference on Machine Learning, pp. 18319–18345. PMLR,
2023.

Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building
vision-language models?, 2024.

Xuanyu Lei, Zonghan Yang, Xinrui Chen, Peng Li, and Yang Liu. Scaffolding coordinates to promote
vision-language coordination in large multi-modal models. arXiv preprint arXiv:2402.12058,
2024.

Bo Li, Kaichen Zhang, Hao Zhang, Dong Guo, Renrui Zhang, Feng Li, Yuanhan Zhang,
Ziwei Liu, and Chunyuan Li. Llava-next: Stronger llms supercharge multimodal ca-
pabilities in the wild, May 2024a. URL https://llava-vl.github.io/blog/
2024-05-10-llava-next-stronger-llms/.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-
modal code large language models with visually rich programming problems. arXiv preprint
arXiv:2404.09486, 2024b.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Zekun Li, Xianjun Yang, Kyuri Choi, Wanrong Zhu, Ryan Hsieh, HyeonJung Kim, Jin Hyuk Lim,
Sungyoung Ji, Byungju Lee, Xifeng Yan, et al. Mmsci: A multimodal multi-discipline dataset for
phd-level scientific comprehension. arXiv preprint arXiv:2407.04903, 2024c.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player?
arXiv preprint arXiv:2307.06281, 2023.

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren,
Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, and Chong Ruan. Deepseek-vl:
Towards real-world vision-language understanding, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

M Ronnier Luo, Guihua Cui, and Bryan Rigg. The development of the cie 2000 colour-difference
formula: Ciede2000. Color Research & Application: Endorsed by Inter-Society Color Council,
The Colour Group (Great Britain), Canadian Society for Color, Color Science Association of
Japan, Dutch Society for the Study of Color, The Swedish Colour Centre Foundation, Colour
Society of Australia, Centre Français de la Couleur, 26(5):340–350, 2001.

12

https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://llava-vl.github.io/blog/2024-05-10-llava-next-stronger-llms/
https://github.com/tatsu-lab/alpaca_eval

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Fanqing Meng, Wenqi Shao, Quanfeng Lu, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
Chartassisstant: A universal chart multimodal language model via chart-to-table pre-training and
multitask instruction tuning. arXiv preprint arXiv:2401.02384, 2024.

Nitesh Methani, Pritha Ganguly, Mitesh M Khapra, and Pratyush Kumar. Plotqa: Reasoning over
scientific plots. In CVPR, pp. 1527–1536, 2020.

OpenAI. Gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o. Accessed:
2024-05-13.

OpenCompass. Opencompass: A universal evaluation platform for foundation models. https:
//github.com/open-compass/opencompass, 2023.

Paul Parsons. Understanding data visualization design practice. IEEE Transactions on Visualization
and Computer Graphics, 28(1):665–675, 2021.

Jorge Poco and Jeffrey Heer. Reverse-engineering visualizations: Recovering visual encodings from
chart images. In Computer graphics forum, volume 36, pp. 353–363. Wiley Online Library, 2017.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. Making data visualization more efficient and
effective: a survey. The VLDB Journal, 29(1):93–117, 2020.

Annemarie Quispel, Alfons Maes, and Joost Schilperoord. Aesthetics and clarity in information
visualization: The designer’s perspective. In Arts, volume 7, pp. 72. MDPI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Raian Rahman, Rizvi Hasan, Abdullah Al Farhad, et al. Chartsumm: A comprehensive benchmark
for automatic chart summarization of long and short summaries. arXiv preprint arXiv:2304.13620,
2023.

Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei, Maneesh Agrawala, and Jeffrey Heer.
Revision: Automated classification, analysis and redesign of chart images. In Proceedings of the
24th annual ACM symposium on User interface software and technology, pp. 393–402, 2011.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far are
we from automating front-end engineering? arXiv preprint arXiv:2403.03163, 2024.

Steven A Sloman. The empirical case for two systems of reasoning. Psychological bulletin, 119(1):3,
1996.

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al. A survey of neural code intelligence: Paradigms,
advances and beyond. arXiv preprint arXiv:2403.14734, 2024.

13

https://openai.com/index/hello-gpt-4o
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng
Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-vl: Enhancing vision-language model’s
perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogvlm: Visual expert for pretrained language models, 2023a.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Chandu, David
Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al. How far can camels go? exploring
the state of instruction tuning on open resources. Advances in Neural Information Processing
Systems, 36:74764–74786, 2023b.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, et al. Charxiv: Charting gaps in realistic chart understanding in
multimodal llms. arXiv preprint arXiv:2406.18521, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots. arXiv preprint arXiv:2405.07990, 2024a.

Tianhe Wu, Kede Ma, Jie Liang, Yujiu Yang, and Lei Zhang. A comprehensive study of multimodal
large language models for image quality assessment. arXiv preprint arXiv:2403.10854, 2024b.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing
Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal
agents for open-ended tasks in real computer environments. arXiv preprint arXiv:2404.07972,
2024.

Ruyi Xu, Yuan Yao, Zonghao Guo, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan Liu,
and Gao Huang. LLaVA-UHD: an lmm perceiving any aspect ratio and high-resolution images.
arXiv preprint arXiv:2403.11703, 2024.

Zhengzhuo Xu, Sinan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. Chartbench: A
benchmark for complex visual reasoning in charts. arXiv preprint arXiv:2312.15915, 2023.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing
Tan, Pengyuan Liu, Dong Yu, et al. Matplotagent: Method and evaluation for llm-based agentic
scientific data visualization. arXiv preprint arXiv:2402.11453, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Xinlu Zhang, Yujie Lu, Weizhi Wang, An Yan, Jun Yan, Lianke Qin, Heng Wang, Xifeng Yan,
William Yang Wang, and Linda Ruth Petzold. Gpt-4v (ision) as a generalist evaluator for vision-
language tasks. arXiv preprint arXiv:2311.01361, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Zheng Zhu, Xiaofeng Wang, Wangbo Zhao, Chen Min, Nianchen Deng, Min Dou, Yuqi Wang, Botian
Shi, Kai Wang, Chi Zhang, et al. Is sora a world simulator? a comprehensive survey on general
world models and beyond. arXiv preprint arXiv:2405.03520, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A Data Annotation 16

A.1 Data Annotation Principles . 16

A.2 Data Annotation Pipeline . 16

A.3 Complexity Levels . 18

A.4 Instruction Examples . 19

B Correlation Between Test Set and Testmini set 23

C Chart Taxonomy 24

D Details of Evaluation Metrics 33

D.1 GPT-4o Score . 33

D.2 Text Score . 38

D.3 Layout Score . 38

D.4 Type Score . 39

D.5 Color Score . 39

E Model Configurations and Prompting Methods 41

E.1 Generation Configurations . 41

E.2 Prompts . 41

E.3 Cases of Different Prompting Methods . 44

E.4 Details of Models . 48

F Correlation with Human Evaluation 48

G Correlation with Chart Understanding and Code Generation 50

H Cases of Error Analysis 51

I Error Analysis of Open-Weight Models 54

J Ethics, Societal Impact and Scalability of ChartMimic 55

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DATA ANNOTATION

A.1 DATA ANNOTATION PRINCIPLES

Diversity of Chart Types. Data visualization has become an essential tool for conveying informa-
tion in various fields, and the design practices and requirements for different types of charts vary
significantly(Parsons, 2021). Most of previous work (Han et al., 2023; Xu et al., 2023; Masry et al.,
2022; Kantharaj et al., 2022; Rahman et al., 2023) focus only on line, bar, pie charts, etc, which are
commonly used within the field of computer science. However, with the increasing integration of
LMMs into everyday tasks, people from all fields are starting to use generative techniques as daily
assistants to enhance their design and creative processes when creating visualizations. In this light,
enriching the spectrum of chart diversity is crucial for evaluating LMMs’ proficiency in multimodal
chart-to-code generation.

Balance of Charts Complexity. Charts serve as visual aids for data presentation, enabling users to
promptly grasp the underlying patterns and significance within the data. It is essential to adopt the
appropriate chart type and complexity level to effectively convey the information (Evergreen, 2019).
Previous works have focused mainly on charts with only a single data format and low information
density, which are rarely encountered in practical settings such as academic writing. Noting that
LMMs like GPT-4o have already demonstrated outstanding data visualization capabilities, our focus
is on using charts that are actually employed in practice, such as those from research papers, and on
selecting charts with varying levels of complexity when constructing our benchmark.

Reduction of Data Leakage. Recognizing that augmenting training data is a primary method
for enhancing the performance of LMMs has led researchers to more comprehensively exploit all
accessible data during pre-training. However, this approach introduces the possibility of data leakage,
especially when pre-training data might already include resources such as the matplotlib gallery2

or other pre-existing datasets, potentially resulting in inaccurate evaluations. To mitigate this issue,
we deliberately avoid the use of code that can be readily found online or code that could be auto-
generated by large language models for chart creation in constructing our dataset, thereby reducing
the probability of data leakage. To further illustrate the potential data leakage in matplotlib gallery,
we select the code for 20 charts from the matplotlib gallery. Specifically, we provide the first half
of the code as a prefix for Llama3-8B (AI@Meta, 2024) and let the model complete the remaining
code. Then we calculate the edit distance between the generated complete code block and the ground
truth. Similarly, we apply the same process to the code in Direct Mimic, calculating the edit distance
between the generated results and the ground truth. We find that the edit distance for the code in the
matplotlib gallery is 22.1, while the edit distance for Direct Mimic’s code is 39.8. This indicates that
the code in Direct Mimic have a larger edit distance, which further reduces the risk of data leakage
compared to the matplotlib gallery ones.

Integration of Authentic User Requirements. Users from diverse domains such as finance, health-
care, education, and engineering demonstrate unique needs and preferences for data visualization.
These requirements extend beyond mere diversity; they demand the incorporation of charts capable
of articulating complex and multi-dimensional data, and conforming to domain-specific aesthetic
preferences(Qin et al., 2020; Evergreen, 2019). By aligning our dataset construction process with
these real-world demands, we enable a more relevant and precise evaluation of LMMs. Adopting this
approach not only reflects actual user patterns but also steers the research community in the iterative
improvement of LMMs. This focused development will also lead to an enhanced user experience and
increased user satisfaction, as the models become more proficient in meeting the sophisticated and
varied needs of users.

A.2 DATA ANNOTATION PIPELINE

We present the detailed description about the five-step data annotation pipeline in this section. Fig. 5
demonstrates an illustration of the data annotation pipeline.

General Filtering. To obtain a high-quality dataset aligned with real-world use cases and to avoid
data leakage, we initially scrape figures from source files of publications on arXiv3 that hold a CC BY

2https://matplotlib.org/
3https://arxiv.org/

16

https://matplotlib.org/
https://arxiv.org/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Data AugmentationCode and Instruction Writing
Manual Selection

and Filling

Select

Diversity and Information
Density Filtering

General Filtering

Filter CustomizeFilter

Figure 5: An illustration of the data annotation pipeline, which encompasses five key steps.

4.0 license and have a publication date after February 2024. We then extract figures in PDF format,
yielding approximately 174,100 figures across various domains (such as Physics, Mathematics,
Computer Science, Quantitative Biology, Quantitative Finance, Statistics, Electrical Engineering and
Systems Science, Economics). We filter these figures based on file format and generation method,
retaining only Matplotlib-generated PDFs, indicating that these figures can be reproduced using
Python. This process results in a refined collection of 15,800 figures.

Diversity and Information Density Filtering. This stage involves a two-phase process conducted
by five domain experts from information visualization, digital media, industrial design, visual
communication design, and computer science. The information visualization expert has three years
of research experience in scientific visualization and visual analytics. The digital media specialist
focuses on human-computer interaction and multimedia design. The industrial design expert brings
perspectives from user experience and product visualization. The visual communication design expert
specializes in graphic design principles and information aesthetics. The computer science expert has
extensive experience in data visualization programming and scientific computing.

In the first phase, these experts conduct a 7-day manual review of the 15,800 figures, focusing on
visual diversity and information communication effectiveness. They reference the Matplotlib gallery,
gradually identifying and finalizing chart type while reviewing the figures, and build corresponding
type pools. For each new figure, they assess its visual elements—such as layout, axes, line styles,
marker styles, and colors—against existing figures in their corresponding type pool. If the figure as
long as exhibits a distinctive difference in at least one of these aspects, it is retained; otherwise, it is
excluded. This process results in 1,295 figures being selected for the second phase.

In the second phase, these experts independently review the 1,295 figures and further select those
figures they deem to exhibit significant distinctions and diversity. Figures selected unanimously by all
experts are directly included, while the remaining figures are subjected to a majority voting system
requiring at least 3/5 votes for inclusion. This rigorous process, which takes less than 3 days to
complete, results in a final set of 279 figures.

Manual Selection and Filling. In addition to sourcing from arXiv, we curate chart figures from
diverse platforms such as the matplotlib gallery, Stack Overflow, and plotting-related forums on
Twitter and Reddit. These charts are deliberately chosen for their distinctive styles, which are not
present in our arXiv dataset. Consequently, we obtain 600 prototype charts for ChartMimic. This
stage took us less than a week to complete the data selection.

Code and Instruction Writing. We propose to manually write codes and instructions for ChartMimic
based on the collected 600 prototype charts. To ensure annotation quality, a team of skilled Python
users—Python annotators—master’s students in computer science with 6+ years of Python and
matplotlib experience—reproduce 600 prototype charts using Python 3.9.0 and matplotlib v3.8.4.
Since the unannotated data in the figures cannot be fully restored, they can only be approximated
when writing the code. This process generates 600 (figure, code, instruction) triplets for the Direct
Mimic task and another 600 triplets for the Customized Mimic task by integrating data from various
domains into the corresponding code and instructions, comprising 1,200 high-quality seed data.

Data Augmentation. After developing the seed triplets, we proceed with a manual data augmentation
process. Python Annotators modify various elements of each seed triplet, including data, color
schemes, and mark styles, to create augmented triplets. For each seed triplet, we generate three
additional augmented triplets. This process enhances our dataset, resulting in a total of 4, 800 triplets.
The "Code and Instruction Writing" and "Data Augmentation" stages together take the data annotators
approximately 1.5 months to complete.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.3 COMPLEXITY LEVELS

1 2 3 4 5 6 7 8 9 10
Top-10 superfamilies in training dataset

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(a) Easy: bar_8

Type Span T&S Spurious Total
0

20

40

60

80

100
GENIA

Manual Mapping
LLM-revision

LLM-revision w/CoT
VerifNER

Type Span T&S Spurious Total
0

20

40

60

80

100
BC5CDR

Er
ro

r c
or

re
ct

io
n

ra
te

 (%
)

(b) Medium: bar_9

60 40 20 0 20 40 60

Benefits

Reliability

Security

Privacy

14.8%

9.4%

8.3%

24.1%

29.6%

24.1%

14.8%

29.6%

29.6%

40.7%

40.7%

20.4%

18.5%

27.8%

33.3%

16.7%

8.4%

9.0%

9.3%

9.3%

Eye Movement

60 40 20 0 20 40 60

Benefits

Reliability

Security

Privacy

19.0%

9.5%

12.0%

11.9%

26.2%

26.2%

14.3%

19.0%

35.7%

45.2%

38.1%

33.3%

9.5%

23.8%

38.1%

14.3%

9.5%

14.0%

9.5%

21.4%

Brainwave

Strong Disagree Disagree Neutral Agree Strong Agree

(c) Hard: bar_21

Figure 6: Representative examples of chart complexity in ChartMimic (Easy, Medium, Hard).

Our complexity assessment framework is established upon two fundamental criteria, designed to
comprehensively evaluate both the visual and technical aspects of chart generation:

Visual Elements Complexity We systematically evaluate the sophistication of each chart through a
comprehensive scoring mechanism applied to its constituent visual components. This encompasses the
chart typology, data grouping structures, marker configurations, textual elements, chromatic schemes,
compositional layouts, and coordinate systems. Each visual component is quantitatively assessed
based on both its frequency and sophistication level (designated as 1-3 points for low/medium/high
complexity, respectively). This multi-dimensional scoring approach ensures a thorough evaluation of
the visual complexity inherent in each chart.

Implementation Complexity We incorporate code complexity as a quantitative metric, measured
primarily through code length and structural intricacy. This parameter effectively captures the
technical sophistication required for accurate chart reproduction, including the complexity of data
preprocessing, visualization logic, and stylistic customizations. The implementation complexity
provides insights into the programming challenges associated with each chart type.

Consequently, charts in ChartMimic are systematically categorized into three distinct complexity
levels, each representing a specific combination of visual and implementation challenges:

Easy: Fundamental chart configurations featuring minimal visual complexity and straightforward
implementation requirements (e.g., in Fig. 6(a), monochromatic bar charts with sparse textual
elements and simplified data representation).

Medium: Charts exhibiting intermediate complexity in visual element composition or implementation
requirements (e.g., in Fig. 6(b), dual-subplot bar charts incorporating grouped data structures, diverse
chromatic schemes, and moderate textual annotations).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Hard: Charts demonstrating sophisticated visual elements or advanced implementation (e.g., in
Fig. 6(c), complex dual-subplot bar charts featuring divergent data patterns, extensive color schemes,
comprehensive textual annotations, and substantial code complexity).

A.4 INSTRUCTION EXAMPLES

To illustrate our instruction format and task requirements, we present examples (bar_28 and CB_29)
with their corresponding (figure, instruction, code) triplets for both Direct Mimic and Customized
Mimic tasks. Fig. 7 and Fig. 8 show the Direct Mimic and Customized Mimic tasks for a bar chart
(bar_28), respectively. The instruction provides guidance on creating the visualization. Similarly,
Fig. 9 and Fig. 10 demonstrate the tasks for a more complex combination chart (CB_29).

Task 1: Direct Mimic - bar_28
Instruction

You are an expert Python developer who specializes in writing matplotlib code based on a given picture. I found a very nice picture in
a STEM paper, but there is no corresponding source code available. I need your help to generate the Python code that can reproduce
the picture based on the picture I provide.

Note that it is necessary to use figsize=(6, 5) to set the image size to match the original size.

Now, please give me the matplotlib code that reproduces the picture below.

Figure

Code
===================

Part 1: Importing Libraries

===================

import matplotlib.pyplot as plt

import numpy as np

===================

Part 2: Data Preparation

===================

Data

datasets = ["VOC 2012", "COCO
2017"]

jpeg = [3.1, 1.5]

deepjscc = [1.5, 2.5]

ours = [0.5, 1.0]

X-axis positions

x = np.arange(len(datasets))

Bar width

width = 0.2

labels = ["JPEG", "DEEPJSCC w/
ofdm", "OURS"]

ylim = [0, 4.3]

ylabel = "Transmission Delay (ms)"

xlabel = "Datasets"

1/3 # ===================

Part 3: Plot Configuration and
Rendering

===================

Plotting

fig, ax = plt.subplots(figsize=(6,
5))

Adjusting figure size to match
the original image's dimensions

ax.bar(x - width, jpeg, width,
label=labels[0], hatch="//",
edgecolor="black", color="white")

ax.bar(

 x,

 deepjscc,

 width,

 label=labels[1],

 hatch="..",

 edgecolor="black",

 color="white",

)

ax.bar(x + width, ours, width,
label=labels[2], hatch="xx",
edgecolor="black", color="white")

2/3 # Labels and Title

ax.set_ylim(ylim)

ax.set_ylabel(ylabel)

ax.set_xlabel(xlabel)

ax.set_xticks(x)

ax.set_xticklabels(datasets)

ax.legend(loc="upper left")

===================

Part 4: Saving Output

===================

plt.tight_layout()

plt.savefig("bar_28.pdf",bbox_inch
es="tight")

3/3

Ground-truth Figure

(Rendered from Code)

Figure 7: An Example of the Direct Mimic task (bar_28), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Task 2: Customized Mimic - bar_28
Instruction

There is a reference image for you and I also have a set of data about fuel efficiency of different types of transport in urban and rural
areas. Please refer to the reference image and generate Python matplotlib code that can create a chart that exactly mirrors the style of
the reference image and accurately represents my data.

datasets = ["Urban Transport", "Rural Transport"]

electric = [2.7, 3.4]

hybrid = [1.9, 2.1]

diesel = [3.5, 2.8]

X-axis positions

x = np.arange(len(datasets))

Bar width

width = 0.2

labels = ["Electric", "Hybrid", "Diesel"]

ylim = [0, 4.5]

ylabel = "Fuel Efficiency (km/l)"

xlabel = "Transport Types"

Now, please output the Python matplotlib code that can create a chart that exactly mirrors the style of the reference image and
accurately represents my data.

Note: You must copy the data I provide completely into your code, and ensure that the code you generate contains the data and is
directly executable.

Note that it is necessary to use figsize=(6, 5) to set the image size.

Figure

Code
===================

Part 1: Importing Libraries

===================

import matplotlib.pyplot as plt

import numpy as np;

===================

Part 2: Data Preparation

===================

datasets = ["Urban Transport",
"Rural Transport"]

electric = [2.7, 3.4]

hybrid = [1.9, 2.1]

diesel = [3.5, 2.8]

X-axis positions

x = np.arange(len(datasets))

Bar width

width = 0.2

labels = ["Electric", "Hybrid",
"Diesel"]

ylim = [0, 4.5]

ylabel = "Fuel Efficiency (km/l)"

xlabel = "Transport Types"

1/3 # ===================

Part 3: Plot Configuration and
Rendering

===================

Plotting

fig, ax = plt.subplots(figsize=(6,
5))

Adjusting figure size to match
the original image's dimensions

ax.bar(x - width, electric, width,
label=labels[0], hatch="//",
edgecolor="black", color="white")

ax.bar(

 x,

 hybrid,

 width,

 label=labels[1],

 hatch="..",

 edgecolor="black",

 color="white",

)

ax.bar(

 x + width, diesel, width,
label=labels[2], hatch="xx",
edgecolor="black", color="white"

)

2/3 # Labels and Title

ax.set_ylim(ylim)

ax.set_ylabel(ylabel)

ax.set_xlabel(xlabel)

ax.set_xticks(x)

ax.set_xticklabels(datasets)

ax.legend(loc="upper left")

===================

Part 4: Saving Output

===================

plt.tight_layout()

plt.savefig('bar_28.pdf',
bbox_inches='tight')

3/3

Ground-truth Figure

(Rendered from Code)

Figure 8: An Example of the Customized Mimic task (bar_28), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Task 1: Direct Mimic - CB_29
Instruction

You are an expert Python developer who specializes in writing matplotlib code based on a given picture. I found a very nice
picture in a STEM paper, but there is no corresponding source code available. I need your help to generate the Python code
that can reproduce the picture based on the picture I provide.

Note that it is necessary to use figsize=(10, 5) to set the image size to match the original size.

Now, please give me the matplotlib code that reproduces the picture below.

Figure

Code
===================

Part 1: Importing Libraries

===================

import matplotlib.pyplot as plt

import numpy as np

===================

Part 2: Data Preparation

===================

Technology fields

tech_fields = [

 "AI",

 "Blockchain",

 "Cloud Computing",

 "IoT",

 "Robotics",

 "Biotech",

 "VR",

 "Cybersecurity",

 "Quantum Computing",

 "Nanotechnology",

]

Patent filings in 2013

patents_2013 = [120, 50, 80, 90,
70, 60, 30, 40, 10, 20]

Patent filings in 2022

patents_2022 = [500, 200, 300,
400, 250, 180, 100, 150, 50, 90]

x_label = "Number of Patents"

y_label = "Technology Field"

ax1_title = "Patent Filings in
2013"

ax2_title = "Patent Filings in
2022"

1/3 # ===================

Part 3: Plot Configuration and
Rendering

===================

Create a figure with two
subplots (1x2) and shared y-axis

fig, axes = plt.subplots(1, 2,
figsize=(10, 5), sharey=True)

colors = ["skyblue", "salmon"]

Plotting the bar graphs

for i, (patents, color) in
enumerate(zip([patents_2013,
patents_2022], colors)):

 axes[i].barh(tech_fields,
patents, color=color,
edgecolor="gray")

 axes[i].set_xlabel(x_label)

 # Adding line graph on the
same axes

 axes[i].plot(patents,
tech_fields, "o-",
color="#f7b267")

Adding data labels

for ax, patents in zip(axes,
[patents_2013, patents_2022]):

 for index, value in
enumerate(patents):

 ax.text(value + 1, index,
f" {value}", va="center")

Set labels and titles

axes[0].set_title(ax1_title)

axes[1].set_title(ax2_title)

axes[0].set_ylabel(y_label)

2/3 # ===================

Part 4: Saving Output

===================

Adjust layout to prevent
clipping and overlap

plt.tight_layout()

plt.savefig("CB_29.pdf",
bbox_inches="tight")

3/3

Ground-truth Figure

(Rendered from Code)

Figure 9: An Example of the Direct Mimic task (CB_29), showing the (figure, instruction, code)
triplet. Additionally, we also display the ground truth figure rendered from the code for illustration.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Task 2: Customized Mimic - CB_29
Instruction

There is a reference image for you and I also have a set of data about the number of registered vehicles for different
transportation modes in 2013 and 2022. Please refer to the reference image and generate Python matplotlib code that can
create a chart that exactly mirrors the style of the reference image and accurately represents my data.

Transportation modes

transport_modes = [

 "Automobiles",

 "Bicycles",

 "Buses",

 "Trains",

 "Planes",

 "Ships",

 "Motorcycles",

 "Scooters",

 "Trams",

 "Helicopters",

]

Number of registered vehicles in 2013 (in thousands)

vehicles_2013 = [50000, 10000, 15000, 20000, 8000, 3000, 7000, 5000, 2000, 1000]

Number of registered vehicles in 2022 (in thousands)

vehicles_2022 = [55000, 12000, 16000, 22000, 9000, 3500, 7500, 6000, 2500, 1200]

x_label = "Number of Registered Vehicles (in thousands)"

y_label = "Transportation Mode"

ax1_title = "Registered Vehicles in 2013"

ax2_title = "Registered Vehicles in 2022"

Now, please output the Python matplotlib code that can create a chart that exactly mirrors the style of the reference image
and accurately represents my data.

Note: You must copy the data I provide completely into your code, and ensure that the code you generate contains the data
and is directly executable.

Note that it is necessary to use figsize=(10, 5) to set the image size.

Figure

Code
===================

Part 1: Importing Libraries

===================

import matplotlib.pyplot as plt

import numpy as np;
np.random.seed(0);
np.random.seed(0)

===================

Part 2: Data Preparation

===================

Transportation modes

transport_modes = [

 "Automobiles",

 "Bicycles",

 "Buses",

 "Trains",

 "Planes",

 "Ships",

 "Motorcycles",

 "Scooters",

 "Trams",

 "Helicopters",

]

Number of registered vehicles in
2013 (in thousands)

vehicles_2013 = [50000, 10000,
15000, 20000, 8000, 3000, 7000,
5000, 2000, 1000]

Number of registered vehicles in
2022 (in thousands)

vehicles_2022 = [55000, 12000,
16000, 22000, 9000, 3500, 7500,
6000, 2500, 1200]

1/3 x_label = "Number of Registered
Vehicles (in thousands)"

y_label = "Transportation Mode"

ax1_title = "Registered Vehicles
in 2013"

ax2_title = "Registered Vehicles
in 2022"

===================

Part 3: Plot Configuration and
Rendering

===================

Create a figure with two
subplots (1x2) and shared y-axis

fig, axes = plt.subplots(1, 2,
figsize=(10, 5), sharey=True)

colors = ["skyblue", "salmon"]

Plotting the bar graphs

for i, (vehicles, color) in
enumerate(zip([vehicles_2013,
vehicles_2022], colors)):

 axes[i].barh(transport_modes,
vehicles, color=color,
edgecolor="gray")

 axes[i].set_xlabel(x_label)

 # Adding line graph on the
same axes

 axes[i].plot(vehicles,
transport_modes, "o-",
color="#f7b267")

2/3 # Adding data labels

for ax, vehicles in zip(axes,
[vehicles_2013, vehicles_2022]):

 for index, value in
enumerate(vehicles):

 ax.text(value + 50, index,
f" {value}", va="center")

Set labels and titles

axes[0].set_title(ax1_title)

axes[1].set_title(ax2_title)

axes[0].set_ylabel(y_label)

===================

Part 4: Saving Output

===================

Adjust layout to prevent
clipping and overlap

plt.tight_layout()

plt.savefig('CB_29.pdf',
bbox_inches='tight')

3/3

Ground-truth Figure

(Rendered from Code)

Figure 10: An Example of the Customized Mimic task (CB_29), showing the (figure, instruction,
code) triplet. Additionally, we also display the ground truth figure rendered from the code for
illustration.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: The ChartMimic benchmark with Direct Mimic task. We report the results of both Testmini
and Test set.

Model Params Test set Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GPT-4o - Testmini 93.2 81.5 89.8 77.3 67.2 79.0 83.5 81.2
Test 93.0 83.4 90.2 76.7 66.0 79.1 84.1 81.6

Open-Weight

InternVL2-2B 2.2B Testmini 52.5 23.6 35.8 16.0 15.4 22.7 24.2 23.5
Test 51.8 23.3 34.8 15.9 15.9 22.5 25.6 24.0

InternVL2-8B 8.1B Testmini 61.8 31.5 51.1 28.6 26.2 34.4 38.9 36.6
Test 61.6 33.4 47.4 25.7 24.2 32.7 39.9 36.3

InternVL2-26B 26.0B Testmini 69.3 39.2 58.7 35.9 31.8 41.4 47.4 44.4
Test 69.9 41.7 58.0 35.6 31.0 41.6 48.1 44.9

InternVL2-Llama3-76B 76.0B Testmini 83.2 54.1 74.5 49.2 41.5 54.8 62.2 58.5
Test 83.3 55.6 73.5 50.4 40.8 55.1 62.7 58.9

Table 8: The ChartMimic benchmark with Customized Mimic task. We report the results of both
Testmini and Test set.

Model Params Test set Exec.
Rate

Low-Level High-Level
Overall

Text Layout Type Color Avg. GPT-4o

Proprietary

GPT-4o - Testmini 96.5 88.5 92.9 79.2 67.6 82.1 84.3 83.2
Test 96.2 87.2 91.7 80.1 66.4 81.4 84.8 83.1

Open-Weight

InternVL2-2B 2.2B Testmini 49.3 22.2 35.4 20.0 18.1 23.9 27.8 25.9
Test 49.6 22.4 33.9 19.2 19.6 23.8 28.4 26.1

InternVL2-8B 8.1B Testmini 73.0 43.1 54.4 39.9 35.4 43.2 48.9 46.1
Test 73.5 43.7 54.1 41.1 34.1 43.3 49.8 46.5

InternVL2-26B 26.0B Testmini 73.7 43.9 62.3 43.5 34.3 46.0 51.1 48.6
Test 74.7 44.7 66.3 46.8 35.1 48.2 50.8 49.5

InternVL2-Llama3-76B 76.0B Testmini 89.8 57.8 79.0 63.5 50.5 62.7 66.7 64.7
Test 88.1 57.9 79.6 65.6 51.7 63.7 68.2 66.0

B CORRELATION BETWEEN TEST SET AND TESTMINI SET

Tab. 7 and 8 reports the performance of GPT-4o and InternVL2 series LMMs (2B, 8B, 26B, Llama3-
76B) on Direct Mimic and Customized Mimic task. The minor differences between scores on the test
subset and the testmini subset suggest that testmini effectively mirrors the test subset, serving as a
valuable evaluation subset for model development, especially for those who have limited computing
resources.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C CHART TAXONOMY

This section presents the chart taxonomy in ChartMimic. It encompasses a structure of 22 categories
according to chart type characteristics and data composition. The categories comprise of:

• 18 regular types, ordered as follows: Bar, Heatmap, Scatter, Box, Errorbar, Errorpoint, Line,
Violin, Radar, Pie, Density, Graph, Quiver, Contour, Histogram, Tree, Area, and 3D charts.

• 4 advanced types: PIP (Plot-in-Plot), Multidiff (Multiple Differences), Combination, and
HR (Hard-to-Recognize).

The regular types are further divided into subcategories according to chart feature or data charac-
teristics, whereas each chart of the advanced types represents a unique subcategory. The taxonomy
showcases examples to showcase diversity of each category.

Bar: Bar chart uses rectangular bars to represent data and can be distinguished by its ori-
entation, horizontal or vertical, with its nuanced data attributes. There are 8 subcategories
of the data attributes for each orientation, consisting of 16 subcategories in total, as shown

in Figure 11:

1. Base (single positive data set, unordered)

2. Sorted (data in ascending or descending sequence)

3. Grouped (multiple positive data sets, adjacent)

4. Stacked (multiple positive data sets laying atop one another)

5. Normalized (proportioned stacks of positive data summing to one, a Stacked variant)

6. Diverging (multiple stacked data sets expanding from a central axis)

7. With-Negative (data sets including negative values)

8. Reverse (exclusively negative data sets)

Figure 11: Examples of Bar chart subcategories.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Heatmap: Based on the layout and visual representations, Heatmap is categorized into
4 subcategories, each reflecting unique aspects of data presentation, as shown in Figure 12.

1. Base (the general layout of a typical heatmap)
2. Missing-Data (visualization indicating the absence of data points)
3. Triangle-Layout (heatmap configured in a triangular layout)
4. Other-Shaped (heatmap comprising elements in non-rectangular forms, such as circles)

Figure 12: Examples of Heatmap subcategories.

Scatter: Scatter plot is classified based on the dot characteristics and data distribution.
The taxonomy is divided into 4 subcategories as shown in Figure 13.

1. Base (basic scatter plot, uniform dot size, color may vary)
2. Diff-Shape (different dot shapes)
3. Diff-Size (different dot sizes, such as a bubble chart)
4. Clustered (scatter plot with clear clustering)

Figure 13: Examples of Scatter plot subcategories.

Box: Box plot is characterized by the orientation of boxes and data characteristics. The
orientation can be horizontal or vertical, while data characteristics include the grouping of
data and the presence of missing lines. The taxonomy is divided into 3 subcategories for

each orientation, consisting of 6 subcategories in total, as shown in Figure 14.

1. Base (single group of data, complete box shape)
2. Grouped (multiple groups of data, complete box shape)
3. Missed-Line (missing parts below the first quartile line and above the third quartile line)

Error Bar: An Error bar chart is an enhanced variant of the basic bar chart, augmented
with error margins to represent the variability or uncertainty within the data. Unlike Bar
chart, Error Bar chart typically does not include the categories "Normalized" and "Sorted"

in the dimension of data attributes, as these are less common. Therefore, Error Bar chart is classified
into 6 data attributes subcategories for each orientation, resulting in 12 subcategories in total, as
shown in Figure 15.

1. Base (single positive data set, unordered)
2. Grouped (multiple positive data sets, adjacent)
3. Stacked (multiple positive data sets laying atop one another)
4. Diverging (multiple stacked data sets expanding from a central axis)
5. With-Negative (data sets including negative values)
6. Reverse (exclusively negative data sets)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 14: Examples of Box chart subcategories.

Figure 15: Examples of Error Bar chart subcategories.

Error Point: Error Point chart enhances the classic Scatter chart by introducing error
bars to each data point, conveying the inherent variability or uncertainty of the data.

When classifying Error Point chart, a pivotal consideration lies in the orientation and symmetry
of the error bars, leading us to define 5 key characteristics that govern their taxonomy. These
characteristics—symmetry and asymmetry in both horizontal and vertical orientations, coupled with
a composite category encompassing both directions—culminate into 5 comprehensive subcategories,
as illustrated in Figure 16. Here we contend the following delineations:

1. Vertical-Horizontal Orientation: Distinguishing the direction of error bars, which can
profoundly affect the interpretation of the data.

2. Symmetry-Asymmetry: Acknowledging whether error bars exhibit a mirrored consistency
or an uneven distribution across data points.

Figure 16: Examples of Error Point chart subcategories.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Line: Line chart is classified based on three primary attributes: data grouping, error
visualization methods, and dot-line characteristics for grouped data, as shown in Figure 17.

1. Data grouping: Single (individual dataset) or Grouped (multiple datasets).
2. Error visualization methods: Base (no error), Striped-Error (striped fill patterns), and

Marker-Error (markers above and below data points).
3. Dot-Line Characteristics: For single dataset, No-Marker (data points without markers),

Marker (data points with markers). For grouped datasets, Diff-Color (different colors for
each group), Diff-Marker (different marker shapes for each group), and Diff-Line (different
line styles for each group).

Figure 17: Examples of Line chart subcategories.

Violin: Violin chart is a combination of the Box chart and kernel Density chart. It provides
a deep insight into the distribution of the data, indicating where individual data points
fall within the overall data range. Based on the number of data groups and the shape and

distribution of the violin form, the taxonomy is divided into 3 subcategories, as shown in Figure 18.

1. Base (standard shape, single data group)
2. Grouped-Symmetrical (standard shape, multiple data groups)
3. Grouped-Departed (half shapes joined, multiple data groups)

Figure 18: Examples of Violin chart subcategories.

Radar: Radar chart, also known as spider chart or star plot, is a graphical method of
displaying multivariate data on a two-dimensional plane. It is particularly useful for
showing performance metrics or skill assessments across multiple areas. Radar chart is

classified based on three primary attributes: the number of data grouping, area fill, and dot-line
characteristics for grouped data, as shown in Figure 19.

1. Data Grouping: Base (a single dataset) or Grouped (multiple datasets).
2. Area Fill: FillArea (areas within the radar chart filled) or NoFillArea (areas without fill to

emphasize the outline).
3. Dot-Line Characteristics: For single dataset, NoMarker (dots without markers), Marker

(dots with markers). For grouped datasets, Diff-Color (different colors for each group),
Diff-Line (different line styles for each group), and Diff-Marker (different marker shapes
for each group).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 19: Examples of Radar chart subcategories.

Pie: Pie chart is a circular statistical graphic that divides a circle into slices to illustrate
numerical proportion, whereas ring charts, also known as donut charts, utilize a hollow

circle to serve a similar purpose. The presence of a ring, the number of layers, and the highlighted
segment are the primary attributes in the classification of pie and ring charts, as shown in Figure 20.

1. Hollowness: Pie (no ring) or Ring (with a ring).
2. Layering: SingleLayer (single data series) or MultiLayer (multiple series or categories).
3. Highlighting: Base (without highlighted segments) or Explode (with one or more segments

emphasized to capture viewer attention).

Figure 20: Examples of Pie and Ring chart subcategories.

Density: Density chart conveys the concentration and distribution of data within a space,
often used to depict the magnitude or frequency across different areas or intervals. The
orientation and data grouping are the primary attributes of the taxonomy of density plots,

as shown in Figure 21.

1. Orientation: Vertical (y-axis as density) or Horizontal (x-axis as density).
2. Data Grouping: Base (single dataset) or Grouped (multiple datasets).

Figure 21: Examples of Density chart subcategories.

Graph: Graph chart commonly represents relationships and interconnected data through
nodes (also known as vertices) and edges. It is widely used to depict networks, path-
ways, and complex inter-dependencies. The taxonomy of graph charts is based on the

directionality and weight of the edges, resulting in 4 subcategories, as shown in Figure 22.

1. Directionality: Directed (edges have direction) or Undirected (edges have no direction).
2. Weight: Weighted (edges have weight) or Unweighted (edges have no weight).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 22: Examples of Graph chart subcategories.

Quiver: Quiver chart, also known as vector field plot, is used to display the magnitude
and direction of vectors across a two-dimensional plane. This type of chart is particularly

useful in physics and engineering to represent velocity fields, gradients, or other vector-based data
spatially. The taxonomy of quiver charts is based on the vector quantity and data grouping, resulting
in 4 subcategories, as shown in Figure 23.

1. Vector Quantity: Simple (limited vectors) or Field (vector field).

2. Data Groups: Single (single group) or Grouped (multiple groups).

Figure 23: Examples of Quiver chart subcategories.

Contour: Contour chart, also called contour map or isoline graph, is used to represent
three-dimensional data on a two-dimensional plane by plotting contour lines that connect
points of equal value. This method is especially useful in fields like meteorology and

geography, where it visually communicates variations in terrain elevation or changes in meteorological
elements like temperature and pressure. The taxonomy of Contour chart is based on the representation
of the contour lines, resulting in 3 subcategories, as shown in Figure 24.

1. Line (line representation)

2. Fill-Area (color-filled representation)

3. Combination (both line and color-filled)

Figure 24: Examples of Contour chart subcategories.

Histogram: Histogram chart, often referred as hist chart, is a representation of data
distribution where the data is grouped into ranges or “bins” and illustrated as bars to show
the frequency of data points within each bin. It is particularly useful for identifying patterns

or anomalies in the data, such as skewness, peaks, or gaps in the distribution. The taxonomy of
histogram charts is based on the data grouping and positioning, resulting in 3 subcategories, as shown
in Figure 25.

1. Base (single dataset)

2. Overlaid (overlapping multiple datasets)

3. Stacked (stacked multiple datasets)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 25: Examples of Histogram chart subcategories.

Treemap: Treemap displays hierarchical data through nested rectangles, where each branch
of the tree is represented by a rectangle that contains smaller rectangles corresponding to

sub-branches. This method allows for efficient use of space, enabling the viewer to quickly compare
sizes and proportions within the hierarchy, and is especially useful for analyzing large datasets to
reveal relationships and patterns. The taxonomy of treemap charts is based on the compactness and
edge presence, resulting in 4 subcategories, as shown in Figure 26.

1. Tight-Edge (compact with border)

2. Tight-NoEdge (compact without border)

3. Loose-Edge (loose with border)

4. Loose-NoEdge (loose without border)

Figure 26: Examples of Treemap chart subcategories.

Area: Area chart is a graphical representation where data points are connected by line
segments and the area between the line and the axis is filled with color or patterns, providing
a sense of volume. It is particularly useful for visualizing the cumulative magnitude of

values over time, allowing for a clear perception of trends and changes in the data series. The
taxonomy of area charts is based on the presence of markers, resulting in 2 subcategories as shown in
Figure 27.

1. Base (without markers)

2. Marker (with markers)

Figure 27: Examples of Area chart subcategories.

3D charts: 3D chart extends two-dimensional charting into three dimensions with spatial
representations, offering an added layer of depth to represent additional data variables
or to enhance visual appeal. Based on the above chart types and the additional surface

representation in 3D space, we classify 3D chart into 5 subcategories, as shown in Figure 28.

1. Scatter (3D scatter chart)

2. Surface (3D surface chart)

3. Line (3D line chart)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

4. Bar (3D bar chart)

5. Density (3D density plot)

Figure 28: Examples of 3D chart subcategories.

PIP: PIP chart insets a magnified or reduced portion of the main plot to highlight key data
features, as in Figs. 29 (1) and (2). They enhance readability for complex datasets and
facilitate comparative analyses, as demonstrated in Figs. 29 (3) and (4).

Figure 29: Examples of PIP charts.

Multidiff: A Multidiff chart combines at least two different chart types across multiple
subplots, with each subplot presenting one type. Derived from the categories above and
using diverse layouts, Multidiff charts offer numerous configurations, as shown in Fig. 30.

Figure 30: Examples of Multidiff charts.

Combination: Combination chart merges features from different chart types into one
plot, offering multilayered presentation. Unlike Multidiff chart with multiple subplots for
different categories, Combination chart displays multiple categories in a single plot. As

in Fig. 31 (2), a scatter plot illustrates the data distribution while adjacent density plots detail the
axis-specific spread. Additional examples are shown in Fig. 31.

Figure 31: Examples of Combination charts.

HR: An HR chart is one that defies the above 21 categories or is challenging to identify.
HR chart is typically modified from common charts with distinctive features like custom
visual arrangement or atypical markers, as shown in Fig.32.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 32: Examples of HR charts.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

D DETAILS OF EVALUATION METRICS

In this section, we present the details of evaluation metrics, including GPT-4o score for high-level
metrics and Text Score, Layout Score, Type Score and Color Score for low-level metrics. For more
information, please refer to our source code.

D.1 GPT-4O SCORE

We employ GPT-4o (OpenAI, 2024) to assess the extend to which the generated figure corresponds to
the ground-truth figure. The specific content of the prompt is presented in Fig. 33. Specifically, we
input both the generated and the ground-truth figures into the GPT-4o simultaneously. Then, GPT-4o
is instructed to evaluate the similarity between the two figures, taking into account six dimensions:
text, layout, type, data, style, and clarity. Subsequently, GPT-4o outputs a score ranging from 0 to
100 to represent the degree of similarity between the figures.

Prompt for GPT-4o Score

You are an excellent judge at evaluating visualization chart plots. The first image (reference
image) is created using ground truth matplotlib code, and the second image (AI-generated
image) is created using matplotlib code generated by an AI assistant. Your task is to score
how well the AI-generated plot matches the ground truth plot.

Scoring Methodology:
The AI-generated image’s score is based on the following criteria, totaling a score out of 100
points:

1. Chart Types (20 points): Does the AI-generated image include all chart types present in
the reference image (e.g., line charts, bar charts, etc.)?
2. Layout (10 points): Does the arrangement of subplots in the AI-generated image match the
reference image (e.g., number of rows and columns)?
3. Text Content (20 points): Does the AI-generated image include all text from the reference
image (e.g., titles, annotations, axis labels), excluding axis tick labels?
4. Data (20 points): How accurately do the data trends in the AI-generated image resemble
those in the original image and is the number of data groups the same as in the reference
image?
5. Style (20 points): Does the AI-generated image match the original in terms of colors (line
colors, fill colors, etc.), marker types (point shapes, line styles, etc.), legends, grids, and other
stylistic details?
6. Clarity (10 points): Is the AI-generated image clear and free of overlapping elements?

Evaluation:
Compare the two images head to head and provide a detailed assessment. Use the following
format for your response:

—
Comments:
- Chart Types: ${your comment and subscore}
- Layout: ${your comment and subscore}
- Text Content: ${your comment and subscore}
- Data: ${your comment and subscore}
- Style: ${your comment and subscore}
- Clarity: ${your comment and subscore}
Score: ${your final score out of 100}
—
Please use the above format to ensure the evaluation is clear and comprehensive.

Figure 33: Prompt for GPT-4o Score.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Task 1: Direct Mimic - bar_28
Instruction

You are an expert Python developer who specializes in writing matplotlib code based on a given picture. I found a very nice picture in
a STEM paper, but there is no corresponding source code available. I need your help to generate the Python code that can reproduce
the picture based on the picture I provide.

Note that it is necessary to use figsize=(6, 5) to set the image size to match the original size.

Now, please give me the matplotlib code that reproduces the picture below.

Figure

LMM

Generated Figure

GPT-4o Scorer
Ground-truth Figure

(Rendered from Code)

High-level Scores

Comments:

- : The AI-generated image includes the same bar chart type as the reference image.

 -

- : The layout of the AI-generated image matches the reference image, with a single subplot.

 -

- : The AI-generated image includes all the text from the reference image, including the title, and legend text.

 -

- : The data trends in the AI-generated image accurately resemble those in the reference image, with the same number of data
groups and similar values.

 -

- : The AI-generated image does not match the original in terms of colors. The the reference image is in grayscale, while AI-
generated image uses different colors for each bar group. However, the marker types and patterns are correctly replicated.

 -

- : The AI-generated image is clear and free of overlapping elements, similar to the reference image.

 -

Chart Types (20 points)
Subscore: 20/20

Layout (10 points)
Subscore: 10/10

Text Content (20 points)
Subscore: 20/20

Data (20 points)

Subscore: 20/20

Style (20 points)

Subscore: 5/20

Clarity (10 points)
Subscore: 10/10

Score: 85/100

Figure 34: Example of GPT-4o’s scoring results for a Direct Mimic example (bar_28).

Stability of Evaluation with GPT-4o Score. We conduct the high-level evaluation for GPT-4o on
the Direct Mimic task for 5 times to assess the stability of GPT-4o Score. The result indicate a mean
GPT-4o Score of 83.4 with a standard deviation of 0.08, demonstrating the stability of GPT-4o Score.

Cost of Evaluation with GPT-4o Score. A single-round evaluation with GPT-4o Score on the Direct
Mimic task approximately costs $5.25. Utilizing OpenAI’s batch services further reduces this cost to
$2.63 per round.

Longevity of Evaluation with GPT-4o Score. The GPT-4o Score metric is designed with long-term
viability in mind. Our approach provides a meta-evaluation framework that can adapt to evolving
language models. While currently leveraging GPT-4o, the method is model-agnostic and can be
implemented with other advanced LLMs such as Claude or Gemini. This adaptability ensures that
as more capable models emerge, the evaluation process can seamlessly transition to utilize these
superior systems. Importantly, this approach has demonstrated increasing correlation with human
assessments as model capabilities improve, as evidenced by studies like AlpacaEval (Li et al., 2023)
and MT-Bench (Zheng et al., 2023).

GPT-4o Score Examples. To demonstrate our evaluation framework, we present GPT-4o’s scoring
examples for both Direct Mimic and Customized Mimic tasks. Figs. 34 to 37 show the evaluation
results for two representative charts of different complexity levels (bar_28 and CB_29). These
examples demonstrate how GPT-4o systematically evaluates various aspects of chart reproduction
across different chart complexities and task types.

Correlation Coefficient Comparison with CLIP Score. CLIP Score (Radford et al., 2021) is widely
used for assessing figure similarity. However, our preliminary experiments indicate that it struggles

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Task 2: Customized Mimic - bar_28
Instruction

There is a reference image for you and I also have a set of data about fuel efficiency of different types of transport in urban and rural
areas. Please refer to the reference image and generate Python matplotlib code that can create a chart that exactly mirrors the style of
the reference image and accurately represents my data.

datasets = ["Urban Transport", "Rural Transport"]

electric = [2.7, 3.4]

hybrid = [1.9, 2.1]

diesel = [3.5, 2.8]

X-axis positions

x = np.arange(len(datasets))

Bar width

width = 0.2

labels = ["Electric", "Hybrid", "Diesel"]

ylim = [0, 4.5]

ylabel = "Fuel Efficiency (km/l)"

xlabel = "Transport Types"

Now, please output the Python matplotlib code that can create a chart that exactly mirrors the style of the reference image and
accurately represents my data.

Note: You must copy the data I provide completely into your code, and ensure that the code you generate contains the data and is
directly executable.

Note that it is necessary to use figsize=(6, 5) to set the image size.

Figure

LMM

Generated Figure

GPT-4o Scorer
Ground-truth Figure

(Rendered from Code)

High-level Scores

Comments:

- : The AI-generated image includes the same bar chart type as the reference image.

 -

- : The arrangement of the subplots in the AI-generated image matches the reference image, with a single subplot in both.

 -

- : The AI-generated image includes all the text from the reference image, such as the title, axis labels, and legend.

 -

- : The data trends in the AI-generated image accurately resemble those in the reference image, and the number of data groups
is the same.

 -

- : The AI-generated image does not match the original in terms of colors. The reference image is in black and white, while
the AI-generated image uses colors (blue, orange, green) . The marker types (hatch patterns) are correctly replicated, but the absence of color is a
significant deviation.

 -

- : The AI-generated image is clear and free of overlapping elements. The bars and text are well-defined.

 -

Chart Types (20 points)
Subscore: 20/20

Layout (10 points)
Subscore: 10/10

Text Content (20 points)
Subscore: 20/20

Data (20 points)

Subscore: 20/20

Style (20 points)

Subscore: 5/20

Clarity (10 points)
Subscore: 10/10

Score: 85/100

Figure 35: Example of GPT-4o’s scoring results for a Customized Mimic example (bar_28).

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Task 1: Direct Mimic - CB_29
Instruction

You are an expert Python developer who specializes in writing matplotlib code based on a given picture. I found a very nice
picture in a STEM paper, but there is no corresponding source code available. I need your help to generate the Python code
that can reproduce the picture based on the picture I provide.

Note that it is necessary to use figsize=(10, 5) to set the image size to match the original size.

Now, please give me the matplotlib code that reproduces the picture below.

Figure

LMM

Generated Figure

GPT-4o Scorer
Ground-truth Figure

(Rendered from Code)

High-level Scores

Comments:

- : The AI-generated image includes the same chart types as the reference image, with horizontal bar charts and line
plots.

 -

- : The arrangement of subplots in the AI-generated image matches the reference image, with two columns and one row.

 -

- : The AI-generated image includes all the text from the reference image, including titles and axis labels. However,
the order of the technology fields on the y-axis is reversed.

 -

- : The data trends in the AI-generated image accurately resemble those in the reference image, but the order of the technology
fields on the y-axis is inverted. The number of data groups is the same.

 -

- : The AI-generated image matches the original in terms of colors, marker types, and other stylistic details. The colors of the
bars and lines, as well as the markers, are consistent with the reference image.

 -

- : The AI-generated image is clear and free of overlapping elements. The text and data points are well-spaced and legible.

 -

Chart Types (20 points)

Subscore: 20/20

Layout (10 points)
Subscore: 10/10

Text Content (20 points)

Subscore: 15/20

Data (20 points)

Subscore: 10/20

Style (20 points)

Subscore: 20/20

Clarity (10 points)
Subscore: 10/10

Score: 85/100

Figure 36: Example of GPT-4o’s scoring results for a Direct Mimic example (CB_29).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Task 2: Customized Mimic - CB_29
Instruction

There is a reference image for you and I also have a set of data about the number of registered vehicles for different
transportation modes in 2013 and 2022. Please refer to the reference image and generate Python matplotlib code that can
create a chart that exactly mirrors the style of the reference image and accurately represents my data.

Transportation modes

transport_modes = [

 "Automobiles",

 "Bicycles",

 "Buses",

 "Trains",

 "Planes",

 "Ships",

 "Motorcycles",

 "Scooters",

 "Trams",

 "Helicopters",

]

Number of registered vehicles in 2013 (in thousands)

vehicles_2013 = [50000, 10000, 15000, 20000, 8000, 3000, 7000, 5000, 2000, 1000]

Number of registered vehicles in 2022 (in thousands)

vehicles_2022 = [55000, 12000, 16000, 22000, 9000, 3500, 7500, 6000, 2500, 1200]

x_label = "Number of Registered Vehicles (in thousands)"

y_label = "Transportation Mode"

ax1_title = "Registered Vehicles in 2013"

ax2_title = "Registered Vehicles in 2022"

Now, please output the Python matplotlib code that can create a chart that exactly mirrors the style of the reference image
and accurately represents my data.

Note: You must copy the data I provide completely into your code, and ensure that the code you generate contains the data
and is directly executable.

Note that it is necessary to use figsize=(10, 5) to set the image size.

Figure

LMM

Generated Figure

GPT-4o Scorer
Ground-truth Figure

(Rendered from Code)

High-level Scores

Comments:

- : The AI-generated image includes all the chart types present in the reference image, which are horizontal bar charts
with overlaid line plots.

 -

- : The arrangement of subplots in the AI-generated image matches the reference image, with two subplots arranged side by
side.

 -

- : The AI-generated image includes all the text from the reference image, such as titles and axis labels. However, the
the reference image includes additional text annotations on the bars, which are not present in AI-generated image.

 -

- : The data trends in the AI-generated image resemble those in the original image, and the number of data groups is the same.

 -

- : The AI-generated image matches the original in terms of colors, marker types, and other stylistic details. However, the
reference image includes additional data labels on the bars, which are not present in the AI-generated image.

 -

- : The AI-generated image is clear and free of overlapping elements. The additional data labels do not obscure the
visualization.

 -

Chart Types (20 points)

Subscore: 20/20

Layout (10 points)

Subscore: 10/10

Text Content (20 points)

Subscore: 10/20

Data (20 points)
Subscore: 20/20

Style (20 points)

Subscore: 18/20

Clarity (10 points)

Subscore: 10/10

Score: 88/100

Figure 37: Example of GPT-4o’s scoring results for a Customized Mimic example (CB_29).

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

to differentiate variations in types and other critical elements in charts, resulting in a low correlation
coefficient of 0.53 with human evaluation. In contrast, as stated in Sec. 4.3, GPT-4o Score achieves
a correlation coefficient of 0.70 with human evaluation. Therefore, we adopt GPT-4o Score as the
high-level evaluation metric.

D.2 TEXT SCORE

Listing 1: An exemplary Python code for logging text information.
from matplotlib.backends.backend_pdf import RendererPdf

drawed_texts = []

def log_function(func):
def wrapper(*args, **kwargs):

global drawed_texts

text_string = args[4]
drawed_texts.append(text_string)

return func(*args, **kwargs)

return wrapper

RendererPdf.draw_text = log_function(RendererPdf.draw_text)

In order to accurately capture the textual content presented in the rendered figures, our code tracer
monitors the function used to add text to the rendered PDF, logging each textual element. An
exemplary Python code is provided in Listing 1, where we record the text elements by adding a log
wrapper to the “draw_text()” function in the matplotlib package. Subsequently, we employ this
approach to extract the text information from both the generated code and the ground-truth code.

Based on these two groups of texts, precision is defined as the ratio of the number of correctly
captured ground-truth text to the total number of text in the generated figure. Recall is defined as
the ratio of the number of correctly captured ground-truth text to the total number of text in the
ground-truth figure. The F1-score, calculated using precision and recall, serves as Text Score.

D.3 LAYOUT SCORE

Listing 2: An exemplary Python code for logging layout information.
def get_gridspec_layout_info(fig):

"""
Get the layout information of a given figure.
Args:

fig (matplotlib.figure.Figure): The figure to extract layout
information from.

Returns:
layout_info (list): A list of dictionaries, each containing layout

information for each subplot in the figure.
"""

layout_info = {}
for ax in fig.axes:

spec = ax.get_subplotspec()
if spec is None:

continue
gs = spec.get_gridspec()
nrows, ncols = gs.get_geometry()
row_start, row_end = spec.rowspan.start, spec.rowspan.stop - 1
col_start, col_end = spec.colspan.start, spec.colspan.stop - 1

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

layout_info[ax] = dict(nrows=nrows, ncols=ncols,
row_start=row_start, row_end=row_end, col_start=col_start,
col_end=col_end)

layout_info = list(layout_info.values())
return layout_info

layout_info = get_gridspec_layout_info(fig=plt.gcf())

The layout refers to the organization of subplots within a chart figure. In each figure implemented
using matplotlib, multiple axes objects are present, each containing layout information that specifies
its position within the figure. To analyze the layout, we iterate through each axis object in the figure
and obtain their respective layout information. An exemplary Python code to accomplish this process
is provided in Listing 2, where the position information of each axis is recorded. Subsequently, we
gather the layout information from both the ground-truth code and the generated code.

Based on these two groups of layout information, precision is defined as the ratio of the number of
correctly identified ground-truth layouts to the total number of layouts in the generated figure. Recall
is defined as the ratio of the number of correctly identified ground-truth layouts to the total number
of layouts in the ground-truth figure. The F1-score, calculated using precision and recall, serves as
Layout Score.

D.4 TYPE SCORE

Listing 3: An exemplary Python code for logging type information.
from matplotlib.axes import Axes
import inspect

called_functions = {}

def log_function(func):
def wrapper(*args, **kwargs):

file_name = inspect.getfile(func)
name = file_name + "/" + func.__name__
called_functions[name] = called_functions.get(name, 0) + 1
result = func(*args, **kwargs)
return func(*args, **kwargs)

return wrapper

Axes.bar = log_function(Axes.bar)

The matplotlib package provides a variety of functions for easily generating diverse chart types, such
as using “axes.bar()” to create bar charts. By monitoring the invocations of these functions, we
can identify the types of charts being utilized. A successful invocation of a plot functions indicates
the incorporation of a specific chart type in the final visualization. Listing 3 presents an exemplary
Python code that demonstrates this approach, where we introduce a logger to the “bar()” function.
Subsequently, we gather the chart types from both the generated and ground-truth code.

Based on these two groups of chart types, precision is defined as the ratio of the number of correctly
identified ground-truth chart types to the total number of chart types in the generated figure. Recall is
defined as the ratio of the number of correctly identified ground-truth chart types to the total number
of chart types in the ground-truth figure. The F1-score, calculated using precision and recall, serves
as Type Score.

D.5 COLOR SCORE

Listing 4: An exemplary Python code for logging color information.
from matplotlib.axes import Axes

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

import inspect

drawed_colors = []

def log_function(func):
def wrapper(*args, **kwargs):

func_name = inspect.getfile(func) + "/" + func.__name__
result = func(*args, **kwargs)

for item in result:
color = item.get_facecolor()
drawed_colors.append(func_name + "--" + color)

Axes.bar = log_function(Axes.bar)

In the matplotlib package, each plot function returns a chart type instance at the end of the function
invocation. These instances contain various attributes, including those related to color properties, such
as facecolor, edgecolor and colormap. To assess the color attributes, we employ the code tracer that
captures the color information of each chart type instance. An example Python code demonstrating
this approach is provided in Listing 4. Subsequently, we gather the color information from both the
ground-truth code and the generated code and calculate the similarity between them.

It is noteworthy that through preliminary experiments, we find that using exact color matching
resulted in very low color similarity, as even slight variations would result in a similarity score of
zero. To address this issue, we employ the CIEDE2000 color difference formula (Luo et al., 2001),
which converts the matching value between two colors from a discrete [0, 1] scale to a continuous
range between 0 and 1. Finally, we calculate the maximum color similarity between the sets of
colors in the ground-truth code and the generated code. Precision is defined as the ratio of maximum
color similarity to the total number of color in the generated figure. Recall is defined as the ratio
of maximum color similarity to the total number of color in the ground-truth figure. The F1-score,
calculated using precision and recall, serves as Color Score.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E MODEL CONFIGURATIONS AND PROMPTING METHODS

E.1 GENERATION CONFIGURATIONS

Following previous setups (Wang et al., 2023b; Shi et al., 2024), for open-weight models, we
set the temperature τ = 0.1 to achieve optimal results, while for proprietary models, we set the
temperature τ = 0 for greedy decoding. For all models, we set the maximum generation length
to 4096. Additionally, we use BF16 for model inference for open-weight models. All models are
inferred on A100 80G GPU.

E.2 PROMPTS

We provide prompts for Direct, HintEnhanced, SelfReflection and Scaffold Prompting in Figs. 38
to 42. for Direct Prompting, we meticulously design a separate prompt for open-source models to
achieve optimal results, as shown in Fig. 38. while the prompt for proprietary Models is shown
in Fig. 39.

Prompt for Direct Prompting (Open-Weight Models)

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

Please note that it is necessary to use figsize=({width}, {height}) to set the image
size to match the original size. Additionally, I will not provide you with the actual data in the
image, so you have to extract the actual data by yourself and based on the extracted data to
reproduce the image. Ensure that the code you provide can be executed directly without
requiring me to add additional variables.
Now, please give me the matplotlib code that reproduces the picture below.

Figure 38: Prompt for Direct Prompting (Open-Weight Models). {text} in blue font represents
placeholders, which varies according to different test examples.

Prompt for Direct Prompting (Proprietary Models)

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.
Now, please give me the matplotlib code that reproduces the picture below.

Figure 39: Prompt for Direct Prompting (Proprietary Models). {text} in blue font represents
placeholders, which varies according to different test examples.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Prompt for HintEnhanced Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

To ensure accuracy and detail in your recreation, begin with a comprehensive analy-
sis of the figure to develop an elaborate caption. This caption should cover, but not be limited
to, the following aspects:
1. Layout Analysis: e.g., identify the picture’s composition, noting the presence and
arrangement of any subplots.
2. Chart Type Identification: e.g., determine how many charts within a subplot. Are they
independent, or do they share a common axis?
3. Data Analysis: e.g., summarize the data trend or pattern.
4. Additional Features: e.g.,identify any supplementary elements such as legends, col-
ormaps, tick labels, or text annotations that contribute to the figure’s clarity or aesthetic appeal.

Now, given the picture below, please first output your comprehensive caption and
then use the caption to assist yourself to generate matplotlib code that reproduces the picture.
Note that it is necessary to use figsize=({width}, {height}) to set the image size to match the
original size.

Figure 40: Prompt for HintEnhanced Prompting. {text} in blue font represents placeholders, which
varies according to different test examples.

Prompt for Scaffold Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I found a very nice picture in a STEM paper, but there is no corresponding
source code available. I need your help to generate the Python code that can reproduce the
picture based on the picture I provide.

I will provide you with two images. The first image is the original picture. The
second image is the picture overlaid with a dot matrix of a shape of {dot_matrix_height} *
{dot_matrix_width} to help you with your task, and each dot is labeled with two-dimensional
coordinates (x,y). Within each column, the x-coordinate increases from top to bottom, and
within each row, the y-coordinate increases from left to right.

Please first use this dot matrix as reference anchors to generate the description of
the picture (e.g., between dot A and dot B is something) and generate matplotlib code that
reproduces the picture.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.

Figure 41: Prompt for Scaffold Prompting. {text} in blue font represents placeholders, which varies
according to different test examples.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Prompt for SelfRevision Prompting

You are an expert Python developer who specializes in writing matplotlib code based on a
given picture. I have a code for implementing the reference picture as follows:

Now, I have the Python matplotlib code for implementing the reference picture as
follows:
```python
{python_code}
```
The rendered picture of the code is:

Now, please compare whether the renderer picture is the same as the reference pic-
ture. The difference may cover, but not be limited to, the following aspects:
1. Chart Types: Does the AI-generated image include all chart types present in the reference
image (e.g., line charts, bar charts, etc.)?
2. Layout: Does the arrangement of subplots in the AI-generated image match the reference
image (e.g., number of rows and columns)?
3. Text Content: Does the AI-generated image include all text from the reference image (e.g.,
titles, annotations, axis labels), excluding axis tick labels?
4. Data: How accurately do the data trends in the AI-generated image resemble those in the
original image and is the number of data groups the same as in the reference image?
5. Style: Does the AI-generated image match the original in terms of colors (line colors, fill
colors, etc.), marker types (point shapes, line styles, etc.), legends, grids, and other stylistic
details?
6. Clarity: Is the AI-generated image clear and free of overlapping elements?

- If the generated picture matches the reference, please output the original imple-
mentation code.
- If there are discrepancies, first list the specific differences between the two pictures. Then,
modify the existing code to address these differences, ensuring the revised code is capable of
reproducing the reference picture. Finally, output the revised code.

Note that it is necessary to use figsize=({width}, {height}) to set the image size to
match the original size.

Figure 42: Prompt for SelfRevision Prompting. {text} in blue font represents placeholders, which
varies according to different test examples.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

E.3 CASES OF DIFFERENT PROMPTING METHODS

We provide cases of HintEnhanced, SelfReflection and Scaffold Prompting in Figs. 43 to 46. For an
analysis of error cases related to Direct Prompting, please refer to Appendix H.

Figure 43: An error case of HintEnhanced Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Figure 44: An error case of SelfReflection Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Figure 45: An good case of SelfReflection Prompting. The text highlighted in blue is LMM’s correct
reflection regarding provided figures. The remaining part of response is omitted with “......”.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Figure 46: An error case of Scaffold Prompting. The text highlighted in red is LMM’s incorrect
understanding regarding provided figures. The remaining part of response is omitted with “......”.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

E.4 DETAILS OF MODELS

We list the evaluated models in Tab. 9.

Model Params Language Model Vision Model Model Code/API

GPT-4o - - - gpt-4o-2024-05-13
Claude-3-opus - - - claude-3-opus-20240229
GeminiProVision - - - gemini-pro-vision
InternVL2-Llama3-76B 76.0B Llama-3-70B-Instruct InternViT-6B OpenGVLab/InternVL2-Llama3-76B
LLaVA-Next-Yi-34B 34.8B Yi-34B CLIP ViT-L/14 llava-hf/llava-v1.6-34b-hf
InternVL2-26B 26.0B InternLM2-20B InternViT-6B OpenGVLab/InternVL2-26B
Cogvlm2-llama3-chat-19B 19.2B Llama-3-8B-Instruct EVA2-CLIP-E THUDM/cogvlm2-llama3-chat-19B
Phi-3-Vision-128K-Instruct 4.2B Phi-3 CLIP ViT-L/14 microsoft/Phi-3-vision-128k-instruct
IDEFICS2-8B 7.6B Mistral-7B SigLip-400M HuggingFaceM4/idefics2-8b
LLaVA-Next-Mistral-7B 7.6B Mistral-7B CLIP ViT-L/14 llava-hf/llava-v1.6-mistral-7b-hf
DeepSeek-VL-7B 7.3B DeekSeek-7B SAM-B & SigLIP-L deepseek-ai/deepseek-vl-7b-chat
MiniCPM-Llama3-V2.5 8.4B Llama3-8B-Instruct SigLip-400M openbmb/MiniCPM-Llama3-V-2_5
Qwen2-VL-7B 8.2B Qwen2-7B ViT-600M Qwen/Qwen2-VL-7B-Instruct
InternVL2-8B 8.1B InternLM2.5-7B InternViT-300M OpenGVLab/InternVL2-8B
InternVL2-4B 4.2B Phi-3 InternViT-300M OpenGVLab/InternVL2-4B
Qwen2-VL-2B 2.6B Qwen2-1.5B ViT-600M Qwen/Qwen2-VL-2B-Instruct
InternVL2-2B 2.2B InternLM2-1.8B InternViT-300M OpenGVLab/InternVL2-2B

Table 9: Model code/API of the evaluated models.

F CORRELATION WITH HUMAN EVALUATION

Figure 47: A screenshot of the human evaluation questionnaire.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

In order to evaluate the reliability of the proposed automatic metrics, we calculate their correlation
with human evaluations. Specifically, a selection of 300 test examples from the Direct Mimic task is
utilized. Subsequently, we gather the results generated by GPT-4o using four different prompting
methods (Sec. 4.2) on these test examples. This process yields 1, 200 figures to be assessed.

Each figure is independently assessed by three evaluators through a questionnaire, who assign scores
on a scale of 0 to 100 based on the similarity between the generated figures and the ground-truth
figures. The final score for each figure is calculated as the mean of scores given by the three evaluators.
Our evaluators comprise volunteer graduate students holding bachelor’s degrees in computer science.
To facilitate their assessments, we provide a scoring rubric in the questionnaire, which closely aligns
with the low-level and high-level metric evaluations. The scoring criteria encompass the following
dimensions: chart type, layout, textual content, data, style, and clarity. A screenshot of the final
questionnaire is available in Fig. 47.

Upon collecting the human evaluation results, we calculate the Pearson correlation coefficient to
ascertain the correlation between our automatic metrics and human evaluation.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

G CORRELATION WITH CHART UNDERSTANDING AND CODE GENERATION

20 30 40 50 60 70 80
ChartMimic

50

60

70

80

90

C
ha

rtQ
A

r = 0.6877
p-value = 6.56e-03

(a) Correlation with Chart Understanding

20 30 40 50 60 70 80
ChartMimic

40

60

80

100

H
um

an
Ev

al

r = 0.8714
p-value = 4.92e-05

(b) Correlation with Code Generation

Figure 48: Performance correlation of ChartMimic with benchmarks assessing chart understanding
and code generation capabilities.

In an effort to shed light on the factors enhancing performance on ChartMimic, we explore the
performance correlation between ChartMimic and existing benchmarks that evaluate chart under-
standing and code generation capabilities. Specifically, we select ChartQA (Masry et al., 2022) as the
benchmark for chart understanding and HumanEval (Chen et al., 2021) as the benchmark for code
generation. We then calculate two Pearson correlation coefficients to quantify these relationships:
The correlation coefficient between the performance of LMMs in the Direct Mimic task and their
performance in the ChartQA task, denoted as rchart, and the correlation coefficient between the
performance of LMMs in the Direct Mimic task and the performance of their corresponding LLMs in
the HumanEval task, denoted as rcode .

As depicted in Fig. 48, the calculated values are rchart = 0.6877 and rcode = 0.8714. These results
indicate that both chart understanding and code generation abilities influence the performance in
the Direct Mimic task, with code generation having a more significant impact. This implies that for
future model development aimed at enhancing multimodal code generation capabilities, it is crucial
to focus on the foundational code generation abilities of LMMs.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

H CASES OF ERROR ANALYSIS

We provide cases of text-related, type-related and color-related errors in Figs. 49 to 54. These cases
encompass various error types mentioned in Sec. 4.4.

0.00 0.25 0.50 0.75 1.00
redicted probability

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 p

os
iti

ve
s

Subgroups
Calibration curve

(a) Ground-truth figure (Combination_20)

0.0 0.2 0.4 0.6 0.8 1.0
redicted probability

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 p

os
iti

ve
s

Subgroups
Calibration curve

(b) Generated figure

Figure 49: Error Case 1. In this case, the errors include text-related errors of the Missing type and
type-related errors of the Missing type.

SEQ REPLAY MTL
Categories

100

75

50

25

0

Ac
cu

ra
cy

 (%
)

-9.44 -9.12
-3.51

-84.3

-37.9

-3.67
0.00

0.25

0.50

0.75

1.00

Fe
at

ur
e

Em
be

dd
in

g
Di

st
an

ce

0.83

0.6

0.11

Probing FGT
Observed FGT
Feature Embedding Distance

(a) Ground-truth figure (bar_7)

SEQ REPLAY MTL
Categories

80

70

60

50

40

30

20

10

0

Ac
cu

ra
cy

 (%
)

-9.44 -9.12

-3.51

-84.3

-37.9

-3.7Probing FGT
Observed FGT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fe
at

ur
e

Em
be

dd
in

g
Di

st
an

ce

0.83

0.60

0.11

Feature Embedding Distance

(b) Generated figure

Figure 50: Error Case 2. In this case, the errors include type-related errors of the Extraneous type,
and color-related errors of the Different type.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

GPT-4 Buyer (valuation 40)20

10

0

Claude-2.1 Buyer (valuation 40)20

10

0

Claude-2 Buyer (valuation 40)20

10

0

GPT-3.5 Buyer (valuation 40)20

10

0

Sellers (valuation 60)
GPT-4 Claude-2.1 Claude-2 GPT-3.5

(a) Ground-truth figure (errorbar_12)

GPT_4 Claude_2.1 Claude_2
20

15

10

5

0
GPT_4 Buyer (valuation 40)

GPT_4 Claude_2.1 Claude_2

Claude_2.1 Buyer (valuation 40)

GPT_4 Claude_2.1 Claude_2
20

15

10

5

0
Claude_2 Buyer (valuation 40)

GPT_4 Claude_2.1 Claude_2

GPT_3.5 Buyer (valuation 40)

GPT_4 Claude_2.1 Claude_2 GPT_3.5

(b) Generated figure

Figure 51: Error Case 3. In this case, the errors include text-related errors of the Detail and Missing
type, and color-related errors of the Different type.

0 200 400
Elo Rating

bo16
c16

bo4c8
bo32
bo16

c16
bo4c8
bo32
bo16

c16
bo4c8
bo32
bo16

c16
bo4c8
bo32

De
ba

te
r

Assignment
Correct
Incorrect

100 0 100 200
Aggregate Elo Rating

50

100

150

200

250

300

Co
rre

ct
 R

at
in

g
- I

nc
or

re
ct

 R
at

in
g

200 0 200
Aggregate Elo Rating

30

40

50

60

70

80

90

100

110

Ju
dg

e
Ac

cu
ra

cy
 (%

)

Judge: GPT-4-Turbo

Debaters
GPT-3.5-Turbo Claude 1.3 Claude 2.1 GPT-4-Turbo

(a) Ground-truth figure (multidiff_9)

0 100 200 300 400
Elo Rating

bo32

bo4c8

c16

bo16

De
ba

te
r

Assignment
Correct
Incorrect

100 200 300 400
Aggregate Elo Rating

100

200

300

400

500

Co
rre

ct
 R

at
in

g
- I

nc
or

re
ct

 R
at

in
g

200 100 0 100 200
Aggregate Elo Rating

20

40

60

80

100

120

140

160

Ju
dg

e
Ac

cu
ra

cy
 (%

)

Judge: GPT-4-Turbo

GPT-3.5-Turbo Claude 1.3 Claude 2.1 GPT-4-Turbo

(b) Generated figure

Figure 52: Error Case 4. In this case, the errors include text-related errors of the Missing type,
type-related errors of the Missing type, and color-related errors of the Different type.

Control Group Treatment Group 1 Treatment Group 2
Number of Observations

6

4

2

0

2

4

6

8

Va
lu

e
Ra

ng
e

Comparative Distribution of Three Different Groups

(a) Ground-truth figure (HR_22)

Control Group Treatment Group 1 Treatment Group 2
Number of Observations

6

4

2

0

2

4

6

Va
lu

e
Ra

ng
e

Comparative Distribution of Three Different Groups

(b) Generated figure

Figure 53: Error Case 5. In this case, the errors include type-related errors of the Confusion type, and
color-related errors of the Similar type.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

jTrans PalmTree CLAP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

(a) Ground-truth figure (violin_4)

jTrans PalmTree CLAP
Method

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(b) Generated figure

Figure 54: Error Case 6. In this case, the errors include text-related errors of the Extraneous type,
type-related errors of the Confusion type and color-related errors of the Similar type.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Figure 55: Error analysis of InternVL2-Llama3-76B across four error types on the Direct Mimic task.
The number in brackets indicates the count of error case.

Figure 56: Error analysis of InternVL2-26B across four error types on the Direct Mimic task. The
number in brackets indicates the count of error case.

I ERROR ANALYSIS OF OPEN-WEIGHT MODELS

We conduct detailed error analysis on representative open-weight models of different scales, sampling
100 cases for each model. For large-scale models such as InternVL2-Llama3-76B and InternVL2-
26B (Fig. 55, Fig. 56), the error patterns align closely with those observed in GPT-4o. Specifically,
Code-related Errors predominantly arise from dimensional inconsistencies, while Text-related Errors
primarily manifest as missing elements. Type-related Errors mainly comprise missing components
cases, and Color recognition demonstrates the capability to identify similar, if not identical, chromatic
properties. In contrast, smaller-scale models like DeepSeek-VL-7B (Fig. 57) exhibit markedly
different error distributions. Code-related issues show a significant increase in Access and Parameter
Errors (approximately 53.7%), while Text-related errors demonstrate a higher prevalence of missing
elements (approximately 66.7%). Type-related cases reveal a substantial increase in missing errors
(approximately 78.4%). Moreover, the degradation in color recognition is more severe, with the model
failing to identify even similar colors. These findings indicate that while larger models encounter
challenges similar to GPT-4o, smaller models exhibit more fundamental difficulties in both code
generation and visual comprehension.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Figure 57: Error analysis of DeepSeek-VL-7B across four error types on the Direct Mimic task. The
number in brackets indicates the count of error case.

J ETHICS, SOCIETAL IMPACT AND SCALABILITY OF CHARTMIMIC

ChartMimic is designed as a comprehensive evaluation framework for advancing LMMs, with a
strong emphasis on ethical considerations, societal impact and scalability. Its primary objective is to
provide researchers with a rigorous, ethically sound tool for assessing LMMs’ capabilities across
critical domains, including visual understanding, code generation and cross-modal reasoning.

Ethical Considerations. The ethical integrity of ChartMimic is foundational to its design and
implementation. Our dataset is derived from scientific domains, specifically using figures from
arXiv papers distributed under the CC BY 4.0 license. This focus on scientific content significantly
mitigates potential ethical concerns related to bias, representation, or sensitive personal information
that often arise in datasets derived from social media or general web content. The scientific nature of
our data ensures: Minimal risk of perpetuating societal biases or stereotypes; Absence of personally
identifiable information; Content that is generally neutral and objective, focusing on factual scientific
representations. Our manual annotation process for code generation incorporates stringent ethical
controls. Annotators are trained to ensure that the information conveyed in the code does not contain
any biased content and strictly adheres to the factual representation of the scientific charts. This
process further reinforces the ethical robustness of our dataset.

Societal Impact. By providing a benchmark rooted in scientific data, ChartMimic contributes
to the development of LMMs that can better understand and interact with complex, data-driven
visualizations. This capability has far-reaching positive implications for scientific communication,
data analysis, and knowledge dissemination across various fields.

Scalability. The architecture of ChartMimic is inherently extensible, featuring a modular code-
base that facilitates the seamless integration of additional chart types and evaluation metrics. Our
data collection methodology leverages the continuous update cycle of arXiv, enabling sustainable
expansion of the dataset while maintaining its focus on ethically sound, scientific content. The
evaluation framework also demonstrates notable scalability: The concept of low-level metric can be
readily adapted to other programming environments such as JavaScript and R. The high-level metric
incorporates a meta-evaluation approach using LMMs, which allows for sustainable alignment with
human preferences as stronger models emerge.

55

	Introduction
	The ChartMimic Benchmark
	Task Definition
	Data Curation Process
	Data Statistics and Division
	Evaluation Metrics
	Comparisons with Existing Benchmarks

	Experiment
	Baseline Setup
	Main Results

	Discussion
	Different Complexity Levels
	Different Prompting Methods
	Correlation with Human Evaluation
	Error Analysis

	Related Work
	Conclusions
	Data Annotation
	Data Annotation Principles
	Data Annotation Pipeline
	Complexity Levels
	Instruction Examples

	Correlation Between Test Set and Testmini set
	Chart Taxonomy
	Details of Evaluation Metrics
	GPT-4o Score
	Text Score
	Layout Score
	Type Score
	Color Score

	Model Configurations and Prompting Methods
	Generation Configurations
	Prompts
	Cases of Different Prompting Methods
	Details of Models

	Correlation with Human Evaluation
	Correlation with Chart Understanding and Code Generation
	Cases of Error Analysis
	Error Analysis of Open-Weight Models
	Ethics, Societal Impact and Scalability of ChartMimic

