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Abstract

In recent years, multi-modal Vision-Language
Models (VLMs) have improved substantially in
their ability to generate realistic images. This
raises important questions about what sort of rep-
resentation these models have of the world, in par-
ticular, how they represent physical objects and
their motion over time. We adopt an experimental
paradigm from prior work in cognitive science to
study physical reasoning. To improve the physical
simulation ability of VLMs, we propose a novel
method inspired by in-context reasoning and the
psychology of mental simulation, which we call
Chain-of-Time simulation. In our experiments,
we find that a state-of-the-art VLM is able to sim-
ulate into the future, but with great errors. This
performance is substantially improved when the
Chain-of-Time simulation is used, and in this case
we also find a human-like bias where a simulation
slows down the longer a simulation is run for.

1. Introduction
Recent developments in multi-modal Vision Language Mod-
els (VLMs) show impressive capabilities in generating com-
plex, realistic images. But despite their realism, these im-
ages can have distinct flaws, and fail to capture real-world
structure that is obvious to humans. Understanding the inner
workings of VLMs, as well as their uni-modal counterpart,
Large Language Models (LLMs), has become a major topic
in contemporary AI research (Dang et al., 2024; Chang et al.,
2024).

LLMs have been suggested to have rich world models which
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can represent different concepts and entities. Prior work has
examined various dimensions of these world models and
related algorithmic capabilities, such as color (Abdou et al.,
2021), space (Patel & Pavlick, 2022), spatial reasoning (Ya-
mada et al., 2023), and planning (Li et al., 2023). Compre-
hensive benchmarks such as PhysBench (Chow et al., 2025)
and WM-ABench (Gao et al., 2025) test VLMs on a wide
array of physical simulation capabilities.

In this work, we use an experimental paradigm adopted
from cognitive science to study how VLMs reason about
the spatio-temporal properties of objects in motion. We
present VLMs with a sequence of frames describing the past
motion of an object in a simple 2D world, and task them
with simulating the future motion of the object. We find
that ordinary VLMs struggle with this task, and present a
novel technique to address this, that we term Chain-of-Time
Simulation. This technique is inspired by a combination
of Chain-of-Thought reasoning in LLMs, and the cognitive
process of mental simulation in humans. Our Chain-of-Time
method leads to a significant boost in the ability of VLM
to simulate physical motion. Further, we find that when
using Chain-of-Time Simulation, the VLM shows a trend of
slowing down time the longer its simulation runs for, which
mirrors findings in human psychology.

2. Theories of Mental Simulation in Humans
People are able to efficiently reason about the physical dy-
namics of everyday objects. For example, if you saw a
glass of water begin to fall off of a table, you might quickly
and intuitively predict what sequence of events will happen
next. Many competing theories have been proposed to ex-
plain this ‘intuitive physics’, and it is likely that humans
use a combination of different computations to carry out
this reasoning (Hartshorne & Jing, 2025). Within this, one
leading theory is that people make robust inference over
natural scenes by using a ‘mental physics engine’ Battaglia
et al. (2013); Ullman et al. (2017). On this proposal, peo-
ple carry out a mental simulation of a physical scene akin
to the computations used by engineered systems designed
to simulate real-time dynamics in games and animations.
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Consider the following 4 frames, which are 
0.2 seconds apartv and show the motion of 
a red ball on a white background

Now, generate an image that simulates what 
this scene would look like  N  seconds into 
the future.
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Figure 1. For our experimental paradigm, we give VLMs a sequence of input images and a prompt instructing the model to simulate into
the future for a specified length of time (Left). As a baseline, Direct Prediction (Right, Top) directly predicts the final world state. We
propose a novel method, Chain-of-Time Simulation, which instead generates a sequence of images preceding the predicted final state.

Again, while this is not the only proposal for how people
carry out intuitive physics (and see for example (Ludwin-
Peery et al., 2021)), it has found support in cognitive science,
computational modeling, development, and neuroscience
(Fischer et al., 2016; Gerstenberg & Stephan, 2021; Allen
et al., 2021; Fischer, 2021).

We formulate the mental physics engine in terms of a statis-
tical model as follows:

Suppose that we want to simulate the physical dynamics of
a scene that lasts T seconds, after we observe the scene for
t second. The mental game engine can be thought of as a
function, ϕ, that takes in the current state of the world and
applies dynamic rules to output a distribution over future
states of the world. To simplify here, we can consider a
deterministic transition such that:

XT |XT−1 = ϕ(XT−1)

For each state t, a noise parameter σ will be added to ac-
count for the noise in perception and simulation due to the
complexity of the real-world scenario and potential noise in
perception, turning the transition into a probabilistic transi-
tion. When the simulation of physical dynamics terminates
and we obtain the distribution of XT .

Notice that the states at timestep t is Markovian if a physics
engine is used. This Markov Chain will form a working
memory space that the following distribution could describe:

p(XT , XT−1....X0) = p(XT |XT−1)....p(X1|X0)p(X0)

It is worth pointing out another potential flaw in the
framework: how fine-grained the step t is would po-
tentially impact the hypothesis space of the distribution

XT , XT−1, ...., X0, causing the working memory space to
contain varied information about the physical dynamics it
is trying to simulate, depending on how fine-grained the
step t is. Therefore, the fine-grainness of t could potentially
impact the prediction accuracy, which we will investigate in
section 5.

This step-by-step process of human physical simulation is
useful for many cases, and serves as a motivation for how
VLMs may be made to reason about physical scenes.

3. Chain-of-Time Simulation
Motivated by studies of intuitive physics and mental simula-
tion in humans, we propose a novel method for improving
physical reasoning in VLMs with in-context simulations,
which we call Chain-of-Time Simulation (Figure 1). The
goal of physical simulation in VLMs is as follows: given
a sequence of input images up to a given time T xt=0...T ,
generate a new image x̂T+k that accurately depitcs what the
scene will look like k time steps (or “frames”) into the future.
Chain-of-Time Simulation involves two prompts (provided
in Appendix A): first, a Simulation Instruction Prompt that,
along with a sequence of input images, instructs the model
to simulate an image s frames (or equivalently, s seconds)
into the future. Clearly, s must be smaller than k. In our
experiments, we use k = 0.8 s and s ∈ {0.2 s, 0.4 s}. After
the VLM generates a single image, we continue with our
Simulation Follow-up Prompt, which instructs the model
to generate another image simulated an additional s frames
into the future. As a baseline for this task, we construct a
Direct Prediction Simulation prompt, which instructs the
VLM to directly predict x̂t+k given xt=1...4. Note that this
is equivalent to Chain-of-Time simulation with only a single
timestep, i.e. s = k.
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Chain-of-Time Simulation is inspired by two bodies of prior
literature: the cognitive science of mental simulation (de-
scribed above in Section 2) and in-context reasoning in
LLMs. In-context reasoning methods with LLMs coerce
the model to spell out intermediate reasoning steps in its
output stream, before giving a final answer. This may be
through prompting, as in Chain-of-Thought reasoning (Ko-
jima et al., 2022), or through specialized training regimes
(Guo et al., 2025; Jaech et al., 2024). Various theories have
been developed to try to explain precisely why and how
these methods work (Wang et al., 2022), and in some cases
a model’s intermediate reasoning tokens may not align with
its final answer (Turpin et al., 2023).

Similar to Chain-of-Time simulation, prior works have pro-
posed in-context reasoning methods for VLMs, which use
images instead of language to represent individual reason-
ing steps. However, our method differs from these works
in a few critical ways. Hu et al. (2024) proposes a method
to solve simple reasoning problems with a VLM, such as
geometry and spatial reasoning, and individual steps in-
volve interleaved images and text outputs. (Xu et al., 2025)
proposes a method for planning where a VLM generates
sequential images to solve tasks such as maze navigation;
their approach requires additional training. By contrast, the
goal of Chain-of-Time simulation is to improve physical
simulation with VLMs, where “steps” in a chain correspond
to segments of time. Further, like Hu et al. (2024), our
method can be applied to out-of-the-box VLMs with no
additional training.

4. Experiments
We hypothesize that by using Chain-of-Time simulation,
VLM models will be able to achieve better accuracy than
when using direct prediction. We test this on a simple physi-
cal reasoning task in which a VLM must predict the position
of an object, with accuracy measured in RMSE (Square
Root Mean Squared Error) between the actual location of
the ball and the VLM’s prediction of it. We aim to determine
if the precision of the Chain-of-Time simulation influences
the simulation’s accuracy, by lowering the RMSE between
the predicted trajectory and ground truth trajectory.

4.1. Experimental Setup

Stimuli Design To measure a model’s accuracy in physical
reasoning, we designed an experiment that involves classical
psycho-physical stimuli, and asked VLMs to perform a
simulation and prediction task.

The stimuli we used generally resembles stimuli in previous
studies of intuitive physics (Smith & Vul, 2013), (Bass et al.,
2021) ,(Gerstenberg & Stephan, 2021), involving the motion
of an object in a 2D plane. The specific stimulus shows a

2D red ball rolling on a white background. There is no
friction, and no visible boundaries on the white surface. The
white surface is flat and featureless, allowing the red ball to
roll without obstructions, as shown in Figure 1. We varied
the speed at which the ball rolled over the white surface
with three different speeds: 120, 300, and 500 (in units of
pixels/second).

Experimental Procedure We used OpenAI’s GPT (gpt-
image-1 1) as the VLM model in our experiment. As de-
scribed above, the stimulus will run for 0.8 seconds. The
objective of the task is to predict the future position of the
ball after 0.8 seconds.

At the start of each trial, the model was given 5 frames
of the stimulus, showing the scene at 0, 0.2, 0.4, 0.6, and
0.8 seconds. Given the 5 frames, the model was asked to
generate the first simulated frames, following the Initial
Simulation Prompt we listed in Appendix A: Prompt. The
rest of the frames were generated following the Simulation
Follow-Up Prompt we listed in Appendix A: Prompt.

Sampling Details We designed two Chain-of-Time simu-
lations with different precisions. The first one is named
”Chain-of-Time 0.2s”, meaning the model generate the sim-
ulated frame for every 0.2 seconds, for 4 times after the
video began. The 4 frames generated by the model describe
the position of the red ball 0.2, 0.4, 0.6, and 0.8 seconds
after the last frame provided to the model. The second one is
named ”Chain-of-Time 0.4s”, which is the same as ”Chain-
of-Time 0.2s”, but the model will generate the simulated
frame every 0.4 seconds for 2 times.

In addition, we have a control process termed ”Direct Pre-
diction”. In this method, we asked the model to directly
generate the simulated frame 0.8 seconds after the last frame
we provided to the model.

For all three simulations types, we will run each simulation
type on each stimulus 5 times (N=5).

5. Results
5.1. Accuracy Analysis

As described in Section 4, we measured the model’s perfor-
mance under three different simulations we defined: Chain-
of-Time 0.2s, Chain-of-Time 0.4s, and Direct Prediction.
As Table 1 shows, the Chain-of-Time 0.2s has the best over-
all RMSE across all three speeds, beating Chain-of-Time
0.4s and Direct Prediction. When collapsed across different
speed, as figure 2 shows,the ∆X prediction error reached
the lowest level when Chain-of-Time 0.2s was used, indicat-
ing that Chain-of-Time 0.2s was able to reduce the error in
predictions.

1openai.com/index/image-generation-api/
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Speed Chain-of-Time 0.2s Chain-of-Time 0.4s Direct Prediction
120 Pixels / Second 78 ± 15 143 ± 47 143 ± 96
300 Pixels / Second 102 ± 46 133 ± 92 110 ± 102
500 Pixels / Second 48 ± 22 126 ± 54 144 ± 141

Table 1. The Mean RMSE between predicted trajectory and ground truth trajectory, by simulation types and speeds, with 95% CI.

The findings indicate that the Chain-of-Time simulation was
able to increase the prediction accuracy, and the precision
of Chain-of-Time influences the accuracy of the predicted
positions.

5.2. Predicted Positions Analysis

As shown in Table 1, both Chain-of-Time methods were
able to obtain the lowest RMSE at 500 pixels/second speed,
demonstrating that under 500 pixels/seconds, models were
able to produce the most reliable prediction among all three
speeds we provided to the model. Therefore, we zoomed in
to analyze the predicted positions from all three simulations
under the 500 pixels/second speed.

We performed linear regression over the difference between
the predicted horizontal positions (X positions) and the
ground truth horizontal positions, and time step over data of
Chain-of-Time 0.2s, Chain-of-Time 0.4s, and Direct Predic-
tion. Since Direct Prediction only predicts positions once,
We assume that the simulation runs under constant speed
within a trial, and the previous positions would be inferred
by evenly dividing the predicted trajectory into four parts.

Figure 2. Prediction errors for all three simulation types, averaged
across all data. Prediction error is measured by taking the average
difference between the ground truth displacements (i.e. change in
x-location between frames) and the predicted displacement. Error
bars are 95% CI.

As Figure 3 shows, the ∆X for the Direct Prediction and
Chain-of-Time 0.4s are always below 0, meaning that both
simulation types suffered left bias during the simulation.
Chain-of-Time 0.2s has positive ∆X and its confidence
interval covers 0 before 0.5 seconds, meaning that Chain-
of-Time could simulate with right bias or no bias before 0.5
seconds. But Chain-of-Time 0.2s exhibited left bias after
around 0.5 seconds too.

This indicates that the model tends to underestimate how
far the object moved forward. Furthermore, both Chain-of-
Time 0.2s and Chain-of-Time 0.4s exhibited a downward
trend, meaning that the left bias grew over time, meaning
that the distance the ball traveled simulated by the model
decreases over time. This indicates that the simulation some-
how slowed down within the model, leading to prediction
errors.

Both left bias and the slowing down effect were consistent
with human behavior, as (Wang & Ullman, 2025) demon-
strated that under the same experimental paradigm, the pre-
dicted positions reported by humans exhibited left bias, and
the left bias grew over time, causing the distance between
the predicted horizontal positions and ground truth horizon-
tal positions to increase negatively.

6. Discussion
Our results suggest that while VLMs inherently have some
degree of physical simulation ability, accuracy degenerates
significantly when simulating further into the future. Our
Chain-of-Time method seems to greatly improve this ability,
particularly with long simulations. When using this method,
we also find a surprising similarity between VLM behavior
and patterns observed with humans: in both cases, time be-

Figure 3. Accuracy in predicting the ball’s X-location as a function
of the number of time steps simulated (speed: 500 pixels/sec).
Negative values in Prediction Error represent model-predicted
positions are to the left of the ground truth, and and positive value
represent right-bias. Shaded areas represent 95% CI.
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gins to slow down the longer a simulation is run for. We see
there being enormous opportunity for further experiments
in this vein, perhaps examining other aspects of physical
reasoning such as causality and non-simulative (heuristic-
or abstraction-based) physical reasoning.
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A. Prompts
For our Chain-of-Time simulation method, as well as our Direct Prediction baseline, models are provided the following
prompt, with different methods (Chain-of-Time 0.2s, 0.4s, and Direct Prediction) varying the {{number of seconds
forward}} parameter:

Simulation Instruction Prompt

Consider the following {{number of inputs}} frames, which show the motion of a red
ball on a white background. Note that each frame is precisely .2 seconds apart.

Now, please generate an image that simulates what this scene would look like {{
number of seconds forward}} Seconds into the future.

Make sure that your image is 2d and consists of a single red circle on a solid white
background. Ensure that the circle is exactly the same size as the input images.
Assume that there is no friction, the ground is flat, and the ball can pass

through objects.

{{image sequence}}

For Chain-of-Time simulation, we use the following prompt to elicit subsequent simulation steps from the VLM:

Simulation Follow-Up Prompt

Now, simulate additional {{number of seconds forward}} seconds into the future.
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