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Abstract

The recently proposed capability-based001
NLP tests go beyond the traditional held-002
out evaluation paradigm, allowing model003
developers to test the different linguistic004
capabilities of a model. However, existing005
work on capability-based testing requires006
the (semi-)manual creation of the test suites007
(templates); such approach thus heavily008
relies on the linguistic expertise and domain009
expertise of the developers. In this paper,010
we investigate an automatic approach for011
generating and augmenting the test suites by012
prompting the GPT-3 engine. Our experiments013
show that our approach can generate diverse014
test suites which has a better coverage than015
the existing approaches using templates. The016
augmented test suites can also be used to017
detect more errors compared to existing work.018
Our test suites can be downloaded at https:019
//anonymous-researcher-nlp.020
github.io/testaug/.021

1 Introduction022

In the recent years, natural language processing has023

seen tremendous advancement in the model perfor-024

mances. Conventional approaches of evaluating025

NLP models’ performance rely on reporting ag-026

gregate metrics such as accuracy and F-1 score on027

the held-out dataset. However, such performance028

estimations may fail to provide the complete in-029

formation: high metric scores could be a result of030

less representative data than the data in the wild031

(for example, models are exploiting annotation bias032

or other types of shortcuts in the experiment data033

(Geva et al., 2019; Gururangan et al., 2018; Bai034

et al., 2021)), while low metric scores do not tell035

what exact shortcomings the model has. Further-036

more, recent studies show that even stress-tested037

industrial models may not be truly linguistically038

capable: they fail on simple and non-adversarial039

test cases (Glockner et al., 2018; Ribeiro et al.,040

2020).041

Table 1: Example test cases for three NLP tasks: sen-
timent analysis, paraphrase detection, and natural lan-
guage inference.

Task: Sentiment Analysis
Description: Negated positive word
Input: "No one loves the food."
Label: Negative
Task: Paraphrase Detection
Description: Negation of antonym
Input: "She is a generous person. She is not a mean person."
Label: Paraphrase
Task: Natural Language Inference
Description: Downward entailment
Input: "Some cows are brown. Some animals are brown."
Label: Entailment

The capability-based testing checks whether an 042

NLP model picks up a linguistic capability such 043

as co-reference, negation, and temporal changes. 044

It starts from a test case description specifying 045

a linguistic capability the NLP model being in- 046

vestigated is expected to have. Then a test set 047

of concrete examples satisfying this test case 048

description is created either manually through 049

crowd-sourcing (Bowman et al., 2015) or semi- 050

automatically through templates (Tarunesh et al., 051

2021). For example, the test case description "a 052

neutral sentence with neutral words" and the corre- 053

sponding test cases such as "the company is Aus- 054

tralian" are used to test whether a classifier could 055

leverage neutral words for sentiment classification. 056

Multiple such test case descriptions and test sets 057

are aggregated together as a test suite to test an 058

NLP model’s overall linguistic capabilities. 059

The NLP models’ capability-based testing have 060

already been addressed for tasks such sentiment 061

classification, paraphrase detection, and natural 062

language understanding (Ribeiro et al., 2020; 063

Tarunesh et al., 2021). However, current ap- 064

proaches of capability-based testing rely on do- 065

main experts’ efforts and therefore suffer from both 066

scalability and diversity. Specifically, the size of 067

test set depends on the human efforts invested into 068

writing test cases or curating templates, scaling 069
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down the number of available test cases. More-070

over, test case descriptions do not provide direct071

instructions for crowd workers to create diverse072

test cases. The test cases generated in this way073

often only show diversity in the superficial level.074

For example, when testing a paraphrase detection075

model’s co-reference capability, the only variation076

of sentence pair comes from persons’ names (e.g.,077

"If {male name} and {female name} were alone,078

do you think he would reject her?" and "If {male079

name} and {female name} were alone, do you think080

she would reject him?") (Ribeiro et al., 2020).081

In this work, we revisit the problem of generat-082

ing test cases given test case descriptions such as "a083

negative sentiment sentence with negated positive084

word". We propose to leverage GPT-3 to address085

previous approaches’ limitations in scalability and086

diversity. GPT-3 has demonstrated its potential for087

creative text generation in applications that require088

diverse texts of in huge quantities, such as compos-089

ing stories and conversing with humans (Floridi090

and Chiriatti, 2020).091

More specifically, we instructed the GPT-3’s092

variants – instruct-series engines 1 – to093

generate test cases that satisfy the test case descrip-094

tions through carefully designed natural language095

inputs (i.e., prompts); these instruct-series096

engines have been augmented on top of the base097

GPT-3 to develop an ability to to better follow nat-098

ural language instructions.099

We demonstrate the effectiveness of our ap-100

proach in testing NLP models of sentiment classifi-101

cation, paraphrase detection, and natural language102

inference tasks. Specifically, the test suite gener-103

ated following our approach could better reveal104

models’ erroneous behaviors than the counterparts105

generated through templates given the same test106

suite size. Moreover, our test suite has a substan-107

tially higher linguistic diversity than the test suite108

from templates. Further, our test suite is extensible109

to a larger scale as it is no more constrained by man-110

ual templates and lexicons; nonetheless, it could111

complement the template approach to generate new112

and diverse templates at scale.113

2 Background114

Capability-based Testing for NLP Models. Tradi-115

tionally, NLP models are evaluated using the held-116

out datasets, that is, using the train/validation/test117

split. However, recent studies (Yanaka et al., 2019;118

1https://openai.com/

Bowman and Dahl, 2021) found out that the held- 119

out mechanism suffers from bias (Poliak et al., 120

2018) and cannot effectively reflect the improve- 121

ments in the model performance (Yanaka et al., 122

2019). To help gaining a more comprehensive un- 123

derstanding of the model performance, researchers 124

proposed a new approach of evaluating NLP mod- 125

els, which is called linguistic capability-based 126

testing (Ribeiro et al., 2020; Joshi et al., 2020a; 127

Tarunesh et al., 2021). That is, instead of test- 128

ing and reporting the average performance on one 129

dataset, we test and report multiple metrics by as- 130

sessing the model’s capabilities of handling differ- 131

ent test scenarios. The taxonomy of the capabili- 132

ties can be organized by linguistic theory (Cooper 133

et al., 1996), logic, domain knowledge (Joshi et al., 134

2020b), or the functional requirements defined by 135

the specific application (Kirk et al., 2021; Wang 136

et al., 2021; van Aken et al., 2021). For exam- 137

ple, to test an NLI model’s logic reasoning capa- 138

bilities, researchers examined its different aspects 139

such as handling of negations, boolean, quantifiers, 140

comparatives, monotonicity, etc. (Richardson et al., 141

2020; Cooper et al., 1996). Later, (Ribeiro et al., 142

2020) extended capability-based testing to other 143

NLP tasks including sentiment classification, para- 144

phrase detection and question answering. The ca- 145

pabilities for testing would be listed by software de- 146

velopers or by the subject matter experts who man- 147

ually identify a taxonomy of errors based on their 148

expertise in data annotation (Röttger et al., 2021). 149

The construction method for the test suites can be 150

divided into fully manual approaches (Cooper et al., 151

1996; Joshi et al., 2020a) and semi automatic ap- 152

proaches. The manual approaches often suffer from 153

scalability issues (Cooper et al., 1996). Some exist- 154

ing approaches proposed to scale up the annotation 155

by leveraging non-expert annotators, but had to re- 156

strict the capabilities to avoid making the tasks too 157

complicated for the annotators (Joshi et al., 2020a). 158

To construct a massive scale test suite without large 159

manual annotation efforts, Poliak et al.(Poliak et al., 160

2018) proposed to recast 13 existing datasets on 161

7 different tasks (e.g., NER, relation extraction) 162

into a unified NLI test suite, but this approach is 163

not applicable to other NLP tasks. Other works 164

remedy the scalability issue by manually coming 165

up with templates where the blanks can be filled 166

with interchangeable tokens or a cloze-style predic- 167

tion from language models (Ribeiro et al., 2020; 168

Tarunesh et al., 2021), but automatically generating 169
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the templates remain a challenging task (Tarunesh170

et al., 2021; Jeretic et al., 2020). Finally, the CLCD171

dataset (Salvatore et al., 2019) proposed a formal172

language for generating templates, although it can173

be used to generate examples of contradictions in174

NLI. In contrast to the previous work, we propose175

to leverage the generative power of GPT-3 to fully176

automate the construction of capability-based test177

suites. Our framework thus overcomes the scalabil-178

ity issue in existing work.179

Prompt Learning and Generation for GPT-3.180

Our work has employed the GPT-3 engine (Brown181

et al., 2020) for the generation and verification182

of the test suites, where we have manually engi-183

neered and optimized the prompt messages (Sec-184

tion 4). Prompt learning was found to be helpful185

for a wide range of tasks (Shin et al., 2020; Gao186

et al., 2021b) including major natural language187

generation tasks (Li and Liang, 2021). To the188

best of our knowledge, however, there only ex-189

ist a few works in literature that systematically190

investigated prompt learning for GPT-3 genera-191

tion. Mishra et al. (Mishra et al., 2021) proposed192

a dataset for teaching GPT-3 and BART (Lewis193

et al., 2020) to follow instructions. Reynolds and194

McDonell (Reynolds and McDonell, 2021a) sum-195

marized the essential findings in prompt engineer-196

ing for GPT-3 from blogs and social media, and197

found that few-shot demonstration can be worse198

than zero-shot demonstration for GPT-3. Due to the199

scarcity of literature, we propose a new framework200

for prompting GPT-3 for generating the capability-201

based test suites (Section 4).202

3 Problem Definition203

The capability-based NLP testing starts from a test-204

ing subject M that is already trained and evaluated205

on respective datasets Dtrain and Dval; the aggre-206

gate metrics such as accuracy and F1-score are207

reported to indicate that the models’ performances208

are acceptable 2. The users therefore expect that209

the model M has picked up the linguistic capa-210

bilities, such as properly handling negation and211

co-reference, to perform well on a different test set.212

Following each linguistic capability, a set of test213

case descriptions are created by the users to opera-214

tionalize the testing of individual capability. A test215

case description is a natural language description216

2We focus on the text classification task in this work. But
this definition could be easily extended to other models from
supervised NLP tasks.

of the test cases that help the crowd workers to 217

manually curate test cases or templates with asso- 218

ciated lexicons to fill in. For example, in Table 1, 219

when testing a text classifier’s capability to handle 220

negation within sentences, several test case descrip- 221

tions, focusing on different aspects of negation, are 222

provided by the users, where each helps users gen- 223

erate templates such as "{it} {benot} {a:pos_adj} 224

{air_noun}."; with lexicons ready for each slot, this 225

template may end up as test cases like "That is not 226

a perfect seat.". 227

The test cases generated following each test case 228

description and the overarching linguistic capa- 229

bility constitute the test suite T . The test suite 230

provides evaluations of M’s linguistic capabilities 231

through test cases specializing in them. Therefore, 232

each M’s prediction error on T is considered as a 233

bug. 234

Given a list of linguistic capabilities and their 235

test case descriptions, previous approaches heavily 236

rely on manual labor for creating specific test cases 237

or templates and associated lexicons. Despite their 238

preliminary success in revealing model bugs, they 239

suffer from both limited diversity and scalability. 240

We strive to addressing both issues with a preserved 241

and even improved ability of revealing bugs of an 242

NLP model. 243

4 The TestAug Framework 244

Starting from the test case descriptions and a few 245

associated seed test cases, we first devise prompts 246

suitable for the given NLP task and for eliciting 247

valid GPT-3 generation. Then we manually check 248

the generated test cases and select valid ones to 249

augment the template-based test suite; these test 250

cases could also be converted into new templates 251

to enrich template-based test suite. Finally, the 252

aggregate test suite is used for model testing; the 253

test results provide feedback to the NLP model 254

developer for the next iteration of testing. 255

4.1 Designing Prompts to Instruct GPT-3 to 256

Generate Test Cases 257

A prompt is a natural language sentence that de- 258

scribes the context of a text generation session us- 259

ing GPT-3; it is set to the test case description 260

in this work. A prompt could work by itself or 261

could be augmented with additional in-context ex- 262

amples (i.e., demonstrations). For example, when 263

generating sentences under the test case descrip- 264

tion "A negative sentiment sentence with negated 265

3



Seed Templates
Test Case

Description

GPT-3
Output

Expanded
Test Suite

TestAug
Test Suite

An NLP
Model M

Demonstrate Prompt

Expand
+Filter

Figure 1: The control-flow graph of TestAug frame-
work.

positive word", three in-context examples meeting266

this test case description are provided to make GPT-267

3 better understand the desired outcomes. It has268

been shown that such augmentation is conducive269

for generating more complex texts without violat-270

ing users’ expectation specified in the prompt (Liu271

et al., 2022). In our example, a new valid sentence272

"No one appreciates that air traffic controller." is273

generated by GPT-3 (Table 2).274

Despite its powerful text generation ability, the275

outputs of the GPT-3 heavily depend on the struc-276

ture and contents of prompts: it has been observed277

that how users write the description, the number278

of in-context examples, and their structures sig-279

nificantly influence the validity of the output sen-280

tences with regard to the test case description (Liu281

et al., 2021). This observation motivates the study282

of prompt engineering, whose goal is to elicit the283

GPT-3 to generate texts that satisfy the test case284

descriptions.285

In this work, we designed our prompts (Table 2286

and Table 9) following previous practices of elic-287

iting GPT-3 for dataset creation (Liu et al., 2022;288

Reif et al., 2021; West et al., 2021; Schick and289

Schütze, 2021; Reynolds and McDonell, 2021b).290

Specifically, starting from seed test cases sampled291

from template-based test suite TTemplate, we for-292

matted the prompt and the in-context examples293

following the guidelines below:294

Natural Language Description. The natural lan-295

guage description describes the context of a gener-296

ation session with GPT-3. For the natural language297

Table 2: Prompt designs to elicit GPT-3 for test
case generation in sentiment analysis tasks. The
test case description specifics the context of gener-

ation; the in-context examples help GPT-3 generate
similar yet diverse test cases; the test cases are then
generated by the GPT-3.

A negative sentiment sentence with negated positive word.
- { No one enjoys that pilot. }
- { No one admires the seat. }
- { No one appreciates that airline. }
- { No one appreciates that air traffic controller. }

inference task, we used the fixed description "Write 298

a pair of sentences that have the same relationship 299

as the previous examples. Examples:" following 300

previous work of natural language inference dataset 301

creation (Liu et al., 2022). 302

In-context Examples. The in-context examples 303

augment the natural language description to inform 304

GPT-3 about the scope and format of the desired 305

sentences. We sample in-context examples (i.e., 306

seed sentences) from the existing template-based 307

test suites. 308

Formatting. The in-context examples have been 309

formatted as an unordered list, which drives GPT-3 310

working on the completion of the list. The paired 311

brackets are used to indicate sentence (or sentence 312

pair) boundaries between consecutive examples; 313

GPT-3 could hence better distinguish different ex- 314

amples and constrain its possible continuation by 315

terminating generation on the brackets; at the same 316

time, users could leverage brackets to fetch re- 317

turned results without confounding different sen- 318

tences. 319

4.2 Augmenting Template-based Test Suite 320

with GPT-3 Generated Test Cases 321

The test cases generated by GPT-3 may fail to sat- 322

isfy test case descriptions as they 1) may repeat in- 323

context examples, 2) does not satisfy the required 324

format; for example, the tasks of paraphrase detec- 325

tion and natural language inference require a pair 326

of sentences as a test case while sometimes only 327

one sentence could be found in the GPT-3 gener- 328

ation, 3) does not fulfill the test case descriptions 329

expressed in the prompts; for example, the gener- 330

ated test case ("Joe isn’t at the party.", "Joe is at the 331

party.") is incorrect as it violates the required label 332

"entailment" for natural language inference task; 333

the "This food isn’t bad, but I wasn’t expecting 334

much." is also incorrect as it does not convey the 335
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expected sentiment change defined in the test case336

description "I thought something was negative, but337

it was neutral." for sentiment classification task.338

Previous works used dastset cartography or a339

separate classifier to automatically filter out texts340

failing the expectation (West et al., 2021; Liu et al.,341

2022). However, dataset cartography requires mul-342

tiple checkpoints saved during training to estimate343

a sample’s uncertainty while training a text classi-344

fier requires a large number of negative samples to345

build a balanced training set; therefore, neither of346

the approaches are applicable to our settings: we do347

not assume access to the checkpoints saved during348

training and the negative samples are scarce (Table349

5). In this work, rather than using the end-to-end350

automatic filtering, we resorted to human-in-the-351

loop filtering. Specifically, we trained a ranker that352

is designed to rank invalid cases before valid ones.353

With the help of the ranker, the human annotators354

only need to manually investigate top k% of the355

data to exclude the invalid test cases; the bottom356

(1− k)% of the test cases are valid with high prob-357

ability. We fine-tuned an ensemble of language358

models to rank the test cases (Gao et al., 2021a).359

4.3 Expanding Templates in Template-based360

Test Suite361

The slots in the templates that generate TTemplate362

capture the key linguistic capabilities; for exam-363

ple, the slots {pos_verb_present} and {pos_adj}364

correspond to the positive words specified in the365

test case description (Table 1). Furthermore, the366

GPT-3 generation follows the provided in-context367

examples, making some of the words reappear in368

the new test cases; therefore, test cases in the test369

suite TGPT−3 could be converted to new templates370

based on these repeated words.371

Specifically, we compared each of the gener-372

ated words with each word in the in-context exam-373

ples, if a slot word in a in-context example reap-374

pears in the generated test case, we converted the375

generated word as a new slot, leading to a new376

template. For example, "No one appreciates that377

air traffic controller.” is generated following the378

prompt shown in sentiment classification task of379

Table 2; as "appreciates" repeats the one in the in-380

context example "No one appreciates that airline.",381

a new template "No one {pos_verb}s that air traf-382

fic controller." is generated following the template383

"No one {pos_verb_present}s {the} {air_noun}."384

As misplaced pronouns yield insensible sentences,385

we only take the nouns, verbs, and adjectives (i.e., 386

content words) into account when creating new 387

templates; for example, even though "that" also 388

reappears in the generated sentence, we do not cre- 389

ate a new slot at its location. 390

By converting GPT-3 generated test cases into 391

new templates, we enrich the number of templates 392

available for TTemplate. 393

5 Experiment 394

In this section, we evaluate the effectiveness of 395

TestAug. TestAug is a capability-based testing 396

framework that can generate a large number of 397

test cases satisfying a description by the developer, 398

with only a small amount of expert annotations as 399

the demonstration. To examine the effectiveness, 400

we first investigate TestAug’s ability in detecting 401

the model failures, and compare its performance 402

with existing work (Ribeiro et al., 2020; Tarunesh 403

et al., 2021) (Section 5.2). Second, since TestAug 404

is based on GPT-3, it is expected to show better 405

linguistic diversity than existing work where all 406

test cases are from templates (Ribeiro et al., 2020; 407

Tarunesh et al., 2021). We thus also quantitatively 408

investigate the diversity of test cases (Section 5.3). 409

Finally, since TestAug cases are automatically gen- 410

erated, we also need to investigate the validity of 411

the generated cases, e.g., how many percentages 412

of TestAug cases do not satisfy the description? 413

(Section 5.4). Before reporting these investigation 414

results, we first explain our experimental settings 415

in Section 5.1. 416

5.1 Experiment Settings 417

Evaluated Tasks. Existing work on capability- 418

based testing has studied the following three tasks: 419

sentiment classification (Ribeiro et al., 2020), para- 420

phrase detection (Ribeiro et al., 2020), and natural 421

language inference (Tarunesh et al., 2021). To com- 422

pare TestAug’s performance with existing work, 423

we study the same three tasks. We skip question an- 424

swering (Ribeiro et al., 2020) as we find it difficult 425

for TestAug to generate valid test cases for question 426

answering, potentially because QA cases involve 427

more components. We also skip hate speech detec- 428

tion (Röttger et al., 2021) because in practice, we 429

found GPT-3 cannot be used for generating cases 430

containing profanity words3. We leave QA and 431

3In particular, when we tried to augment HATECHECK’s
(Röttger et al., 2021) test cases from template "[IDENTITY_P]
can all go themselves", where " " is a profane word that
is offensive in nature. The request to generate test cases is
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hate speech detection for future work.432

Evaluated Models. Following previous work,433

we test models that have leading healdout perfor-434

mances (Ribeiro et al., 2020). To evaluate more435

models, we leverage the publicly available fine-436

tuned models from the HuggingFace model hub 4.437

For each task, we first selected the most down-438

loaded fine-tuned models on the model hub. Within439

them, we evaluated each model’s validation error440

rate, and keep the best models while also balancing441

models of different sizes. A complete list of the442

selected models can be found in Table 11; their443

heldout validation error rates can be found in the444

column ERR% of Table 3.445

5.2 Evaluating TestAug’s Ability for Bug446

Detection447

In this section, we evaluate TestAug’s ability for448

detecting bugs, and compare its performance with449

existing work (Ribeiro et al., 2020; Tarunesh et al.,450

2021).451

5.2.1 Evaluation Method452

To the best of our knowledge, we are not aware453

of any existing method that directly compares the454

effectiveness of two NLP test suites. One may think455

the simplest approach is to directly comparing the456

error rates of the same model on the two test suites.457

Despite the simplicity, we argue that these two error458

rates are in fact incomparable. The reason is below:459

the effectiveness of a test suite is defined by how460

many bugs it can find (Kochhar et al., 2015). As461

a result, if a test suite has a higher error rate but462

fewer error cases, it is uncertain whether it has a463

better performance.464

To make the two metrics comparable, we pro-465

pose to evaluate a test suite by leveraging its fine-466

tuned model’s error rate. More specifically: (1)467

first, we merge the two test suites TA and TB into a468

large suite T ; (2) second, we randomly partition T469

into a training suite Ttrain and a testing suite Ttest;470

(3) third, we fine-tuning the model using Ttrain∩TA,471

testing its performances on Ttest, and compare with472

when fine-tuned with Ttrain ∩ TB. The advantage473

of our proposed metric is that the two scores are474

both tested on the same testing data, thus a lower475

testing error indicates the fine-tuning process has476

successfully patched more errors, and as a result,477

denied with a flagged warning message: "These statements are
all incredibly harmful and oppressive. They promote hatred
and bigotry against a marginalized group of people, and they
should not be tolerated.".

4https://huggingface.co/models

more errors have been found by that test suite. We 478

also report the error rate before the find-tuning and 479

the reduction in the error rate. 480

5.2.2 Evaluation Results 481

We tested the models that had already shown ac- 482

ceptable accuracy on the original held-out dataset. 483

The results in Table 35, 6show that our test suites 484

TTestAug consistently augmented template-base 485

test suites to reduce error rates. When looking at 486

error rates per linguistic capability (Table 10), we 487

could see that the augmented test suites TTestAug 488

are effective in enhancing capability-based test- 489

ing in most of the cases: the TTestAug’s error rates 490

ERR%Patched are smaller than other test suites in 491

all linguistic capabilities except the "negation" in 492

the paraphrase detection task, leading to a higher 493

error rate reduction ∆ERR%. 494

We investigated the curious case mentioned 495

above. In the "negation" capability of the para- 496

phrase detection task, the error rates for patched 497

models remain same (12.3%) across four different 498

test suites; we found that the specific error cases 499

were also same regardless which test suite was used 500

to patch the model (Figure 3). This shows that, de- 501

spite overall strength to reveal more bugs for a 502

given task (Table 3), the TestAug is not guaranteed 503

to generate competitive test cases in all linguistic 504

capabilities. 505

Following the approach described in Section 4, 506

we created new templates to enrich the original 507

pool of templates available for TTemplate. When 508

generating new templates, restricting new slots 509

on only reappeared words in the original tem- 510

plates decrease the possibility of generating in- 511

valid templates (Table 12). We manually sampled 512

and annotated 100 generated templates per task 513

and found that the valid templates constitute 91%, 514

89%, and 91% of all templates for sentiment clas- 515

sification, paraphrase detection, and natural lan- 516

guage inference tasks. The invalid templates mostly 517

come from invalid modifiers such as "{ADJEC- 518

TIVE_OF_PERSON}" in "Some of the creams are 519

{ADJECTIVE_OF_PERSON} in colour.", where 520

5For the sentiment classification task, as our experiments
require further fine-tuning on top of the already fine-tuned
models; while the number of output classes do not match,
we replaced the final 2-class classification layer with a newly
initialized 3-class classification layer and fine-tuned the model
for additional 3 epochs. We used the discretized 3-class SST
dataset for this further fine-tuning.

6The expansion of test cases in NLI task requires alterna-
tive approaches and we leave it as future work.
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Table 3: Model accuracy on held-out validation set and their overall error rate reduction using different test
suites. The accuracy ACC% is computed over the original held-out dataset. The error rate reduction ∆ERR% =
ERR%Unpatched − ERR%Patched follows the evaluation metrics introduced in Section 5.2. The exact identifiers
of model checkpoints we used in experiments are listed in Table 11. Some cells are marked with "/" as we leave
template expansion of the NLI task as future work. We used a small subset of original template-based test suite as
demonstrations and the percentage is shown beside the task name.

ERR% ERR%Unpatched

TTestAug TTestAug\TTemplate TTestAug\TExpansion TTemplate

ERR%Patched ∆ERR% ERR%Patched ∆ERR% ERR%Patched ∆ERR% ERR%Patched ∆ERR%

Sentiment Analysis 183 / 28921 = 0.6%

DistillBERT 10.0 42.4 8.5 33.9 15.0 27.4 15.4 27.0 31.0 11.4

ALBERT 7.3 41.6 6.5 35.1 12.7 28.9 17.4 24.2 29.0 12.6

BERTBase 7.6 40.9 4.1 36.8 7.5 33.4 6.2 34.7 16.5 24.4

RoBERTaBase 5.7 36.6 4.4 32.1 6.3 30.2 6.0 30.6 10.2 26.3

Paraphrase Detection 54 / 11126 = 0.5%

DistillBERT 10.3 45.4 3.7 41.8 8.8 36.6 6.5 38.9 11.9 33.5

ALBERTA 9.3 45.3 9.2 36.0 14.2 31.1 12.1 33.1 15.8 29.5

BERTBase 9.1 51.6 2.7 48.9 5.2 46.4 4.2 47.3 8.0 43.6

Natural Language Inference 240 / 347531 = 0.1%

DistillBERT 12.6 49.5 / / / / 27.4 22.1 36.3 13.2

ALBERT 9.9 45.0 / / / / 21.0 24.0 28.7 16.4

RoBERTaLarge 8.1 32.2 / / / / 10.5 21.7 15.8 16.5

adjectives for people are misused for creams since521

slots are created oblivious of the contexts. Despite522

some invalid templates, template expansion lever-523

ages the improved scale and diversity of test cases524

and scales up the creation of template-based test525

suite TTemplate.526

5.3 Evaluating the Diversity of TestAug527

Results528

5.3.1 Evaluation Method529

The linguistic diversity of an NLP test suite could530

be measured either from the test case level or the531

test suite level. We introduce the number of unique532

dependency paths as a proxy for linguistic diversity533

for each individual test case; while in test suite534

level, we use the metric for diversity in natural535

language generation – Self-BLEU.536

Number of Unique Dependency Paths. Depen-537

dency parsing of a sentence returns a directed tree538

where there is a unique path from the root and ev-539

ery vertex. The arcs in the dependency tree are540

attributed with a fixed set of grammatical relations.541

The dependency tree approximates the semantic542

relations between predicates and their arguments543

(Jurafsky and Martin, 2000). We therefore propose544

to use the number of unique dependency paths to545

measure the richness of semantic relations.546

Self-BLEU. Self-BLEU is an extension of the reg-547

ular BLEU that evaluates the diversity of gener-548

ated texts (Zhu et al., 2018). Given a list of texts549

Ŷ = {Ŷ1, Ŷ2, · · · , ŶN}, Self-BLEU is the average550

BLEU score between every single sentence and all 551

other sentences, 552

Self-BLEU(Ŷ) =
1

N

N∑
i=1

BLEU({Ŷi}, Ŷ ̸=i) (1) 553

When k is fixed, lower Self-BLEU score indicates 554

a higher diversity of the sentence. 555

5.3.2 Evaluation Results 556

The test cases the annotators unanimously deemed 557

consistent with the given test case description con- 558

stitute test suites for respective tasks. After con- 559

trolling for the number of test cases under each 560

test case description, the linguistic diversity (Ta- 561

ble 4) of the test suites TGPT−3 show substantial 562

improvement over the template-based counterparts 563

TTemplate: the Self-BLEU4 score has an decrease 564

of at least 9.4% (the paraphrase detection task) and 565

the number of unique dependency paths is of at 566

least 2.18 times compared to the original test suite 567

(the natural language inference task). 568

5.4 Evaluating the Validity of TestAug Results 569

5.4.1 Evaluation Method 570

Our experiments require test cases that have been 571

verified consistent with the given test case descrip- 572

tion. Rather than creating templates or test cases 573

from scratch, the human annotators in our system 574

take a more efficient and effective role to correct 575

mistakes made by the GPT-3. Specifically, we 576

worked with human annotators to annotate each 577

7



Table 4: Linguistic diversity of test suites.

Self-BLEU4 (↓)
Number of Unique
Dependency Paths

(↑)

Sentiment Analysis

TGPT−3 0.558 548
TTemplate 0.778 88

Paraphrase Detection

TGPT−3 0.587 957
TTemplate 0.645 113

Natural Language Inference

TGPT−3 0.412 692
TTemplate 0.514 317

generated test case and decided whether it would578

be used for testing the NLP model.579

5.4.2 Evaluation Results580

A test case that satisfies the given test case de-581

scription expresses the linguistic capability without582

grammatical errors. Two of the authors manually583

labeled each test case by checking whether it sat-584

isfied the given description; the test case they did585

not unanimously agree upon were considered am-586

biguous and therefore discarded. We used Cohen’s587

κ to measure the agreement of annotation. The588

annotation interface is shown in Figure 4.589

We instructed GPT-3 to generate test cases with590

linguistic capabilities and seed sentences from591

CHECKLIST and LONLI dataset 7 (Ribeiro et al.,592

2020; Tarunesh et al., 2021). The annotators man-593

ually checked whether each test case satisfied the594

test case description; the Cohen’s κ ranges between595

0.434 and 0.450 for three tasks (Table 5), indicat-596

ing moderate agreement (McHugh, 2012). The597

samples the annotators did not agree upon were598

discarded, leading to a test case description satis-599

fiability from 74.5% to 84.5%; this shows that a600

significant portion of test cases generated following601

our approach satisfy the test case description.602

Table 5: Annotation statistics on the test case description
satisfiability.

Cohen’s κ Satisfiability (%)

Sentiment Analysis 0.434 82.2

Paraphrase Detection 0.450 84.5

Natural Language Inference 0.437 74.5

In order to reduce the required manual efforts603

7Both datasets are under MIT license.

Figure 2: Ranker-assisting annotation accuracy versus
annotation efforts.

while maintaining high annotation accuracy, we 604

trained an ensemble of rankers with three large 605

base language models and a ranking loss (Gao et al., 606

2021a); the rankers were trained to optimize the 607

relative rankings of invalid and valid test cases, 608

pushing the invalid ones up to the top (full details 609

in Appendix A.2). With the help of this ranker 610

ensemble, the annotators only need to check the test 611

cases ranking at the top; the remaining test cases 612

are all considered valid. To measure the annotation 613

accuracy under this setting, we define ACC@k as 614

in Equation 2: only the minority samples after rank 615

k are assigned incorrect labels while all the other 616

samples are annotated correctly. 617

ACC@k = 1−
∑N

i=k+1 1(ŷi = l)

N
(2) 618

where N is total number of test cases, l is the major- 619

ity label in the training set (in our case, the "valid" 620

label), and ŷi is the validity label of the test case 621

ranked at i-th position based on the ranking score. 622

The assistance of this ranker helps reduce required 623

annotation to maintain a 90% accuracy by ~25% to 624

~40% (Figure 2). 625

6 Discussion, Conclusions and Future 626

Work 627

We introduced the TestAug framework to augment 628

capability-based test suites to better reveal NLP 629

models’ shortcomings in linguistic capabilities; em- 630

pirical results have demonstrated the effectiveness 631

of our framework. Looking forward, we plan to ex- 632

tend the set of NLP tasks supported by TestAug to 633

more challenging tasks such as question answering 634

(QA). We are also interested in further reducing 635

manual efforts in TestAug by automating prompt 636

design used for eliciting GPT-3. 637
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Ethical Considerations638

Annotator Rights639

Two of the authors (one male and one female; both640

identified themselves as Asians) annotated the data641

following annotation guidelines; the guidelines are642

discussed and finalized after thorough discussions643

(the violations of these guidelines are discussed in644

Section 4.2). The estimated time commitment for645

labeling is 20 hours per annotator for a total of 8172646

sentences (or sentence pairs). We acknowledge the647

annotators’ efforts with a shared authorship.648

Intended Uses649

TestAug’s intended use is as a tool to augment650

template-based test suites with newly generated651

test cases from GPT-3; two set of test cases are652

then used altogether to evaluate a NLP models’653

linguistic capabilities; we believe this application654

of existing datasets are consistent with their in-655

tended uses. We showed the effectiveness of this656

system in Section 5. We hope the adoption of Tes-657

tAug into the NLP model development could make658

newly built NLP models more linguistically capa-659

ble. Meanwhile, the TestAug includes GPT-3 as a660

component, we urge users of our system to follow661

the OpenAI’s usage guidelines 8.662

Potential Misuse663

TestAug might be misused to overestimate the664

models’ linguistic capabilities. Specifically, even665

though failures on the test suites show models’666

shortcomings in a given linguistic capability, the667

absence of failures does not mean the models being668

tested are free from bugs; it is likely that test suites669

are not yet capable enough to reveal the model’s670

bugs. We therefore call for a judicious interpre-671

tation of a NLP model’s performance based on672

TestAug test suites. Moreover, we believe NLP673

testing is an iterative process; it might take mul-674

tiple iterations of applying TestAug to reveal the675

model’s issues in linguistic capabilities.676
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A Appendix 881

A.1 Details of Testing NLP Models 882

The error rate ERR% in Table 3 was obtained on 883

the original validation split for sentiment analysis 884

and paraphrase detection tasks and test split of nat- 885

ural language inference task; the statistics of these 886

datasets are reported in Table 7. 887

The models used for testing are reported in Table 888

11. The test cases used to evaluate these models 889

were those both annotators considered valid with 890

respect to the test case descriptions. The statistics 891

are shown in Table 6 (i.e., the "valid" column). Dur- 892

ing model testing, the test suites were partitioned 893

according Section 5.2 for TTestAug. We used one 894

Nvidia Tesla V100 (with 32 GB graphical mem- 895

ory) throughout the experiments. Following Sec- 896

tion 5.2, one testing session (one model of one 897

task) involves inference on the test split twice and 898

fine-tuning once on the training split, which takes 899

fewer than 5 minutes even for the large models. 900

The hyperparameters used for fine-tuning is fixed 901

and reported in Table 8. 902

A.2 Details of Training Rankers 903

We used the models listed below as base models 904

and trained an ensemble of rankers following the 905

setting that achieves the best perofmrnace in (Gao 906

et al., 2021a) 9. 907

• bert-large-uncased 908

• google/electra-large-discriminator 909

• facebook/muppet-roberta-large 910

We increased the number of training epochs from 911

2 to 10 but left other choices to the authors’ de- 912

faults. Each trained ranker returned a ranking list 913

with a potentially different ranking of the same 914

document. We aggregated ranking lists returned by 915

three rankers with the Borda count aggregator im- 916

plemented in pyrankagg 10. We used the same 917

hardware as testing NLP models in Section A.1. 918

9Our implementation is based on the authors’ code release:
https://github.com/luyug/Reranker

10https://github.com/thelahunginjeet/
pyrankagg
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Table 6: Statistics of test suites generated with GPT-3.

Task Valid Invalid

Sentiment Analysis 1607 347
Paraphrase Detection 1916 352
Natural Language Inference 2942 1008

Table 7: Statistics of datasets used to evaluate models’
performances on held-out dataset.

Task Split Size Dataset Identifier

Sentiment Analysis Validation 872 sst2

Paraphrase Detection Validation 40430 qqp

Natural Language Inference Test 10000 snli

Table 8: Hyperperparamer choice for model fine-tuning

Hyperparameter Value

Learning rate 5e− 6
Batch size 8
Number of training epochs 3
Max. sequence length 128
Seed 42

Figure 3: The error cases of the test sets for four test
suites. The model made same mistakes across four test
suites

Table 9: Prompt designs for paraphrase detection and
natural language inference tasks. The prompt for natu-
ral language inference task follows (Liu et al., 2022),
where "Implication", "Possibility", and "Contradiction"
correspond to "entailment", "neutral", and "contradic-
tion" label.

Paraphrase Detection
Two sentences are equivalent when using according to.

- {{ Who do analysts think is the smartest footballer in the world? }
- { Who is the smartest footballer in the world according to analysts? }}

- {{ Who do students think is the top woman in the world? }
- { Who is the top woman in the world according to students? }}

- {{ Who do readers think is the worst gamer in the world? }
- { Who is the worst gamer in the world according to readers? }}

- {{ What does the data say about the most popular baby names? }
- { What are the most popular baby names according to the data? }}

Natural Language Inference
Write a pair of sentences that have the same relationship
as the previous examples. Examples:

- { Philip, Charles and Colin are the only children of Henry. }
- Implication: { Henry has exactly 3 children. }

- { Grace, Thomas and Helen are the only children of Andrea. }
- Implication: { Andrea has exactly 3 children. }

- { Don has 2 dollars. He received 8 more dollars. }
- Implication: { Don now has 10 dollars. }

- { Mary has a cat. She also has a dog. }
- Implication: { Mary has two pets. }
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Table 10: Capability-wise error rate reductions for RoBERTaBase (sentiment analysis), BERTBase (paraphrase
detection), RoBERTaLarge (natural language inference) (i.e., the most performant models in three tasks shown in
Table 3). Some cells are marked with "/" as we leave template expansion of the NLI task as future work.

ERR%Unpatched
TTestAug TTestAug\TTemplate TTestAug\TExpansion TTemplate

ERR%Patched ∆ERR% ERR%Patched ∆ERR% ERR%Patched ∆ERR% ERR%Patched ∆ERR%

Sentiment Analysis

Negation 30.9 3.2 27.7 4.5 26.4 4.3 26.6 9.6 21.3

SRL 54.9 7.8 47.1 9.8 45.2 9.4 45.5 12.4 42.5

Temporal 34.2 0.0 34.2 0.9 33.3 0.0 34.2 3.9 30.3

Vocabulary 9.9 2.7 7.2 7.2 2.7 6.9 3.0 11.1 -1.2

Paraphrase Detection

Negation 12.6 0.4 12.3 0.4 12.3 0.4 12.3 0.4 12.3

SRL 37.4 8.2 29.1 17.9 19.4 12.6 24.7 17.4 20.0

Temporal 83.4 0.9 82.5 1.0 82.3 1.8 81.6 6.4 77.0

Vocabulary 15.5 2.5 13.0 3.7 11.8 3.1 12.4 8.1 7.5

Natural Language Inference

Boolean 43.3 / / / / 13.9 29.4 16.5 26.8

Causal 14.3 / / / / 3.6 10.7 15.2 -0.9

Comparative 40.1 / / / / 25.3 14.8 28.0 12.1

Conditional 65.4 / / / / 16.7 48.7 23.5 41.8

Coreference 17.5 / / / / 9.5 7.9 11.6 5.8

Implicature 51.3 / / / / 24.4 26.9 31.1 20.2

Lexical 18.1 / / / / 5.3 12.8 19.1 -1.0

Negation 7.2 / / / / 0.0 7.2 5.2 2.0

Numerical 30.0 / / / / 15.0 15.0 26.0 4.0

Presupposition 3.8 / / / / 0.0 3.8 3.8 0.0

Quantifier 31.3 / / / / 7.2 24.1 9.2 22.1

Relational 34.0 / / / / 6.9 27.0 11.3 22.6

Spatial 46.2 / / / / 16.9 29.2 20.0 26.2

Syntactic 3.3 / / / / 3.3 0.0 3.3 0.0

Taxonomic 74.3 / / / / 7.6 66.7 12.3 62.0

Temporal 35.4 / / / / 24.0 11.5 27.1 8.3

World 12.1 / / / / 1.6 10.4 4.9 7.1

Table 11: The fine-tuned models we evaluated in this paper.

Model name Task Size Checkpoint Identifier

DistillBERT Sentiment Analysis Small textattack/distilbert-base-cased-SST-2
ALBERT Sentiment Analysis Small textattack/albert-base-v2-SST-2
BERTBase Sentiment Analysis Base textattack/bert-base-uncased-SST-2
RoBERTaBase Sentiment Analysis Base textattack/roberta-base-SST-2
DistillBERT Paraphrase Detection Small textattack/distilbert-base-cased-QQP
ALBERTA Paraphrase Detection Small textattack/albert-base-v2-QQP
BERTBase Paraphrase Detection Base textattack/bert-base-uncased-QQP
DistillBERT Natural Language Inference Small textattack/distilbert-base-cased-snli
ALBERT Natural Language Inference Small textattack/albert-base-v2-snli
RoBERTaLarge Natural Language Inference Large ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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Table 12: Creating new templates based on test cases generated by GPT-3.

Original Template and Test Case Generated Test Case New Template
Sentiment Analysis

No one {pos_verb_present}s {the} {air_noun}.
No one enjoys that seat.

This is not an easy service to appreciate. This is not an easy {air_noun} to appreciate.
That customer service was not fun. That customer {air_noun} was not fun.
I don’t think your customer service is admired. I don’t think your customer {air_noun} is admired.

Paraphrase Detection

Is it {mid} to {activity} before {hour}{ampm}?
Is it {mid} to {activity} after {hour}{ampm}?
Is it healthy to drink before 10am?
Is it healthy to drink after 10am?

Is it bad to drink before 8pm
Is it bad to drink after 8pm

Is it bad to {activity} before 8pm
Is it bad to {activity} after 8pm

Is it acceptable to drink before 2pm
Is it acceptable to drink after 2pm

Is it {mid} to {activity} before 2pm
Is it {mid} to {activity} after 2pm

Is it advisable to eat before 8pm
Is it advisable to eat after 8pm

Is it advisable to {activity} before 8pm
Is it advisable to {activity} after 8pm

Figure 4: The command line interface for data annotation. Annotators are given a test case description and three
examples from the template-based test suite; they are asked to the annotate the validity of the GPT-3-generated
sentence (pair). Annotators are reminded of the guidelines for filtering invalid samples when labeling each sentence
(pair) (shown at the top of the interface). We communicated explicitly for the intended uses of the annotated datasets
before the annotation.
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