TestAug: A Framework for Augmenting Capability-based NLP Tests

Anonymous ACL submission

Abstract

The recently proposed capability-based
NLP tests go beyond the traditional held-
out evaluation paradigm, allowing model
developers to test the different linguistic
capabilities of a model. However, existing
work on capability-based testing requires
the (semi-)manual creation of the test suites
(templates); such approach thus heavily
relies on the linguistic expertise and domain
expertise of the developers. In this paper,
we investigate an automatic approach for
generating and augmenting the test suites by
prompting the GPT-3 engine. Our experiments
show that our approach can generate diverse
test suites which has a better coverage than
the existing approaches using templates. The
augmented test suites can also be used to
detect more errors compared to existing work.
Our test suites can be downloaded at https:
//anonymous—-researcher-nlp.
github.io/testaug/.

1 Introduction

In the recent years, natural language processing has
seen tremendous advancement in the model perfor-
mances. Conventional approaches of evaluating
NLP models’ performance rely on reporting ag-
gregate metrics such as accuracy and F-1 score on
the held-out dataset. However, such performance
estimations may fail to provide the complete in-
formation: high metric scores could be a result of
less representative data than the data in the wild
(for example, models are exploiting annotation bias
or other types of shortcuts in the experiment data
(Geva et al., 2019; Gururangan et al., 2018; Bai
et al., 2021)), while low metric scores do not tell
what exact shortcomings the model has. Further-
more, recent studies show that even stress-tested
industrial models may not be truly linguistically
capable: they fail on simple and non-adversarial
test cases (Glockner et al., 2018; Ribeiro et al.,
2020).

Table 1: Example test cases for three NLP tasks: sen-
timent analysis, paraphrase detection, and natural lan-
guage inference.

Task: Sentiment Analysis

Description: Negated positive word

Input: "No one loves the food."

Label: Negative

Task: Paraphrase Detection

Description: Negation of antonym

Input: "She is a generous person. She is not a mean person."
Label: Paraphrase

Task: Natural Language Inference

Description: Downward entailment

Input: "Some cows are brown. Some animals are brown."
Label: Entailment

The capability-based testing checks whether an
NLP model picks up a linguistic capability such
as co-reference, negation, and temporal changes.
It starts from a test case description specifying
a linguistic capability the NLP model being in-
vestigated is expected to have. Then a test set
of concrete examples satisfying this test case
description is created either manually through
crowd-sourcing (Bowman et al., 2015) or semi-
automatically through templates (Tarunesh et al.,
2021). For example, the test case description "a
neutral sentence with neutral words" and the corre-
sponding test cases such as "the company is Aus-
tralian" are used to test whether a classifier could
leverage neutral words for sentiment classification.
Multiple such test case descriptions and test sets
are aggregated together as a test suite to test an
NLP model’s overall linguistic capabilities.

The NLP models’ capability-based testing have
already been addressed for tasks such sentiment
classification, paraphrase detection, and natural
language understanding (Ribeiro et al., 2020;
Tarunesh et al., 2021). However, current ap-
proaches of capability-based testing rely on do-
main experts’ efforts and therefore suffer from both
scalability and diversity. Specifically, the size of
test set depends on the human efforts invested into
writing test cases or curating templates, scaling

https://anonymous-researcher-nlp.github.io/testaug/
https://anonymous-researcher-nlp.github.io/testaug/
https://anonymous-researcher-nlp.github.io/testaug/
https://anonymous-researcher-nlp.github.io/testaug/
https://anonymous-researcher-nlp.github.io/testaug/

down the number of available test cases. More-
over, test case descriptions do not provide direct
instructions for crowd workers to create diverse
test cases. The test cases generated in this way
often only show diversity in the superficial level.
For example, when testing a paraphrase detection
model’s co-reference capability, the only variation
of sentence pair comes from persons’ names (e.g.,
"If {male name} and {female name} were alone,
do you think he would reject her?" and "If {male
name} and {female name} were alone, do you think
she would reject him?") (Ribeiro et al., 2020).

In this work, we revisit the problem of generat-
ing test cases given test case descriptions such as "a
negative sentiment sentence with negated positive
word". We propose to leverage GPT-3 to address
previous approaches’ limitations in scalability and
diversity. GPT-3 has demonstrated its potential for
creative text generation in applications that require
diverse texts of in huge quantities, such as compos-
ing stories and conversing with humans (Floridi
and Chiriatti, 2020).

More specifically, we instructed the GPT-3’s
variants — instruct-series engines ! — to
generate test cases that satisfy the test case descrip-
tions through carefully designed natural language
inputs (i.e., prompts); these instruct-series
engines have been augmented on top of the base
GPT-3 to develop an ability to to better follow nat-
ural language instructions.

We demonstrate the effectiveness of our ap-
proach in testing NLP models of sentiment classifi-
cation, paraphrase detection, and natural language
inference tasks. Specifically, the test suite gener-
ated following our approach could better reveal
models’ erroneous behaviors than the counterparts
generated through templates given the same test
suite size. Moreover, our test suite has a substan-
tially higher linguistic diversity than the test suite
from templates. Further, our test suite is extensible
to a larger scale as it is no more constrained by man-
ual templates and lexicons; nonetheless, it could
complement the template approach to generate new
and diverse templates at scale.

2 Background

Capability-based Testing for NLP Models. Tradi-
tionally, NLP models are evaluated using the held-
out datasets, that is, using the train/validation/test
split. However, recent studies (Yanaka et al., 2019;

'https://openai.com/

Bowman and Dahl, 2021) found out that the held-
out mechanism suffers from bias (Poliak et al.,
2018) and cannot effectively reflect the improve-
ments in the model performance (Yanaka et al.,
2019). To help gaining a more comprehensive un-
derstanding of the model performance, researchers
proposed a new approach of evaluating NLP mod-
els, which is called linguistic capability-based
testing (Ribeiro et al., 2020; Joshi et al., 2020a;
Tarunesh et al., 2021). That is, instead of test-
ing and reporting the average performance on one
dataset, we test and report multiple metrics by as-
sessing the model’s capabilities of handling differ-
ent test scenarios. The taxonomy of the capabili-
ties can be organized by linguistic theory (Cooper
et al., 1996), logic, domain knowledge (Joshi et al.,
2020b), or the functional requirements defined by
the specific application (Kirk et al., 2021; Wang
et al., 2021; van Aken et al., 2021). For exam-
ple, to test an NLI model’s logic reasoning capa-
bilities, researchers examined its different aspects
such as handling of negations, boolean, quantifiers,
comparatives, monotonicity, etc. (Richardson et al.,
2020; Cooper et al., 1996). Later, (Ribeiro et al.,
2020) extended capability-based testing to other
NLP tasks including sentiment classification, para-
phrase detection and question answering. The ca-
pabilities for testing would be listed by software de-
velopers or by the subject matter experts who man-
ually identify a taxonomy of errors based on their
expertise in data annotation (Rottger et al., 2021).
The construction method for the test suites can be
divided into fully manual approaches (Cooper et al.,
1996; Joshi et al., 2020a) and semi automatic ap-
proaches. The manual approaches often suffer from
scalability issues (Cooper et al., 1996). Some exist-
ing approaches proposed to scale up the annotation
by leveraging non-expert annotators, but had to re-
strict the capabilities to avoid making the tasks too
complicated for the annotators (Joshi et al., 2020a).
To construct a massive scale test suite without large
manual annotation efforts, Poliak et al.(Poliak et al.,
2018) proposed to recast 13 existing datasets on
7 different tasks (e.g., NER, relation extraction)
into a unified NLI test suite, but this approach is
not applicable to other NLP tasks. Other works
remedy the scalability issue by manually coming
up with templates where the blanks can be filled
with interchangeable tokens or a cloze-style predic-
tion from language models (Ribeiro et al., 2020;
Tarunesh et al., 2021), but automatically generating

https://openai.com/

the templates remain a challenging task (Tarunesh
etal., 2021; Jeretic et al., 2020). Finally, the CLCD
dataset (Salvatore et al., 2019) proposed a formal
language for generating templates, although it can
be used to generate examples of contradictions in
NLI. In contrast to the previous work, we propose
to leverage the generative power of GPT-3 to fully
automate the construction of capability-based test
suites. Our framework thus overcomes the scalabil-
ity issue in existing work.

Prompt Learning and Generation for GPT-3.
Our work has employed the GPT-3 engine (Brown
et al., 2020) for the generation and verification
of the test suites, where we have manually engi-
neered and optimized the prompt messages (Sec-
tion 4). Prompt learning was found to be helpful
for a wide range of tasks (Shin et al., 2020; Gao
et al., 2021b) including major natural language
generation tasks (Li and Liang, 2021). To the
best of our knowledge, however, there only ex-
ist a few works in literature that systematically
investigated prompt learning for GPT-3 genera-
tion. Mishra et al. (Mishra et al., 2021) proposed
a dataset for teaching GPT-3 and BART (Lewis
et al., 2020) to follow instructions. Reynolds and
McDonell (Reynolds and McDonell, 2021a) sum-
marized the essential findings in prompt engineer-
ing for GPT-3 from blogs and social media, and
found that few-shot demonstration can be worse
than zero-shot demonstration for GPT-3. Due to the
scarcity of literature, we propose a new framework
for prompting GPT-3 for generating the capability-
based test suites (Section 4).

3 Problem Definition

The capability-based NLP testing starts from a test-
ing subject M that is already trained and evaluated
on respective datasets Diain and Dy,p; the aggre-
gate metrics such as accuracy and Fl-score are
reported to indicate that the models’ performances
are acceptable 2. The users therefore expect that
the model M has picked up the linguistic capa-
bilities, such as properly handling negation and
co-reference, to perform well on a different test set.

Following each linguistic capability, a set of fest
case descriptions are created by the users to opera-
tionalize the testing of individual capability. A test
case description is a natural language description

“We focus on the text classification task in this work. But
this definition could be easily extended to other models from
supervised NLP tasks.

of the test cases that help the crowd workers to
manually curate test cases or templates with asso-
ciated lexicons to fill in. For example, in Table 1,
when testing a text classifier’s capability to handle
negation within sentences, several test case descrip-
tions, focusing on different aspects of negation, are
provided by the users, where each helps users gen-
erate templates such as "{it} {benot} {a:pos_adj}
{air_noun}."; with lexicons ready for each slot, this
template may end up as test cases like "That is not
a perfect seat.".

The test cases generated following each test case
description and the overarching linguistic capa-
bility constitute the test suite 7. The test suite
provides evaluations of M’s linguistic capabilities
through test cases specializing in them. Therefore,
each M’s prediction error on 7 is considered as a
bug.

Given a list of linguistic capabilities and their
test case descriptions, previous approaches heavily
rely on manual labor for creating specific test cases
or templates and associated lexicons. Despite their
preliminary success in revealing model bugs, they
suffer from both limited diversity and scalability.
We strive to addressing both issues with a preserved
and even improved ability of revealing bugs of an
NLP model.

4 The TestAug Framework

Starting from the test case descriptions and a few
associated seed test cases, we first devise prompts
suitable for the given NLP task and for eliciting
valid GPT-3 generation. Then we manually check
the generated test cases and select valid ones to
augment the template-based test suite; these test
cases could also be converted into new templates
to enrich template-based test suite. Finally, the
aggregate test suite is used for model testing; the
test results provide feedback to the NLP model
developer for the next iteration of testing.

4.1 Designing Prompts to Instruct GPT-3 to
Generate Test Cases

A prompt is a natural language sentence that de-
scribes the context of a text generation session us-
ing GPT-3; it is set to the test case description
in this work. A prompt could work by itself or
could be augmented with additional in-context ex-
amples (i.e., demonstrations). For example, when
generating sentences under the test case descrip-
tion "A negative sentiment sentence with negated

Seed Templates fest Qa§e
Description
Demonstrate Prompt
GPT3

TestAug Expanded [Expand
Test Suite Test Suite \ +Filter

An NLP D) eom—

Model M ®
N

Figure 1: The control-flow graph of TestAug frame-
work.

GPT-3
Output

positive word", three in-context examples meeting
this test case description are provided to make GPT-
3 better understand the desired outcomes. It has
been shown that such augmentation is conducive
for generating more complex texts without violat-
ing users’ expectation specified in the prompt (Liu
et al., 2022). In our example, a new valid sentence
"No one appreciates that air traffic controller.” is
generated by GPT-3 (Table 2).

Despite its powerful text generation ability, the
outputs of the GPT-3 heavily depend on the struc-
ture and contents of prompts: it has been observed
that how users write the description, the number
of in-context examples, and their structures sig-
nificantly influence the validity of the output sen-
tences with regard to the test case description (Liu
et al., 2021). This observation motivates the study
of prompt engineering, whose goal is to elicit the
GPT-3 to generate texts that satisfy the test case
descriptions.

In this work, we designed our prompts (Table 2
and Table 9) following previous practices of elic-
iting GPT-3 for dataset creation (Liu et al., 2022;
Reif et al., 2021; West et al., 2021; Schick and
Schiitze, 2021; Reynolds and McDonell, 2021b).
Specifically, starting from seed test cases sampled
from template-based test suite TTemplate, We for-
matted the prompt and the in-context examples
following the guidelines below:

Natural Language Description. The natural lan-
guage description describes the context of a gener-
ation session with GPT-3. For the natural language

Table 2: Prompt designs to elicit GPT-3 for test
case generation in sentiment analysis tasks. The
test case description specifics the context of gener-
ation; the in-context examples help GPT-3 generate

similar yet diverse test cases; the test cases are then
generated by the GPT-3.

A negative sentiment sentence with negated positive word.
- { No one enjoys that pilot. }

- { No one admires the seat. }

- { No one appreciates that airline. }

-{ No one appreciates that air traffic controller. }

inference task, we used the fixed description "Write
a pair of sentences that have the same relationship
as the previous examples. Examples:" following
previous work of natural language inference dataset
creation (Liu et al., 2022).

In-context Examples. The in-context examples
augment the natural language description to inform
GPT-3 about the scope and format of the desired
sentences. We sample in-context examples (i.e.,
seed sentences) from the existing template-based
test suites.

Formatting. The in-context examples have been
formatted as an unordered list, which drives GPT-3
working on the completion of the list. The paired
brackets are used to indicate sentence (or sentence
pair) boundaries between consecutive examples;
GPT-3 could hence better distinguish different ex-
amples and constrain its possible continuation by
terminating generation on the brackets; at the same
time, users could leverage brackets to fetch re-
turned results without confounding different sen-
tences.

4.2 Augmenting Template-based Test Suite
with GPT-3 Generated Test Cases

The test cases generated by GPT-3 may fail to sat-
isfy test case descriptions as they 1) may repeat in-
context examples, 2) does not satisfy the required
format; for example, the tasks of paraphrase detec-
tion and natural language inference require a pair
of sentences as a test case while sometimes only
one sentence could be found in the GPT-3 gener-
ation, 3) does not fulfill the test case descriptions
expressed in the prompts; for example, the gener-
ated test case ("Joe isn’t at the party.", "Joe is at the
party.") is incorrect as it violates the required label
"entailment" for natural language inference task;
the "This food isn’t bad, but I wasn’t expecting
much." is also incorrect as it does not convey the

expected sentiment change defined in the test case
description "I thought something was negative, but
it was neutral." for sentiment classification task.
Previous works used dastset cartography or a
separate classifier to automatically filter out texts
failing the expectation (West et al., 2021; Liu et al.,
2022). However, dataset cartography requires mul-
tiple checkpoints saved during training to estimate
a sample’s uncertainty while training a text classi-
fier requires a large number of negative samples to
build a balanced training set; therefore, neither of
the approaches are applicable to our settings: we do
not assume access to the checkpoints saved during
training and the negative samples are scarce (Table
5). In this work, rather than using the end-to-end
automatic filtering, we resorted to human-in-the-
loop filtering. Specifically, we trained a ranker that
is designed to rank invalid cases before valid ones.
With the help of the ranker, the human annotators
only need to manually investigate top k% of the
data to exclude the invalid test cases; the bottom
(1 — k)% of the test cases are valid with high prob-
ability. We fine-tuned an ensemble of language
models to rank the test cases (Gao et al., 2021a).

4.3 Expanding Templates in Template-based
Test Suite

The slots in the templates that generate Tremplate
capture the key linguistic capabilities; for exam-
ple, the slots {pos_verb_present} and {pos_adj}
correspond to the positive words specified in the
test case description (Table 1). Furthermore, the
GPT-3 generation follows the provided in-context
examples, making some of the words reappear in
the new test cases; therefore, test cases in the test
suite 7gpT_3 could be converted to new templates
based on these repeated words.

Specifically, we compared each of the gener-
ated words with each word in the in-context exam-
ples, if a slot word in a in-context example reap-
pears in the generated test case, we converted the
generated word as a new slot, leading to a new
template. For example, "No one appreciates that
air traffic controller.” is generated following the
prompt shown in sentiment classification task of
Table 2; as "appreciates” repeats the one in the in-
context example "No one appreciates that airline.",
a new template "No one {pos_verb}s that air traf-
fic controller." is generated following the template
"No one {pos_verb_present}s {the} {air_noun}."
As misplaced pronouns yield insensible sentences,

we only take the nouns, verbs, and adjectives (i.e.,
content words) into account when creating new
templates; for example, even though "that" also
reappears in the generated sentence, we do not cre-
ate a new slot at its location.

By converting GPT-3 generated test cases into
new templates, we enrich the number of templates
available for Template-

S Experiment

In this section, we evaluate the effectiveness of
TestAug. TestAug is a capability-based testing
framework that can generate a large number of
test cases satisfying a description by the developer,
with only a small amount of expert annotations as
the demonstration. To examine the effectiveness,
we first investigate TestAug’s ability in detecting
the model failures, and compare its performance
with existing work (Ribeiro et al., 2020; Tarunesh
et al., 2021) (Section 5.2). Second, since TestAug
is based on GPT-3, it is expected to show better
linguistic diversity than existing work where all
test cases are from templates (Ribeiro et al., 2020;
Tarunesh et al., 2021). We thus also quantitatively
investigate the diversity of test cases (Section 5.3).
Finally, since TestAug cases are automatically gen-
erated, we also need to investigate the validity of
the generated cases, e.g., how many percentages
of TestAug cases do not satisfy the description?
(Section 5.4). Before reporting these investigation
results, we first explain our experimental settings
in Section 5.1.

5.1 Experiment Settings

Evaluated Tasks. Existing work on capability-
based testing has studied the following three tasks:
sentiment classification (Ribeiro et al., 2020), para-
phrase detection (Ribeiro et al., 2020), and natural
language inference (Tarunesh et al., 2021). To com-
pare TestAug’s performance with existing work,
we study the same three tasks. We skip question an-
swering (Ribeiro et al., 2020) as we find it difficult
for TestAug to generate valid test cases for question
answering, potentially because QA cases involve
more components. We also skip hate speech detec-
tion (Rottger et al., 2021) because in practice, we
found GPT-3 cannot be used for generating cases
containing profanity words?. We leave QA and

3In particular, when we tried to augment HATECHECK’s
(Rottger et al., 2021) test cases from template "[IDENTITY_P]
can all go Il themselves", where "Hll" is a profane word that
is offensive in nature. The request to generate test cases is

hate speech detection for future work.

Evaluated Models. Following previous work,
we test models that have leading healdout perfor-
mances (Ribeiro et al., 2020). To evaluate more
models, we leverage the publicly available fine-
tuned models from the HuggingFace model hub *.
For each task, we first selected the most down-
loaded fine-tuned models on the model hub. Within
them, we evaluated each model’s validation error
rate, and keep the best models while also balancing
models of different sizes. A complete list of the
selected models can be found in Table 11; their
heldout validation error rates can be found in the
column ERR% of Table 3.

5.2 Evaluating TestAug’s Ability for Bug
Detection

In this section, we evaluate TestAug’s ability for
detecting bugs, and compare its performance with
existing work (Ribeiro et al., 2020; Tarunesh et al.,
2021).

5.2.1 Evaluation Method

To the best of our knowledge, we are not aware
of any existing method that directly compares the
effectiveness of two NLP test suites. One may think
the simplest approach is to directly comparing the
error rates of the same model on the two test suites.
Despite the simplicity, we argue that these two error
rates are in fact incomparable. The reason is below:
the effectiveness of a test suite is defined by how
many bugs it can find (Kochhar et al., 2015). As
a result, if a test suite has a higher error rate but
fewer error cases, it is uncertain whether it has a
better performance.

To make the two metrics comparable, we pro-
pose to evaluate a test suite by leveraging its fine-
tuned model’s error rate. More specifically: (1)
first, we merge the two test suites 7 and 7 into a
large suite T; (2) second, we randomly partition T
into a training suite Ty ain and a testing suite Tiest;
(3) third, we fine-tuning the model using TirainMN7A,
testing its performances on Tiest, and compare with
when fine-tuned with Tiyain N 75. The advantage
of our proposed metric is that the two scores are
both tested on the same testing data, thus a lower
testing error indicates the fine-tuning process has
successfully patched more errors, and as a result,
denied with a flagged warning message: "These statements are
all incredibly harmful and oppressive. They promote hatred
and bigotry against a marginalized group of people, and they

should not be tolerated.".
*nttps://huggingface.co/models

more errors have been found by that test suite. We
also report the error rate before the find-tuning and
the reduction in the error rate.

5.2.2 Evaluation Results

We tested the models that had already shown ac-
ceptable accuracy on the original held-out dataset.
The results in Table 3> ®show that our test suites
TtestAug consistently augmented template-base
test suites to reduce error rates. When looking at
error rates per linguistic capability (Table 10), we
could see that the augmented test suites TTestAug
are effective in enhancing capability-based test-
ing in most of the cases: the TrestAug’s €rror rates
ERR%patcheq are smaller than other test suites in
all linguistic capabilities except the "negation" in
the paraphrase detection task, leading to a higher
error rate reduction Aggrro.

We investigated the curious case mentioned
above. In the "negation" capability of the para-
phrase detection task, the error rates for patched
models remain same (12.3%) across four different
test suites; we found that the specific error cases
were also same regardless which test suite was used
to patch the model (Figure 3). This shows that, de-
spite overall strength to reveal more bugs for a
given task (Table 3), the TestAug is not guaranteed
to generate competitive test cases in all linguistic
capabilities.

Following the approach described in Section 4,
we created new templates to enrich the original
pool of templates available for Template- When
generating new templates, restricting new slots
on only reappeared words in the original tem-
plates decrease the possibility of generating in-
valid templates (Table 12). We manually sampled
and annotated 100 generated templates per task
and found that the valid templates constitute 91%,
89%, and 91% of all templates for sentiment clas-
sification, paraphrase detection, and natural lan-
guage inference tasks. The invalid templates mostly
come from invalid modifiers such as "{ ADJEC-
TIVE_OF_PERSON}" in "Some of the creams are
{ADJECTIVE_OF_PERSON} in colour.", where

SFor the sentiment classification task, as our experiments
require further fine-tuning on top of the already fine-tuned
models; while the number of output classes do not match,
we replaced the final 2-class classification layer with a newly
initialized 3-class classification layer and fine-tuned the model
for additional 3 epochs. We used the discretized 3-class SST
dataset for this further fine-tuning.

The expansion of test cases in NLI task requires alterna-
tive approaches and we leave it as future work.

https://huggingface.co/models

Table 3: Model accuracy on held-out validation set and their overall error rate reduction using different test
suites. The accuracy ACC% is computed over the original held-out dataset. The error rate reduction Aggry, =
ERR%unpatched — ERR%patchea follows the evaluation metrics introduced in Section 5.2. The exact identifiers
of model checkpoints we used in experiments are listed in Table 11. Some cells are marked with "/" as we leave
template expansion of the NLI task as future work. We used a small subset of original template-based test suite as
demonstrations and the percentage is shown beside the task name.

ERR% | ERR%tmpacched TrestAug TrestAug \ TTemplate ﬁesimug\ﬁxpansion TTemplate
ERR%patched Aerr% ERR%Patched Arrr% ERR%Patched Aprr% ERR%Patched AERR%
Sentiment Analysis 183 /28921 = 0.6%

DistillBERT 10.0 42.4 8.5 339 15.0 274 15.4 27.0 31.0 11.4
ALBERT 7.3 41.6 6.5 35.1 12.7 28.9 17.4 24.2 29.0 12.6
BERTBase 7.6 40.9 4.1 36.8 7.5 334 6.2 34.7 16.5 244

RoBERTagase 5.7 36.6 44 32.1 6.3 30.2 6.0 30.6 10.2 26.3
Paraphrase Detection 54 / 11126 = 0.5%

DistillBERT 10.3 45.4 3.7 41.8 8.8 36.6 6.5 38.9 11.9 335
ALBERTA 9.3 45.3 9.2 36.0 14.2 31.1 12.1 33.1 15.8 29.5
BERTBase 9.1 51.6 2.7 48.9 52 46.4 42 473 8.0 43.6

Natural Language Inference 240 /347531 =0.1%

DistillBERT 12.6 49.5 / / / / 274 22.1 36.3 13.2

ALBERT 9.9 45.0 / / / / 21.0 24.0 28.7 16.4
RoBERTaarge 8.1 322 / / / / 10.5 21.7 15.8 16.5

adjectives for people are misused for creams since
slots are created oblivious of the contexts. Despite
some invalid templates, template expansion lever-
ages the improved scale and diversity of test cases
and scales up the creation of template-based test
suite ,Fl‘emplate-

5.3 Evaluating the Diversity of TestAug
Results

5.3.1 Evaluation Method

The linguistic diversity of an NLP test suite could
be measured either from the test case level or the
test suite level. We introduce the number of unique
dependency paths as a proxy for linguistic diversity
for each individual test case; while in test suite
level, we use the metric for diversity in natural
language generation — Self-BLEU.

Number of Unique Dependency Paths. Depen-
dency parsing of a sentence returns a directed tree
where there is a unique path from the root and ev-
ery vertex. The arcs in the dependency tree are
attributed with a fixed set of grammatical relations.
The dependency tree approximates the semantic
relations between predicates and their arguments
(Jurafsky and Martin, 2000). We therefore propose
to use the number of unique dependency paths to
measure the richness of semantic relations.
Self-BLEU. Self-BLEU is an extension of the reg-
ular BLEU that evaluates the diversity of gener-
ated texts (Zhu et al., 2018). Given a list of texts
Y= {Yl, Yo, ,YN}, Self-BLEU is the average

BLEU score between every single sentence and all
other sentences,

N
Self-BLEU())) = %ZBLEU({?@'}J}#) (1)

i=1
When k is fixed, lower Self-BLEU score indicates
a higher diversity of the sentence.

5.3.2 Evaluation Results

The test cases the annotators unanimously deemed
consistent with the given test case description con-
stitute test suites for respective tasks. After con-
trolling for the number of test cases under each
test case description, the linguistic diversity (Ta-
ble 4) of the test suites 7gpr_3 show substantial
improvement over the template-based counterparts
TTemplate: the Self-BLEU4 score has an decrease
of at least 9.4% (the paraphrase detection task) and
the number of unique dependency paths is of at
least 2.18 times compared to the original test suite
(the natural language inference task).

5.4 Evaluating the Validity of TestAug Results
5.4.1 Evaluation Method

Our experiments require test cases that have been
verified consistent with the given test case descrip-
tion. Rather than creating templates or test cases
from scratch, the human annotators in our system
take a more efficient and effective role to correct
mistakes made by the GPT-3. Specifically, we
worked with human annotators to annotate each

Table 4: Linguistic diversity of test suites.

Number of Unique
Selt-BLEU4 (1) Dependency Paths ™
Sentiment Analysis
Tepr-3 0.558 548
,TTemplate 0.778 88

Paraphrase Detection

TapT-3 0.587 957
77chplatc 0.645 113
Natural Language Inference
Tepr-3 0.412 692
TTemplate 0.514 317

generated test case and decided whether it would
be used for testing the NLP model.

5.4.2 Evaluation Results

A test case that satisfies the given test case de-
scription expresses the linguistic capability without
grammatical errors. Two of the authors manually
labeled each test case by checking whether it sat-
isfied the given description; the test case they did
not unanimously agree upon were considered am-
biguous and therefore discarded. We used Cohen’s
Kk to measure the agreement of annotation. The
annotation interface is shown in Figure 4.

We instructed GPT-3 to generate test cases with
linguistic capabilities and seed sentences from
CHECKLIST and LONLI dataset / (Ribeiro et al.,
2020; Tarunesh et al., 2021). The annotators man-
ually checked whether each test case satisfied the
test case description; the Cohen’s « ranges between
0.434 and 0.450 for three tasks (Table 5), indicat-
ing moderate agreement (McHugh, 2012). The
samples the annotators did not agree upon were
discarded, leading to a test case description satis-
fiability from 74.5% to 84.5%; this shows that a
significant portion of test cases generated following
our approach satisfy the test case description.

Table 5: Annotation statistics on the test case description
satisfiability.

Cohen’s k Satisfiability (%)
Sentiment Analysis 0.434 822
Paraphrase Detection 0.450 84.5
Natural Language Inference 0.437 74.5

In order to reduce the required manual efforts

"Both datasets are under MIT license.

100

ACC@Ek(%)
u
=

—— Sentiment

QQp
—— NLI

00 5 10152025303540455055 606570758085 9095100
Annotated Data (%)

Figure 2: Ranker-assisting annotation accuracy versus
annotation efforts.

while maintaining high annotation accuracy, we
trained an ensemble of rankers with three large
base language models and a ranking loss (Gao et al.,
2021a); the rankers were trained to optimize the
relative rankings of invalid and valid test cases,
pushing the invalid ones up to the top (full details
in Appendix A.2). With the help of this ranker
ensemble, the annotators only need to check the test
cases ranking at the top; the remaining test cases
are all considered valid. To measure the annotation
accuracy under this setting, we define ACCQE as
in Equation 2: only the minority samples after rank
k are assigned incorrect labels while all the other
samples are annotated correctly.

St L =1)

ACCQk =1— N

2

where IV is total number of test cases, [is the major-
ity label in the training set (in our case, the "valid"
label), and g; is the validity label of the test case
ranked at i-th position based on the ranking score.
The assistance of this ranker helps reduce required
annotation to maintain a 90% accuracy by ~25% to
~40% (Figure 2).

6 Discussion, Conclusions and Future
Work

We introduced the TestAug framework to augment
capability-based test suites to better reveal NLP
models’ shortcomings in linguistic capabilities; em-
pirical results have demonstrated the effectiveness
of our framework. Looking forward, we plan to ex-
tend the set of NLP tasks supported by TestAug to
more challenging tasks such as question answering
(QA). We are also interested in further reducing
manual efforts in TestAug by automating prompt
design used for eliciting GPT-3.

Ethical Considerations

Annotator Rights

Two of the authors (one male and one female; both
identified themselves as Asians) annotated the data
following annotation guidelines; the guidelines are
discussed and finalized after thorough discussions
(the violations of these guidelines are discussed in
Section 4.2). The estimated time commitment for
labeling is 20 hours per annotator for a total of 8172
sentences (or sentence pairs). We acknowledge the
annotators’ efforts with a shared authorship.

Intended Uses

TestAug’s intended use is as a tool to augment
template-based test suites with newly generated
test cases from GPT-3; two set of test cases are
then used altogether to evaluate a NLP models’
linguistic capabilities; we believe this application
of existing datasets are consistent with their in-
tended uses. We showed the effectiveness of this
system in Section 5. We hope the adoption of Tes-
tAug into the NLP model development could make
newly built NLP models more linguistically capa-
ble. Meanwhile, the TestAug includes GPT-3 as a
component, we urge users of our system to follow
the OpenAlI’s usage guidelines 3.

Potential Misuse

TestAug might be misused to overestimate the
models’ linguistic capabilities. Specifically, even
though failures on the test suites show models’
shortcomings in a given linguistic capability, the
absence of failures does not mean the models being
tested are free from bugs; it is likely that test suites
are not yet capable enough to reveal the model’s
bugs. We therefore call for a judicious interpre-
tation of a NLP model’s performance based on
TestAug test suites. Moreover, we believe NLP
testing is an iterative process; it might take mul-
tiple iterations of applying TestAug to reveal the
model’s issues in linguistic capabilities.

References

Bing Bai, Jian Liang, Guan Zhang, Hao Li, Kun Bai,
and Fei Wang. 2021. Why attentions may not be in-
terpretable? Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining.

$https://beta.openai.com/docs/
usage—-guidelines

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Samuel R Bowman and George E Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? The 2020 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics - Human Language Technologies

(NAACL-HLT2020).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, et al.
1996. Using the framework. Technical report, Tech-
nical Report LRE 62-051 D-16, The FraCaS Consor-
tium.

L. Floridi and Massimo Chiriatti. 2020. Gpt-3: Its
nature, scope, limits, and consequences. Minds and
Machines, 30:681-694.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a. Re-
think training of bert rerankers in multi-stage retrieval
pipeline. In ECIR.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021b.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. ArXiv, abs/1908.07898.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In ACL.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel R. Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural language
inference data. In NAACL.

Paloma Jeretic, Alex Warstadt, Suvrat Bhooshan, and
Adina Williams. 2020. Are natural language infer-
ence models IMPPRESsive? Learning IMPlicature
and PRESupposition. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 8690-8705, Online. Association
for Computational Linguistics.

https://beta.openai.com/docs/usage-guidelines
https://beta.openai.com/docs/usage-guidelines
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://aclanthology.org/2021.naacl-main.385.pdf
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768
https://doi.org/10.18653/v1/2020.acl-main.768

Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020a. TaxiNLI: Taking a ride up
the NLU hill. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 41-55, Online. Association for Computational
Linguistics.

Pratik M. Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020b. Taxinli: Taking a ride up the
nlu hill. In CONLL.

Dan Jurafsky and James H. Martin. 2000. Speech and
language processing.

Hannah Rose Kirk, Bertram Vidgen, Paul Rottger, Tris-
tan Thrush, and Scott A Hale. 2021. Hatemoji:
A test suite and adversarially-generated dataset for
benchmarking and detecting emoji-based hate. arXiv
preprint arXiv:2108.05921.

Pavneet Singh Kochhar, Ferdian Thung, and David
Lo. 2015. Code coverage and test suite effective-
ness: Empirical study with real bugs in large sys-
tems. In 2015 IEEE 22nd international conference
on software analysis, evolution, and reengineering
(SANER), pages 560-564. IEEE.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. Wanli: Worker and ai collaboration
for natural language inference dataset creation.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? ArXiv,
abs/2101.06804.

M. L. McHugh. 2012. Interrater reliability: the kappa
statistic. Biochemia Medica, 22:276 —282.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Adam Poliak, Aparajita Haldar, Rachel Rudinger, J. Ed-
ward Hu, Ellie Pavlick, Aaron Steven White, and

10

Benjamin Van Durme. 2018. Collecting diverse nat-
ural language inference problems for sentence rep-
resentation evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 67-81, Brussels, Belgium.
Association for Computational Linguistics.

Emily Reif, Daphne Ippolito, Ann Yuan, Andy Coenen,
Chris Callison-Burch, and Jason Wei. 2021. A recipe
for arbitrary text style transfer with large language
models. ArXiv, abs/2109.03910.

Laria Reynolds and Kyle McDonell. 2021a. Prompt
programming for large language models: Beyond
the few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1-7.

Laria Reynolds and Kyle McDonell. 2021b. Prompt
programming for large language models: Beyond the
few-shot paradigm. Extended Abstracts of the 2021
CHI Conference on Human Factors in Computing
Systems.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Be-
havioral testing of NLP models with CheckList. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4902—
4912, Online. Association for Computational Lin-
guistics.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713-8721.

Paul Rottger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41-58, Online. Association for
Computational Linguistics.

Felipe Salvatore, Marcelo Finger, and Roberto Hirata Jr.
2019. A logical-based corpus for cross-lingual eval-
uation. In Proceedings of the 2nd Workshop on
Deep Learning Approaches for Low-Resource NLP
(DeepLo 2019), pages 22-30, Hong Kong, China.
Association for Computational Linguistics.

Timo Schick and Hinrich Schiitze. 2021. Generat-
ing datasets with pretrained language models. In
EMNLP.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 42224235,
Online. Association for Computational Linguistics.

https://doi.org/10.18653/v1/2020.conll-1.4
https://doi.org/10.18653/v1/2020.conll-1.4
https://doi.org/10.18653/v1/2020.conll-1.4
https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://arxiv.org/pdf/2108.05921
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/pdf/2104.08773.pdf
https://arxiv.org/pdf/2104.08773.pdf
https://arxiv.org/pdf/2104.08773.pdf
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://doi.org/10.18653/v1/D18-1007
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://dl.acm.org/doi/pdf/10.1145/3411763.3451760?casa_token=gNN8C9ceCTwAAAAA:AujhM5_vBvVBYDNsjX2rNsiToPgbxP5ge8S7pXRIlEG1RzH2ljSRUD__1XGhZjZb7U5C8dFM4sy7
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://doi.org/10.18653/v1/2020.acl-main.442
https://ojs.aaai.org/index.php/AAAI/article/view/6397
https://ojs.aaai.org/index.php/AAAI/article/view/6397
https://ojs.aaai.org/index.php/AAAI/article/view/6397
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/2021.acl-long.4
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/D19-6103
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346

Ishan Tarunesh, Somak Aditya, and Monojit Choud-
hury. 2021. Lonli: An extensible framework for
testing diverse logical reasoning capabilities for nli.
In Thirty-Sixth AAAI Conference on Artificial Intelli-
gence (AAAI-22), volume abs/2112.02333.

Betty van Aken, Sebastian Herrmann, and Alexander
Loser. 2021. What do you see in this patient? behav-
ioral testing of clinical nlp models. NeurIPS 2021
Research2Clinics Workshop, Bridging the Gap: From
Machine Learning Research to Clinical Practice.

Jun Wang, Chang Xu, Francisco Guzmén, Ahmed
El-Kishky, Benjamin Rubinstein, and Trevor Cohn.
2021. As easy as 1, 2, 3: Behavioural testing of
NMT systems for numerical translation. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4711-4717, Online.
Association for Computational Linguistics.

Peter West, Chandrasekhar Bhagavatula, Jack Hessel,
Jena D. Hwang, Liwei Jiang, Ronan Le Bras, Ximing
Lu, Sean Welleck, and Yejin Choi. 2021. Symbolic
knowledge distillation: from general language mod-
els to commonsense models. ArXiv, abs/2110.07178.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. HELP: A dataset for identifying short-
comings of neural models in monotonicity reasoning.
In Proceedings of the Eighth Joint Conference on
Lexical and Computational Semantics (*SEM 2019),
pages 250-255, Minneapolis, Minnesota. Associa-
tion for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval.

A Appendix

A.1 Details of Testing NLP Models

The error rate ERR% in Table 3 was obtained on
the original validation split for sentiment analysis
and paraphrase detection tasks and test split of nat-
ural language inference task; the statistics of these
datasets are reported in Table 7.

The models used for testing are reported in Table
11. The test cases used to evaluate these models
were those both annotators considered valid with
respect to the test case descriptions. The statistics
are shown in Table 6 (i.e., the "valid" column). Dur-
ing model testing, the test suites were partitioned
according Section 5.2 for TrestAug. We used one
Nvidia Tesla V100 (with 32 GB graphical mem-
ory) throughout the experiments. Following Sec-
tion 5.2, one testing session (one model of one
task) involves inference on the test split twice and
fine-tuning once on the training split, which takes
fewer than 5 minutes even for the large models.
The hyperparameters used for fine-tuning is fixed
and reported in Table 8.

A.2 Details of Training Rankers

We used the models listed below as base models
and trained an ensemble of rankers following the
setting that achieves the best perofmrnace in (Gao
etal., 2021a) °.

® bert-large-uncased
® google/electra-large-discriminator
® facebook/muppet-roberta-large

We increased the number of training epochs from
2 to 10 but left other choices to the authors’ de-
faults. Each trained ranker returned a ranking list
with a potentially different ranking of the same
document. We aggregated ranking lists returned by
three rankers with the Borda count aggregator im-
plemented in pyrankagg '°. We used the same
hardware as testing NLP models in Section A.1.

Our implementation is based on the authors’ code release:
https://github.com/luyug/Reranker

Yhttps://github.com/thelahunginjeet/
pyrankagg

https://arxiv.org/pdf/2112.02333.pdf
https://arxiv.org/pdf/2112.02333.pdf
https://arxiv.org/pdf/2112.02333.pdf
https://arxiv.org/pdf/2111.15512.pdf
https://arxiv.org/pdf/2111.15512.pdf
https://arxiv.org/pdf/2111.15512.pdf
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/2021.findings-acl.415
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://doi.org/10.18653/v1/S19-1027
https://github.com/luyug/Reranker
https://github.com/thelahunginjeet/pyrankagg
https://github.com/thelahunginjeet/pyrankagg

Table 6: Statistics of test suites generated with GPT-3.

Task Valid Invalid
Sentiment Analysis 1607 347
Paraphrase Detection 1916 352

Natural Language Inference 2942 1008

Table 7: Statistics of datasets used to evaluate models’
performances on held-out dataset.

Task Split Size Dataset Identifier
Sentiment Analysis Validation 872 sst2

Paraphrase Detection Validation 40430 gap

Natural Language Inference Test 10000 snli

Table 8: Hyperperparamer choice for model fine-tuning

Hyperparameter Value
Learning rate 5e — 6
Batch size 8
Number of training epochs 3
Max. sequence length 128
Seed 42
== jﬁrest;:!\ug
(I jErest.ri\ug'\7—Tem|:»late
TTestAug\TExpansion
ﬁemplate e

Figure 3: The error cases of the test sets for four test
suites. The model made same mistakes across four test
suites

12

Table 9: Prompt designs for paraphrase detection and
natural language inference tasks. The prompt for natu-
ral language inference task follows (Liu et al., 2022),
where "Implication", "Possibility", and "Contradiction"
correspond to "entailment”, "neutral", and "contradic-
tion" label.

Paraphrase Detection

Two sentences are equivalent when using according to.
- {{ Who do analysts think is the smartest footballer in the world? }
- { Who is the smartest footballer in the world according to analysts? }}

- {{ Who do students think is the top woman in the world? }
- { Who is the top woman in the world according to students? }}

- {{ Who do readers think is the worst gamer in the world? }

- { Who is the worst gamer in the world according to readers? }}

- {{ What does the data say about the most popular baby names? }
- { What are the most popular baby names according to the data? }

Natural Language Inference

Write a pair of sentences that have the same relationship
as the previous examples. Examples:

- { Philip, Charles and Colin are the only children of Henry. }

- Implication: { Henry has ezactly 3 children. }

- { Grace, Thomas and Helen are the only children of Andrea. }
- Implication: { Andrea has exzactly 3 children. }

- { Don has 2 dollars. He received 8 more dollars. }

- Implication: { Don now has 10 dollars. }

-{ Mary has a cat. She also has a dog. }
- Implication: { Mary has two pets. }

Table 10: Capability-wise error rate reductions for ROBERTap,s. (sentiment analysis), BERT .4 (paraphrase
detection), RoOBERTay,a,ge (natural language inference) (i.e., the most performant models in three tasks shown in
Table 3). Some cells are marked with "/" as we leave template expansion of the NLI task as future work.

ERR%U tched 7:[‘cstAug 7'—TcstAug\7’-I‘emp1ate ﬁcst/\ug\ﬁxpansion ﬁe[r}plate
npatche
r ERR%patched Aprr% ERR%patched Aprr% ERR%pPatched Arrr% ERR%patched AERR%

Sentiment Analysis

Negation 30.9 32 27.7 45 26.4 43 26.6 9.6 21.3
SRL 54.9 7.8 47.1 9.8 452 9.4 45.5 12.4 425
Temporal 342 0.0 34.2 0.9 333 0.0 34.2 39 30.3
Vocabulary 9.9 2.7 72 72 2.7 6.9 3.0 11.1 -1.2
Paraphrase Detection
Negation 12.6 0.4 12.3 0.4 12.3 0.4 12.3 0.4 12.3
SRL 37.4 8.2 29.1 17.9 19.4 12.6 24.7 17.4 20.0
Temporal 83.4 0.9 82.5 1.0 82.3 1.8 81.6 6.4 77.0
Vocabulary 15.5 2.5 13.0 3.7 11.8 3.1 12.4 8.1 7.5
Natural Language Inference
Boolean 433 / / / / 13.9 29.4 16.5 26.8
Causal 14.3 / / / / 3.6 10.7 15.2 -0.9
Comparative 40.1 / / / / 25.3 14.8 28.0 12.1
Conditional 65.4 / / / / 16.7 48.7 23.5 41.8
Coreference 17.5 / / / / 9.5 7.9 11.6 5.8
Implicature 51.3 / / / / 24.4 26.9 31.1 20.2
Lexical 18.1 / / / / 53 12.8 19.1 -1.0
Negation 7.2 / / / / 0.0 7.2 52 2.0
Numerical 30.0 / / / / 15.0 15.0 26.0 4.0
Presupposition 3.8 / / / / 0.0 3.8 3.8 0.0
Quantifier 31.3 / / / / 7.2 24.1 9.2 22.1
Relational 34.0 / / / / 6.9 27.0 11.3 22.6
Spatial 46.2 / / / / 16.9 29.2 20.0 26.2
Syntactic 33 / / / / 33 0.0 33 0.0
Taxonomic 74.3 / / / / 7.6 66.7 12.3 62.0
Temporal 354 / / / / 24.0 11.5 27.1 8.3
World 12.1 / / / / 1.6 104 4.9 7.1

Table 11: The fine-tuned models we evaluated in this paper.

Model name Task Size Checkpoint Identifier

DistillBERT Sentiment Analysis Small textattack/distilbert-base-cased-SST-2
ALBERT Sentiment Analysis Small textattack/albert-base-v2-SST-2
BERTBase Sentiment Analysis Base textattack/bert-base-uncased-SST-2
RoBERTag,se Sentiment Analysis Base textattack/roberta-base-SST-2
DistillBERT Paraphrase Detection Small textattack/distilbert-base-cased-QQP
ALBERTA Paraphrase Detection Small textattack/albert-base-v2-QQP

BERTBase Paraphrase Detection Base textattack/bert-base-uncased-QQP
DistillBERT Natural Language Inference Small textattack/distilbert-base-cased-snli
ALBERT Natural Language Inference Small textattack/albert-base-v2-snli

RoBERTapage Natural Language Inference Large ynie/roberta-large-snli_mnli_fever_anli R1_R2_R3-nli

13

Table 12: Creating new templates based on test cases generated by GPT-3.

Original Template and Test Case Generated Test Case New Template
Sentiment Analysis
. This is not an easy service to appreciate. This is not an easy {air_noun} to appreciate.
N s_verb_ present}s {tl a . . M .
o one {pos_verb_present}s {the} {air_noun} That customer service was not fun. That customer {air_noun} was not fun.

No one enjoys that seat. . L
oY I don’t think your customer service is admired. I don’t think your customer {air_noun} is admired.

Paraphrase Detection

Is it bad to drink before 8pm Is it bad to {activity} before 8pm

Is it {mid} to {activity} before {hour}{ampm}? Is it bad to drink after 8pm Is it bad to {activity} after 8pm

Is it {mid} to {activity} after {hour}{ampm}? Is it acceptable to drink before 2pm Is it {mid} to {activity} before 2pm

Is it healthy to drink before 10am? Is it acceptable to drink after 2pm Is it {mid} to {activity} after 2pm

Is it healthy to drink after 10am? Is it advisable to eat before 8pm Is it advisable to {activity} before 8pm
Is it advisable to eat after 8pm Is it advisable to {activity} after 8pm

Label the generated sentence based on its validity:

A invalid sentence either

(1) Does not show the required linguistic capability in description, or
(2) Does not have correct label, or

(3) Includes private information or offensive contents.

Label:
1
Examples:
Did we dislike this food? No
Did I find the cabin crew? No
Do I think that was a boring airline? No

Enter - the sentence is valid, Others - the sentence is NOT valid
>> Label:

Figure 4: The command line interface for data annotation. Annotators are given a test case description and three
examples from the template-based test suite; they are asked to the annotate the validity of the GPT-3-generated
sentence (pair). Annotators are reminded of the guidelines for filtering invalid samples when labeling each sentence
(pair) (shown at the top of the interface). We communicated explicitly for the intended uses of the annotated datasets
before the annotation.

14

	Introduction
	Background
	Problem Definition
	The TestAug Framework
	Designing Prompts to Instruct GPT-3 to Generate Test Cases
	Augmenting Template-based Test Suite with GPT-3 Generated Test Cases
	Expanding Templates in Template-based Test Suite

	Experiment
	Experiment Settings
	Evaluating TestAug's Ability for Bug Detection
	Evaluation Method
	Evaluation Results

	Evaluating the Diversity of TestAug Results
	Evaluation Method
	Evaluation Results

	Evaluating the Validity of TestAug Results
	Evaluation Method
	Evaluation Results

	Discussion, Conclusions and Future Work
	Appendix
	Details of Testing NLP Models
	Details of Training Rankers

