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Abstract

Repetitions occur frequently in dialogue.001
This study focuses on the repetition of lex-002
icalised constructions—i.e., recurring multi-003
word units—in English open domain spoken004
dialogues. We hypothesise that construction005
repetition is an efficient communication strat-006
egy that reduces processing effort, and we make007
three predictions based on this hypothesis. We008
conduct a quantitative analysis, measuring re-009
duction in processing effort via two surprisal-010
based measures and estimating surprisal with011
an adaptive neural language model. Our three012
predictions are confirmed: (i) repetitions facili-013
tate the processing of constructions and of their014
linguistic context; (ii) facilitating effects are015
higher when repetitions accumulate, (iii) and016
lower when repetitions are less locally dis-017
tributed. Our findings suggest that human-like018
patterns of repetitions can be learned implicitly019
by utterance generation models equipped with020
psycholinguistically motivated learning objec-021
tives and adaptation mechanisms.022

1 Introduction023

In language production, speakers select—among a024

set of possible realisations—the lexical, syntactic,025

and semantic alternatives they deem most appropri-026

ate to verbalise their communicative intents. For027

instance, speakers can choose to precede reported028

speech with ‘I said’ or ‘I was like’: ‘I was like029

where is this going?’, ‘I said you don’t have to love030

each other’. Given such sets of alternatives, speak-031

ers’ choices are influenced, among other things, by032

their recent linguistic experience. In a dialogue, a033

speaker may be more prone to choose ‘I was like’034

if they or their conversational partner have already035

used it. This is an example of priming: under the036

influence of previous mentions, ‘I was like’ is re-037

peated more often than expected by chance.038

Most studies on priming have targeted the rep-039

etition of syntactic structures (Levelt and Kelter,040

1982; Bock, 1986; Branigan et al., 2000; Reit-041

ter et al., 2006b, 2011), often explaining them 042

within the framework of the interactive alignment 043

model (Pickering and Garrod, 2004). Lexical repe- 044

titions have also been investigated (e.g., Brennan, 045

1996) and they have been typically explained as 046

the result of collaborative mechanisms (Brennan 047

and Clark, 1996) or social pressures (Danescu- 048

Niculescu-Mizil et al., 2012; Noble and Fernán- 049

dez, 2015; Doyle and Frank, 2016). Less is known 050

about the mechanisms underlying speakers’ repeti- 051

tion of particular configurations of structures and 052

lexemes, constructions, a pervasive phenomenon 053

in conversational language use (Tomasello, 2003; 054

Goldberg, 2006; Sinclair and Fernández, 2021). 055

The reuse of constructions has been analysed by 056

Fusaroli et al. (2014) as part of a process of ‘inter- 057

personal synergy’ between conversational partners. 058

In this study, we investigate whether speakers re- 059

peat lexicalised constructions (such as ‘I was like’) 060

throughout a dialogue as a result of two informa- 061

tion processing mechanisms traditionally argued 062

to affect priming: 1) residual activations due to 063

exposure to local context (Pickering and Branigan, 064

1998; Cleland and Pickering, 2003) and 2) implicit 065

learning of the global statistics of expressions and 066

structures (Bock and Griffin, 2000; Fine and Flo- 067

rian Jaeger, 2013). We use a computational model 068

to approximate these mechanisms, hypothesising 069

that, if they are in place, construction repetition 070

becomes a rational strategy of information trans- 071

mission (Gibson, 1998; Levy, 2008): processing 072

effort is reduced when speakers follow this strategy. 073

We use surprisal to operationalise the process- 074

ing advantage of construction repetition, estimated 075

with a neural language model. Surprisal measures 076

the unpredictability of a linguistic signal, which 077

can be taken as an estimate of the amount of effort 078

required to process the signal (e.g., Jelinek et al., 079

1975; Keller, 2004; Levy, 2008). We predict (i) that 080

construction repetition has a facilitating effect on 081

processing, observable in the form of a surprisal 082
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reduction both for the construction itself and for its083

linguistic context. To further understand the nature084

of the processing advantage, we study how it varies085

across different types of repetition. We predict086

(ii) that the processing advantage of construction087

repetition increases with the total number of repeti-088

tions made in a dialogue, and (iii) that it decreases089

with the distance between repetitions. Our exper-090

iments confirm these three predictions, providing091

new empirical evidence that dialogue partners use092

repetitions as a communication strategy due to it093

leading to higher information processing efficiency.094

Our findings inform the development of better095

dialogue models. They indicate that avoiding rep-096

etitions in utterance generation (Li et al., 2016;097

Welleck et al., 2019) may not be the most appropri-098

ate strategy. Instead, models should be encouraged099

to follow human-like patterns of repetitions to be100

successfully deployed in conversational settings.101

2 Background102

2.1 Constructions103

This work focuses on constructions, seen as104

particular configurations of structures and lex-105

emes in usage-based accounts of natural language106

(Tomasello, 2003; Bybee, 2006, 2010; Goldberg,107

2006). According to these accounts, models of108

language processing must consider not only indi-109

vidual lexical elements according to their syntactic110

roles, but also more complex form-function units,111

which can break regular phrasal structures—e.g., ‘I112

know I’, ‘something out of’. We further focus on113

fully lexicalised constructions (sometimes called114

formulaic expressions, or multi-word expressions).115

Commonly studied types of constructions are id-116

ioms (‘break the ice’), collocations (‘pay attention117

to’), phrasal verbs (‘make up’), and lexical bundles118

(‘a lot of the’). In Section 5, we explain how the119

notion of lexicalised construction is operationalised120

in the current study; Table 1 shows some examples.121

A common property of constructions is their fre-122

quent occurrence in natural language. As such,123

they possess what in usage-based accounts is some-124

times referred to as ‘processing advantage’ (Con-125

klin and Schmitt, 2012; Carrol and Conklin, 2020)126

Evidence for the processing advantage of construc-127

tion usage has been found in reading (Arnon and128

Snider, 2010; Tremblay et al., 2011), naming la-129

tency (Bannard and Matthews, 2008; Janssen and130

Barber, 2012), eye-tracking (Underwood, 2004;131

Siyanova-Chanturia et al., 2011), and electrophys-132

SYXU S7ZG SVPK

had a few if you look at I think it was just
it I was yes of course like this is
I’d be like look at what like you’re not
were like oh if you give so I didn’t
do you get and all of that that I know
and I went it doesn’t have to it’s not even
I don’t like right okay so and I was kind of
a bit more something out of and it was like oh
I know I that in itself think of it like
I was like yeah that’s fine kind of thing where

Table 1: Top 10 constructions from three dialogues of
the Spoken BNC (Love et al., 2017). Constructions are
sorted according to the PMI between a construction and
its dialogue (see Section 5 for extraction procedure).
Headers correspond to the dialogues’ IDs in the corpus.

iology (Tremblay and Baayen, 2010; Siyanova- 133

Chanturia et al., 2017). In this paper, we study 134

the processing advantage of the repetition of lexi- 135

calised constructions. 136

2.2 Surprisal and Processing Effort 137

Estimates of surprisal have been shown to be good 138

predictors of processing effort in perception (Je- 139

linek et al., 1975; Clayards et al., 2008), reading 140

(Keller, 2004; Demberg and Keller, 2008; Levy 141

et al., 2009), and sentence interpretation (Levy, 142

2008; Gibson et al., 2013). Because speakers take 143

into consideration their addressee’s processing ef- 144

fort (Clark and Wilkes-Gibbs, 1986; Clark and 145

Schaefer, 1989), their linguistic choices can often 146

be explained as an optimal strategy to manage the 147

fluctuations of surprisal levels over time. Surprisal- 148

based accounts have indeed been successful at ex- 149

plaining various aspects of language production: 150

speakers tend to reduce the duration of less sur- 151

prising sounds (Aylett and Turk, 2004, 2006; Bell 152

et al., 2003; Demberg et al., 2012); they are more 153

likely to drop sentential material within less surpris- 154

ing scenarios (Jaeger and Levy, 2007; Frank and 155

Jaeger, 2008; Jaeger, 2010); they tend to overlap 156

at low-surprisal dialogue turn transitions (Dethlefs 157

et al., 2016); and they produce sentences at a uni- 158

form surprisal rate in texts (Genzel and Charniak, 159

2002, 2003; Qian and Jaeger, 2011). 160

To estimate surprisal, we use GPT-2 (Radford 161

et al., 2019), a neural language model. Using lan- 162

guage models to approximate surprisal is an estab- 163

lished approach (e.g., Genzel and Charniak, 2002; 164

Keller, 2004; Xu and Reitter, 2018) and neural 165

models’ surprisal estimates in particular have been 166

shown to be good predictors of processing effort, 167
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measured as reading time, gaze duration, and N400168

response (van Schijndel and Linzen, 2018; Merkx169

and Frank, 2021).170

2.3 Priming Mechanisms171

Priming has been widely studied through the anal-172

ysis of structural repetitions, whether densely clus-173

tered (e.g., Branigan et al., 1999; Wheeldon and174

Smith, 2003), or occurring across multiple utter-175

ances and interactions (e.g., Branigan et al., 2000;176

Kaschak et al., 2014). These two types of prim-177

ing (often called short-term priming and long-term178

priming, respectively) are thought to be the result of179

different underlying mechanisms (for a review see,180

e.g., Hartsuiker et al., 2008). Quickly decaying,181

short-term priming effects rely on an activation-182

based mechanism dependent on residual traces183

left by lexical material (Pickering and Branigan,184

1998; Cleland and Pickering, 2003). Slowly decay-185

ing, long-term priming effects are independent of186

lexical material and rely on an implicit learning187

mechanism (Bock and Griffin, 2000; Fine and Flo-188

rian Jaeger, 2013). In the current study, we model189

both mechanisms so that we do not limit a priori190

the space of possible processes underlying priming.191

3 Hypotheses192

Does construction repetition come with a process-193

ing advantage? Is this advantage due to the mecha-194

nisms underlying priming? To answer these ques-195

tions, we formulate the following three hypotheses.196

H1 Repetition facilitates processing. We predict197

1) a construction has lower surprisal when198

repeated than when first produced, and 2) rep-199

etitions of a construction (i.e., the occurrences200

that follow its first mention) have a stronger201

reduction effect on the surprisal of the dia-202

logue turn (i.e., a stronger facilitating effect)203

than first mentions.204

H2 The processing advantage of repetition is cu-205

mulative. We predict multiple repetitions of a206

construction contribute 1) to a stronger reduc-207

tion in the surprisal of the construction itself,208

and 2) to a stronger facilitating effect.209

H3 The processing advantage of repetition decays210

as a function of the distance between repeti-211

tions. We predict that a larger distance be-212

tween a construction repetition and its previ-213

ous mention results 1) in a weaker reduction214

in the surprisal of the construction, and 2) in215

a weaker facilitating effect.216

H1 tests whether repeating a construction re- 217

duces processing effort. Comprehenders are known 218

to process written and spoken words more rapidly 219

when they are repeated (for a review, see Bigand 220

et al., 2005), suggesting increased expectation for 221

these words. An increase in expectation (hence 222

reduction in surprisal) due to repetition is compat- 223

ible with the implicit learning account of priming 224

(Kaschak et al., 2006; Reitter et al., 2011; Fine 225

et al., 2013). However, if repetitions are closely 226

clustered, any surprisal reduction could also be the 227

result of residual activations from previous men- 228

tions, in line with the activation-based account. 229

Because H1 does not distinguish between differ- 230

ent repetitions of a construction and their distribu- 231

tion across time, H2 tests how surprisal reduction 232

effects vary along chains of repetitions in terms 233

of cumulation (Table 4 shows an example chain). 234

Changes in the magnitude of the processing advan- 235

tage of construction repetition may interact with 236

the number of times the construction has already 237

been repeated (Jaeger and Snider, 2008; Fine and 238

Jaeger, 2016). Cumulative effects propagating over 239

distant repetitions would be evidence in favour of 240

the implicit learning account, whereas cumulative 241

effects taking place locally are compatible with the 242

activation-based account. 243

The processing advantage of construction rep- 244

etition may also be determined by the distance 245

between mentions. Inspired by earlier analyses 246

conducted for lexical and syntactic priming with 247

varying results (Reitter et al., 2011; Howes et al., 248

2010; Healey et al., 2014), H3 investigates the in- 249

fluence of recency of previous mention on a rep- 250

etition’s processing advantage. Fast decay effects 251

could be taken in support of the activation-based 252

account, whereas slow decay effects would suggest 253

reduction in surprisal is due to sensitivity to the 254

global statistics of expressions and structures in a 255

dialogue, in line with the implicit learning account. 256

4 Data 257

We test our hypotheses on the Spoken British Na- 258

tional Corpus1 (Love et al., 2017), a dataset of tran- 259

scribed spoken open domain dialogues containing 260

1,251 contemporary British English conversations, 261

collected in a range of real-life contexts. We focus 262

on the 622 dialogues that feature only two speakers, 263

and randomly split them into a 70% finetuning set 264

(to be used as described in Section 6) and a 30% 265

1http://www.natcorp.ox.ac.uk.
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analysis set. Table 2 shows basic statistics for the266

dialogues used in this study.267

Mean ± Std Median Min Max

Dialogue length (# turns) 736 ± 599 541.5 67 4859
Dialogue length (# words) 7753 ± 5596 6102 819 39575
Turn length (# words) 11 ± 15 6 1 982

Table 2: Two-speaker dialogue statistics, Spoken BNC.

5 Extracting Repeated Constructions268

We define constructions as multi-word sequences269

that are repeated within a dialogue. We analyse270

constructions produced by only one of the dialogue271

participants as well as those produced by both272

speakers. To extract a set of constructions from273

each dialogue, we use the sequential pattern min-274

ing method proposed by Duplessis et al. (2017a,b,275

2021), which treats the extraction task as an in-276

stance of the longest common subsequence prob-277

lem (Hirschberg, 1977; Bergroth et al., 2000).2 We278

modify it to not discard multiple repetitions of a279

construction that occur in the same dialogue turn.280

We focus on constructions of at least three tokens,281

uttered at least three times in a dialogue. Repeated282

sequences that mostly appear as a sub-part of a283

larger repeated construction are discarded.3284

We apply the following further constraints. First,285

we exclude topic-determined constructions and ref-286

erential expressions in order to disentangle priming287

effects from topic coherence effects. To this end,288

we filter out constructions that include nouns, un-289

less the nouns are highly generic.4 For example,290

we discard sequences such as ‘playing table ten-291

nis’ and ‘a woolly jumper’ and retain constructions292

such as ‘a lot of’ and ‘the thing is’. Second, we293

filter out repetitions that are simply due to a high294

base frequency rate and not to the speakers’ self295

and mutual priming effects. We measure the as-296

sociation strength between a construction c and297

a dialogue d as the pointwise mutual information298

(PMI) between the two:299

PMI(c, d) = log2
P (c|d)
P (c)

[1]300

2Their code is freely available at https://github.
com/GuillaumeDD/dialign.

3We discard constructions that appear less than twice out-
side of a larger repeated construction in a given dialogue (e.g.,

‘think of it’ vs. ‘think of it like’).
4We define a limited specific vocabulary of generic nouns

(e.g., ‘thing’, ‘fact’, ’time’); full vocabulary in Appendix B.

which measures how unusually frequent a construc- 301

tion is in a given dialogue, compared to the rest of 302

the corpus. We discard all constructions that have a 303

PMI score lower than 1 in their respective dialogue. 304

The probabilities in Eq. 1 are obtained using maxi- 305

mum likelihood estimation over the analysis split 306

of the Spoken BNC. Finally, we exclude sequences 307

containing punctuation marks or which consist of 308

more than 50% filled pauses (e.g., ‘mm’, ‘erm’).5 309

Applying the described extraction procedure to 310

the 187 dialogues in the analysis split of the Spoken 311

BNC, we obtain a total of 3,676 unique construc- 312

tions and 33,103 occurrences. Further statistics on 313

the extracted constructions are presented in Table 3. 314

Table 1 shows examples of the top 10 constructions 315

extracted from three dialogues, ranked according 316

to their PMI score. 317

Mean ± Std Median Min Max

Construction length 3.23 ± 0.52 3 3 7
Construction frequency 3.87 ± 1.93 3 3 58
Constructions per dialogue 206 ± 307 100 3 2023
Words per dialogue turn 31 ± 37 21 3 959

Table 3: Construction statistics for the analysis split of
the Spoken BNC. Construction frequency is the number
of occurrences of a given construction in a dialogue,
Constructions per dialogue is the number of occurrences
of all constructions in a dialogue, Words per dialogue
turn is computed on turns containing a construction.

6 Experimental Setup 318

In this section, we present two surprisal-based mea- 319

sures of processing advantage, the adaptive lan- 320

guage model that produces surprisal estimates, and 321

statistical tests used to confirm our hypotheses.6 322

6.1 Measures of Processing Advantage 323

The surprisal of a word choice wi is the negative 324

logarithm of the corresponding word probability, 325

conditioned on the dialogue turn context t (i.e., the 326

words that precede wi in the dialogue turn) and on 327

the local dialogue context l: 328

H(wi|t, l) = − log2 P (wi|t, l) [2] 329

We define the local dialogue context l as the 50 330

tokens that precede the first word in the dialogue 331

turn.7 We use tokens as a unit of context size, rather 332

5The full list of filled pauses can be found in Appendix B.
6Data and code will be made public upon acceptance.
7Building on prior work (Reitter et al., 2006a) that uses

a window of 15 seconds of spoken dialogue as the locus of
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Speaker RI RI Turn Dist Turn S FE

A 0 0 - Drink? that was what he did yeah just just to just to know that 4.73 0.40
I he might not be a complete twat but just a fyi

B 1 0 1586 Especially for my birthday mind you I might not be here for 4.01 0.53
2 1 14 mine and I went what do you mean you might not be here? 2.70 0.90

Table 4: Repetition chain for the construction ‘might not be’ in dialogue SXWH, Spoken BNC, annotated with
repetition index (RI), RI within dialogue turn (RI Turn), and distance from previous mention (Dist; in tokens).

than dialogue turns, since they more closely corre-333

spond to the temporal units used in previous work334

(e.g., Reitter et al., 2006a), and since the length of335

dialogue turns can vary significantly (see Table 2).336

To measure the surprisal of a construction c, we337

average over word-level surprisal values:338

S(c; t, l) =
1

|c|
∑
wi∈c

H(wi|t, l) [3]339

Surprisal estimates provide a computational ap-340

proximation of the effort required to process a con-341

struction in context. We also measure the surprisal342

change (increase or reduction in processing effort)343

contributed by a construction c to its dialogue turn344

context, which we call the facilitating effect of345

a construction. The facilitating effect is positive346

when the construction has lower surprisal than its347

context, and negative when it has higher surprisal:348

FE (c; t, l) = log2

1
|s|−|c|

∑
wj∈s,wj /∈cH(wj |t, l)

1
|c|

∑
wi∈cH(wi|t, l)

[4]

349

Due to human memory constraints, the facilitating350

effect of constructions is more likely to affect the351

processing of words that are produced immediately352

before and after the construction itself. We define353

the locus of the facilitating effect (s in Eq. 4) as the354

10 tokens preceding and the 10 tokens following355

the construction.8 The tokens exceeding the limits356

of the current dialogue turn are discarded. When357

the locus s corresponds to the construction itself,358

the facilitating effect equals 0.359

6.2 Estimates of Surprisal360

To produce surprisal estimates, we use a computa-361

tional model of next word prediction which imple-362

ments approximations of both the activation-based363

local priming effects, we compute the average speech rate in
the Spoken BNC (3.16 tokens/second) and multiply it by 15;
we then round up the result (47.4) to 50 tokens.

8This is motivated by the fact that the average length of
turns containing a construction is 31 tokens (median length is
21), with constructions being 3 to 7 tokens long—see Table 3.

and the implicit learning mechanism: it is con- 364

ditioned on local contextual cues while it learns 365

from exposure to the global dialogue context. We 366

use GPT-2 (Radford et al., 2019), a pre-trained 367

autoregressive Transformer language model. We 368

take GPT-2’s attention mechanism (Vaswani et al., 369

2017) over the preceding context of a word as a 370

proxy for the local activation-based mechanism: 371

words in the more proximate dialogue context 372

shape the model’s expectations for next words, and 373

thus their contextualised surprisal. As an implicit 374

learning mechanism, we use the Transformer’s stan- 375

dard learning rule, back-propagation on the cross- 376

entropy next word prediction error, which has been 377

successful at modelling a wide range of linguis- 378

tic phenomena (Rumelhart and McClelland, 1986; 379

Elman, 1991; Cleeremans and Elman, 1993; van 380

Schijndel and Linzen, 2018). We rely on Hug- 381

gingFace’s implementation of GPT-2 with default 382

tokenizers and parameters (Wolf et al., 2020), and 383

finetune the pre-trained model on a 70% training 384

split of the Spoken BNC in order to adapt it to the 385

idiosyncrasies of spoken dialogic data.9 We refer 386

to this finetuned version as the frozen model. We 387

use an attention window of length 50, i.e., the size 388

of the local dialogue context, which may span over 389

multiple dialogue turns (see Section 6.1). 390

Adaptive language model When estimating sur- 391

prisal for a dialogue, we begin by processing the 392

first turn using the frozen language model and then 393

gradually update the model parameters after each 394

turn, using back-propagation with cross-entropy 395

loss. The magnitude of the learning rate is impor- 396

tant for these updates to have the desired effect. 397

The learning rate should be sufficiently high for the 398

language model to adapt during a single dialogue, 399

yet an excessively high learning rate can cause the 400

language model to lose its ability to generalise 401

across dialogues. To find the appropriate learn- 402

ing rate, we randomly select 18 dialogues from 403

9More details on finetuning can be found in Appendix C.1.
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the analysis split of the Spoken BNC10 and run an404

18-fold cross-validation for a set of six candidate405

learning rates: 1e − 5, 1e − 4, . . ., 1. We fine-406

tune the model on each dialogue using one of these407

learning rates, and compute perplexity reduction 1)408

on the dialogue itself (adaptation) as well as 2) on409

the remaining 17 dialogues (generalisation). We410

select the learning rate yielding the best adapta-411

tion over cross-validaton folds (1e− 3), while still412

improving the model’s generalisation ability. See413

Appendix C.2 for further details.414

6.3 Statistical Modelling415

To test H1, we split all occurrences of construc-416

tions by whether they are the first mention in a417

dialogue or a repetition. Our dataset consists of418

8,562 first mentions and 24,541 repetitions. Using419

a Two Sample Bayesian t-test,11 we compare the S420

distribution of first mentions to that of repetitions.421

We perform the same analysis for FE values.422

H2 and H3 focus on analysing repetitions only.423

We label each occurrence with a repetition index424

(the first repetition of a construction has an index425

of 1, the second, 2, etc.), and with the distance from426

the previous mention in a dialogue, measured as the427

number of words between the first word of the cur-428

rent occurrence and the first word of the previous429

occurrence (see Table 4). We fit two linear mixed430

effect models using S and FE as response variables,431

and include multi-level random effects grouped by432

dialogue and individual speaker ID. To select the433

models’ fixed effects, we start with a collection of434

motivated features—including repetition index and435

distance from previous mention—and perform an436

ablation selection procedure, iteratively removing437

features with the lowest significance, keeping only438

those that yield a p-value lower than 0.05.12439

7 Results440

We now present the results of our experiments, test-441

ing three hypotheses on the processing advantage442

(surprisal reduction and facilitating effect) of con-443

struction repetition. The final linear mixed effect444

models for both construction surprisal S and facil-445

itating effect FE include repetition index and dis-446

10This amounts to ca. 10% of the analysis split. We use
the analysis split because there is no risk of “overfitting” with
respect to our main analyses.

11We use the t-test implemented in the ‘Bayesian First Aid’
R-JAGS package (https://github.com/rasmusab/
bayesian_first_aid) with the default uninformative
priors and a credible interval of 95%.

12The full list of features can be found in Appendix D.

tance from the previous mention, which are directly 447

related to our hypotheses, as well as construction 448

length and repetition index within the current turn. 449

The full specification of the best models, with fixed 450

and random effect coefficients, is in Appendix D. 451

(a) Construction surprisal (S)

(b) Facilitating effect (FE)

Figure 1: Posterior predictive distributions for the mean
S and FE according to the Bayesian t-test between first
mentions and repetitions.

Repetition facilitates processing (H1) Fig- 452

ures 1a and 1b show that the posterior distribu- 453

tions of the mean S and FE do not overlap between 454

groups. For both metrics, highest density intervals 455

of difference between means do not include 0. In 456

sum, we find surprisal of construction repetitions 457

is lower than that of first mentions, and repetitions 458

have a stronger facilitating effect than first men- 459

tions. Our first two predictions are thus confirmed. 460

The processing advantage of repetition is cumu- 461

lative (H2) The effect of repetition index is nega- 462

tive on S (−24.85e− 2, p < 2e− 16) and positive 463

on FE (7.57e− 2, p < 2e− 16). Figures 2a and 2b 464

show the opposite trajectories of the measures, with 465

a stronger effect of repetition index on construc- 466

tion surprisal. In sum, we find that the surprisal of 467

construction decreases, and their facilitating effect 468

increases, as previous mentions accumulate. This 469

confirms our second pair of predictions. 470

The processing advantage of repetition decays 471

(H3) The distance of a construction from its pre- 472

vious mention has a positive effect on S (9.66e− 473

2, p < 2e − 16) and a negative effect on FE 474

(−4.29e − 2, p < 2e − 16), also shown in Fig- 475

ures 2c and 2d. Surprisal increases, and facilitating 476

effect decreases, as the current usage of a construc- 477

tion gets further away from its previous mention. 478

Our third pair of predictions is thus confirmed. 479
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(a) Repetition Index vs. S (b) Repetition Index vs. FE (c) Distance vs. S (d) Distance vs. FE

Figure 2: Construction surprisal (S, bits) and facilitating effect (FE) vs. repetition index and distance from previous
mention (number of words). The first distance bin is the mean length of a turn containing a construction (Table 3).

8 Analysis480

Having confirmed our hypotheses, we now further481

analyse the distribution of FE and S estimates, their482

relationship, and how their values across repetitions483

are influenced by additional factors.484

8.1 Measures of Processing Advantage485

Our first observation is that not only construction486

repetition but also construction usage comes with a487

processing advantage, as measured with both S and488

FE—a finding in line with prior work (e.g., Arnon489

and Snider, 2010; Bannard and Matthews, 2008;490

Tremblay et al., 2011; Janssen and Barber, 2012).491

On the one hand, as shown in Figure 1b, the poste-492

rior distribution of the mean FE spans over positive493

values for both first mentions and repetitions. The494

estimated mean FE of constructions is higher than495

the mean (0.07 ± 0.82) and median (0.01) FE of496

non-construction sequences in the Spoken BNC di-497

alogues.13 On the other hand, the posterior predic-498

tive mean value of S for constructions (Figure 1a)499

does not include the mean (5.59 ± 2.36) nor the500

median (5.36) S of non-construction sequences.501

Our second observation is that the two metrics502

show similar but opposite patterns in our results.503

Based on the definition of the two metrics (Sec-504

tion 6.1)—these trends can be predicted a priori: it505

is more likely for a construction to have a facili-506

tating effect if its surprisal is low; if construction507

surprisal is high, the context of the construction508

must be even more surprising for facilitating effect509

13We calculate S and FE of all 3- to 7-grams in our analysis
split of the Spoken BNC, excluding all n-grams that are equal
to extracted constructions. We then sample, for each length
n from 3 to 7, sn non-construction sequence occurrences—
where sn is the number of occurrences of n-tokens-long ex-
tracted constructions. The length distributions should match
because length has an effect on S and FE (see Section 8.2).

to occur. Empirically, we find that the Kendall’s 510

rank-correlation between facilitating effect and 511

surprisal is −0.569 (p < 2e− 16): although this is 512

a rather strong negative correlation, the fact that 513

the score is not closer to −1 indicates that there 514

are cases where the two values do not follow the 515

predicted pattern. Some constructions have high 516

surprisal and high facilitating effect: 517

A: So what have you got? what have you got going on with enrichments?
B: I have to do drama enrichment (S = 5.46 FE = 1.32) 518

While there are cases where construction surprisal 519

is low and facilitating effect is low or negative:14 520

A: But like I always really love strawberries but hate strawberry-flavoured
things so I don’t

B: I don’t like strawberries but I like strawberry-flavoured things
(S = 2.24 FE = −0.70)

521

These examples show that our measures capture 522

different types of context-dependent processing 523

advantage.15 524

8.2 Other Predictors of Processing Advantage 525

Other factors that influence facilitating effect and 526

surprisal beyond those directly related to our hy- 527

potheses are construction length and repetition in- 528

dex within a dialogue turn. Construction length has 529

the strongest effect on both metrics (S: −110.90e− 530

2, p < 2e− 16; FE: 30.16e− 2, p < 2e− 16): the 531

longer the construction the lower its surprisal and 532

the stronger its facilitating effect. Table 4 shows 533

a full repetition chain for a construction of length 534

3; Table 5 (Appendix B) shows a chain for one of 535

length 6. Because constructions, per se, have a pro- 536

cessing advantage, and their repetition facilitates 537

processing (see Section 7), construction repetition 538

is more advantageous when constructions occupy 539

14A negative facilitating effect indicates that the surprisal
of the construction is higher than the surprisal of its context.

15The examples have been selected among occurrences with
S and FE higher or lower than the mean S / FE ± std.
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a larger portion of processing time (which is pro-540

portional to the number of words).541

The repetition index of a construction mention542

within a dialogue turn also has an effect on both543

metrics of processing advantage (S: −29.48e −544

2, p < 0.05; FE: 14.38e − 2, p < 2e − 16); we545

find strong cumulativity effects for self-repetitions546

within the current dialogue turn.16 Only 6.46% of547

the total construction occurrences have at least one548

previous mention in the same turn; yet when this549

is the case, the magnitude of S and FE increases550

with the number of previous local mentions. This551

interaction between cumulativity and recency (me-552

dian distance between repetitions in the same turn553

is 7 words; across turns is 1208 words) indicates554

that processing advantage accumulates faster when555

repetitions are densely clustered. See Appendix E.556

9 Conclusion557

We have hypothesised that speakers repeat lexi-558

calised constructions in dialogues because repeti-559

tion eases information processing, and have for-560

mulated concrete predictions that follow from this561

hypothesis. To quantify the processing advantage562

of constructions we have proposed two surprisal-563

based measures, facilitating effect and construc-564

tion surprisal, and have analysed how the values of565

these measures—estimated with a neural language566

model—vary as constructions are repeated. Al-567

though our experiments do not rely on direct mea-568

surements of the processing effort of human sub-569

jects, there is evidence that neural language models570

produce reliable estimates (Goodkind and Bicknell,571

2018; Linzen, 2019; Schrimpf et al., 2021).572

Our experiments on English spoken open do-573

main dialogues confirmed our three predictions:574

(i) construction repetition reduces processing ef-575

fort; (ii) the effort reduction increases with the576

frequency of repetitions and (iii) decreases with577

the distance between repetitions. These empiri-578

cal results provide new evidence that construction579

repetition in dialogue is an efficient communica-580

tion strategy. They thus complement prior work581

on the processing advantage of construction usage582

(cf. Section 2.1) and contribute to an understudied583

type of priming, with priming research traditionally584

focusing on repetitions of syntactic structures and585

lexical elements (cf. Section 1). Our findings reveal586

16The identity of the speaker producing previous mentions
does not influence FE or S. All fixed effects related to speaker
identity are discarded during the ablation procedure; see Sec-
tion 6.3 and Appendix D.

that the information processing efficiency of con- 587

struction repetition results from a combination of 588

the activation-based and implicit learning priming 589

mechanisms. In line with activation-based accounts 590

of priming, we find that the processing advantage 591

of repetitions accumulates faster when repetitions 592

are densely clustered, and it decays faster within 593

more local distances. However, implicit learning is 594

necessary to explain the fact that both cumulativity 595

and decay effects are still present across distant 596

repetitions. The discovered decreasing patterns of 597

surprisal may seem to contradict the entropy rate 598

constancy principle (Genzel and Charniak, 2002) 599

and the principle of uniform information density 600

(Jaeger and Levy, 2007), according to which sur- 601

prisal remains stable over consecutive utterances. 602

Yet we believe our findings can help explain these 603

principles by providing insights into the informa- 604

tion structure of individual utterances: the process- 605

ing advantage of repeated constructions, which are 606

not topic related, allows for progressively more 607

information-dense topical and referential expres- 608

sions. We conjecture that it is as a result of this bal- 609

ance that surprisal remains stable over utterances. 610

Besides contributing new empirical evidence 611

on construction usage and repetition in dialogue, 612

this study highlights the importance of a few key 613

desiderata for the design of human-compatible 614

computational dialogue models. First, models 615

should both attend to the local dialogue context 616

and use the global statistics collected throughout 617

a dialogue for on-the-fly adaptation. This would 618

have the natural effect of models being more likely 619

to repeat constructions established as part of the 620

dialogue lexicon. Second, although excessive and 621

unnatural repetitions should be avoided in machine- 622

generated utterances (Li et al., 2016; Holtzman 623

et al., 2019), a certain degree of repetition makes 624

a dialogue sound more natural. Human-like repeti- 625

tion patterns can be explicitly learned by auxiliary 626

modules (Holtzman et al., 2018) or, as our study 627

suggests, they may be implicitly acquired if next- 628

word surprisal training and decoding objectives are 629

complemented with context-dependent surprisal- 630

based objectives. Simple techniques such as those 631

proposed by Wei et al. (2021) and Meister et al. 632

(2020) could be used to operationalise facilitating 633

effect as a psycholinguistically motivated inductive 634

bias to be used in training, and as a word choice 635

criterion in decoding. 636
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Kristian Tylén. 2014. Dialog as interpersonal syn- 796
ergy. New Ideas in Psychology, 32:147–157. 797

Dmitriy Genzel and Eugene Charniak. 2002. Entropy 798
rate constancy in text. In Proceedings of the 40th 799
annual meeting of the Association for Computational 800
Linguistics, pages 199–206. 801

Dmitriy Genzel and Eugene Charniak. 2003. Variation 802
of entropy and parse trees of sentences as a func- 803
tion of the sentence number. In Proceedings of the 804
2003 Conference on Empirical Methods in Natural 805
Language Processing (EMNLP), pages 65–72. 806

Edward Gibson. 1998. Linguistic complexity: Locality 807
of syntactic dependencies. Cognition, 68(1):1–76. 808

Edward Gibson, Leon Bergen, and Steven T. Piantadosi. 809
2013. Rational integration of noisy evidence and 810
prior semantic expectations in sentence interpretation. 811
Proceedings of the National Academy of Sciences, 812
110(20):8051–8056. 813

Adele E Goldberg. 2006. Constructions at work: The 814
nature of generalization in language. Oxford Univer- 815
sity Press on Demand. 816

Adam Goodkind and Klinton Bicknell. 2018. Predictive 817
power of word surprisal for reading times is a linear 818
function of language model quality. In Proceedings 819
of the 8th Workshop on Cognitive Modeling and Com- 820
putational Linguistics (CMCL 2018), pages 10–18, 821
Salt Lake City, Utah. Association for Computational 822
Linguistics. 823

Robert J Hartsuiker, Sarah Bernolet, Sofie Schoonbaert, 824
Sara Speybroeck, and Dieter Vanderelst. 2008. Syn- 825
tactic priming persists while the lexical boost decays: 826
Evidence from written and spoken dialogue. Journal 827
of Memory and Language, 58(2):214–238. 828

Patrick GT Healey, Matthew Purver, and Christine 829
Howes. 2014. Divergence in dialogue. PloS one, 830
9(6):e98598. 831

Daniel S Hirschberg. 1977. Algorithms for the longest 832
common subsequence problem. Journal of the ACM 833
(JACM), 24(4):664–675. 834

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and 835
Yejin Choi. 2019. The curious case of neural text de- 836
generation. In International Conference on Learning 837
Representations. 838

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine 839
Bosselut, David Golub, and Yejin Choi. 2018. Learn- 840
ing to write with cooperative discriminators. In Pro- 841
ceedings of the 56th Annual Meeting of the Associa- 842
tion for Computational Linguistics (Volume 1: Long 843
Papers), pages 1638–1649. 844

Christine Howes, Patrcik GT Healey, and Matthew 845
Purver. 2010. Tracking lexical and syntactic align- 846
ment in conversation. In Proceedings of the Annual 847
Meeting of the Cognitive Science Society. 848

10

https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102
https://doi.org/10.18653/v1/W18-0102


T. Florian Jaeger. 2010. Redundancy and reduction:849
Speakers manage syntactic information density. Cog-850
nitive Psychology, 61(1):23–62.851

T. Florian Jaeger and Roger P. Levy. 2007. Speakers852
optimize information density through syntactic reduc-853
tion. In Advances in neural information processing854
systems, pages 849–856.855

T Florian Jaeger and Neal Snider. 2008. Implicit learn-856
ing and syntactic persistence: Surprisal and cumula-857
tivity. In Proceedings of the 30th Annual Conference858
of the Cognitive Science Society, volume 827812.859
Cognitive Science Society Austin, TX.860

Niels Janssen and Horacio A Barber. 2012. Phrase861
frequency effects in language production. PloS one,862
7(3):e33202.863

Frederick Jelinek, Lalit Bahl, and Robert Mercer. 1975.864
Design of a linguistic statistical decoder for the recog-865
nition of continuous speech. IEEE Transactions on866
Information Theory, 21(3):250–256.867

Hajnal Jolsvai, Stewart M McCauley, and Morten H868
Christiansen. 2013. Meaning overrides frequency in869
idiomatic and compositional multiword chunks. In870
Proceedings of the Annual Meeting of the Cognitive871
Science Society.872

Michael P Kaschak, Timothy J Kutta, and Jacqueline M873
Coyle. 2014. Long and short term cumulative struc-874
tural priming effects. Language, cognition and neu-875
roscience, 29(6):728–743.876

Michael P Kaschak, Renrick A Loney, and Kristin L877
Borreggine. 2006. Recent experience affects the878
strength of structural priming. Cognition, 99(3):B73–879
B82.880

Frank Keller. 2004. The entropy rate principle as a881
predictor of processing effort: An evaluation against882
eye-tracking data. In Proceedings of the 2004 Con-883
ference on Empirical Methods in Natural Language884
Processing (EMNLP), pages 317–324.885

Willem JM Levelt and Stephanie Kelter. 1982. Surface886
form and memory in question answering. Cognitive887
Psychology, 14(1):78–106.888

Roger Levy. 2008. A noisy-channel model of human889
sentence comprehension under uncertain input. In890
Proceedings of the 2008 Conference on Empirical891
Methods in Natural Language Processing (EMNLP),892
pages 234–243.893

Roger Levy, Klinton Bicknell, Tim Slattery, and Keith894
Rayner. 2009. Eye movement evidence that readers895
maintain and act on uncertainty about past linguis-896
tic input. Proceedings of the National Academy of897
Sciences, 106(50):21086–21090.898

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,899
Michel Galley, and Jianfeng Gao. 2016. Deep re-900
inforcement learning for dialogue generation. In Pro-901
ceedings of the 2016 Conference on Empirical Meth-902
ods in Natural Language Processing, pages 1192–903
1202.904

Tal Linzen. 2019. What can linguistics and deep learn- 905
ing contribute to each other? response to pater. Lan- 906
guage, 95(1):e99–e108. 907

Robbie Love, Claire Dembry, Andrew Hardie, Vaclav 908
Brezina, and Tony McEnery. 2017. The spoken 909
BNC2014. International Journal of Corpus Linguis- 910
tics, 22(3):319–344. 911

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. If 912
beam search is the answer, what was the question? 913
In Proceedings of the 2020 Conference on Empirical 914
Methods in Natural Language Processing (EMNLP), 915
pages 2173–2185. 916

Danny Merkx and Stefan L Frank. 2021. Human sen- 917
tence processing: Recurrence or attention? In Pro- 918
ceedings of the Workshop on Cognitive Modeling and 919
Computational Linguistics, pages 12–22. 920

Bill Noble and Raquel Fernández. 2015. Centre stage: 921
How social network position shapes linguistic co- 922
ordination. In Proceedings of the 6th workshop on 923
cognitive modeling and computational linguistics, 924
pages 29–38. 925

M. J. Pickering and S. Garrod. 2004. Toward a mecha- 926
nistic psychology of dialogue. Behavioral and Brain 927
Sciences, 27(02):169–190. 928

Martin J Pickering and Holly P Branigan. 1998. The rep- 929
resentation of verbs: Evidence from syntactic prim- 930
ing in language production. Journal of Memory and 931
language, 39(4):633–651. 932

Ting Qian and T. Florian Jaeger. 2011. Topic shift in 933
efficient discourse production. In Proceedings of the 934
Annual Meeting of the Cognitive Science Society. 935

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 936
Dario Amodei, and Ilya Sutskever. 2019. Language 937
models are unsupervised multitask learners. Techni- 938
cal report, OpenAI. 939

David Reitter, Frank Keller, and Johanna D Moore. 940
2006a. Computational modelling of structural prim- 941
ing in dialogue. In Proceedings of the Human Lan- 942
guage Technology Conference of the NAACL, com- 943
panion volume: Short papers, pages 121–124. 944

David Reitter, Frank Keller, and Johanna D Moore. 945
2011. A computational cognitive model of syntactic 946
priming. Cognitive science, 35(4):587–637. 947

David Reitter, Johanna D Moore, and Frank Keller. 948
2006b. Priming of syntactic rules in task-oriented 949
dialogue and spontaneous conversation. Proceed- 950
ings of the 28th Annual Conference of the Cognitive 951
Science Society. 952

DE Rumelhart and JL McClelland. 1986. On learning 953
the past tenses of English verbs. In Parallel dis- 954
tributed processing: explorations in the microstruc- 955
ture, vol. 2: psychological and biological models, 956
pages 216–271. MIT press Cambridge, MA. 957

11



Martin Schrimpf, Idan Asher Blank, Greta Tuckute, Ca-958
rina Kauf, Eghbal A Hosseini, Nancy Kanwisher,959
Joshua B Tenenbaum, and Evelina Fedorenko. 2021.960
The neural architecture of language: Integrative mod-961
eling converges on predictive processing. Proceed-962
ings of the National Academy of Sciences, 118(45).963

Arabella Sinclair and Raquel Fernández. 2021. Con-964
struction coordination in first and second language965
acquisition. In Proceedings of the 25th Workshop966
on the Semantics and Pragmatics of Dialogue - Full967
Papers, Potsdam, Germany. SEMDIAL.968

Anna Siyanova-Chanturia, Kathy Conklin, Sendy Caf-969
farra, Edith Kaan, and Walter JB van Heuven. 2017.970
Representation and processing of multi-word expres-971
sions in the brain. Brain and language, 175:111–122.972

Anna Siyanova-Chanturia, Kathy Conklin, and Wal-973
ter JB Van Heuven. 2011. Seeing a phrase “time974
and again” matters: The role of phrasal frequency in975
the processing of multiword sequences. Journal of976
Experimental Psychology: Learning, Memory, and977
Cognition, 37(3):776.978

Patrizia Tabossi, Rachele Fanari, and Kinou Wolf. 2009.979
Why are idioms recognized fast? Memory & Cogni-980
tion, 37(4):529–540.981

Debra Titone and Maya Libben. 2014. Time-dependent982
effects of decomposability, familiarity and literal983
plausibility on idiom priming: A cross-modal prim-984
ing investigation. The Mental Lexicon, 9(3):473–496.985

Debra A Titone and Cynthia M Connine. 1994. De-986
scriptive norms for 171 idiomatic expressions: Famil-987
iarity, compositionality, predictability, and literality.988
Metaphor and Symbol, 9(4):247–270.989

Michael Tomasello. 2003. Constructing a language: A990
usage-based theory of language acquisition. Harvard991
University Press.992

Antoine Tremblay and R Harald Baayen. 2010. Holistic993
processing of regular four-word sequences: A be-994
havioral and ERP study of the effects of structure,995
frequency, and probability on immediate free recall.996
Perspectives on formulaic language: Acquisition and997
communication, pages 151–173.998

Antoine Tremblay, Bruce Derwing, Gary Libben, and999
Chris Westbury. 2011. Processing advantages of lexi-1000
cal bundles: Evidence from self-paced reading and1001
sentence recall tasks. Language learning, 61(2):569–1002
613.1003

G Underwood. 2004. The eyes have it. An eye-1004
movement study into the processing of formulaic1005
sequences.1006

Marten van Schijndel and Tal Linzen. 2018. A neural1007
model of adaptation in reading. In Proceedings of the1008
2018 Conference on Empirical Methods in Natural1009
Language Processing, pages 4704–4710.1010

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1011
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz 1012
Kaiser, and Illia Polosukhin. 2017. Attention is All 1013
you Need. Advances in Neural Information Process- 1014
ing Systems, 30:5998–6008. 1015

Jason Wei, Clara Meister, and Ryan Cotterell. 2021. A 1016
cognitive regularizer for language modeling. arXiv 1017
preprint arXiv:2105.07144. 1018

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 1019
nan, Kyunghyun Cho, and Jason Weston. 2019. Neu- 1020
ral text generation with unlikelihood training. In 1021
International Conference on Learning Representa- 1022
tions. 1023

Linda Wheeldon and Mark Smith. 2003. Phrase struc- 1024
ture priming: A short-lived effect. Language and 1025
Cognitive Processes, 18(4):431–442. 1026

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 1027
Chaumond, Clement Delangue, Anthony Moi, Pier- 1028
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 1029
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 1030
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 1031
Scao, Sylvain Gugger, Mariama Drame, Quentin 1032
Lhoest, and Alexander M. Rush. 2020. Transform- 1033
ers: State-of-the-art natural language processing. In 1034
Proceedings of the 2020 Conference on Empirical 1035
Methods in Natural Language Processing: System 1036
Demonstrations, pages 38–45, Online. Association 1037
for Computational Linguistics. 1038

Alison Wray. 2002. Formulaic Language and the Lexi- 1039
con. Cambridge, UK: Cambridge University Press. 1040

Yang Xu and David Reitter. 2018. Information den- 1041
sity converges in dialogue: Towards an information- 1042
theoretic model. Cognition, 170:147–163. 1043

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, 1044
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing 1045
Liu, and Bill Dolan. 2020. Dialogpt: Large-scale 1046
generative pre-training for conversational response 1047
generation. In ACL, system demonstration. 1048

Appendix 1049

A Possible Criteria to Distinguish 1050

Constructions 1051

Lexicalised constructions can be classified accord- 1052

ing to multiple criteria (Titone and Connine, 1994; 1053

Wray, 2002; Columbus, 2013), including those 1054

listed below. 1055

• Compositionality This criterion is typically 1056

used to separate idioms from other formulaic 1057

expressions, although it is sometimes referred 1058

to as transparency to underline its graded, 1059

rather than binary, nature. There is no evi- 1060

dence, however, that the processing advantage 1061

of idioms differs from that of compositional 1062
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phrases (Tabossi et al., 2009; Jolsvai et al.,1063

2013; Carrol and Conklin, 2020). Therefore1064

we ignore this criterion in the current study.1065

• Literal plausibility This criterion is typically1066

used to discriminate among different types1067

of idioms (Titone and Connine, 1994; Titone1068

and Libben, 2014)—as compositional phrases1069

are literally plausible by definition. Because1070

we ignore distinctions made on the basis of1071

compositionality, we do not use this criterion.1072

• Meaningfulness Meaningful expressions are1073

idioms and compositional phrases (e.g. ‘on1074

my mind’, ‘had a dream’) whereas sentence1075

fragments that break constituency boundaries1076

(e.g., ‘of a heavy’, ’by the postal’) are consid-1077

ered less meaningful (as measured in norming1078

studies, e.g., by Jolsvai et al., 2013). There1079

is some evidence that the meaningfulness of1080

multi-word expressions correlates with their1081

processing advantage even more than their1082

frequency (Jolsvai et al., 2013); yet expres-1083

sions are particularly frequent, they present1084

processing advantages even if they break reg-1085

ular phrasal structures (Bybee and Scheibman,1086

1999; Tremblay et al., 2011). Moreover, ut-1087

terances that break regular constituency rules1088

are particularly frequent in spoken dialogue1089

data (e.g., ‘if you could search for job and1090

that’s not’, ‘you don’t wanna damage your1091

relationship with’). For these reasons, we do1092

not exclude constructions that span multiple1093

constituents from our analysis.1094

• Schematicity This criterion distinguishes ex-1095

pressions where all the lexical elements are1096

fixed from expressions “with slots” that can be1097

filled by varying lexical elements.In this study,1098

we focus on fully lexicalised constructions.1099

• Familiarity This is a subjective criterion that1100

strongly correlates with objective frequency1101

(Carrol and Conklin, 2020). Human experi-1102

ments would be required to obtain familiarity1103

norms for our target data, and the resulting1104

norms would only be an approximation of the1105

familiarity judgements of the true speakers we1106

analyse the language of. Therefore, we ignore1107

this criterion in the current study.1108

• Communicative function Formulaic expres-1109

sions can fulfil a variety of discourse and1110

communicative functions. Biber et al. (2004), 1111

e.g., distinguish between stance expressions 1112

(attitude, certainty with respect to a proposi- 1113

tion), discourse organisers (connecting prior 1114

and forthcoming discourse), and referential 1115

expressions; and for each of these three pri- 1116

mary discourse functions, more specific sub- 1117

categories are defined. This type of classi- 1118

fication is typically done a posteriori—i.e., 1119

after a manual analysis of the expressions re- 1120

trieved from a corpus according to other cri- 1121

teria (Biber and Barbieri, 2007). In the BNC, 1122

for example, we find epistemic lexical bun- 1123

dles (‘I don’t know’, ‘I don’t think’), desire 1124

bundles (‘do you want to’, ’I don’t want to’), 1125

obligation/directive bundles (‘you don’t have 1126

to’), and intention/prediction bundles (‘I’m 1127

going to’, ‘it’s gonna be’). We do not use this 1128

criterion to avoid an a priori selection of the 1129

constructions. 1130

B Extraction of Repeated Constructions 1131

We define a limited specific vocabulary of generic 1132

nouns to filter out topical and referential construc- 1133

tion. The vocabulary includes: bit, bunch, day, 1134

days, fact, god, idea, ideas, kind, kinds, loads, lot, 1135

lots, middle, ones, part, problem, problems, reason, 1136

reasons, rest, side, sort, sorts, stuff, thanks, thing, 1137

things, time, times, way, ways, week, weeks, year, 1138

years. 1139

We also find all the filled pauses and exclude 1140

word sequences that consist for more than 50% of 1141

filled pauses. Filled pauses in the Spoken BNC are 1142

transcribed as: huh, uh, erm, hm, mm, er. 1143

Table 5 shows a whole construction chain (from 1144

the first mention to the last repetition) for a con- 1145

struction of length 6. 1146

C Language Model 1147

C.1 Finetuning 1148

We finetune the ‘small’ variant of GPT-2 (Radford 1149

et al., 2019) and DialoGPT (Zhang et al., 2020) 1150

on our finetuning split of the Spoken BNC (see 1151

Section 4) using HuggingFace’s implementation of 1152

the models with default tokenizers and parameters 1153

(Wolf et al., 2020). Dialogue turns are simply con- 1154

catenated; we have experimented with labelling the 1155

dialogue turns (i.e., A: utterance 1, B: utterance 2 1156

and found that this leads to higher perplexity. The 1157

finetuning results for both models are presented in 1158

Table 6. We finetune the models and measure their 1159
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Speaker RI RI Turn Dist Turn S FE

A 0 0 - [...] I think that everyone should have the same opportunities
and I don’t think you should be proud or ashamed of what 1.90 1.21
your you know what your situation is whether you what your
what your race is whether you’re a woman or a man whether
you live from this pl whether you’re in this place [...]

A 1 0 80 I well I th I don’t think it should I don’t think you should be 1.73 1.40

A 2 0 19 Well yes perhaps but I don’t think you should be like um 1.06 2.48
embarrassed about it or I think I think you should just sort of

Table 5: A chain of repetitions of the construction ‘I don’t think you should be’ in dialogue S2AX of the Spoken
BNC, annotated with repetition index (RI), repetition index within dialogue turn (RI Turn), and distance from
previous mention (Dist; in tokens).

perplexity using Huggingface’s finetuning script.1160

We use early stopping over 5 epochs.17 Sequence1161

length and batch size vary together because they to-1162

gether determine the amount of memory required;1163

more expensive combinations (e.g., 256 tokens1164

with batch size 16) require an exceedingly high1165

amount of GPU memory. Reducing the maximum1166

sequence length has limited impact: 99.90% of1167

dialogue turns have at most 128 words.1168

DialoGPT starts from extremely high perplexity1169

values but catches up quickly with finetuning. GPT-1170

2 starts from much lower perplexity values and1171

reaches virtually the same perplexity as DialoGPT1172

after finetuning. For the pre-trained DialoGPT per-1173

plexity is extremely high, and the perplexity trend1174

against maximum sequence length is surprisingly1175

upward. These two behaviours indicate that the pre-1176

trained DialoGPT is less accustomed than GPT-2 to1177

the characteristics of our dialogue data. DialoGPT1178

is trained on written online group conversations,1179

while we use a corpus of transcribed spoken conver-1180

sations between two speakers. In contrast, GPT-21181

has been exposed to the genre of fiction, which con-1182

tains scripted dialogues, and thus to a sufficiently1183

similar language use. We select GPT-2 finetuned1184

with a maximum sequence length of 128 and 5121185

as our best two models; these two models (which1186

we now refer to as frozen) are used for the adaptive1187

learning rate selection (Section C.2).1188

17The number of epochs (5) has been selected in preliminary
experiments together with the learning rate (1e− 4). In these
experiments—which we ran for 40 epochs—we noticed that
the 1e−4 learning rate offers the best tradeoff of training time
and perplexity out of four possible values: 1e−2, 1e−3, 1e−4,
1e − 5. We obtained insignificantly lower perplexity values
with a learning rate of 1e−5, with significantly longer training
time: 20 epochs for GPT-2 and 28 epochs for DialoGPT.

C.2 Learning rate selection 1189

To find the appropriate learning rate for on-the-fly 1190

adaptation (see Section 6.2), we randomly select 1191

18 dialogues D from the analysis split of the Spo- 1192

ken BNC and run an 18-fold cross-validation for a 1193

set of six candidate learning rates: 1e− 5, 1e− 4, 1194

. . ., 1. We finetune the model on each dialogue 1195

using one of these learning rate values, and com- 1196

pute perplexity change 1) on the dialogue itself (to 1197

measure adaptation) as well as 2) on the remain- 1198

ing 17 dialogues (to measure generalisation). We 1199

set the Transformer’s context window to 50 to re- 1200

produce the experimental conditions presented in 1201

Section 6.1. 1202

More precisely, for each dialogue d ∈ D, we 1203

calculate the perplexity of our two frozen mod- 1204

els (Section C.1) on d and D d (pplbefore(d) and 1205

pplbefore(D), respectively). Then, we finetune 1206

the models on d using the six candidate learning 1207

rates, and measure again the perplexity over d and 1208

D d (pplafter(d) and pplafter(D)). The change in 1209

performance is evaluated according to two met- 1210

rics: pplafter(d)−pplbefore(d)
pplbefore(d)

measures the degree 1211

to which the model has successfully adapted to 1212

the target dialogue; pplafter(D)−pplbefore(D)
pplbefore(D) mea- 1213

sures whether finetuning on the target dialogue has 1214

caused any loss of generalisation. 1215

The learning rate selection results are presented 1216

in Figure 3. We select 1e− 3 as the best learning 1217

rate and pick the model finetuned with a maximum 1218

sequence length of 512 as our best model. The 1219

difference in perplexity reduction (both adaptation 1220

and generalisation) is minimal with respect to the 1221

model finetuned with a maximum sequence length 1222

of 128, but since the analysis split of the Spoken 1223

14



Model Learning rate Max sequence length Batch size Best epoch Perplexity finetuned Perplexity pretrained

DialoGPT 0.0001 128 16 3 23.21 7091.38
DialoGPT 0.0001 256 8 4 22.26 12886.92
DialoGPT 0.0001 512 4 4 21.73 21408.32
GPT-2 0.0001 128 16 4 23.32 173.76
GPT-2 0.0001 256 8 3 22.21 159.23
GPT-2 0.0001 512 4 3 21.55 149.82

Table 6: Finetuning results for GPT-2 and DialoGPT on our finetuning split of the Spoken BNC.

BNC contains turns longer than 128 tokens, we1224

select the 512 version. Similarly to van Schijndel1225

and Linzen (2018), we find that finetuning on a1226

dialogue does not cause a loss in generalisation1227

but instead helps the model generalise to other dia-1228

logues. Unlike (2018), who used LSTM language1229

models, we find that learning rates larger than 1e−11230

cause backpropagation to overshoot, even within a1231

single dialogue. In Figure 3, the bars for 1e−1 and1232

1 are not plotted because the corresponding data1233

contains infinite perplexity values (due to numeri-1234

cal overflow). The selected learning rate, 1e− 3, is1235

a relatively low learning rate for on-the-fly adapta-1236

tion but it is still higher than the best learning rate1237

for the entire dataset by a factor of 10.1238
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Figure 3: The adaptation and generalisation perfor-
mance (defined in Section C.2) with varying learning
rate.

D Linear Mixed Effect Models1239

As explained in Section 6.3 of the main paper, we1240

fit linear mixed effect models using facilitating ef-1241

fect and construction surprisal as response variables1242

and including multilevel random effects grouped1243

by dialogues and individual speakers.18 To select1244

18We also try grouping observations only by dialogue and
only by individual speakers. The amount of variance explained

the fixed effects of the models, we start with a 1245

collection of motivated features and perform an 1246

ablation selection procedure, iteratively removing 1247

features with the lowest significance, and keeping 1248

only those that yield a p-value lower than 0.05. We 1249

start with the following features: the logarithm of 1250

the repetition index, the logarithm of the repetition 1251

index within the current turn, the logarithm of the 1252

distance19 from the previous mention (computed 1253

in three ways: with respect to the previous men- 1254

tion of any speaker, of the current speaker, and of 1255

the other speaker), the logarithm of construction 1256

length (measures as the number of tokens in a con- 1257

struction), the logarithm of the number of tokens 1258

between the current occurrence and the first men- 1259

tion of a construction, and binary features indicat- 1260

ing whether the previous mention is by the current 1261

speaker, whether it is produced by the initiator of 1262

the construction, whether the construction has been 1263

already uttered by both speakers, and whether the 1264

previous mention is in the current dialogue turn. 1265

The ablation selection procedure yields two mod- 1266

els with the following fixed effects: log repetition 1267

index, log repetition index within the current dia- 1268

logue turn, log distance from the previous mention 1269

(of any speaker), and log construction length. The 1270

best model for facilitating effect is summarised 1271

in Listing 1 and the best model for construction 1272

surprisal in Listing 2. 1273

E Local Effects of Processing Advantage 1274

Table 7 shows the distribution of repetition indices 1275

within the dialogue turn. An index of n indicates 1276

that n previous mentions of the construction take 1277

place in the current dialogue turn. Figures 4a 1278

(but unaccounted for by the fixed effects) decreases, so we
keep the two-level random effects.

19Distance is measured as the number of words between the
first word of the current occurrence and the first word of the
previous occurrence. We choose this strategy as there exist
overlapping constructions and the distance values would be
negative if we used the last word of the previous occurrence
as a starting point to compute the distance.
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Listing 1: Best linear mixed effect model for Facilitating Effect

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
lmerModLmerTest]
Formula:
logFE10 ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +

logDistance + (1 | ‘Dialogue ID‘/Speaker)
Data: data

REML criterion at convergence: 51869.1

Scaled residuals:
Min 1Q Median 3Q Max

-7.3884 -0.6125 -0.0438 0.5574 8.4443

Random effects:
Groups Name Variance Std.Dev.
Speaker:‘Dialogue ID‘ (Intercept) 0.006503 0.08064
Dialogue ID (Intercept) 0.006100 0.07810
Residual 0.478766 0.69193

Number of obs: 24540, groups:
Speaker:‘Dialogue ID‘, 364; Dialogue ID, 185

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 4.056e-01 5.335e-02 2.036e+04 7.603 3.02e-14
logLength 3.016e-01 2.901e-02 2.452e+04 10.394 < 2e-16
logRepIndexInTurn 1.438e-01 1.709e-02 2.451e+04 8.416 < 2e-16
logRepetitionIndex 7.569e-02 6.902e-03 2.360e+04 10.965 < 2e-16
logDistance -4.290e-02 1.741e-03 2.309e+04 -24.638 < 2e-16

(Intercept) ***
logLength ***
logRepIndexInTurn ***
logRepetitionIndex ***
logDistance ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) lgLngt lgRIIT lgRptI

logLength -0.909
lgRpIndxInT -0.177 -0.008
lgRpttnIndx -0.291 0.067 -0.031
logDistance -0.342 0.030 0.563 0.095
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Listing 2: Best linear mixed effect model for Construction Surprisal

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
lmerModLmerTest]
Formula: S ~ 1 + logLength + logRepIndexInTurn + logRepetitionIndex +

logDistance + (1 | ‘Dialogue ID‘/Speaker)
Data: data

REML criterion at convergence: 78900.3

Scaled residuals:
Min 1Q Median 3Q Max

-3.0885 -0.6807 -0.0779 0.6062 6.5359

Random effects:
Groups Name Variance Std.Dev.
Speaker:‘Dialogue ID‘ (Intercept) 0.01282 0.1132
Dialogue ID (Intercept) 0.04292 0.2072
Residual 1.43852 1.1994

Number of obs: 24540, groups:
Speaker:‘Dialogue ID‘, 364; Dialogue ID, 185

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 4.866e+00 9.319e-02 1.810e+04 52.215 <2e-16
logLength -1.109e+00 5.033e-02 2.451e+04 -22.042 <2e-16
logRepIndexInTurn -2.948e-01 2.964e-02 2.452e+04 -9.943 <2e-16
logRepetitionIndex -2.485e-01 1.197e-02 2.346e+04 -20.761 <2e-16
logDistance 9.657e-02 3.028e-03 2.408e+04 31.889 <2e-16

(Intercept) ***
logLength ***
logRepIndexInTurn ***
logRepetitionIndex ***
logDistance ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Correlation of Fixed Effects:
(Intr) lgLngt lgRIIT lgRptI

logLength -0.903
lgRpIndxInT -0.176 -0.007
lgRpttnIndx -0.289 0.068 -0.030
logDistance -0.339 0.031 0.563 0.096
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Previous mentions in the current dialogue turn

Tot 0 1 2 3 4 5 6 7 8
33103 30965 1872 188 46 16 11 3 1 1

Table 7: The distribution of repetition indices within the
dialogue turn.

and 4b show how facilitating effect and construc-1279

tion surprisal vary locally, for repetitions occurring1280

within the same dialogue turn.

(a) (b)

Figure 4: Facilitating effect and construction surprisal
(bits) against repetition index within the current dia-
logue turn.

1281

F Computing Infrastructure and Budget1282

Our experiments were carried out using a single1283

GPU on a computer cluster with Debian Linux OS.1284

The GPU nodes on the cluster are GPU GeForce1285

1001 1080Ti, 11GB GDDR5X, with NVIDIA1286

driver version 418.56 and CUDA version 10.1. The1287

total computational budget required to finetune the1288

language model amounts to 45 minutes; obtaining1289

surprisal estimates requires 4 hours, and selecting1290

the adaptation learning rate requires 9 hours.1291
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