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ABSTRACT

Previous literature on policy diversity in reinforcement learning (RL) either fo-
cuses on the online setting or ignores the policy performance. In contrast, offline
RL, which aims to learn high-quality policies from batched data, has yet to fully
leverage the intrinsic diversity of the offline dataset. Addressing this dichotomy
and aiming to balance quality and diversity poses a significant challenge to extant
methodologies. This paper introduces a novel approach, termed Stylized Offline
RL (SORL), which is designed to extract high-performing, stylistically diverse
policies from a dataset characterized by distinct behavioral patterns. Drawing
inspiration from the venerable Expectation-Maximization (EM) algorithm, SORL
innovatively alternates between policy learning and trajectory clustering, a mecha-
nism that promotes policy diversification. To further augment policy performance,
we introduce advantage-weighted style learning into the SORL framework. Ex-
perimental evaluations across multiple environments demonstrate the significant
superiority of SORL over previous methods in extracting high-quality policies
with diverse behaviors. A case in point is that SORL successfully learns strong
policies with markedly distinct playing patterns from a real-world human dataset
of a popular basketball video game ”Dunk City Dynasty.”

1 INTRODUCTION

Learning to accomplish a task with diverse behaviors, also known as quality-diversity optimization,
is an emerging area within stochastic optimization research (Pugh et al., 2016; Cully & Demiris,
2018; Mouret & Clune, 2015). It aims to generate a diverse set of solutions that maximize a given
objective function and is especially valuable in applications involving human interactions, such as
games (Shen et al., 2021) and autonomous driving (Araujo et al., 2023). For instance, in online
games, deploying AI bots with varied motion styles can enrich the gaming environment and en-
hance player engagement. Similarly, in autonomous driving, offering multiple solutions can cater to
users with different preferences. Additionally, in opponent modeling (Yu et al., 2022), high-quality
diverse opponents that resemble real opponents can significantly improve the performance of the
learned policy. However, a significant limitation is that most studies in this domain heavily rely
on extensive online interactions (Nilsson & Cully, 2021; Pierrot et al., 2022), leading to high costs
and imposing constraints on systems with restricted online access. Recent advances in offline RL
present a promising direction, allowing for policy learning from pre-collected datasets without fur-
ther interactions (Fujimoto et al., 2019; Kumar et al., 2020; Kostrikov et al., 2021). However, they
often prioritize policy quality, sidelining the inherent diversity within the dataset. In this paper, we
bridge this gap by targeting both diversity and high-quality policy learning from offline datasets.

∗Equal advising.
Code is at https://github.com/cedesu/SORL.
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The central challenge lies in how to optimize the performance of the policies while ensuring that
their behaviors are as distinguishable as possible. Balancing this in an offline setting becomes prob-
lematic due to the inherent characteristics of offline datasets. Typically, datasets capturing diverse
behaviors are heterogeneous, gathered from multiple sources, leading to an action distribution with
multiple modes and inconsistent data quality (Chen et al., 2022; Li et al., 2017). Studies focus on
learning diverse behaviors that can capture the multi-modality of the action distribution. However,
they often employ a diversity objective that is task-agnostic (Eysenbach et al., 2019; Masood &
Doshi-Velez, 2019). In offline settings, this task-agnostic objective can lead to policies that perform
exceedingly poorly due to inconsistent data quality. Conversely, current offline RL methods priori-
tize task performance maximization. To mitigate overestimation issues, a conservative constraint is
often imposed on the policy, ensuring that its distribution aligns closely with the dataset (Fujimoto
et al., 2019; Kumar et al., 2020; Kostrikov et al., 2021). Amplifying this conservativeness might re-
tain some multi-modality of the dataset. However, it does not offer control over how distinguishable
the policy should be during training.

To address this challenge, we introduce Stylized Offline Reinforcement Learning (SORL), a two-
step framework designed to derive diverse and high-quality policies from a heterogeneous offline
dataset. In the first step, we perform a style clustering. Drawing inspiration from the venera-
ble Expectation-Maximization (EM) algorithm, we classify the trajectories from the heterogeneous
dataset into clusters where each represents a distinct and dominant motion style. In the second
step, we employ advantage-weighted style learning, an offline RL method with a novel objective
considering both performance and diversity. Here we train a set of policies to maximize the task
performance, with each policy specifically constrained to the action distribution of a particular style
identified in the first step. Unlike other offline RL methods that constrain the policy to the entire
dataset without differentiating between types of motions, our approach effectively extracts stylis-
tically diverse behavior in the dataset that can be characterized by distinct behavioral patterns. In
contrast to diverse RL methods, we achieve high-performing policies that are in-distribution with
respect to the dataset, yet less influenced by the low-quality samples.

We evaluate SORL across various environments and offline datasets. These include a didactic game
with a hand-crafted dataset, a set of Atari games using open-sourced human data, and the popular
basketball video game ”Dunk City Dynasty” with data recorded from online players. We compare
SORL against the offline versions of two baseline methods that focus on learning diverse behav-
ior from multi-modal datasets. The experimental results demonstrate the significant superiority of
SORL over the baseline methods in achieving policies with higher performance while maintaining
distinguishable behavior patterns. In summary, the contributions of this paper are as follows:

1. We introduce SORL, a novel framework that addresses the limitations of both diverse RL
and offline RL methods by incorporating both quality and diversity into the optimization
objective.

2. We provide comprehensive evaluations of SORL across diverse environments using
datasets recorded from humans, showcasing its capability to extract high-performing,
stylistically diverse policies from heterogeneous offline datasets.

2 RELATED WORK

Offline RL and Imitation Learning Offline reinforcement learning (RL) leverages a fixed offline
dataset to learn a policy that achieves high performance in online evaluation. Previous work has
focused on policy conservativeness to prevent over-estimation and mitigate out-of-distribution ac-
tions during evaluation (Fujimoto et al., 2019; Wu et al., 2019b; Peng et al., 2019; Kostrikov et al.,
2021; Kumar et al., 2020). Imitation Learning involves learning the behavior policy from the dataset,
instead of using the reinforcement learning. Some studies in Imitation Learning also consider the
potential multi-modality of the dataset (Li et al., 2017; Kuefler & Kochenderfer, 2017; Wang et al.,
2017; Igl et al., 2023; Shafiullah et al., 2022; Wu et al., 2019a). Offline skill discovery shares sim-
ilarities with learning diverse policies, but its goal is to improve performance in downstream tasks
through the acquisition of skills. These approaches employ similar methods to model the latent
variable and capture different skills (Laskin et al., 2022; Villecroze et al., 2022).

Diversity in RL Diversity plays a crucial role in Reinforcement Learning algorithms. In some
works, diversity is supposed to enhance the overall quality by means of encouraging exploration
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(Hong et al., 2018) or better opponent modeling (Fu et al., 2022). Besides studies on diverse policies,
skill discovery also shares the same requirement for diverse skills (Eysenbach et al., 2019; Campos
et al., 2020; Sharma et al., 2020; Achiam et al., 2018). Other works consider optimizing both
diversity and high quality in the optimization (Masood & Doshi-Velez, 2019; Zhang et al., 2019b;
Zhou et al., 2022). It is important to mention that studies on diversity in the online environment
promote exploration or skill discovery. However, in this paper, our focus is on diversity in the
offline setting, which is beneficial for opponent modeling and various applications such as game AI
and autonomous driving.

Quality-Diversity Optimization Some research in the field of evolutionary algorithms also fo-
cuses on discovering diverse policies. They formulate the problem as the Quality-Diversity Opti-
mization problem (Pugh et al., 2016; Cully & Demiris, 2018), where ”quality” refers to the policy’s
performance, and ”diversity” emerges from the evolutionary iterations. An algorithm called MAP-
Elites has been developed to generate diverse and high-quality policies (Cully, 2015; Mouret &
Clune, 2015). Subsequent studies in this area aim to improve the efficiency of the evolutionary al-
gorithm by combining it with policy gradient methods (Pierrot et al., 2022; Nilsson & Cully, 2021;
Pierrot et al., 2022) or evolution strategies (Colas et al., 2020; Wang et al., 2022).

3 PRELIMINARY

In this paper, we consider a Markov Decision Process (MDP) defined by the tuple (S,A, P, r, ρ0, γ),
where S is the state space, A is the action space, and P : S ×A× S → R is the transition function.
The reward function is denoted by r : S × A → R. We use ρ0 : S → R to denote the initial state
distribution, and γ to denote the discount factor. In standard reinforcement learning (RL), a learning
agent optimizes its polity π : S × A → R to maximize the expected cumulative discounted return
J(π) = Eπ

∑T
t=0 γ

tr(st, at), where s0 ∼ ρ0, at ∼ π(at|st), and st+1 ∼ P (st+1|st, at). The
value function V π(st) corresponds to the expected return of policy π at state st, and the action value
function Qπ(st, at) refers to the expected return obtained by playing action at at state st and then
following π. The advantage function Aπ(st, at) is defined as Aπ(st, at) = Qπ(st, at)−V π(st). We
use dπ(s) =

∑T
t=0 γ

tp(st = s|π) to denote the unnormalized discounted state distribution induced
by policy π.

In offline RL, an agent learns from a pre-collected dataset D consisting of multiple trajectories with-
out online interaction with the environment. This paper further assumes that the dataset D contains
behaviors of heterogeneous policies {β(1), β(2), . . . , β(K)}. The assumption is not restrictive for
many real-world scenarios. For instance, in online gaming and autonomous driving, the dataset
usually contains behaviors of a number of different agents and humans, each of which may possess
distinct behavioral patterns. The objective of our approach, termed Stylized Offline RL (SORL), is
to learn a set of high-quality and diverse policies {π(1), π(2), . . . , π(m)} from the most representative
behaviors exhibited by the dataset D.

4 METHOD

In order to leverage heterogeneous datasets and strike a balance between policy diversity and per-
formance, we propose Stylized Offline RL (SORL), a novel two-step framework consisting of (1)
EM-based style clustering and (2) advantage-weighted style learning. In style clustering, for each
cluster that represents a distinct and dominant behavioral style, SORL assigns different weights to
trajectories in the dataset. A trajectory’s weight reflects its posterior probability of belonging to
that style. Subsequently, SORL incorporates stylized advantage weighted regression to learn di-
verse and high-quality policies by constraining each policy to be conservative with respect to the
corresponding weighted set of data. The SORL algorithm is illustrated in Algorithm 1.

4.1 EM-BASED STYLE CLUSTERING

The latent variable model is a natural way to disentangle a dataset generated by diverse policies (Li
et al., 2017; Wang et al., 2017; Laskin et al., 2022). In our problem, each trajectory in the dataset
is generated by an unknown latent policy. Therefore, drawing inspiration from the expectation-
maximization (EM) algorithm, SORL alternates between trajectory clustering and policy learning to
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extract the most representative diverse behaviors from the heterogeneous dataset. SORL learns a set
of m most representative policies {µ(1), µ(2), . . . , µ(m)} by maximizing the log-likelihood:

LL({µ(i)}) =
∑
τ∈D

log

[
m∑
i=1

p(τ |z = i)p(µ(i))

]
(1)

where τ denotes a trajectory in the dataset, z is the latent variable indicating which policy τ belongs
to, p(τ |z = i) is the probability of τ sampled under policy µ(i), and p(µ(i)) is the prior distribution.
The policies serve as the generative model for generating the dataset. The main challenge is to
identify latent z. The EM-based algorithm iteratively updates the policies and the estimation p̂ for
the posteriors p(z|τ). Upon its convergence, the estimated posterior distribution p̂(z|τ) offers a
clustering of trajectories in the dataset, and the policy µ(i) imitates the behavior in cluster i.

4.1.1 E-STEP

In the E-step, SORL calculates the estimated posterior distribution of the latent variable p̂(z|τ) with
respect to the current policies {µ(i)}. Formally, p̂(z = i|τ) ∝ p(µ(i))

∏
(s,a)∈τ µ

(i)(a|s). In this
paper, we assume a uniform prior. Empirically, we find that the long trajectory horizon leads to
numerical instability when multiplying probabilities. Hence, we employ an alternative approach to
estimate the latent variable. Since all steps in the trajectory τ share the same latent variable, the
posterior distribution p̂(z|τ) is estimated by averaging across all the samples in a trajectory.

p̂(z = i|τ) ≈ 1

Z

∑
(s,a)∈τ

µ(i)(a|s) (2)

where Z is a normalizing factor. SORL uses equation 2 to calculate the posteriors for all trajectories
of the dataset in the E-step.

4.1.2 M-STEP

According to Jensen’s inequality (Durrett, 2019),

LL({µ(i)}) ≥
∑
τ∈D

m∑
i=1

[
p̂(z = i|τ) log p(τ |z = i)p(µ(i))

p̂(z = i|τ)

]
. (3)

In the M-step, with the posteriors frozen, the policies {µ(i)}mi=1 are updated to maximize the right
side of inequality 3, which is a lower bound of the log likelihood in equation 1. In order to maximize
the objective

∑
τ∈D

∑m
i=1 [p̂(z = i|τ) log p(τ |z = i)], SORL utilizes weighted imitation learning to

minimize the following loss:

Loss({µ(i)}) = 1

|D|
∑
τ∈D

m∑
i=1

p̂(z = i|τ)
∑

(s,a)∈τ

logµ(i)(a|s) (4)

The style clustering algorithm shares the same convergence result with the original EM algorithm,
and it is guaranteed to converge to a saddle point (Ng et al., 2012).

4.2 ADVANTAGE-WEIGHTED STYLE LEARNING

In the second step, SORL further improves the policies’ performances with stylized advantage-
weighted regression. Formally, SORL learns a set of policies {π(1), π(2), . . . , π(m)} through the
following constrained optimization problem:

∀i ∈ [m], π(i) = argmax J(π(i))

s.t. Es∼d
µ(i) (s)DKL(π

(i)(·|s)||µ(i)(·|s)) ≤ ϵ,

∫
a

π(i)(a|s)da = 1, ∀s.
(5)

The policies learn to maximize cumulative return to avoid degenerate behavior, while still remaining
diverse through constraining the KL divergence between µ(i) and π(i) to be small. Maximizing
the cumulative return J(π(i)) is equivalent to maximizing the expected improvement η(π(i)) =
J(π(i)) − J(µ(i)) (i = 1 . . .m). According to previous works, the expected improvement can be
expressed in terms of advantage: (Schulman et al., 2015)

η(π(i)) = Es∼d
π(i) (s)Ea∼π(i)(a|s)[A

µ(i)

(s, a)] (6)
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Equation 6 poses challenges in optimization due to the unknown discounted state distribution dπ(i) .
To address this, a common approach is to substitute dπ(i) with dµ(i) to provide a good estimate
of η(π(i)) (Schulman et al., 2015; Peng et al., 2019). It has been proved that the error can be
bounded by the KL divergence between π(i) and µ(i) (Schulman et al., 2015), which has already
been constrained in our objective 5. Therefore, we optimize the following objective 11.

∀i ∈ [m], π(i) = argmaxEs∼d
µ(i) (s)Ea∼π(i)(·|s)A

µ(i)

(s, a)

s.t. Es∼d
µ(i) (s)DKL(π

(i)(·|s)||µ(i)(·|s)) ≤ ϵ,

∫
a

π(i)(a|s)da = 1, ∀s.
(7)

In advantage-weighted style learning, we approximate Aµ(i)

(s, a) by Aµ(s, a), where µ represents
the policy distribution of the entire dataset. This approximation is made because Aµ(s, a) often has
higher quality than Aµ(i)

. Subsequently, we calculate the Lagrangian of the optimization problem:

Es∼d
µ(i) (s)

[
Ea∼π(i)(·|s)A

µ(s, a) + λ(ϵ−DKL(π
(i)(·|s)||µ(i)(·|s)))

]
+

∫
s

αs(1−
∫
a

π(i)(a|s)da)
(8)

Note that the policy π(i) of each style can be optimized independently. Taking derivative with respect
to πi(a|s), we can obtain the closed-form solution π(i)∗(a|s) ∝ µ(i)(a|s)exp( 1λA

µ(s, a)). Finally,
we project π(i)∗ to π

(i)
θ paramterized by θ by minimizing the KL divergence between them. It can

be proved that the parameterized policy of i-th style π(i)
θ can be learned by minimizing the following

loss. Please refer to Appendix D for detailed proofs.

Loss(π
(i)
θ ) = −Eτ∼Dp̂(z = i|τ)

∑
(s,a)∈τ

log π
(i)
θ (a|s) exp

(
1

λ
Aµ(s, a)

)
. (9)

Compared with the previous offline RL algorithm AWR (Peng et al., 2019) that learns a single
policy, SORL learns a set of diverse policies by assigning different weights to trajectories in the
dataset. SORL leverages the estimated posterior distribution calculated in step one to force different
policies to focus on different clusters of trajectories that possess distinct behavior patterns.

The two-step SORL algorithm is illustrated in Algorithm 1. SORL leverages the EM-based style
clustering to extract distinct styles from the dataset. Furthermore, it takes into account both diversity
and quality improvements to perform advantage-weighted learning. As a result, the SORL algorithm
extracts from the heterogeneous dataset a collection of diverse policies with high quality.

5 EXPERIMENTS

In this experimental section, we aim to address the following questions: (1) Can SORL derive high-
performing policies that exhibit diverse behaviors from an offline heterogeneous dataset originating
from various sources? (2) How does SORL compare to prior methods that focus on learning diverse
behaviors from an offline heterogeneous dataset? (3) Is SORL suitable for complex, real-world
tasks, especially those involving large-scale datasets collected from human users?

Our experiments encompass a range of tasks and offline datasets. For each experiment, we train a
set of policies and evaluate them based on three criteria: quality, diversity, and consistency. These
criteria respectively reflect the performance, behavioral diversity, and whether the learned diversity
is inherent in the offline dataset, addressing the question (1). To answer question (2), we compare
SORL against two prior methods: Off-RLPMM (Wu et al., 2019a) and InfoGAIL (Li et al., 2017).
This comparison spans three sets of experiments, each with increasing levels of difficulty.

The first experiment involves a grid-shooting game where the dataset is manually collected from two
distinct winning strategies. This experiment allows for a detailed analysis of the learned policies as
we have full control over the game environment and access to the ground truth styles in the dataset.
The second experiment features a set of Atari games. The datasets for these games are recorded
from human players in a controlled, semi-frame-by-frame manner (Zhang et al., 2019a). As a result,
the quality of the dataset is relatively high. This experiment assesses the performance of the methods
when learning from heterogeneous datasets with minimal interference from inconsistent data quality.
The final experiment centers on the popular basketball video game ”Dunk City Dynasty” (FuxiRL,
2023). Here, datasets are recorded directly from online players, leading to greater diversity and
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Algorithm 1 Stylized Offline RL (SORL)

1: Input: offline heterogeneous dataset D, number of policies m
2: Output: learned diverse policies π(1)

θ · · ·π(m)
θ

3: Initialize policies π(1)
θ · · ·π(m)

θ and µ(1) · · ·µ(m)

4: # EM-based style clustering
5: while not converged do
6: # E-step
7: Calculate the posterior probability of styles p̂(z|τ) with Equation 2
8: # M-step
9: Calculate the loss function Loss({µ(i)}) defined in Equation 4

10: Update {µ(i)} by taking one step of gradient descent with respect to Loss({µ(i)})
11: end while
12: # Advantage-weighted style learning
13: Calculate the posterior probability of styles p̂(z|τ) with Equation 2
14: while not converged do
15: Calculate the loss function Loss({π(i)

θ }) defined in Equation 9
16: Update {π(i)

θ } by taking one step of gradient descent with respect to Loss({π(i)
θ })

17: end while

considerable variations in data quality. This experiment evaluates the effectiveness of the methods
in handling complex, real-world tasks using datasets collected from a diverse group of humans,
addressing the question (3).

In the following, we introduce the baseline methods and the evaluation criteria, and then present the
results of the three experiments.

5.1 BASELINES

Off-RLPMM: RLPMM (Wu et al., 2019a) adopts a similar EM framework, but it is not directly
applicable in our offline setting because it requires additional online interaction to train a classifier
for labeling all the trajectories in the M-step. We implement an offline version of RLPMM (Off-
RLPMM) that adopts a similar M-step as SORL, except that Off-RLPMM partitions the dataset into
disjoint subsets instead of using SORL’s weighting scheme.

InfoGAIL: InfoGAIL (Li et al., 2017) studies imitation learning from multimodal datasets. Differ-
ent from the EM stage of SORL, InfoGAIL infers the latent style of trajectories by maximizing the
mutual information between the latent codes and trajectories.

In both baselines, we employ Behavior Cloning (BC) as the imitation learning algorithm. Addi-
tionally, in contrast to the two-stage algorithm SORL, both baselines do not have a second policy
improvement stage. Detailed explanations are provided in Appendix E.

5.2 EVALUATION CRITERIA

We evaluate the learned policy with the following three criteria.

Quality: The quality of a policy is assessed by the episode return of trajectories during evaluation.
It reflects the performance of the policy in completing tasks.

Diversity: Diversity is determined by the entropy of styles identified from the learned policies. With
learned clustering p̂, each trajectory is classified into a style with the highest probability. Diversity
is then calculated as the entropy of the distribution of styles over the whole dataset. In conjunction
with the later-introduced consistency metric, a higher entropy suggests that policies exhibit diverse,
distinguishable behaviors.

ppolularity(z = i) =
1

|D|
∑
τ∈D

I(argmax
j

{p̂(z = j|τ)} = i)

Diversity := Entropy(ppopularity(·))
(10)
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Consistency: The consistency measures the likelihood that the learned policy generates actions
corresponding to the specific cluster it is associated with within the dataset. Evaluating consistency
is crucial to ensure that the behaviors we have learned are inherent in the heterogeneous datasets,
rather than being unknown out-of-distribution actions, which could also artificially inflate diversity
scores.

5.3 DIDACTIC EXAMPLE: GRID SHOOTING

In the grid shooting game, a player navigates in a 9x9 grid world, controlling a character that engages
in combat against an AI opponent. Both the player and the AI have the ability to move in four
directions within the grid, shoot at each other, and gather stars that randomly appear in one of the
grid cells. Rewards and termination conditions are distributed based on the subsequent events:

• Shooting: If the player and the AI opponent are positioned in the same row or column,
they have the opportunity to shoot at each other. A successful shot ends the game, with the
shooter being declared the winner and receiving a reward of 10.

• Star Collection: A star is randomly placed in a grid cell, and its location is known to both
the player and the AI opponent. Whichever party reaches the location of the star earns a
reward of 1. After the star is collected, it reappears randomly in another grid cell. If no
successful shooting occurs, the game terminates at the 100th step, and the participant with
the higher accumulated rewards is announced as the winner.

Methods Learned policies Reward (shoot) Reward (star) Winning rate

SORL policy 1 2.6± 0.1 2.2± 1.3 51.0± 0.1%
policy 2 1.1± 0.4 6.3± 0.2 59.3± 0.0%

Off-RLPMM policy 1 2.7± 0.1 0.0± 0.0 26.5± 0.0%
policy 2 0.0± 0.0 8.6± 0.1 54.4± 0.0%

InfoGAIL policy 1 1.7± 0.1 4.9± 0.7 52.0± 5.7%
policy 2 1.5± 0.3 3.5± 0.4 58.7± 7.4%

Table 1: The reward distribution and the winning rate of the two policies learned from the heteroge-
neous dataset.

(a) A sample trajectory of
style 1 that shoots the en-
emy.

(b) A sample trajectory of
style 2 that gets the stars.

Figure 1: Visualization of policies learned by SORL, capturing the main playing styles in the dataset.

In the Grid Shooting environment, there are two distinct winning strategies or playing styles. The
first strategy emphasizes shooting the enemy, while the second focuses on collecting stars and avoid-
ing direct confrontations with the enemy, as depicted in Figure 1. We constructed our dataset by
combining trajectories from both playing styles. Using this dataset, we trained two policies with
SORL and compared them with two baseline methods. The rewards earned for each event and the
final winning rates are detailed in Table 1.

From the table, it is evident that SORL successfully captures the core difference between the two
playing styles. This is reflected in the distinct reward distributions for shooting and star collecting
across the two learned policies. Furthermore, the winning rates of the policies are promising, un-
derscoring their robust performance. In contrast, while Off-RLPMM also captures the two playing
styles, the winning rates of its policies are lower than those of SORL. InfoGAIL, on the other hand,
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yields a competitive winning rate but fails to differentiate between the styles of the policies. Figure 1
shows example trajectories for the two learned policies of SORL. More detailed quantitative results
including the quality, diversity and consistency is presented in Appendix A.2.

5.4 ATARI GAMES

In this experiment, we focus on six Atari games, including SpaceInvaders, MsPacman, Montezu-
maRevenge, Enduro, Riverraid, and Frostbite. For each game, We train three policies using the
dataset provided by Atari Head (Zhang et al., 2019a), a large-scale dataset of human players. The
dataset is recorded in a controllable semi-frame-by-frame manner, ensuring high data quality. The
experimental results, which include metrics on quality, diversity, and consistency, are presented in
Table 2. A visual representation of these results, using a radar plot, is available in Figure 2.

(a) SpaceInvaders (b) MsPacman (c) MontezumaRevenge

(d) Enduro (e) Riverraid (f) Frostbite

Figure 2: The radar plot of quality, diversity, and consistency in the Atari environment.

Games Methods Quality Diversity Consistency

SpaceInvaders
SORL 387.1± 33.3 0.96± 0.11 94.7± 0.1%

Off-RLPMM 412.5± 16.3 0.22± 0.15 89.8± 0.2%
InfoGAIL 353.2± 19.3 0.0± 0.0 92.3± 0.7%

MsPacman
SORL 622.2± 65.3 0.91± 0.09 94.5± 0.2%

Off-RLPMM 543.4± 80.2 0.88± 0.09 90.0± 0.1%
InfoGAIL 558.0± 137.8 0.00± 0.00 94.2± 0.1

MontezumaRevenge
SORL 306.7± 19.1 1.05± 0.03 95.1± 0.1%

Off-RLPMM 216.7± 95.3 0.86± 0.13 94.8± 0.1
InfoGAIL 290.0± 58.6 0.00± 0.00 92.3± 1.1

Enduro
SORL 371.1± 2.9 0.84± 0.25 96.2± 0.1%

Off-RLPMM 317.2± 7.5 0.00± 0.00 89.1± 0.6%
InfoGAIL 351.3± 31.0 0.00± 0.00 84.4± 0.8%

Riverraid
SORL 1931.2± 432.1 1.00± 0.04 95.1± 0.2%

Off-RLPMM 1748.6± 113.7 0.39± 0.29 89.7± 3.9%
InfoGAIL 1882.6± 149.8 0.00± 0.00 89.2± 1.5%

Frostbite
SORL 2056.0± 391.9 0.97± 0.04 93.5± 0.4%

Off-RLPMM 2183.2± 502.4 0.60± 0.07 91.6± 0.0%
InfoGAIL 2584.7± 206.5 0.00± 0.00 91.8± 0.3%

Table 2: The experiment results of quality, diversity and consistency in the Atari environment.

From Table 2, we see results consistent with those in the grid shooting game. SORL outperforms the
baseline methods, attaining the highest scores in both diversity and consistency for all games, and
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secures the top quality score in four out of the six games. While Off-RLPMM does exhibit some
diversity, its policy quality is weaker. Conversely, InfoGAIL achieves competitive quality scores but
struggles to learn diverse policies. Visualizations of the stylized policies are in Appendix H.

5.5 VIDEO GAME APPLICATION

Dunk City Dynasty” (FuxiRL, 2023) is an online mobile game where players control a character to
play in a 3v3 basketball match. The game presents a formidable challenge to existing algorithms
due to its high-dimensional state and action spaces. For this experiment, we collect a dataset of over
100,000 steps, directly from online players. Compared to the other two experiments, the dataset used
here has notable variations in both behavioral styles and data quality. Same as Atari games, we train
three policies with SORL and compare them with two baseline methods. The experimental results
on quality, diversity, and consistency are presented in Table 3. The results highlight that SORL con-
sistently outperforms in all three evaluation metrics, underscoring its robustness and adaptability in
handling complex, real-world tasks, especially when working with large-scale datasets from diverse
human players.

Methods Quality Diversity Consistency
SORL 5.3± 3.4 1.05± 0.0 40.7± 4.6%

Off-RLPMM 1.7± 0.5 0.51± 0.18 38.6± 5.4%
InfoGAIL 5.0± 0.8 0.73± 0.22 39.8± 3.3%

Table 3: The experiment results of quality, diversity and consistency in the ”Dunk City Dynasty”
environment.

(a) Screenshot (b) Policy 1 (c) Policy 2 (d) Policy 3

Figure 3: A scene in the game, and the shooting areas favored by each policy. The grayscale repre-
sents the distribution of shooting action locations, with darker shades indicating higher probabilities
and lighter shades signifying lower probabilities.

We observed distinct shooting range preferences among the three policies. For example, policy 1
tends to favor short-range shots, while policy 3 is inclined towards long-range shots. The preferred
shooting areas for each policy are visualized in Figure 3. Additional screenshots showcasing typical
behaviors of these policies can be found in Figure 5 in the Appendix B. To better illustrate the
behaviors exhibited by the learned policies, we have included gameplay videos in the supplementary
materials..

6 CONCLUSION

In this paper, we explored the extraction of diverse and high-quality behaviors from offline heteroge-
neous datasets. These datasets, sourced from multiple origins, inherently possess a multimodal data
distribution with inconsistent data quality. Such a setting poses significant challenges to existing
methods, which can be affected by low-quality data or lack the control to differentiate the behav-
ioral while learning. To address these challenges, we introduced the Stylized Offline Reinforce-
ment Learning (SORL) framework. SORL employs an EM-based style clustering combined with
advantage-weighted policy learning. This design not only optimizes the performance of the poli-
cies but also preserves the inherent behavioral diversity found in heterogeneous datasets. Through
extensive experiments, we compared SORL with two prior methods across various tasks and hetero-
geneous offline datasets. Our results underscore SORL’s superior capability in extracting behaviors
that are both high-quality and diverse. Our future work aims to offer a more flexible formulation of
policy behavior, potentially allowing shared behaviors between policies, making it more relevant for
real-world applications. Furthermore, we plan to integrate adaptive task learning using the diverse
policies derived from SORL, enabling dynamic switching in different task scenarios.
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7 REPRODUCIBILITY STATEMENT

The source code for the SORL algorithm and the baselines used in this study are included in the
supplementary materials. The proof sketch can be found in Section 4.2, and a comprehensive proof
is provided in the Appendix 4.2. For the Grid Shooting environment, the data processing steps
involve using the state and action directly from the environment output. As for the Atari Head
dataset, the processing steps follow the methodology outlined in the original package.
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Thomas Pierrot, Valentin Macé, Félix Chalumeau, Arthur Flajolet, Geoffrey Cideron, Karim Beguir,
Antoine Cully, Olivier Sigaud, and Nicolas Perrin-Gilbert. Diversity policy gradient for sample
efficient quality-diversity optimization, 2022.

Justin K. Pugh, Lisa B. Soros, and Kenneth O. Stanley. Quality diversity: A new frontier
for evolutionary computation. Frontiers Robotics AI, 3:40, 2016. URL https://api.
semanticscholar.org/CorpusID:21713708.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. ICML’15, pp. 1889–1897. JMLR.org, 2015.

11

https://openreview.net/forum?id=stgewiZP0OH
http://arxiv.org/abs/1710.05090
https://doi.org/10.24963/ijcai.2019/821
http://arxiv.org/abs/1504.04909
https://doi.org/10.1007/978-3-642-21551-3_6
https://doi.org/10.1007/978-3-642-21551-3_6
https://doi.org/10.1145/3449639.3459304
https://api.semanticscholar.org/CorpusID:21713708
https://api.semanticscholar.org/CorpusID:21713708


Published as a conference paper at ICLR 2024

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariuntuya Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone, 2022.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=HJgLZR4KvH.

Ruimin Shen, Yan Zheng, Jianye Hao, Zhaopeng Meng, Yingfeng Chen, Changjie Fan, and Yang
Liu. Generating behavior-diverse game ais with evolutionary multi-objective deep reinforcement
learning. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI’20, 2021. ISBN 9780999241165.

Noah Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what
worked: Behavior modelling priors for offline reinforcement learning. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rke7geHtwH.

Valentin Villecroze, Harry Braviner, Panteha Naderian, Chris Maddison, and Gabriel Loaiza-
Ganem. Bayesian nonparametrics for offline skill discovery. In International Conference on
Machine Learning, pp. 22284–22299. PMLR, 2022.

Qing Wang, Jiechao Xiong, Lei Han, peng sun, Han Liu, and Tong Zhang. Ex-
ponentially weighted imitation learning for batched historical data. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf.

Yutong Wang, Ke Xue, and Chao Qian. Evolutionary diversity optimization with clustering-based
selection for reinforcement learning. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=74x5BXs4bWD.

Ziyu Wang, Josh Merel, Scott Reed, Greg Wayne, Nando de Freitas, and Nicolas Heess. Robust
imitation of diverse behaviors. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, pp. 5326–5335, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

Weichang Wu, Junchi Yan, Xiaokang Yang, and Hongyuan Zha. Reinforcement learning with policy
mixture model for temporal point processes clustering. ArXiv, abs/1905.12345, 2019a. URL
https://api.semanticscholar.org/CorpusID:168169800.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
CoRR, abs/1911.11361, 2019b. URL http://arxiv.org/abs/1911.11361.

XiaoPeng Yu, Jiechuan Jiang, Wanpeng Zhang, Haobin Jiang, and Zongqing Lu.
Model-based opponent modeling. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 28208–28221. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
b528459c99e929718a7d7e1697253d7f-Paper-Conference.pdf.

Ruohan Zhang, Calen Walshe, Zhuode Liu, Lin Guan, Karl S. Muller, Jake A. Whritner, Luxin
Zhang, Mary M. Hayhoe, and Dana H. Ballard. Atari-head: Atari human eye-tracking and demon-
stration dataset, 2019a.

Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning novel policies for tasks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 7483–7492. PMLR,
09–15 Jun 2019b. URL https://proceedings.mlr.press/v97/zhang19q.html.

Zihan Zhou, Wei Fu, Bingliang Zhang, and Yi Wu. Continuously discovering novel strategies via
reward-switching policy optimization. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=hcQHRHKfN_.

12

https://openreview.net/forum?id=HJgLZR4KvH
https://openreview.net/forum?id=rke7geHtwH
https://openreview.net/forum?id=rke7geHtwH
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/4aec1b3435c52abbdf8334ea0e7141e0-Paper.pdf
https://openreview.net/forum?id=74x5BXs4bWD
https://api.semanticscholar.org/CorpusID:168169800
http://arxiv.org/abs/1911.11361
https://proceedings.neurips.cc/paper_files/paper/2022/file/b528459c99e929718a7d7e1697253d7f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b528459c99e929718a7d7e1697253d7f-Paper-Conference.pdf
https://proceedings.mlr.press/v97/zhang19q.html
https://openreview.net/forum?id=hcQHRHKfN_


Published as a conference paper at ICLR 2024

Appendix

A GRID SHOOTING

A.1 ENVIRONMENT DETAILS

The state space dimension is 56. The action space is a discrete action space with 9 actions. The
opponent is an agent with a fixed strategy that move randomly, and shoot with a probability once the
shooting action cools down.

A.2 QUANTITATIVE EXPERIMENT RESULTS OF THE GRID SHOOTING ENVIRONMENT

Figure 4: The radar plot of qual-
ity, diversity and consistency in the
Grid Shooting environment.

Quality Diversity Consistency
SORL 55.1± 4.6% 0.60± 0.07 86.4± 0.4%

Off-RLPMM 40.4± 0.7% 0.68± 0.01 90.5± 0.0%
InfoGAIL 55.3± 2.1% 0.00± 0.00 84.0± 0.3%

Table 4: The experiment results of quality, diversity and
consistency in the Grid Shooting environment.

B ”DUNK CITY DYNASTY”

B.1 ENVIRONMENT DETAILS

The state space dimension is 468, including global state, allies’ states and enemies’ states. The action
space is a discrete space with 52 actions. The opponent in evaluation is an agent with moderate
strength, that is learned by vanilla Behavioral Cloning for similar training steps (100,000 steps).

B.2 SCREENSHOTS IN ”DUNK CITY DYNASTY”

Table 3 presents three metrics in the experiment, illustrating SORL’s ability to learn diverse policies
while achieving satisfactory performance. Figure 5 shows screenshots from the videos showcasing
each style’s self-playing behavior. Supplementary materials include videos that provide additional
visual demonstrations. For instance, style 1 demonstrates a preference for shooting in the short
range, while style 3 favors long-range shots. The videos reveal that the proportion of goals scored
inside the restricted area is 83.3%, 66.7%, and 33.3% for styles 1, 2 and 3, respectively. Furthermore,
the proportion of two-point shots is 91.6%, 88.9% and 66.7%. Figure 4 depicts the probabilities of
shooting in different regions. In Figure 6, (a) and (c) showcase typical shots of Style 1 and 3. Panel
(a) demonstrates shots within the restricted zone, while panel (c) displays long- range shots. Style
2 is characterized by ball possession and running across the arena. The videos indicate that Style 2
has the fewest number of passes (41, 29, 39, respectively), and the lowest proportion of goals scored
directly after a pass (27.7%, 22.2%, 44.4%).

B.3 THE PLOT OF SHOOTING POSITIONS

We plot the shooting positions in Figure 6 based on the gameplay data. The shooting positions in
the plot corresponds to the distribution in Figure 3.
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(a) Style 1 prefers short-range shots.

(b) Style 2 prefers ball handling run.

(c) Style 3 prefers long-range shots.

Figure 5: The screenshots of 3 styles.

(a) Policy 1 (b) Policy 2 (c) Policy 3

Figure 6: The Plot of Shooting Positions.

C ABLATION STUDY

In this section, we performed ablation experiments on the advantage-weighted policy learning.
Based on the algorithm description provided in Section 4, the SORL algorithm can be divided into
two parts. Therefore, when the advantage-weighted policy learning is excluded, SORL reduces
to the EM-based style clustering. Table 5 presents the results, indicating that the consistency and
diversity metrics show similar performance, while the quality metric improves as a result of the
advantage-weighted style learning.
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Quality Diversity Consistency

SpaceInvaders SORL 387.1± 33.3 0.96± 0.11 94.7± 0.1%
SORL w/o advantage 349.9± 50.2 0.90± 0.14 93.9± 0.2%

MsPacman SORL 622.2± 65.3 0.91± 0.09 94.5± 0.2%
SORL w/o advantage 590.0± 40.0 1.02± 0.05 93.9± 0.2%

MontezumaRevenge SORL 306.7± 19.1 1.05± 0.03 95.1± 0.1%
SORL w/o advantage 211.1± 39.7 1.01± 0.05 94.7± 0.1%

Enduro SORL 371.1± 2.9 0.84± 0.25 96.2± 0.1%
SORL w/o advantage 405.2± 9.7 0.91± 0.21 95.8± 0.1%

Riverraid SORL 1931.2± 432.1 1.00± 0.04 95.1± 0.2%
SORL w/o advantage 1842.4± 282.2 0.95± 0.00 94.1± 0.2%

Frostbite SORL 2056.0± 391.9 0.97± 0.04 93.5± 0.4%
SORL w/o advantage 1787.8± 250.6 0.90± 0.07 92.4± 0.1%

DunkCityDynasty SORL 5.3± 3.4 1.05± 0.0 40.7± 4.6%
SORL w/o advantage 0.7± 0.9 0.92± 0.11 39.8± 5.7%

Table 5: The ablation study of SORL, comparing the SORL algorithm without advantage-weighted
style learning.

D PROOF DETAILS

We provide detailed proof of solving the constrained optimization problem in Section 4.2. The
original problem is as follows.

∀i ∈ [m], π(i) = argmaxEs∼d
µ(i) (s)Ea∼π(i)(·|s)A

µ(i)

(s, a)

s.t. Es∼d
µ(i) (s)DKL(π

(i)(·|s)||µ(i)(·|s)) ≤ ϵ,∫
a

π(i)(a|s)da = 1, ∀s.

(11)

In advantage-weighted style learning, we approximate Aµ(i)

(s, a) by Aµ(s, a), where µ represents
the policy distribution of the entire dataset. This approximation is made because Aµ(s, a) often has
higher quality than Aµ(i)

. Subsequently, we calculate the Lagrangian of the optimization problem:

L(π(i), λ, α) =Es∼d
µ(i) (s)

[
Ea∼π(i)(·|s)A

µ(s, a)

+ λ(ϵ−DKL(π
(i)(·|s)||µ(i)(·|s)))

]
+

∫
s

αs(1−
∫
a

π(i)(a|s)da)

(12)

Differentiating on π(i),

∂L

∂π(i)(a|s)
= dµ(i)(s)[A

µ(s, a)− λ log π(i)(a|s) + λ logµ(i)(a|s)− λ]− αs (13)

We set ∂L
π(i)(a|s) to 0, and can get the closed-form solution π(i)∗(a|s) =

1
Z(i)(s)

µ(i)(a|s) exp( 1λA
µ(s, a)), where the normalization term Z(i)(s) = exp( 1

d
µ(i) (s)

αs

λ + 1).

Finally, we project π(i)∗ to π
(i)
θ paramterized by θ by minimizing the KL divergence between them.

D(i) denotes the trajectories corresponding to style i in the dataset, which is unknown. Hence, we
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rewrite the expression by incorporating the probability of each trajectory being the i-th style.

argmin
θ

Es∼D(i) [DKL(π
(i)∗(·|s)||π(i)

θ (·|s)]

= argmin
θ

Es∼D(i)

[ ∫
a

(π(i)∗(a|s) log π(i)∗(a|s)− π(i)∗(a|s) log π(i)
θ (a|s))

]
=argmin

θ
Es∼D(i)

[ ∫
a

(−π(i)∗(a|s) log π(i)
θ (a|s))

]
=argmin

θ
Es∼D(i)

[ ∫
a

(− 1

Z(i)(s)
µ(i)(a|s) exp( 1

λ
Aµ(s, a)) log π

(i)
θ (a|s))

]
=argmin

θ
−Es∼D(i)Ea∼D(i) log π

(i)
θ (a|s) 1

Z(i)(s)
exp(

1

λ
Aµ(s, a))

= argmin
θ

−Eτ∼D(i) log π
(i)
θ (a|s) 1

Z(i)(s)
exp(

1

λ
Aµ(s, a))

= argmin
θ

−Eτ∼Dp̂(z = i|τ) log π(i)
θ (a|s) 1

Z(i)(s)
exp(

1

λ
Aµ(s, a))

(14)

Similar to AWR (Peng et al., 2019) and other prior work (Neumann & Peters, 2008; Siegel et al.,
2020; Wang et al., 2018), we neglect the per-state normalizing constant Z(i)(s). The policy update
can be expressed as follows:

argmin
θ

−Eτ∼Dp̂(z = i|τ) log π(i)
θ (a|s) exp( 1

λ
Aµ(s, a)) (15)

The original problem 11 has solution because it satisfies the Linear Indepence Constraint Qualifica-
tion (LICQ).

E EXPERIMENT DETAILS

Network structure We construct the network based on the default network of the relative task
according to the codebase we use. The network of Grid Shooting and Dunk City Dynasty is a
3-layer MLP, and the network of Atari environments has three convolution layers and two linear
layers.

Figure 7: The usage of LoRA in the network structure of multiple policies.

Besides, in order to ensure balanced learning among all the styles, we share the main network
and use a LoRA module to discriminate different styles. LoRA (Hu et al., 2021) is a widely used
network structure, that substitutes the original matrix of the linear layer by a matrix W and a low-
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rank multiplication of two other matrices Ai and Bi. In our setting as shown in Figure 7, the matrix
W is shared among all styles of policies, while Ai, Bi varies. The input dimension d and output
dimension k depends on the linear layer, and the rank r is set to 9 in this work.

Number of styles In Grid Shooting, we use 2 styles because we want to recover the two real styles
of behaviors in the dataset. In other environments, we learn 3 styles from the dataset.

Hyperparameters and other details In Grid Shooting, we use the batch size 128, offline dataset
size 20000 and the number of epochs 10. In Atari environments, we use the batch size of 32 × 5
where we sample 32 (s, a) pairs for 5 times, with the number of epochs 30. In Dunk City Dynasty,
we use the batch size of around 300 and 100, 000 steps for the quality, diversity, and consistency
metrics. We use 900, 000 steps for generating the playing videos of different styles.

We re-implement the InfoGAIL with continuous latent variables in all the environments. The 3
styles are extracted by applying (1, 0, 0), (0, 1, 0), (0, 0, 1) as the latent variable to the policy model
and get the 3 different policies.

The Grid Shooting and Atari results in the tables show the mean and standard deviation among 3
random seeds.

F ADDITIONAL METRICS EVALUATING DIVERSITY

In the main text, we use the diversity metric of popularity, which is a dataset-related metric that
evaluates diversity. However, the definition of diversity, especially in the offline setting, is not
unique. We provide additional diversity metrics in this part. The definitions of metrics are as follows.

1. Skill metric measures the dissimilarity of the skill set. The skill set is defined as the
vector of rewards obtained by each skill, e.g., skill = (rshoot, rstar) in the grid shoot-
ing environment. And the dissimilarity between two skill sets skill1, skill2 is defined
as the value of their cross product dskill(skill1, skill2) = ||skill1 × skill2||. The dis-
similarity metric is obtained by first sampling trajectories with different policies, and
calculating the average dissimilarity between pair-wise skill sets, i.e., Diversityskill =
Eskilli,skilljdskill(skilli, skillj) where skilli, skillj are sampled from different styles.

2. OT (optimal transport) metric is based on the optimal transport distance (also known
as Wasserstein distance). The similar idea is used in a recent work in imitation learn-
ing (Luo et al., 2023). When calculating the trajectory-level OT distance, we align steps
with neighbor states together and sum up to the overall distance, i.e., dOT (τ

1, τ2) =

argminµ∈M

∑T
t=1

∑T
t′=1 ||s1t − s2t′ ||µt,t′ where M = {µ ∈ RT×T , µ1 = 1

T 1, µ
T1 =

1
T 1}. And the diversity metric is calculated by averaging all trajectory pairs τ i, τ j from
different policies DiversityOT = Eτ i,τjdOT (τ

i, τ j).
We employ a normalization technique to enhance the interpretability of the OT metric.
The normalization is achieved by applying the formula normalize(DiversityOT ) =
DiversityOT−α

α , where α is the OT metric on trajectories sampled from the same policy.

3. Discrimination metric represents how different policies can be discriminated by a neural
network. After collecting trajectories of different policies, we first train a neural network
to predict the policy index, and the discrimination metric is just the evaluation accuracy.

Popularty metric Skill metric OT metric Discrimination metric
SORL 0.60 15.7 0.022 0.75

SORL w/o advantage 0.61 21.2 0.108 0.97
Off-RLPMM 0.68 23.2 0.048 0.99

InfoGAIL 0.00 2.0 0.000 0.69

Table 6: The diversity under differen metrics.

Based on the results of the additional diversity metrics presented in Table 6, we can conclude that
the SORL algorithm is capable of obtaining diverse policies.
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G COMPARISON WITH OFFLINE RL BASELINES

SORL (ours) CQL AWR IQL
SpaceInvaders 387.1± 33.3 136.5± 27.5 339.3± 57.1 361.5± 86.9

MsPacman 622.2± 65.3 513.7± 325.5 486.7± 148.1 505.0± 161.2
MontezumaRevenge 306.7± 19.1 113.4± 196.3 343.3± 173.9 166.7± 32.1

Enduro 371.1± 2.9 0.0± 0.1 345.7± 40.2 290.1± 44.2
Riverraid 1931.2± 432.1 1127.7± 160.6 1710.3± 270.0 1909.3± 332.1
Frostbite 2056.0± 391.9 76.3± 16.7 1528.0± 329.4 2184.7± 337.5

Table 7: The comparision with offline RL baselines.

We present the results of standard offline RL methods in Table 7, which do not focus on diverse
policy learning.

H ATARI ENVIRONMENT VISUALIZATION

H.1 SPACEINVADERS

Figure 8: The game interface of SpaceInvaders.

In SpaceInvaders as Figure 8, the shooter can move horizontally, and there are three stationary
bunkers positioned above the shooter. The shooter can shoot from bottom to top, in order to destroy
the aliens above to get scores. During playing, there are random attacks from top bottom that can
destroy the shooter. However, staying under the bunker can prevent those attacks. The bunker can
also be destroyed by continuously attacking it. In addition, the aliens slowly swing left and right
together all the time. In the game, players moves horizontally to shoot from a correct position with
an alien above, and avoid being attacked.

Leftmost - Bunker 1 Bunker 1 - Bunker 2 Bunker 2 - Bunker 3 Bunker 3 - Rightmost
Style 1 23% 19% 36% 22%
Style 2 10% 57% 15% 18%
Style 3 32% 38% 26% 4%

Table 8: In SpaceInvaders, the probability of the shooter in different regions.
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(a) Style 1 (b) Style 2 (c) Style 3

Figure 9: In SpaceInvaders, the probability distribution of the shooter’s position.

To evaluate the diversity of learned policies, we calculate the frequency of the shooter’s position
over 30,000+ steps for each style. Table 8 and Figure 9 demonstrates that different styles of policies
tend to prefer different positions.

To better understand the style of learned clusters, we analyze the game mechanics which partially
explains the preferences of styles. In SpaceInvaders, a shortcut of getting high scores is to staying
close to the left of the Bunker 1 (and also staying close to the right of the Bunker 2) to destroy all the
aliens in the leftmost column (and the rightmost column), because there are fewer attacks from top
to bottom and is close to the bunker, where destroying the aliens in the leftmost/rightmost column
provides a large amount to scores. As a result, style 1 and style 3 prefers staying in the leftmost, and
style 1 and style 2 prefers staying in the leftmost.

H.2 MSPACMAN

In MsPacman as shown in Figure 10, the map and starting position are fixed. To evaluate the diversity
of learned policies, we calculate the frequency of the beginning trajectory until the first corner for
each style, based on 30 trajectories per style. There are a total of six possible corners. Table 9
displays the different preferred corners for each style.

Figure 10: The game interface of MsPacman.

Besides, we analyze the visualizations of the dataset trajectories. Atari datasets in our experiment
are collected by three players, which exhibit some diversity in terms of policy variations. As shown
the following table 10, in the game MsPacman, different human players (named J, K and R) have
varying preferences for the first visited corners. Additionally, even within a single player’s gameplay,
there can be variations in visitation patterns.
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Which corner 3rd left 2nd left 1st left 1st right 2nd right 3rd right
Style 1 0% 33% 67% 0% 0% 0%
Style 2 20% 7% 7% 3% 37% 27%
Style 3 0% 97% 3% 0% 0% 0%

Table 9: In MsPacman, the probability of the pacman choosing different routes in the beginning.

Which corner 3rd left 2nd left 1st left 1st right 2nd right 3rd right
Player J (2 trajs) 0% 0% 50% 50% 0% 0%
Player K (2 trajs) 0% 0% 50% 50% 0% 0%
Player R (16 trajs) 6% 44% 6% 19% 19% 6%

Table 10: In the dataset of MsPacman, the probability of the pacman choosing different routes in the
beginning.

I SENSITIVITY ANALYSIS ON THE NUMBER OF POLICIES

Sensitivity analysis We have performed experiments to evaluate the diversity, quality, and consis-
tency of SORL under different values of m, where m is the number of policies. The performance
of SORL in Table 11 remains similar across different m values, indicating that the algorithm is not
highly sensitive to the hyperparameter m.

m = 2 m = 3 m = 4 m = 5
Diversity 0.61 0.85 0.65 0.69
Quality 55.1% 50.3% 52.5% 52.2%

Consistency 86.4% 88.5% 88.7% 88.7%

Table 11: The diversity, quality and consistency under different values of m.

The reward distribution of learned policies The reward distribution of the learned policies is
presented in Table 12. When taking larger m value, the learned policies still differs a lot from each
other. Some of them focus on shooting enemies, while others prefer collecting stars.

(m = 3) Policy 1 Policy 2 Policy 3
Reward (shoot) 0.0 3.3 2.7
Reward (star) 8.2 0.4 3.8
Winning rate 59% 36% 56%

(m = 4) Policy 1 Policy 2 Policy 3 Policy 4
Reward (shoot) 1.3 2.2 0.2 3.1
Reward (star) 6.0 3.2 7.6 0.5
Winning rate 57% 57% 56% 40%

(m = 5) Policy 1 Policy 2 Policy 3 Policy 4 Policy 5
Reward (shoot) 1.1 2.6 2.9 0.4 1.5
Reward (star) 8.0 0.5 0.5 8.6 6.2
Winning rate 50% 38% 37% 65% 61%

Table 12: The reward distribution when m = 3, 4, 5.

J DISCUSSION ON POSTERIOR APPROXIMATION

In the main text, we approximate the true posterior p̂(z = i|τ) ∝
∫
(s,a)∈τ

µ(i)(a|s) with p̂(z =

i|τ) ∝
∑

(s,a)∈τ µ
(i)(a|s), because the consecutive multiplication leads to numerical instability.

We plot the distribution of p̂(z = 1|τ) for all trajectories in the dataset in Figure 11. Figure 11a uses
consecutive multiplication, while Figure 11b is the average of all steps. The results show that using
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consecutive multiplication causes a trend of polarization in clustering, which causes unexpected
numerical instability. The experiment was conducted in the grid shooting environment with the
number of clusters set to m = 2.

(a) The distribution of the true posterior
p̂(z = 1|τ), which is calculated by consecu-
tive multiplication of the probability at each
step.

(b) The distribution of the approximated
p̂(z = 1|τ), which is calculated by averag-
ing the probability at each step.

Figure 11: The histogram of the distribution of the posterior.
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